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Abstract

We show that the logic HEX*[FOg], which is first-order logic (with successor)
extended with a generalized quantifier (HEX) corresponding to the PSPACE-
complete problem Generalized Hex, has a projective normal form. This gives as a
corollary that HEX*[FO,] captures PSPACE and that the problem Generalized
Hex is complete via first-order projections. We define a variation of HEX, namely
WHEX, and prove that as a problem (class of finite structures) it is also com-
plete for PSPACE via logspace reducibility. Considering WHEX as a generalized
quantifier, we form the logic WHEX"*[FO;] and show that it has similar properties
as HEX*[FOq]; that is, it has a projective normal form and captures PSPACE;
hence WHEX is complete for PSPACE via first-order projections. Furthermore,
we show that WHEX*[FO;] is contained in the infinitary logic LY .

We then study the existence of normal forms for the logics HEX"[FFO] and
WHEX*[FO], where the successor relation is not present, and conclude that they
have no projective normal forms. In fact, we prove a general theorem that states
the non-existence of a projective normal form for various extensions of first-order
logic (without successor) of the form Q*[FO] when  is a generalized quantifier that
corresponds to a firmly monotone problem. The tool we employ for obtaining our
negative results is Ehrenfeucht-Fraissé games for logics with generalized quantifiers.

We continue our explorations in the world of unordered structures with a re-
vision of a theorem by Gradel, which states the existence of a hierarchy of logics
inside Transitive Closure logic, or TC*[FO]. We translate this result to the frame-
work of program schemes, and obtain a hierarchy of certain classes of program
schemes. Our Hierarchy Theorem for program schemes generalizes Gradel’s Hier-

archy Theorem for TC*[FO], since, as we show, his theorem can be obtained as a



i

corollary from ours, and similar hierarchies inside other logics of the form Q*[FO],
where ) is a generalized quantifier of complexity within NL, are also consequences

of our theorem.
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Chapter 1

Introduction

Descriptive Complexity attempts to describe the computational complexity of
problems using logical formalism. Its origins date to a result by Fagin from 1974
[Fag74], which says that the complexity class NP is “captured” by existential
second-order logic (or ¥1). By this it is meant that any problem in the compu-
tational complexity class corresponds to a class of models of a sentence of the
logic, and any set of structures that satisfies a sentence of the logic corresponds
to a problem in the given class. In recent years, logics that capture other known
complexity classes have been discovered by different authors.

An interesting way of constructing logics that capture computational complex-
ity classes is as follows. Start with first-order logic with equality and a successor re-
lation (denoted FO,), and boost its expressive power by adding a formula-building
operator, or generalized quantifier, which corresponds to a problem complete under
some known Turing-machine-based reducibility (e.g., polynomial-time, logspace),
in the computational complexity class that we seek to capture. For example, in
the class of directed graphs (digraphs) whose vertices are ordered, let TC be the
property “there exists a path in the graph from the vertex indexed 0 (the small-
est element in the order) to the vertex indexed max (the largest element in the

order)”. Then, a formula such as
TCD 2y (0, ma),

where 1 is a formula in the variables  and y, holds in a finite ordered structure



A, if the graph with set of vertices |A| and edge relation
{(a.b) € [A” | A = (a,0)},

has the property TC. Note that it is logically reasonable to consider v itself to
be a formula with the operator TC (e.g., ¥(x,y) := TC[Avub](z,y)); and a
further generalization is to consider k-tuples of variables, T := (xy,...,2%) and
Y := (y1,-..,Yk), for some positive integer k, instead of single variables; the inter-
pretation being that the appropriate graph has k-tuples of elements as its vertices.
Let TC*[FOs] be the set of formulas thus formed (with all possible finite vectoriza-
tion and nesting of TC). The problem of deciding if a graph has the TC property
is logspace complete for NL, and it has been shown by Immerman, in [Imm87],
that the logic TC*[FO,] captures NL.

The logic TC*[FO,] has an interesting “collapsing” property: any formula in
TC*[FO,] is equivalent to a formula of the form TC[A 7y ¢](0, maz), where T and y
are k-tuples of distinct variables (for some positive integer k), and ¢ is a quantifier-
free first-order projective formula (basically a formula in disjunctive normal form
where each disjunct has a very simple structure). One then says of TC*[FO,] that
it has a projective normal form. Other problems of computational complexity in
the classes L, P, and NP, have been discovered by various authors to generate
logics with similar properties as TC*[FOs]; that is, they capture the corresponding
class to which the problem belongs, and satisfy a projective normal form. However,
as far as we know, no example that has both of these properties has been found
for PSPACE. One contribution of this thesis is to give two such examples. We

show

Normal Form Theorem: Fuvery formula ¢ € HEX*[FO,] is equivalent to a
Jormula of the form HEX[AZTy¢](0, maz), where i € FOy, ¥ projective and over
the distinct k-tuples of variables T and y, for some k > 1, and where 0 (resp. maz)

is the constant symbol 0 (resp. max) repeated k times.



The logic HEX*[FOy] is obtained by adding to FO; the generalized quantifier
corresponding to the graph problem Generalized Hex (or simply HEX), which was
shown to be complete for PSPACE via logspace reducibility in [ET76]. We will
give the definition of HEX and prove the theorem mentioned above in chapter
3. We will also define in that chapter a variation of the HEX-problem, which we
named WHEX. To dispel any doubts that we have indeed found a new problem,
we show that WHEX # HEX as classes of graphs. Next, since we have never seen
the WHEX problem treated in the literature, we prove that WHEX is complete
for PSPACE via a logspace reduction; thus contributing with another problem
to the list compiled in [GJ79]. Then we prove that the logic WHEX"[FO,] also
captures PSPACE and has a projective normal form.

There are some important consequences of these type of results that are worth

mentioning:

o It provides a classification of problems within the same computational com-
plexity class. For example, in [Ste94b], Stewart shows that the extension of
FO; with the operator 3COL, which corresponds to the NP—complete prob-
lem of deciding if a graph is 3-colorable, cannot have a projective normal form
unless NP = coNP. On the other hand, the same author shows, in [Ste91],
that the logic HP*[FO,], which is FO, with the operator HP corresponding
to the NP—complete problem of deciding if a graph has a Hamiltonian path,
captures NP and has a projective normal form. Thus, in terms of express-
ibility, the logics HP*[FO,] and 3COL*[FO,] are different (relative to the
NP = coNP question).

o It shows that the problem is complete via a reduction weaker than the usual
polynomial-time or logspace, namely, first-order projections (or f.o.p.). Since
first-order projective formulas are very restrictive, it is not so immediate to

conclude that a problem which is complete via polynomial-time or logspace



reductions, is also complete via f.o.p. In fact, it is shown in [ABI93] that there
are problems in NP, complete via polynomial-time or logspace reductions,
which are not complete via f.o.p. This is in contrast with the general belief
that all problems complete via polynomial-time reduction are also complete
via logspace reduction. Thus, showing that a problem is (is not) complete
via f.o.p. may lead to lower bound results within a complexity class (see
[Imm&7]). (Let us point out that a problem can be complete via f.o.p. but

its associated logic may not have a normal form, e.g., 3COL.)

Thus, both HEX and WHEX are complete for PSPACE via f.o.p. So far, then,
HEX and WHEX are similar with respect to ordered structures. Hence, the next
natural question to ask is: are they similar with respect to arbitrary structures?
So we remove the successor relation from our set of basic logical symbols and
study the expressibility of the logics HEX*[FO] and WHEX"[FO]. (Note that we
write FFO instead of FO; to stress that we are working on structures that are not

necessarily ordered.) We show that a universally quantified sentence of the form
vz HEX[A\ Ty ¢ (7,7, 7)](0, maz) (1.1)

with v € FO, cannot be expressed as a sentence with a single application of
the quantifier HEX to a successor free first-order formula. The same happens for
WHEX. In fact, we prove a general result that says that it is not possible to simplify
an equation like (1.1) when the generalized quantifier is firmly monotone (e.g., a
graph property is firmly monotone if it is invariant under the addition of new
vertices and edges to the graphs with the property). Both HEX and WHEX are
firmly monotone, but so also are many problems in the classes L, NL, P, and NP;
hence, our inexpressibility result applies to problems in these classes as well. We
pause to mention a further application of this result: If one can find, for example,

some NP—-complete problem ) which is firmly monotone and its associated logic



QFO] captures NP (where Q' denotes that we only allow a single application
of the operator ), then our inexpressibility result yields that NP # PSPACE,
solving an outstanding problem of Complexity Theory.

In order to prove our last theorem we employ a version of Ehrenfeucht-Fraissé
games for logics of the type Q*[FO]. These games were defined in [Ste96] for firmly
monotone problems, and, although those are sufficient for our applications, we
define a variation of these games and prove the corresponding Ehrenfeucht-Fraissé
type of theorem for problems that are not necessarily firmly monotone; thus, giving
a small contribution to the toolbox of Descriptive Complexity.

Returning to the question of how similar in expressive power are HEX*[FO] and
WHEX*[FO], we study their possible definability in the infinitary logic L2 . We
prove that the problem WHEX is definable in L2 by showing that it is definable
in PFP, where PFP is the Partial Fixed Point logic and it is known that PFP
< L¥ . Thus WHEX"[FO] < PFP < L¥ . As for HEX, the problem of its

definability in LY is still open.

oow

Now to the second part of this thesis. Motivated by the inexpressibility result
of (1.1), we wondered about the possibility of showing something similar for more
complex formulas. The proof of our Normal Form Theorem (Theorem 3.1.1) shows
that the only place we need the successor relation, in order to construct the de-
sired projective formula, is where we are trying to simplify universally quantified
formulas as (1.1). This suggests that some combination of the quantifier V with 3,
or the quantifier HEX, might yield more complex formulas that do not simplify to
just one application of HEX to a projective formula.

In [Gragl], Gradel exhibits a strict hierarchy of logics inside the logic TC*[FO],
which he obtained by interleaving the TC operator with the quantifier V. We

found Gradel’s techniques difficult to generalize because they are too intrinsically



related to the operator TC: his main tool is a TC-game, which is an Ehrenfeucht-
Fraissé type of game with the TC property built in it. So we sought a better
framework and found it in program schemes; in particular, in the class of programs
NPS. An NPS program scheme is, essentially, a nondeterministic while program
with quantifier-free tests which take as input some finite structure over some fixed
vocabulary. It is shown in [Ste88] that, over ordered structures, a program scheme
has the same computational power as a nondeterministic Turing machine using
logarithmic work-space. That is, NPS(succ) = NL, where NPS(succ) denotes the
class of Nondeterministic Program Schemes with successor as a built-in relation.
The advantage of program schemes over the more common model of computation
of Turing machines is that they can be best treated as logical formulas, hence being
more suitable for the descriptive analysis of computational classes.

Thus, starting with the notion of a program scheme from NPS (without any
built-in relation), we define a series of classes of program schemes by allowing first-
order formulas and other program schemes as tests. We show that the containment
is proper at all levels, using infinitary pebble games to simulate the computations
of our program schemes in a combinatorial way. We then show the relation be-
tween our classes of program schemes and logics like TC*[FO], and show that our
hierarchy of program schemes implies that of Gradel’s for TC. But, furthermore,
we can also show that there exists hierarchies of logics, similar to Gradel’s, inside
any logic of the form Q*[FO], where  is a class of structures accepted by a pro-
gram scheme of the kind we define. These problems () are of a complexity not
higher than NL; so, our generalization of Gradel’s work applies so far to problems

in the complexity class NL and below.



Chapter 2

Basic Background

The purpose of this chapter is to present the basic concepts and to fix the notation
used throughout this thesis. We are doing Descriptive Complexity, which is partly
Computational Complexity and mostly Finite Model Theory. The former is a well
developed subject with many textbooks written on it (e.g., [Pap94], [HU79]), and
so we start by giving only a brief description of some of the important objects of
Computational Complexity that are often used in this thesis. Then, we describe
in detail the logical concepts. Most of our notations and definitions are based on

[Ste94b], [EF95], and [Pap94].

2.1 Computational Complexity

Let {0,1}* be the set of all finite strings over {0,1}. For w € {0,1}*, |w| denotes
the length of the string w. In Computational Complexity, a decision problem is
usually considered as a set of strings S C {0,1}*. The typical model of compu-
tation is the Turing machine model that takes as inputs elements from {0,1}*,
operates in modes deterministic (for each instruction there is at most one next
instruction) or nondeterministic (for each instruction there could be more than
one next instruction), and has bounded resources. The resources that are gen-
erally measured are time and space: Given a Turing machine M and a function
f: N — R*, we say that M has time bounded by f if for all w € {0, 1}*, accepted
by M, there is an accepting computation of M that begins with w and has at most
f(Jw|) steps. M has space bounded by f if for all w € {0,1}*, accepted by M,



there is an accepting computation of M which uses at most f(|w]) cells of its work
tape(s).

In order to give a measure of how hard it is to compute a set of strings with
respect to another different set of strings, various concepts of reducibility among
sets have been introduced. The most common ones are logspace and polynomial
time reducibility: Let S and T be two sets of strings in {0, 1}*. S is logspace (resp.
polynomial time) reducible to 7' if and only if there exists a function ¢ : {0,1}* —
{0,1}* which is computable by a deterministic Turing machine with logarithmic

space (resp. polynomial time) bound, and is such that, for all w € {0,1}*,
we Siff gw) e T.
The complexity classes we will be referring to are:

e L, or Logarithmic space (resp. NL, or Nondeterministic Logarithmic space),
the class of sets S C {0,1}* such that S is accepted by a deterministic (resp.
nondeterministic) Turing machine with space bounded by a logarithmic func-

tion (with domain in N).

e P, or Polynomial time (resp. NP, or Nondeterministic Polynomial time),
the class of sets S C {0,1}* such that S is accepted by a deterministic (resp.

nondeterministic) Turing machine with time bounded by a polynomial.

e PSPACE, or Polynomial Space (resp. NPSPACE, or Nondeterministic
Polynomial Space), the class of sets S C {0, 1}* such that S is accepted by a
deterministic (resp. nondeterministic) Turing machine with space bounded

by a polynomial.

For any complexity class C, coC denotes its complement. From the definitions

it follows that C = coC for any deterministic class C (e.g., L, P, and PSPACE).



It has been shown that NL = coNL [Imm88, Sze87]; but it is currently unknown
whether NP = coNP or NP # coNP.
Another well established relation among the complexity classes listed above is

the following:

LCNLCPCNP CPSPACE = NPSPACE.

It has been long known that L is a proper subset of PSPACE (see [HLS65]);
therefore, some of the above four inclusions must be proper. However, it is still
unknown whether any of the above inclusions is proper, and this constitute a major
open problem in Computational Complexity. It is the hope of many researchers
(and ours as well) that by applying the tools of Finite Model Theory to Compu-

tational Complexity that, and several other open problems, will be solved.

2.2 Problems, generalized quantifiers, and logics

We are dealing with finite vocabularies and finite structures. Our vocabularies
consists of relation and constant symbols (no function symbols), and we reserve
the letters 7 and o (with subscripts) to denote them. So, a vocabulary 7 has the
form 7 ={Ry,...,R., C1,...,C.}, where each R; is a relation symbol of arity a;

and each C; is a constant symbol (1 <¢ <r, 1 <j <e¢). A 7-structure is a tuple

A= ({0,...,n—1},R}, ... RACA ..., 0N

consisting of a universe |A| = {0,...,n—1}; relations R C |.A|%, for each relation
symbol R; (i = 1,...,r); and constants CJA € |A|, for each constant symbol C;
(j =1,...,¢). The size of A is n, and we denote it by ||A||. We assume that our

structures have universe of size at least 2. This is a standard assumption and it is

done to avoid unnecessary work on special cases relating to structures of size 1.

The set of all finite T-structures is denoted by STRUCT(7).
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A (computational) problem 1, over a vocabulary 7, is a subset of STRUCT(7)

closed under isomorphisms, i.e.,
A€ Qand A= B implies B € Q.
We will be dealing mostly with the following type of problems:

Definition 2.2.1 (Firmly monotone problem) A problem 2 over the vocab-
ulary 7 is monotone (resp. firmly monotone) if for every pair of 7-structures, A

and B, such that:
(i) |Al = |B] (resp. |A] <|B]),
(ii) for every relation symbol R € 7, RA C R®, and

(iii) for every constant symbol C' € 7, CA = 5,
we have that A4 € Q implies B € €. .

For example, a graph problem, that is, a class of structures over the vocabulary
7, = {E} where F is a binary relation symbol, is monotone if the property that
characterizes the problem is invariant under the addition of edges (to any graph in
the class), and it is firmly monotone if the property is invariant under the addition

of edges and vertices.

For any vocabulary 7, FO,(7) denotes first-order logic over the vocabulary 7.
This is the set of well-formed formulae, built using the symbols of 7, the binary
relation symbols s and =, the constant symbols 0 and max, the usual logical
connectives A, V and —, quantifiers ¥V and d, and variables x, y, z, ..., etc. We
assume that =, s, 0, and max don’t occur in any vocabulary. We denote tuples of
variables x1, ..., x; as T, and its length k£ as |Z| which we will always try to make

clear from context.
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For a formula ¢(%) € FO4(7) in the free variables & = xq,..., x%, a T-structure
A of size n, and @ € | A|*, the interpretation of ¢ in (A, @) is denoted by ¢ (@)
and is defined as usual, except that the binary relation symbol = is interpreted as
equality, the binary relation symbol s is interpreted as the successor relation on
|A|, the constant symbol 0 is interpreted as 0 € | A|, and the constant symbol max
is interpreted as n — 1 € | A].

Os; = U{FO4(7) | 7 some vocabulary }, and FO is the sublogic of FO, in which

the successor relation s is absent.

Definition 2.2.2 (First order translations) Let 7 = {Ry, ..., R., (1, ...,

C.}, where each R; is a relation symbol of arity a; and each C; is a constant

symbol. Let o be some other vocabulary, and let k be a positive integer. A k-ary

r-translation of STRUCT (o) to STRUCT(7) is determined by k£ and a set ¥ of
o-formulas, {¢1(71,%), ..., & (T, 2), ¥1(Yy), - - ., ¥e(Y.)}, where each ¢; is over the

ka; distinct variables ¥; plus possibly other free variables from some tuple zZ, and
each v; is over the k distinct variables ¥;, and is such that for A € STRUCT (o)
its k-ary T-translation with respect to ¥ is the 7-structure As with universe |Al*;

relations

R = {u € | A"

(A, w,7) = oi(Ti,2)},

where T is some tuple in |A|; and constants determined by
C =7 iff Al ;(a), for 7 € |Ag).

The successor relation on Ay is defined using the lexicographical ordering on k-
tuples. Thus, 0 = (04,...,04) and maz?> = (max?, ..., mazx?). We called the

elements of ¥ 7-descriptive formulas of arity k; we use sometimes the shorthand

¢ for Rf‘z, and ;/)]A for CJAE. .
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Example 2.2.1 Let o¢ be the empty vocabulary; 7, = {F} where F is a binary

relation symbol, and consider the following og-formula:

Qb((l'layl), (ilfzayz)) = 8(51?1,51?2) A [(y1 =0Ay, = ma:z;)

V (y1 = max A yg = 0)].

For any og-structure A (i.e., a set A = (] A]) ), its 2-ary 7o-translation with respect

to ¥ = {¢} is a graph, Ay, with set of vertices |As| = |A| x |A| and edge relation

B = {((a1,a2), (b1,by)) € |As|* |
<A, (ahaz),(bhbz» |: Qb((il?l,yl)a(fl?%yz))}-

We now describe the kind of logics that we work with in this thesis. These
are extensions of FO, (or FO) by means of generalized quantifiers. The idea of
augmenting the expressive power of first-order logic in this manner goes back to a

paper by Lindstrom [Lin66].

Definition 2.2.3 ( The logic £Q*[FO;] ) Let 7 and o be as in the preceding
definition, and let  be a problem over 7. The first-order extension of FO,(o) by
2, denoted +Q*[FO,(0)], is the smallest set of formulas such that:

(i) FOs(o) € £Q7[FO;];
(i) if ¥, ¢ € £Q*[FO;] then ¥ V ¢, b, and Jz1p are also in £Q*[FO,]. The
interpretation of each one of these formulas in a o-structure A is as follows:

Assume that the free variables of ¢ and ¢ are among the variables in the

tuple . If @ € | A|"l then

(Au) E Vo)) iff (Au) ¢ or (Au) = oT);
(A, w) |E —(7) iff it is not the case that (A, u) E ¥(7);
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if z appears in T then

(A w) = J=¢(7) it (A, W,v) | (T) for some v € | A such that v is in

the tuple @, v is the value assign to z, and @ is @ with v removed;

if z does not appear in T, then
(A7) B0 i (AT) b= 6@

(iii) if ¥ = {o1,...,0p 1, 0.} C £ [FO;(0)] is a set of 7-descriptive for-

mulas of arity k£ and ¢ is some positive integer, then

(I)(f) = Q[)‘flqblv s 7fr¢ray1¢17 s 7yc77bc](§17 s 7575)

is a formula in +Q*[FO;(0)] , where each Z, is a tuple of variables or constant
symbols, and the variables of each %, do not occur in any formula ¢; or v;;
furthermore, the variables of each tuple 7; and i/, are bound in ® (as indicated
by the symbol ), and hence, the free variables of ® (represented by the tuple

T) are the variables of each Z;, and the variables of each ¢; distinct from ;.
The interpretation of @ is as follows: If A € STRUCT(c) and w is a tuple
of elements of |A| such that |[u] = |7|, then (A, uw) | ®(T) if and only if
the k-ary 7-translation of A with respect to X, that is, the structure Ay €
STRUCT(7), is such that (As,@,...,w) € Q, where |u;| = |z;| for ¢ =

1,...,t and takes values from w.

We also use the connective A and the quantifier V, which can be regarded as
abbreviations: ¢ A ¢ stands for =(—1 V =¢), and ¥z stands for ~3z—p.
+Q*[FO;] = (J{£Q*[FO;(0)] | o some vocabulary }.

Let Q*[FO;] denote the sublogic of +Q*[FO;] where only positive applications
of the quantifier Q are allowed, i.e., £ does not appear within the scope of an odd

number of negation signs in any formula.
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Let £QF[FO;] (resp. Q*[FO,]) denote the sublogic of £Q*[FO;] (resp. Q*[FO,])
where at most k& applications of the quantifier ) are nested.
Let £Q*[FO] denote the sublogic of £Q*[FO;] where the successor relation is

absent, and define similar sublogics to this one as above. .

Notice that following common practice we employ the same symbol {2 to de-
note a problem and the quantifier corresponding to that problem. From now on,
whenever we write the word logic we mean FO,, FO, or some set of formulas con-
structed as in Definition 2.2.3. We use the letter £ to denote any of these logics,
and L(7) to specify that these L-formulas are over the vocabulary 7. Therefore,

L = |J{L(7)]| 7 some vocabulary}.

Example 2.2.2 Let 7, = {E'} where E is a binary relation symbol. £TC*[FOy,] is
known as Transitive Closure logic, and is the extension of FO, with the generalized

quantifier TC corresponding to the problem, over the vocabulary 7,

TC ={ (A,u,v) € STRUCT(7y)| there is a path in the

digraph A from vertex u to vertex v}.

A related logic is £DTC*[FOy], or Deterministic Transitive Closure logic, which is
obtained by extending FO, with the generalized quantifier DTC corresponding to
the problem

DTC ={ (A,u,v) € STRUCT(72)| there is a path in the digraph A
from vertex v to vertex v such that each vertex on

the path, except for possibly vertex v, has out-degree 1 }.

We will be interested in counting the number of quantifiers occurring in a

formula.
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Definition 2.2.4 The quantifier rank of a formula 6 in £Q*[FO,] is denoted by

gr(0) and is defined, by induction on the complexity of 6, as follows:

0 if 8 is atomic
ar(®) if0:= ¢
mazlqr(¢). qr()] if 0:= 6V ¢
gr(o) + 1 if 0= Jzo

and if 0 := QAT101,..., TP, Y11, ..., .| (Z) where, for each i = 1,...,r,
T:| = ka;, for each j = 1,...,¢, [§;| =k, and Z is a tuple of variables or constant

symbols, then

qr(0) := maxlka; + qr(¢:), k+qr(y;) : 1 <i<r; 1 <5 <¢l.

For any sentence ¢, over some vocabulary 7, MOD(¢) denotes the class of

finite models of ¢, that is,

MOD(¢) = {A € STRUCT(r) | A = ¢}

2.3 Descriptive Complexity meets

Computational Complexity

In the context of Descriptive Complexity a computational problem is, as seen in the
previous section, a set of finite structures and not a set of strings over some finite
set of symbols, as is usually considered in Computational Complexity. However,
one of the goals of Descriptive Complexity is to construct logics that syntactically
characterize the usual Turing-machine-based notion of a computational complex-
ity class. For that we need a bridge that would allow us to go back and forth

between these two different ways of expressing the same thing.
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Let 7 = {Ry, ..., R., C1, ..., Cs} be some vocabulary where each R; is a
relation symbol of arity a; and each C; is a constant symbol. Let A be a 7-
structure of size n. The encoding of A, e,(A), over the set {0,1} is defined as

follows.

For each ¢ = 1,...,r let w; be the string in {0,1}* of length n% such that
if (by,...,b,,) is the k-th member of | A
k-th digit of w; is 1 if RA(by,...,bs,) holds; 0 otherwise, for all 1 < k < n%.

“ in lexicographical order, then the

Let ¢; be the binary representation of CJA forg=1,...,s.

Then, e.(A) is the string formed by concatenating ¢, ..., ¢, wy, ..., w,, as
follows:

er(A)i=cp- 5wy w,.

If © is some problem over 7, then e,(Q) := {e;(A) | A€ Q} C {0,1}*. This is
the set of strings over {0, 1} corresponding to the problem ().

Conversely, given a set of strings S € {0,1}*, there might be many problems
Q, over different vocabularies 7, such that e.(2) = 5; there is at least one: to each
w € S associate the structure A, = ({1, ..., |w|},UA*) over the vocabulary

o = {U}, where U is a unary relation symbol and is such that
U4 (i) holds iff the i-th letter of w is a 1.

Let € be the problem over o consisting of the structures A,,, for each w € S. Then
e, () = S.

Definition 2.3.1 A complexity class C is captured by a logic £ if and only if

(i) for each set of strings S € C, there is some vocabulary 7 and a sentence ¢ in

L(7), such that S = e.(MOD(¢)), and

(ii) for each vocabulary 7 and each sentence ¢ in L(7), e.(MOD(¢)) € C.
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If class C is captured by logic £ (or £ captures C), we write C = L. Moreover,
C < L denotes that item (i) above is satisfied, and £ < C denotes that item (ii) is
satisfied. So, C = L if and only if C < £ and £ <C. .

We also use the symbol = instead of the more common = to denote equivalence
of logics. Thus, if £; and L, are two logics then £; = L5 means that, for all
vocabulary 7, every L£;(7)-sentence ¢; is equivalent to an Ly(7)-sentence ¢y (i.e.,

E ¢1 «— ¢2), and vice-versa.

We close this section with an important result, due to Immerman, concerning

the logics £TC*[FO,] and £DTC*[FO,] presented in Example 2.2.2.
Theorem 2.3.2 [Imm87, Imm8§].
(i) £TC*[FO,] = TC*[FO,] = TC'[FO,] = NL.

(ii) £DTC*[FO,] = DTC*[FO,] = DTC'[FO,] = L.

We remark that the order, given by the underlying built-in relation s, is crucial
for the above result to hold. For example, it is shown in [Grd91] that without
order the second equality in (i) is not true. The question of whether results in
Descriptive Complexity that hold for ordered structures also hold for arbitrary
structures (ordered and unordered) is an important one. In this thesis we address
this question with respect to a property that we will introduce in the next section.
Due to the difference in results, according if the successor relation is present or
not, we make the following proviso: unless stated otherwise we are always working

on ordered structures.
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2.4 Normal forms, completeness, and capturing

A central notion in Descriptive Complexity is that of a logical reduction.

Definition 2.4.1 Given two problems, ; C STRUCT (o) and 5, € STRUCT(7),
and a logic £, it is said that Q4 L-reduces to 3 (and denoted Q4 <, Q) if there
exists a k > 0 and a set of 7-descriptive formulas ¥ C L(o), that translates

o-structures into 7-structures, and is such that, for all A € STRUCT (o) :

A€Q1 llcf AEEQQ.

As in Computational Complexity, we are interested in finding the weakest pos-

sible logical reduction among two problems.

Definition 2.4.2 Let Q,; and £, be as in the previous definition, and suppose €,
FO;-reduces to (), via the set of 7-descriptive formulas Y. If each formula ¢ in X
satisfy:

¢:=\{anBi|lel}

for some finite index set I, where

(i) each a; is a conjunction of the logical atomic relations (e.g., s, =), and their

negations;
(ii) each (3 is atomic or negated atomic;

(iii) if ¢ # j then a; and «; are mutually exclusive,

then X is a first-order projection (abbreviated f.o.p.), and each ¢ is called a pro-
jective formula. If each (3; is atomic, then X is a first-order monotone projection,

and each ¢ is then called a monotone projective formula. .
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Example 2.4.1 Let o be the empty vocabulary, and consider the following prob-
lem contained in STRUCT (o9):

EVEN := {4 € STRUCT(0y) | ||A]| is even }.

Let ¢ := &((x1,y1), (x2,y2)) be the formula defined in Example 2.2.1, let ¥ = {¢},
and let TC be the problem Transitive Closure defined in Example 2.2.2. Then, for
all A € STRUCT(oy),

A € EVEN iff (Ay, (0,0), (max,max)) € TC.

Note that ¢ is a first-order projective formula; therefore, the problem EVEN re-
duces to the problem TC via f.o.p. .

NOW7 Suppose Q1 SIL Q2 via the set X = {qbl(fl)v tty Qbr(fr)v 77Z)1(y1)7
Ve(y.)} € L(o), with |T;] = ka; and [y;| = k. Let A € STRUCT(¢). Then

Y

A€Q1 iff AE: <|"4|k7 favqb:‘v@bf‘vv@b;‘w EQ?

iff "4|: QQ[)‘flqbl?"'7§7’¢7’7y1¢17"'7yc¢0]‘

This proves the following useful relation between logical reducibility and express-

ibility in the logic £Q*[FO;]:

Proposition 2.4.3 Let L be a logic, Q € STRUCT(0), and Q, C STRUCT(7).
Then Q4 <. Qy if and only if & = MOD(®) for some sentence ® € QL[L(o)]. =

An immediate consequence of Proposition 2.4.3 is that if £; and L, are two

logics, such that £, < Lo and ;) <z, g, then Q) <., Qs. We use this fact later.

The following important result that links the usual Turing—machine—based re-
ducibility and the logical reducibility has been proven in [Ste91] (cf. [EF95, Propo-
sition 10.3.22]).
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Proposition 2.4.4 Let Q; C STRUCT(o) and Q; € STRUCT(7) be problems.

Then e,(§2y) is logspace reducible to e-(€y) if and only if Oy <preiro, Q. .

We now show our main tool for capturing complexity classes with our logics.

Our result is a generalization of Corollary 3.1 of [Ste91].

Corollary 2.4.5 Let C be a complexity class above L and closed under logspace
reducibility. Let Q@ C STRUCT(7) be a problem such that

(i) DTC'[FO,] < Q*[FO,], and
(ii) e,() is in C and is complete via logspace reducibility.

Then,
Q'[FO,] < C < O*[FO,).

Proof: Q'[FO,] < C: Let ® € Q'FO,(o)] for some vocabulary o. By Proposi-
tion 2.4.3 MOD(®) <po, . By Proposition 2.4.4 and the observation following
Proposition 2.4.3, e,(MOD(®)) is logspace reducible to e,(€), and since C is closed
under logspace reducibility e,(MOD(®)) € C.

C < Q*[FO;]: Let S € C be some set of strings. By hypothesis (ii), S is logspace
reducible to e,(€2). On the other hand, there is some vocabulary o and a problem
V' C STRUCT(o) such that S = ¢,()). By Proposition 2.4.4 Q' <prciro, Q.
By Proposition 2.4.3 @ = MOD(®') for some sentence ® € Q' DTC'[FO,]].
By hypothesis (i), Q' [DTC'[FO,]] < Q*[FO,], therefore, there is a ® € Q*[FO,]
equivalent to ®’. Hence, ' = MOD(®) with ® € Q*[FO,]. .

Corollary 2.4.5 above gives an easy way to sandwich a complexity class C be-
tween the logic Q*[FO,] and its sublogic Q'[FO,]. For Q*[FO;] to capture C then,
all we have to show is that it collapses to Q'[FO,]; in other words, that the re-

peated application of the quantifier Q adds no extra expressive power to Q'[FO,],
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and hence, Q*[FO,] = Q'[FO,]. If this happens, we say of the logic Q*[FO,] that
it has a normal form. This concept is the central subject of study in this thesis,

and, hence, it deserves to be given as a definition.

Definition 2.4.6 Let Q be a problem over the vocabulary 7 = {Ry, ..., R,, C1,
..., C.}, where each R; is a relation symbol of arity a; and each C; is a constant
symbol. The logic Q*[FO;] has a normal form if, for every vocabulary o, every
sentence ® € Q*[FO;(0)] is equivalent to a sentence of the form QAT ¢1, ..., T, ¢,
U1, -, 7o) (0), with [74] = kay, 7] = k (for some k > 0), &, ¥; € FO,(o),
and C some tuple of constant symbols (possibly empty). If, in addition, each
¢; and each ¥; (1 <1 <r, 1 <j < ¢)is a projective formula then we have a
projective normal form for Q*[FO;]. We can define, in a similar manner, a normal

form property for logics as £Q*[FO;], £Q*[FO], and Q*[FO]. .

We have already given examples of logics with the property described above:
+TC*[FO;] and £DTC*[FO;] have normal forms and, in fact, Immerman showed
that these are projective. For another set of examples consider the vocabularies
= {E}, 7 = {F,C1,C3}, and 75 = {R,C1,C5}, where E is a binary relation
symbol, R is a ternary relation symbol, C; and (5 are constant symbols. Define

the following problems:

PS ={A € STRUCT(73) | A is a path system where

the sink C3! is accessible from the source Cy'}.

HP ={A € STRUCT(7) | there is a Hamiltonian path
in the digraph A from vertex C{* to vertex Cy'}.

3COL ={A € STRUCT(7y) | the graph A is 3-colorable }.

(A path system is a set of vertices V', a relation R C V x V x V., a source s € V,

and a sink ¢ € V, and a vertex is accessible if it is the source s, or if  and y
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are accessible (with possibly © = y) and R(x,y,z) holds then z is accessible. A
Hamiltonian path is a path that touches all the vertices of the graph only once. A
graph is 3-colorable if all its vertices can be colored with 3 colors such that no two

adjacent vertices have the same color.)

Theorem 2.4.7 [Ste91, Ste92, Ste94a).
(i) P = £PS*[FO,] = PS*[FO,] = PS'[FO,] and the normal form is projective.
(ii) NP = HP*[FO,] = HP'[FO,] and the normal form is projective.

(iii) £3COL*[FO;] = 3COL*[FO;] and if 3COLT[FO,] = 3COL1[FOS] then
NP = coNP.

(iv) NP = 3COL'[FO,] and 3COL is complete for NP via f.o0.p.

Parts (ii) and (iii) of Theorem 2.4.7 are the results we alluded to in the introduc-
tion: we have two well-known problems, complete for NP via logspace reducibility
[GJ79], which, as generalized quantifiers, produce extensions of FO; of different
expressive power (assuming NP # coNP). Also, part (iv) tell us that a problem
may be complete via f.o.p. even though the logic, obtained by extending FO, with
a generalized quantifier corresponding to that problem, may not have a normal
form. However, knowing that a projective normal form exists for the logic 2*[FO]
yields that the problem § is complete via f.o.p., which is an important fact as
explained earlier. Thus, DTC, TC, PS, and HP are problems complete via f.o.p.
for the classes L, NL, P, and NP, respectively.

We have given examples of logics Q*[FO;] with the normal form property for
problems € within all the important complexity classes but PSPACE. The reason
being that, as far as we know, there are no such examples. One contribution of

this thesis is to fill that gap by giving two examples in the next chapter.
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Chapter 3

Normal Forms for Two Logics

that Capture PSPACE

3.1 The HEX logic

The Generalized Hex problem (HEX). An instance of this problem is an
undirected graph G = (V, F) together with a source s € V and a sink ¢t € V, and
we want to know if Player 1 has a winning strategy in the following game played on
G: two players, Player 1 and Player 2, alternate choosing a vertex from V — {s, ¢}
with Player 1 making the first move. Player 1 colors his chosen vertices blue and
Player 2 colors his red, and the game ends when all the vertices (except s and )
have been colored. Player 1 wins if and only if there is a path from s to ¢ in ¢
that passes only through blue vertices. We refer to this game as the HEX-game
on (G, s,t), and we refer to the Generalized Hex problem as the HEX problem, for
short. Thus, the HEX problem is to determine if Player 1 has a winning strategy in
the HEX-game on (G, s,t). Note that a winning strategy for a player is a sequence
of moves that makes the player win no matter how the opponent plays. The HEX
problem is known to be complete for PSPACE via logspace reduction [ET76],
[GJ79].

Let E be a binary relation symbol and let 5 = {E'}. We can think of structures
over 75 as undirected graphs as well as directed graphs (digraphs). Since we are

interested in undirected graphs we treat F(x,y) as a symmetric relation; that is,
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E(x,y) +— E(y, ) holds for all  and y. We encode HEX as a class of structures

over the vocabulary 7, as follows:

HEX ={ (A,u,v) € STRUCT(7;)| Player 1 has a winning strategy
for the HEX-game played on (A, u,v), with v and v in |A] }.

Remark 3.1.1 We could have encoded HEX over the vocabulary 7 := 7 U

{C4,C3}, where C and (5 are two constant symbols, as the class of structures

HEX(Cy, C3) ={A € STRUCT(7) | Player 1 has a winning strategy
for the HEX-game played on (A, C{t, C5) 1.

We think of this as a localization of the problem HEX to the constants €y and C,
and although it might be a more precise way of encoding HEX, it adds the extra
burden of having to deal with two extra T-descriptive formulas, corresponding to
(1 and (s, in our logical analysis. In fact, as a consequence of our Normal Form
Theorem below (Theorem 3.1.1), we have that all possible localizations can be
thought of as being over the already given constant symbols 0 and max. Nonethe-
less, we might sometimes refer to the problem HEX in a localized manner, e.g., as

HEX(0, max), again for convenience. .

We first note that HEX is firmly monotone: if Player 1 has a winning strategy
in a game played on a graph &, then adding more edges and vertices to G would
still give Player 1 a win with the original strategy.

We consider HEX as a generalized quantifier and add it to FO, to form the
logic #HEX*[FO;], as described in Definition 2.2.3. We restrict our work to the

positive fraction HEX*[FO,] and show that this logic has a projective normal form.

Theorem 3.1.1 Let 7 be some vocabulary. Fvery formula ¢ € HEX*[FO,(7)] is
equivalent to a formula of the form HEX[ATy¢](0,maz), where » € FO(T), ¢
projective and over the distinct k-tuples of variables T and vy, for some k > 1, and

where 0 (resp. maz) is the constant symbol 0 (resp. max ) repeated k times.
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Proof: We proceed by induction on the complexity of ¢.

Case 1. ¢ € FO4(7) is atomic or the negation of an atomic formula.

Let x4y, x4, y1, and y3 be four distinct variables not occurring in ¢. Then
E o «— HEX[X(x1,y1)(x2,y2) 6]((0,0), (max, max)).

Indeed, let 6 := HEX[A (21, y1)(22, y2) ¢]((0,0), (max, max)), A be any T-struc-
ture, and Ay be the 7-translation of A with respect to ¥ = {d((@1,y1), (22, 92))}
(i.e., we treat ¢ as if it were defined over the variables (x1,y;) and (22,y2)). Note

that the universe of Ay is |.A|?, and so this structure has size at least 4. We then

have:
Al ¢ = Ay is a complete graph (i.e., every possible edge is defined)
= (Ay,(0,0), (max,max)) € HEX = A=0.

Conversely,

Al -¢ = Ay isa graph with no edges
= (Ay,(0,0), (max,max)) ¢ HEX = A} 0.

The remaining cases will be proven with constructions that resemble those made
by Immerman in his proof of the existence of a projective normal form for TC*[FO,]
in [Imm&7, Theorem 3.3]. The difference with our proof is in the following gadget,
which will be at the heart of the solution of each case of the induction.

Let GG be an undirected graph with source s and sink ¢. Let X(G) be a new
graph obtained from 8 copies of GG, namely G, Gy, ..., Gg, as follows:

the sources of (1, (G5, (3, and (G4 are combined into one vertex s;;

the sources of G5, (Gg, (G, and (Gg are combined into one vertex ss;

the sinks of Gy, (G5, G5, and G4 are combined into one vertex ¢y;
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the sinks of Gz, G4, G'7, and Gy are combined into one vertex t,.
We say that X (G') has two sources, s; and sy, and two sinks, ¢; and ¢5. The graph
X(G) is shown in Figure 1, where each graph (; is represented by a line labelled
with the number ¢ (¢ = 1,...,8). Note that X (() is undirected also.

Figure 1: The graph X(G).

Now, by the HEX-game on X((') we mean a slightly different game than the
HEX-game on (G,s,t). In an HEX-game on X () either player can start the
game. Both players alternate coloring vertices of X (') as usual, but they can also
color the two sources and the two sinks. Player 1 wins if and only if there is a
path from one of the sources to one of the sinks of vertices colored blue (Player 1’s
color) including the source and the sink.

We show next that Player 1 has a winning strategy in the HEX-game on (G, s, 1)
if and only if Player 1 has a winning strategy in the HEX-game on X ().

Lemma 3.1.2 (i) If Player I has a winning strategy in the HEX-game on (G,
s, t) then Player 1 has a winning strategy in the HEX-game on X(G).

(ii) If Player 2 has a winning strategy in the HEX-game on (G, s,t) then Player

2 has a winning strategy in the HEX-game on X(G).

Proof: (i) There are two cases to consider depending on who makes the first move

in the HEX-game on X(G):
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(1) Player 1 starts the HEX-game on X (G): Then Player 1 wins the HEX-game
on X () by playing as follows. Player 1 starts by coloring the source s; blue. If
Player 2 colors a vertex of G; or Gy red, then Player 1 colors the sink ¢5 blue;
otherwise, Player 1 colors the sink ¢; blue. Assume w.l.o.g. that Player 1 ends up
coloring the sink 1 blue (and so the vertices of (; and (5 are free of colors). If
Player 2 plays outside of (&7 then Player 1 plays in (1, and continues playing there
until the end of the game, according to his winning strategy for the HEX-game on
(G, s,1); this strategy is effective since Player 1 is the first one to color a vertex in
Gy different from the source s; and the sink ¢;. The argument is similar for the
case when Player 2 plays outside of (.

(2) Player 2 starts the HEX-game on X(G):

(a) Player 2 colors a source (resp. sink) red in his first move. Then Player
1 replies by coloring the other source (resp. sink) blue. W.l.o.g. suppose that
Player 2 has colored s; red and Player 1 has colored sy blue. If Player 2 colors a
vertex of (5 or (G red then Player 1 replies by coloring the sink ¢5 blue; otherwise,
Player 1 colors t; blue. W.l.o.g. we may assume that sy and ¢, have been colored
blue, and no other vertex of (G; and (G5 has been colored. If Player 2 colors a
vertex of (7 red then Player 1 plays in Gis (and continues playing in this copy of
G until the end of the game) according to his winning strategy in the HEX-game
on (GG, s,t); otherwise, Player 1 plays in (7, according to his winning strategy in
the HEX-game on (G, s,1).

(b) Player 2 colors a vertex different from the sources and the sinks in his first
move. W.l.o.g. assume Player 2 colors a vertex in (G; red. Then Player 1 colors
the source sy blue. If Player 2 replies by coloring a vertex in Gz or (g red then
Player 1 colors t; blue; otherwise, Player 1 colors t; blue. The rest of Player 1’s

strategy is as in (a).

(ii) We need to describe a sequence of moves for Player 2 such that no matter



28

how Player 1 plays on X((), Player 1 can not build a path of blue vertices from
some source to some sink. As in part (i) there are two cases to consider:

(1) Player 1 starts the HEX-game on X(G):

(a) Suppose that Player 1 begins by coloring some source or some sink blue.
W.l.o.g. say Player 1 colors s; blue. Then Player 2 colors ¢; red and, hence, Player
1 is forced to color t3 blue in order to secure a blue a path from s; to ;. Player
2 colors sy red and, therefore, Player 1 can build a blue path only by playing on
either G5 or Gy. Wherever Player 1 plays, Player 2 replies according to his winning
strategy in the HEX-game on ((7, s,t) and effectively blocks all paths that Player
1 tries to construct in X (G).

(b) Suppose that Player 1 begins by coloring a vertex different from the sources
and the sinks blue. Then, in whichever copy of GG Player 1 plays, Player 2 replies
according to his winning strategy for the HEX-game on ((, s,t), and when Player
1 plays on some source or some sink, Player 2 proceeds as explained in (a).

(2) Player 2 starts the HEX-game on X(G): Then, Player 2 has the extra
advantage of restricting further the set of vertices that Player 1 can color to make
a path and, so, Player 2 colors any vertex red, and continues playing as explained

in (1) depending on which vertex Player 1 colors. .

To describe the construction of X (') from a given graph G, we introduce the
following formulas on the variables x4, x3, x4, and x;. We use abbreviations as

r=y=zfore=yAy=zANz=z

=

o
AN TN N N

Ty, T3,T9,%1) = Ty =123 =29 =21 =10

Ty, T3,T9,%1) = Xy =123 =29 =0Ax =mazr
Ty, T3, T2, T1 T4 =23 =121 =0A x93 = maxz

Ty, T3,T9,%1) = xy=x3=0A2y =121 =mazr

R O ——

Ty, T3,T9,%1) = Xy =1x9 =21 =0Ax3=mazr
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5(xq,23,29,21) = x4=1x9=0A23 =121 =mazr

6(xy,23,29,21) = x24=2x1=0A23 =29 =max

8(xy, 3, 12, = ry=marNr3=x93=2x1 =0

( )
( o)
T(x4, 73, 09,71) = x4=0Ax23=122=2; =max
( 1)
( )

mixry,r3, T2, = Xy = T3 =T =1 =Max

(Think of max as 1. Then the above formulas, but the last, spell out the binary
encoding of the natural number which are they named after. We use these formulas

to codify the elements of each one of the eight copies of the graph G in Figure 1.)

Case 2. ¢ := HEX[A\©© 0|(q,7), where g and 7 are k-tuples of constant symbols,
and 0 is projective. We wish to replace g and 7 by 0 and maz.

For ¢« = 1,...,24, we define the following formulas «; on the variables w, x4,
T3, T2, X1, U, Ya, Y3, Y2, and y1. To simplify notation let T = (x4, x3, 22, 21) and

¥ = (Y1, Y3, Y2, Y1)

ap = u=0A0T)AT=qA L(Y)
as = u=0A0(T)AT=7qA8(7)
as = 1(z) A L(F) A 0(u, )
as = 2(T) A 2(7) A 0(u, )
as = 3(T)A3(y)Ab(u,v)
ag = 4T)N4(y)Ab(u,v)
ar = 5(x) A5(F) A 0(u,v)
as = 6(T) A 6(F) A 0(u,v)
ag = T(T)ANT(Yy)Ab(u,v)
ap = 8(T)A8(y)A0d(u,v)
1



Let

a3

(057)

( (w,
u=gqgALT) N4y AT,
2@) Nv=7A1(y) A b(q,
5(T) Av=TAL(Y)A0(u,
6(z) AT =7AL1(Yy)A0(u,
u=gA8(T)N5(y) A0,

(@) N 6(7) A O(T,
u=qA8T) AT(y) A0k,
3(x) AT =7A8(Y)A0(u,
47) AT =T A8(y) N7,
T@)NT=7A8(Yy)Ab(u,

30

¢(ﬂ7 T4, X3, T2, 21,0, Ya, Y3, Y2, y1) = \/ Q.

=1

Then ¢ is a projective formula, and, for any appropriate 7-structure A, the 7-

translation of A with respect to ¢ is a graph, namely Gy, with vertex set con-

tained in |A|** and edge relation described by ¢*. Let Gy be the graph with

vertex set |A[* and edge relation described by #4. Then G is, in fact, X(Gj)

with the sources s; and sy being (g,0,0,0, maz)* and (g, maz,0,0,0

A respec-

tively, joined to the (k + 4)-tuple 0 := (0,0,0,0,0)*, and the sinks #; and ¢, be-

ing (7,0,0,0,max)* and (7, maz,0,0,0)" respectively, joined to the (k + 4)-tuple

max := (maz, mazr, max, mazr, max)*. Note that G is an undirected graph be-

cause # is symmetric, by assumption, and the logical connective A is commutative.

By Lemma 3.1.2, it follows that Player 1 has a winning strategy in the HEX-game
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on (Gy,q*,7) if and only if Player 1 has a winning strategy in the HEX-game on
(Gy,0,max). Therefore,

|: qb — HEX[)‘ (ﬂv 1}471’371}2,1‘1) (67 y47y37y27y1)¢](07max)‘

Case 3. ¢ := Iz HEX[Auv 0(u, 7, 2)](0, maz), where z is not bound in @ and is
different from any variable of the k-tuples w and v, and 6 is projective.
We define the following formulas 3; (for 1 < ¢ < 24) on the variables u, v,

Tsy, T4, T3, L2, T1, Y5, Y4, Y3, Y2, and Yi- As before, T = ($4,$3,$2,$1) and

Y= (Y1 Y3, Y2, Y1)

By = u=0Ax25=0A0T)Av=0A1(y)

By = u=0Ax5=0A0(T)Av=0A8(Y)

By = LT)AL{Y)Axs =ys NO(u,7, z5)

By = 2(T)A2(Y) Axs = ys AO(w, v, x5)

Bs = 3(T)AN3(Y) Axs =ys NO(u,7, x5)

B = 4(T)N4{Y)Axs=ys NO(u,7, z5)

Br = B5(T)A5(Y)Axs =ys AO(W, v, x5)

Bs = 6(T)A6(Y)Axs =ys AO(u,v,xs5)

Bo = T(T)ANT(Y)ANxs =ys NO(u,7, z5)

Bro = 8(T)AN8(Y)Aas=ys NO(u,v,xs)

i1 = u=0ALT)Azs =ys A2(Y) AO(u,T, a5)
Bz = u=0ALT)Azs=ys A3(Y) AO(u,T, x5)
Bz = u=0ALT)Axs=ys AN(Y) A O(u, T, x5)
Pra = v=maz A 2(T) AN x5 =ys AN 1(y) A 0(T,v, x5)

f1s = v=mazx A5(T) AN as=ys AN 1(y) A O(u, v, x5)
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fis = v=maz A 6(T)Axs=ys AN1(y) AO(u,v,xs)
Bz = u=0A8(T)Axs=uys A5(Y) AO(u,v, x5)
Bis = u=0A8(T)Axs=uys A6(Y) AO(u,v,xs5)
Bro = u=0A8(T)Axs=uys ANT(Y) AO(u,7, x5)
fa0 = v=mmaz A 3(ZT) AN xs=ys A 8(y) AN O(u,v, x5

<|
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Let

24
¢(u7 L5y, T4, X35 L2, L1,V,Ys5,Yq, Y3, Y2, yl) = \/ 62
=1

Then ¢ is a projective formula, and, for any appropriate 7-structure A, the 7-
translation of A with respect to v is the (undirected) graph G pictured in Figure
2, which is constructed as follows: for each z € |A| let G, be the (undirected)
graph described by 0(-,-, 2)#, with the vertex 0" as the source and the vertex
maz as the sink; build the graphs X (G.) for each z € |.A| and join both sources
(resp. sinks) of each X(G.) to the vertex labelled 0 := (0,0,0,0,0,0)* (resp.
max := (maz, max, mazx, mazx, max,mazx)*), which is the source (resp. sink) of
Gy

Suppose that Player 1 has a winning strategy in the HEX-game on (., for some
z € |A]. By Lemma 3.1.2, Player 1 has a winning strategy in the HEX-game on
X(G.,). Hence, in the HEX-game on G, Player 1’s winning strategy is to play on
X(G,) according to his winning strategy for that graph.

Conversely, suppose that Player 2 has a winning strategy in the HEX-game on

G, for every z € |A|. By Lemma 3.1.2, Player 2 has a winning strategy in the
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max

Figure 2: The existential case.

HEX-game on X(G.), for every z € |A|. Then, on G, wherever Player 1 plays,
Player 2 replies according to his winning strategies for the HEX-game on each
graph X (G.), thus blocking every possible path that Player 1 tries to construct in

Gy from the source 0 to the sink max. Hence,

|:¢ — HEX[)\(@,$5,$4,$3,$2,$1) (E,y5,y4,y3,y2,y1)¢](O,max).

Case 4. ¢ := VzHEX[\uv 0(u,7, 2)](0, maz), where z is not bound in 8 and is
different from any variable of the k-tuples @ and v, and 6 is projective.

We define the following formulas v; (for 1 < ¢ < 28) on the variables u, v,
Ts, T4, Tz, T2, T1, Ys, Y1, Y3, Y2, and y; (again we set T = (x4, 13,29, 21) and

Y= (Y1, Y3, Y2, Y1) )-

Moo= BiAys=0



Y2

i

Y23

Y24

Y25

Y26

Yo7

Y28

Let

Ba Nys =0

B;  for ¢ such that 3 < <22

s(xs,ys) ANu =maz A\ 1(T) (v)
s(ws,ys) ANu =maz A 1L(T) AT =0 A 8(Y)
s(ws,ys) ANu =maz A 8(T) AT =0A 1(Y)
s(zs,ys) AU =Tmaz A8(T) AT =0A 8(Y)

28
¢(u7 L5y Lq, L3, 22,21, V,Ys5, Y4, Y3, Y2, yl) = \/ i
=1

34

Then ¢ is a projective formula, and, for any appropriate 7-structure A, the 7-

translation of A with respect to ¢ is the (undirected) graph G pictured in

Figure 3. As in Case 3, for each z € |A|, let G, be the graph described by

0(-,-,2)A. Then, for each z such that 04 < z < max?, the graph X(G.) is
joined to X (G,41) by edges from each sink of X((,) to each source of X(G.11).
The sources of X((Gy) are joined to a vertex labelled 0 := (0,0,0,0,0,0)* (the

source of (), and the sinks of X(G,4,) are joined to a vertex labelled max :=

(maz, max, max, mazx, max, mazx)* (the sink of Gy).

0
0

max 0

max

0 max

Figure 3: The universal case.

0 max
@ "
0
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Suppose that Player 1 has a winning strategy in the HEX-game on G, for
each z € |A|. By Lemma 3.1.2, Player 1 has a winning strategy in the HEX-
game on X(G.), for each z € |A|. Then, in the HEX-game on G/, Player 1’s
winning strategy is to play on each X () according to his winning strategy for
the HEX-game on that graph. No matter what Player 2 does, Player 1 will be
able to construct a blue path in each X(G,) from some of its sources to some of
its sinks (with these source and sink being colored blue also), and, consequently,
Player 1 will have a blue path in G from the source 0 to the sink max.

Conversely, suppose that Player 2 has a winning strategy in the HEX-game
on G, for some z € |A]|. By Lemma 3.1.2, Player 2 has a winning strategy in
the HEX-game on X(G.). Then, in the HEX-game on G, Player 2 plays in the
graph X((G,) according to his winning strategy, effectively blocking all possible blue
paths that Player 1 tries to construct in that graph and, consequently, blocking all
possible blue paths in G from the source 0 to the sink max.

Thus,

|:¢ — HEX[)\(E,$5,$4,$3,$2,$1) (57$57$4ay37y2791)@Z’](Oamax)-

Note that here is where we use successor.

Case 5. ¢ := HEX[AzyHEX[Au©(%,v,7,7)](0, maz)](0, maz), where T and
y are k-tuples, u and v are k’-tuples, and 0 is projective.

We define the following formulas §; (for 1 < i < 28) on the variables u, v, Ts,
§57 L, T3, T2, L1, y67 y57 Ya, Y3, Y2, and H ( §67 §57 y67 y5 are k/_tuples of variables

and, as before T = ($4,$3,$2,$1) and y = (y47y37y27y1) )

S = u=v=0AT5=T6=0A0(T)Ay; =0A8(Y)
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The formulas d3 to dy5 are similar to the formulas §3 to (92 of Case 3, but
instead of x5 = ys write T5 = Y5 A Ts = g, and instead of 6(u,v,T5) write

0(u,v,Ts,To)

da3 = W=7 =mmaz ANTs = maz N\ 1(T) \ Y5 = Jg = maz A m(y)
da = W=7 =Tmazr NTs = maz N\ 8(T) \ Y5 = Yg = maz A m(y)
S5 = u=maz AL(ZT)ANT=0A1(Y) AT = Ts
S = u=maz ANL(T)ANT=0A8(Y) AT =T
Sy = u=maz A8(T)ANT=0A1L(Y) AT = Ts
Ss = u=maz A8(T)ANT=0A8(Y) AT =T

Let

28
@/)(Ua Te,T5,T4,T3,T2,T1,V,Yg, Ys, Y4, Y3, Y2, yl) = \/ ;.
i=1

Then ¢ is a projective formula, and, for any appropriate T-structure A of size m,
the 7-translation of A with respect to ¢ is the (undirected) graph G pictured
in Figure 4: It is m x m subgraphs X (G ;), for each pair (T;,y;) € |A|** (where
G ; is the graph described by (-, -, %;,7,)™), string together as follows. For each
i and j in {0,...,m — 2} and for all h € {0,...,m — 1}, the sinks of X(G} ;)
have edges to the sources of X(G;;); for all h € {0,...,m — 1}, the sources of
X (Gop) have edges to a new vertex labelled 0 := (0,0,0,0,0,0,0)* (the source

of Giy), and the sinks of X(G,—1,,) have edges to a new vertex labelled max :=

(maz, maz, maz, max, max, maz, mar)” (the sink of Gy).
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Using Lemma 3.1.2, and arguing as in the previous cases, one can see that
Player 1 has a winning strategy in the HEX-game on (G, 0, max) if and only if
there exists a sequence of m pairs (%o, 7,,), (F1,7;,)s -+ (Tm-1,7;,,_,), i |A|?F,
such that Player 1 has a winning strategy in the HEX-game on each graph deter-
mined by 0(-,-,fh,§jh)“4 (jn€{0,...,m—1},0 < h <m—1), with source 04
and sink max? (that is, on (Gy;, , 04, maz?t) ).

Thus

|:¢ — HEX[)\(ﬂ,§6755,:1;4,:1;3,:1;2,:1;1) (67y67y57y47y37y27y1)¢](07max)‘

All other form that ¢ may have can be easily reduced to one of the five cases above.

For example, say

¢ := HEX[A 7y 0](0, maz) V HEX[A w7 \](0, maz),

where § and y are projective formulas, T and i are k-tuples, w and v are k'-tuples,
and k > k. We first add to uw (resp. U) a (k — k')-tuple @’ (resp. ¥') of variables
not showing in any of the formulas 6 or x to form the k-tuple (w,u’) (resp. (v,7)),

and consider

Since HEX is firmly monotone we get
E HEX[Auv x](0,maz) «— HEX[\(u,@) (v,7) \'](0, maz);
therefore,
E ¢ +— HEX[\7y0](0,maz) Vv HEX[) (u,w) (v,7") x](0, maz),

and all the tuples of variables involved in the formula above are of length k; we can
now proceed as in Case 3. The conjunction of two sentences is treated similarly,

and as in Case 4.
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Cases like ¢ := JzHEX[X 2 y 0](z, max) are resolved with a standard technique
of Model Theory: add a new constant C' to the vocabulary 7 and use it as a
witness for z. That is, in the extended vocabulary m U {C}, ¢ is equivalent to
HEX[A 2y 8](C, max) and, by Case 2, this sentence is equivalent to one of the form
HEX[Auw v #'](0, maz) with " a projective formula.

This completes the proof. .

Now that we know that the logic HEX*[FO,] has a projective normal form we
would like to use this fact, together with Corollary 2.4.5, to show that it captures
PSPACE. For that we need first the following result.

Theorem 3.1.3 DTC'[FO,] < HEX*[FO,].

Proof: Consider the y-sentence ¢ := TC[ATy0(7,v)](0,maz), where T and ¥
are k-tuples of distinct variables, for some k& > 0, and 8 € FO,, and consider the

following formula ¢ on the variables T, uy, uq, ¥, vy, and vy:

qb = (EZG/\U1:UQ 0A y 6
A ((vr =max ANvg =0)V (vy =0 A vy = max)))

V(T =maz A ((ug = max ANug =0) V (ug = 0 A ug = max))

A Y =maz A vy = max A\ vg = max)
vV (u1 = U1 /\UQ == UQ/\&(E,?))
Vo (ur =0 Auy =max Avy = max Avy =0A0(T,7))

Vo (ur =max Auy =0A vy =0A vy =max A0(Z,7)).

Then
|: ¢ — HEX[)‘ (fv Uy, UQ)(yv U1, U2)¢] (67 m)
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(Player 1’s winning strategy is simple: play first in (0,0, max) or (0, maz,0), and
thereafter play opposite vertex to Player 2’s choice, i.e., if Player 2 colors (T, u1, uz)
then Player 1 colors (T, v1,v2) for u;,v; € {0, max}, v; # u;, and i = 1,2.)

Since

E DTCAzy0(z,v)](0,maz) «—

TCIATF(O(F,7) AVZ(O(Z,7) — 7 =7))|(0,maz),

it follows that

E DTC[AZTyé(T,9)|(0,maz) +—

HEX[AT'y ¢/ (', 7)](0, maz)
for some ¢’ in FOy. .

Note that we don’t use successor to define the formulas in the above proof;

hence, Theorem 3.1.3 holds on arbitrary structures:
Corollary 3.1.4 DTC'[FO] < HEX*[FO]. .

Corollary 3.1.5 PSPACE = +HEX*[FO,] = HEX*[FO,] = HEX'[FO,] and
HEX is complete for PSPACE wvia first-order projections.

Proof: HEX is complete for PSPACE via logspace reducibility (see [ET76]), and
PSPACE is closed under complement. These two facts together with Corollary
2.4.5, Theorem 3.1.1, and Theorem 3.1.3, give the desired conclusion. .

The equality PSPACE = +HEX"[FO;] was first shown by Makowsky and
Pnueli in [MP92] using techniques different to ours: theirs consist on relating the
logic HEX®"[DTC*[FO;]] with the complexity class L with an oracle in PSPACE,
that is, LPSPACE However, one cannot deduce a normal form for HEX*[FO,]
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with those methods, neither that HEX is complete via first-order projections.
Thus, our results complements [MP92] in that regard.

For a logic such as HEX*[FO,], we define the sublogic HEX*[FO/] as the set of
formulas in HEX*[FO,] where any relation or constant symbol appears positively.
By noting that the projective formula found in each case of the proof of Theorem

3.1.1 belongs to HEX*[FO?], we have the following stronger result about HEX:

Corollary 3.1.6 HEX is complete for HEX*[FOT] via monotone first-order pro-

jections. "

3.2 The WHEX logic

Consider the following variation of the game of HEX: given an undirected graph
G = (V,FE), a source s € V, and a sink ¢ € V, Player 1 must start the game by
coloring a vertex by for which there is an edge to s blue; Player 2 must respond
by coloring a vertex ry for which there is an edge to b; but no edge to s (i.e., the
equation F(by,r1) A—F(s,r1) holds) red; Player 1 continues (if he can) by coloring
a vertex by, different from ry, and for which there is an edge to b; but no edge to s
blue; Player 2 responds by coloring a vertex ry for which there is an edge to by but
no edge to by red; and so on. The goal of Player 1 is to reach ¢ in this step-by-step
construction of a path of vertices colored blue (except s and ), while Player 2 tries
to prevent this, with both players making no triangles with their chosen vertex and
two consecutive vertices on the path constructed so far. We regard this game as
a weaker version of the game of HEX and, hence, named it Weak Hex, or WHEX,
for short. Then, the WHEX problem is to determine if Player 1 has a winning
strategy in the WHEX-game on G, s, and t.

Surprisingly enough, WHEX is not weaker than HEX in the usual sense of
their computational complexity: we show that WHEX is PSPACE-complete via
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a logspace reduction; our reduction is inspired by that of QBF to GEOGRAPHY
in [Sch78]. We then view WHEX as a class of m-structures (where 7, = {F})
and form the logic WHEX"[FO,]. We show that this logic has a projective normal
form, it captures PSPACE, and, as a consequence, we obtain that WHEX is
complete for PSPACE via first-order projections. Finally, we show that, over
arbitrary structures, the logic WHEX"[FO] is contained in the logic LY . which

is defined as follows (cf. [EF95]): for a fixed s > 1, L?_ denotes the fragment
of L

wows consisting of formulas with at most s free and bound variables, where

L. 1s first-order logic with possibly infinite disjunctions and conjunctions; then,

L(:ow = U Liow

s>1

3.2.1 WHEX is PSPACE-complete

QBF, or the problem of determining if a quantified boolean formula in conjunctive
normal form is true, is the classical example of a PSPACE-complete problem

[GJ79], and can be regarded as a game as follows [Sch78]: given
G = de V... Qura,1Q e, 0,

where ¢ is a boolean formula in conjunctive normal form involving the variables
Ti, ..., T,, and the quantifiers Q; € {V, 3} alternate starting with 3 !; two players,
called 3 and V, take turns assigning, in the i-th move, a value of 0 (false) or 1 (true)
to z;, with player 3 making the first move. Player 4 wins the game if and only if
¢ is true after the n-th move.

To show that WHEX is PSPACE-complete, we describe below how to con-
struct, using polynomial space, an instance, (G, s,t), of WHEX from an instance,
¢, of QBF, and show that Player 1 has a winning strategy for the WHEX-game

on (G, s,t) if and only if 3 has a winning strategy for the QBF-game on ®.

!This is no loss of generality, since we can always add clauses of the form z V =z without
altering the truth value of ¢.
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So, let ® := JaVay... Qua,(Cr A Cy A ... A Cy), where each clause C; is a

conjunction of literals. Define the graph G = (V| F) as follows:

Vo= {s,t,ytU{e;, &, u, b, 0|1 <o <n}U

{we |1 <i < [n/2]}U{e, 2|1 <0 <m}

E= A(s21): (5, 81), (0ns 1) (0 21), (2, ), (y, 1)} U
(i, wi), (F4,105), (uis ), (i, 1), (23, 07), (F1,00) [ 1 <0 < mf U
{00y w2i), (w2i, ) [1 < i < [n/2]} U
{lehy)[1 <i<m}pu
{(ciyu;) | the literal =z; is in clause C;} U
(

{(¢;,u;) | the literal x; is in clause C;}.

In Figure 5, we illustrate the graph corresponding to JuqVasdus[(—ay V —ay)
A (22 VsV xy) A (22 V oas)l.

First note that the moves of Player 1 and Player 2 on the graph G corresponds
to moves by 3 and V on ®: Player 1 starts by coloring either vertex x; or
blue. This corresponds to 3 giving value 1 or 0 to x;, respectively. Then, Player
2 is forced to color vertex u; or t; red in order to block Player 1 from reaching
t; Player 1 has no choice but to color v; blue, and then it’s Player 2’s turn to
color either vertex x5 or &3 red, which corresponds to V choosing the truth value
of x3. According to the selection of Player 2, Player 1 must continue by coloring
the opposite vertex; then Player 2 is forced to color either uy or s —whichever
one that will block Player 1’s passage to t. Then Player 1’s only option is vy, and
then, once again, Player 2 must color w,. Hence, in his next move, Player 1 has

the choice of coloring vertex x3 or &3 blue, and so on.
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Figure 5: An instance of WHEX corresponding to JuqVasJus[(—ar V —az) A (22 V
T3 vV _‘1’1) A (1'2 vV _‘1’3)].

Now, suppose d has a winning strategy in the QBF-game. Then Player 1 has
the following winning strategy in the WHEX-game: if 3 gives value 1 (resp. 0) to
variable xq;_1 then Player 1 colors vertex xy;_; (resp. &2,-1) blue. If, when Player
1 reaches vertex v,, Player 2 subsequently colors all vertices ¢; red then Player 1
will be left with z,, to color and will end up winning; otherwise, Player 1 will be
able to color some ¢; blue. Since all clauses are satisfiable, some literal in C; is
true; therefore, there is an edge from ¢; to some unvisited vertex u; or i;, besides
the edge to y, so Player 1 colors the one left free by Player 2 and wins.

Conversely, suppose V has a winning strategy in the QBF-game. Then Player
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2 wins the WHEX-game in such a way: if V gives value 1 (resp. 0) to variable
Tq;, then Player 2 colors vertex &; (resp. xq;) red; this forces Player 1 to color wy;
(resp. @2;) blue, and Player 2 to color uy; (resp. tiy;) red, afterwards. When Player
1 reaches v,, there is one clause C; that is false, and, therefore, Player 2 forces
Player 1 to color vertex ¢; by coloring vertex z; red. After Player 1 has colored
vertex ¢; blue, Player 2 colors y red, thus succeeding in blocking Player 1, since all

other edges lead to vertices u; already colored by Player 2.

Finally, we note that the instance (G,s,t) of WHEX, constructed above, is
computable from the instance ® of QBF using logarithmic space: an appropriate
Turing machine M writes on its work tape the set of vertices V', which is obtained
from the input of n variables and m clauses (each clause can have up to n literals)
using binary notation, and, hence, taking O(log(nm)) storage space for this. Then
the head(s) of M scan(s) the work tape and output(s) the edges. For this operation
M only needs to write on the work tape all the (¢;,u;) pairs (1 <:<n, 1 <5<
m), which, written in binary, take O(log(nm)) storage cells; it then checks if x;

(resp. —x;) is in C}, and, if that is the case, outputs the corresponding pair. .

3.2.2 A Normal Form Theorem for WHEX

We encode WHEX as a class of m-structures as follows:

WHEX = { (A,u,v) € STRUCT(7;)| Player 1 has a winning strategy
for the WHEX-game played on (A, u,v), with v and v in |A] }.

Remark 3.2.1 The remark made on other possible encodings of HEX (Remark
3.1.1) also applies to WHEX. Also, it is easy to see that WHEX is firmly monotone.

As classes of structures, WHEX % HEX. To see this, consider the graph in

Figure 6. Player 1 can always win the HEX-game from s to t on this graph but
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looses the WHEX-game. For the HEX-game, Player 1 plays as follows: on his first
move Player 1 colors either aq or by; let’s say he colors ay. If Player 2 doesn’t color
by, Player 1 colors by and wins; otherwise, Player 1 colors a4. Then, after Player 2’s
move, Player 1 colors by or b3, whichever is free, and wins. For the WHEX-game,
after Player 1 has colored, say, a1, Player 2 colors by, and on his next turn, Player
2 colors ay4; thus, blocking all possible paths of Player 1 from s to t.

On the other hand, the graph in Figure 5 is an example where Player 1 always
win the WHEX-game (because it corresponds to a satisfiable sentence), but looses
the HEX-game: Player 2’s strategy consists on coloring w; (resp. ;) if Player 1
colors x; (resp. &;); to color x; (resp. &;) if Player 1 colors u; (resp. i;); to color ws
(resp. vz) if Player 1 colors vy (resp. wsq); to color vy (resp. wvs3) if Player 1 colors

vs (resp. v1), and anywhere else that Player 1 plays, Player 2 plays on a free v;, a

free u;, or a free u;. "
S
a, b,
a, b,
aj b,
a, b,
t

Figure 6: A yes-instance of HEX but not of WHEX.

We now show that the logic WHEX”[FO,] has a projective normal form.

Theorem 3.2.1 Let 7 be some vocabulary. FEvery formula ¢ € WHEX [FO,(7)]
is equivalent to a formula of the form WHEX[A 7y (0, maz), where » € FO,(1),
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Y projective and over the distinet k-tuples of variables T and vy, for some k > 1,

and where 0 (resp. maz) is the constant symbol 0 (resp. maz ) repeated k times.

Proof: (Sketch) The proof runs along the same line as the proof of Theorem 3.1.1.
We proceed by induction on the complexity of ¢, beginning with ¢ as an atomic
formula (positive or negative). As in Case 1 of Theorem 3.1.1, we introduce four
distinct variables xy, 9, y1, and y3, not occurring in ¢, and by similar argument

we have that
E o «— WHEX[A (21, y1)(22, y2) ¢]((0,0), (max, max)).

For the four other main cases we also need a gadget, namely W ('), corresponding
to an undirected graph G = (V, E') with source s and sink ¢, to guarantee a winning
strategy for Player 1 in a modified WHEX-game (played on all the vertices of (7,
including s and ), provided that Player 1 has a winning strategy in the WHEX-
game on (G, s,1).

The required gadget W () is constructed as follows: we draw a copy of G with
two sources, s; and sy, in place of s, and two sinks, ¢; and %,, in place of #; s;
(resp. s3) is connected to each vertex that forms an edge with s in the original
graph G; similarly, ¢; (resp. t3) is connected to each vertex that forms an edge
with ¢t in G. We add a new vertex w, distinct from all the vertices in G, and draw
edges between w and sy, sz, 1, and ty, respectively. The graph W (') is shown in
Figure 7. Note that W(() is undirected.

By the WHEX-game on W (') we mean the following: either player can start
the game, and the first move is to color either s; or sy. If Player 2 starts, and
let’s say he colors s; red, then Player 1 colors sy blue and the game continues as
in the usual WHEX-game on G that is, Player 2 colors a vertex in an edge with
89 (possibly w) red; Player 1 colors a different vertex in an edge with sy blue, etc.

If Player 1 starts, and let’s say he colors s; blue, then Player 2 continues as in the
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Figure 7: The graph W(G).

usual WHEX-game on (7; that is, he does not color s; but a vertex in an edge with
s1. Player 1 wins if he can reach, and color blue, one of the sinks ¢; or .

In practice, it is obvious that Player 2 has no advantage by starting the WHEX-
game on W ('), so we may assume that it is Player 1 who always starts the WHEX-

game on W((G). With this remark in mind, we prove the following key lemma.

Lemma 3.2.2 Player [ has a winning strategy in the WHEX-game on (G, s,t) if
and only if Player 1 has a winning strategy in the WHEX-game on W(G).

Proof: [=]: Player 1’s strategy consists on first coloring s; blue. If Player 2
doesn’t color w, Player 1 colors that vertex and wins in his next move; otherwise,
Player 1 plays in (G according to his winning strategy for the WHEX-game on
(G, s,1), which is effective since he is the first one to color a vertex in V — {s,}.
Player 1 will then be able to construct a path of blue vertices through the copy
of G up to a vertex with an edge to ¢; and an edge to {3; hence, winning the
WHEX-game on W(() on his next move.

[<]: Suppose Player 2 has a winning strategy in the WHEX-game on (G, s,1).
Then, Player 2 wins the WHEX-game on W (') by playing as follows: after Player
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1 has colored s; or sy blue, Player 2 colors w red. Then Player 1 has to color a
vertex in the copy of G in an edge with s; (and s3), and Player 2 continues color-
ing according to his winning strategy in the WHEX-game on (G, s,1), effectively
blocking all possible paths that Player 1 tries to construct to either ¢ or ¢s. .

The rest of the proof consists in stringing together copies of the gadget W (),
as in cases 2 to 5 in the proof of Theorem 3.1.1, and writing down the projective
formulas that describes each situation. We feel that it is unnecessary to write these
formulas, and, so, we omit them, and only outline the construction for the three
most important cases of the induction, namely the existential, the universal, and
the nested case.

Existential case: ¢ := 3z WHEX[Auv 0(u, v, 2)](0, maz), and we want to elim-

inate the 3 quantifier, that is, to find a projective formula ¢ such that

E ¢ +— WHEX[\7y¢](0, maz).

The required formula v is the one that describes the edge relation of the graph
pictured in Figure 8, which we have named Gy for further reference. For an
arbitrary T-structure A of size m, (G, consists of m subgraphs W(G1), ..., W(G,,),
where each (3; is a graph described by 0(-,-,i—1)* (i = 1,...,m), and both sources
(resp. sinks) in each W((;) are joined to vertex 0 (resp. max).

Suppose Player 1 has a winning strategy in the WHEX-game on (G, 0, max),
for some ¢ € {1,...,m}. Then, by Lemma 3.2.2, Player 1 has a winning strategy
in the WHEX-game on W((,), and, using this strategy, Player 1 wins the WHEX-
game on (G, 0, max).

Conversely, suppose Player 2 has a winning strategy in the WHEX-game on
(G;, 0, max), for each ¢ € {1,...,m}. Then, by Lemma 3.2.2, Player 2 has a
winning strategy in the WHEX-game on W (), for each ¢ € {1,...,m}. Hence,
in the WHEX-game on (G, 0, max), Player 2 uses these strategies to effectively
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Figure 8: The existential case.

block Player 1 in any subgraph W () and, so, Player 2 has a winning strategy in
the WHEX-game on (G, 0, max).

Universal case: ¢ :=Vz WHEX[Auv0(u,v, 2)](0,maz). This time the required
graph Gy is a series of subgraphs W(Gy), ..., W(G,,

) linked as shown in Figure

Figure 9: The universal case.

Once again, it follows from Lemma 3.2.2 that Player 1 has a winning strategy
in the WHEX-game on (G;,0,max), for all ¢ € {1,...,m}, if and only if Player 1
has winning strategy in the WHEX-game on (G, 0, max).
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The nested case: we want to simplify a formula of the form

WHEX[Azy WHEX[Auwv 0(u,v,7,9)](0, max))(0, maz);

therefore, for a structure A of size m, we arrange m x m graphs W(G, ;) cor-
responding to graphs defined by 6(-, -,@,%)A, for 1,7 € {0,...,m — 1}, strung
together as in the nested case of Theorem 3.1.1 (cf. Figure 4). Then the required
formula ) is the one that describes this construction, and one can show, using
Lemma 3.2.2, that Player 1 has a winning strategy in the WHEX-game on the
graph 4, with source 04 and sink max”, if and only if there exists a sequence
of m pairs (To,¥;, ), (T1,¥;,)s s (To=1,¥;,_, )5 I |A|**, such that Player 1 has a
winning strategy in the WHEX-game on each graph determined by (-, -, @}, yjh)A

(jn€{0,...,m—1},0 < h <m — 1), with source 0* and sink maz*. .

Corollary 3.2.3 PSPACE = +WHEX*[FO,] = WHEX*[FO,] = WHEX'[FO,]
and WHEX is complete for PSPACE via first-order projections.

Proof: We have shown that WHEX is complete for PSPACE via logspace re-
ducibility. The containment DTC'[FO,] < WHEX*[FO,] can be proven using the
same formula ¢ in the proof of Theorem 3.1.3. Then we apply Corollary 2.4.5 and
Theorem 3.2.1. .

We also have a result analogous to Corollary 3.1.6.

Corollary 3.2.4 WHEX is complete for WHEX*[FO/] via monotone first-order

projections. "

3.2.3 WHEX and L _,

In this section we show that WHEX*[FO] < PFP, where PFP is the closure of
FO under the operation of taking partial fixed points. Since PFP < LY | we

oow?



52

conclude that WHEX*[FO] < L2  also. Note that we have removed the successor
relation s, so we are working on unordered structures.

Partial Fixed Point logic has been widely studied and many of its important
properties are nicely presented in [EF95], so we refer the interested reader to that
book for details and only sketch here the few results regarding PFP that we need.
We start by reviewing its semantics:

If R is a k-ary relation, o some vocabulary, ¢(%, X') a cU{ R}-formula (with |Z| = &

and X a k-ary relational variable), and A a o-structure, then
A PFPAT, X ¢|(u) means u* € XA,

where X4 is the fixed point (if it exists) of the following sequence of subsets of

|AJ¥ (also known as stage sets):

Xt =0,
Xy = {aelAl"| (A RYa) | o(@, X))} fori > 1.

The canonical example is the definition of the transitive closure of the binary
relation £; we give it here not for lack of other examples but because we do need

it later.

Example 3.2.1 The formula TC[Auv E(u,v)](a,b) is equivalent to the following
PFP-formula:

PFPAuv, R (u=vV 3z(E(u,z) AN R(z,v)))](a,b).

Theorem 3.2.5 WHEX"[FO] < PFP.

Proof: Let (] and (3 be two constant symbols. It is sufficient to show that there
exists a (successor-free) 7, U {C1, Cy}-sentence & € PFP such that, as a class of
finite structures, WHEX(Cy, Cy) = MOD(®). Let
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¢ = PFPAe, X ((F(Cr,z)VIye Xz &€ X(E(y,2)NE(y,z) ANx# z A
z#£ Cy)V Jy € X(E(y,z) Aoz =C3)) A
TCAuv E(u,v)](x, C2))](Cs).

By the preceding example, ® is a PFP-formula. Let A € STRUCT(m U{Cy, Cs});
we must show

Suppose A € WHEX(C,Cy). Then Player 1 has a winning strategy in the
WHEX-game on (A, Cy,Cy) and, hence, at the end of the game there will be a
path P from C{! to C3' in A such that:

o every vertex in P has Player 1’s color;

e there is a vertex a in P with an edge to C¥4;

e for each a in P, with a # C{* and (=E(a,C3))*, there is a b of Player 2’s
color such that A = E(a,b) and A = —~F(¢,b) for ¢ in P with an edge to a
(this is by the “no triangle” rule).

On the other hand, we can assume, without loss of generality, that each vertex
colored by the players in the course of a game is on a path to Cy'. This is because,
by the nature of the WHEX-game, either player gains nothing by coloring nodes
outside a path to C3'. Thus, the formula TC[Auv E(u,v)](z,Cy) holds for all the
vertices colored by the players.

All of the above give: the stage set Xi* # (J; successively, since the formula
Jy € X3z ¢ X(E(y,z) A E(y,z2) Ax # z Az # Cy) holds in P, we have X3t # (),
XA £, ..., until Cf is reached in P then the formula Jy € X, (E(y,z) Az = (%)

holds for some iy > 1, and C3* € X; ;1. It is possible that we could carry on
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defining further stages, but that we eventually reach an index j such that

X4 = x4

J J+1

XA
follows from the fact that each element in each stage set X is on a path to C3.
Thus A = 9.

Suppose A ¢ WHEX(C1,Cy). Then Player 2 has a winning strategy in the
WHEX-game on (A, C,,Cy). This means that any path, starting at Ci!, that
Player 1 tries to constructs will eventually be blocked by Player 2 before reaching

C3. Hence:
o (—E(Cy,Cy))* (no trivial case), therefore C5t & X7,

o foralli >0 (Yy € X;Va(E(y,z) — x # C3))* (C4! can’t be reached from

any vertex colored by Player 1);

e there is an i such that for all 1 > g,

(Vy € X;32 € X;(E(y,2) Az # Co AV2(E(y,2) — x=2)))"
Therefore, for all 1 > ig, C5' & XA, s0 C' ¢ X2, and A [~ ®. .

K3 [olel]

3.3 Normal forms in the absence of order

We now study the normal form property for our logics without the successor rela-
tion. We will show that a projective normal form does not exists in this case, and
to do that we employ an extended version of the Ehrenfeucht-Fraissé games for
first-order logic. In this section 7 denotes a vocabulary {Ry,..., R, Cy,...,C.},

where each R; is a relation symbol of arity a; and each (' is a constant symbol.

3.3.1 Generalized Ehrenfeucht-Fraissé games

We give a variation of the Ehrenfeucht-Fraissé games presented in [Ste96], suitable

for logics defined by generalized quantifiers that are not necessarily monotone.
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Definition 3.3.1 Let © be a problem over the vocabulary 7. Let A and B be
two structures over the same vocabulary. The Q-game of n moves on A and B is
played by the usual suspects, Spoiler and Duplicator, who alternate in pebbling
n elements in each of these structures, according to the following rules (Spoiler is

always the first to move).

e J-move: Spoiler plays on A. He does so by placing an unused pebble u; on

an element of A. Duplicator responds by placing a pebble v; on an element

of B.

e V-move: Similar to the 3-move, but Spoiler plays on B and Duplicator plays
on A.

e Qi -move: Spoiler begins by playing on A. He selects a 7-structure Sy € 2
with |S4| = | A, the tuples from |A|* determining the constants C4, ...,
(34 consists only of previously pebbled elements of |A| or constants of A.
Duplicator replies in B by selecting Sz € Q with |Sz| = |B|*, the tuples
from |B|* determining the constants CfB, ..., 095 of Sp consists of tuples
corresponding to those selected by Spoiler. Then Spoiler chooses some 1 €

{1,...,7} and places ka; new pebbles on some tuple u; € |B|**

. Duplicator
replies by placing ka; pebbles on some tuple v; € |A|** such that v; € R;SA

iff e R,
e —();-move: Similar to the Q;-move but with the roles of A and B reversed.

As usual, Duplicator wins if and only if, at the end of the game (i.e., after the nth
move), the elements in A and in B, where pebbles were placed on, determine a

partial isomorphism of A into B. .

In general, the goal of games such as Ehrenfeucht-Fraissé’s is to give a combinatorial

characterization of elementary equivalence. Therefore, the length of a game (i.e.,
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the number of moves) is determined by the quantifier rank of a formula, and the
type of move is determined by the quantifier that we want to “eliminate” in the
formula, beginning with the outermost quantifier.

The games presented here are only sufficient for describing elementary equiva-
lence in £Q*[FO] for arbitrary €2, but that is really all we need for the applications
described in this thesis. Although we are now working on unordered structures,

the presence or absence of successor relation is irrelevant for the proof below.

Theorem 3.3.2 Let € be some non empty problem over T, n some positive integer
and let A and B be two o-structures for some vocabulary o . If Duplicator has a

winning strategy in the Q-game of n moves on A and B then, for any o-sentence

6 € +Q*[FO] with qr(0) < n, A0 implies B = 6.

Proof: Suppose that there exists a o-sentence 6§ € +Q*[FO] with ¢r(6) < n,
such that A = 6§ and B = —0. We describe a winning strategy for Spoiler in
the Q-game of n moves on A and B. We do this by induction on n. The cases
in which 0 is quantifier-free (i.e., n = 0) or existential or universal are resolved
easily and identically as is done, for example, in [Ste96]. We tackle the case when
0 :=QA\T11,...,Trbp, Yytb1, -, U.0)(C) (here C is a tuple of constant symbols).

Since A = 0 the (¢1,..., 00, t1,... 0. )-translation T4 of A is a T-structure
of Q. Spoiler chooses S4 = T4. Since B = -8 whichever T-structure Sz (with
universe |B|*) Duplicator selects in Q, its (¢1,..., &, %1, ..., )-translation Ty is
not in Q. Therefore Sy 2 Ts. Hence, there is some ¢ € {l,...,r} and some
u; € |B]* such that

u; € R?% and u; & RZ»TB,

K3

or

u; & R;SB and u; € RZ»TB.
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Spoiler pebbles the tuple %;. Now, regardless of whichever tuple v; € | A[¥% Dupli-
cator selects such that
7; € RT4 iff w; € RY®,
we can not have
7; € R iff w; € R'®.
Hence (A7) E &:i(T;) and (B,w) | —¢i(T;). By induction, Spoiler has a

winning strategy in the remainder of the game. .

3.3.2 A separation theorem

Definition 3.3.3 Let Q be a problem over 7. A universal (or Il;) hierarchy inside
the logic Q*[FO] is defined inductively as follows:

e (0) is the set of formulas of the form Q[AZ1¢1, ..., Trdr, Y11, -« ., Y0 (Z),
where each ¢; and each 1; are in FO;

e VQ(m) is the universal closure of Q(m), i.e., the set of formulas of the form

Va(x) where ¢ € Q(m);

e QO(m + 1) is the set of formulas of the form QAT 11, ..., Trodr, Yy, ...,
U] (Z), where each ¢; and each ¢, are in VQ(m).

Remark 3.3.1 The corresponding generalized Ehrenfeucht-Fraissé game for these
logics Q(m) (resp. VQ(m)), consists of m + 1 (positive) Q-moves that alternate
with m (resp. m + 1) V-moves, beginning with a Q-move (resp. V-move), and
then followed by a usual first-order game. We refer to these games as {2(m)-games

(resp. VQ(m)-games).
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We prove that if € is firmly monotone then a single €);-move is not enough for
Spoiler to distinguish between certain structures that are already indistinguishable

with respect to first-order formulas of bounded quantifier rank.

Theorem 3.3.4 Let Q) be a firmly monotone problem over T and let o be some
other vocabulary. If there exists families of o-structures, {Ax}tr>o and {B}r>o,
such that:

(i) || Ax|| = f(k) where f is a non decreasing function on positive integers;

(i) for each k, Ay is isomorphic to a substructure of By, and

(iii) for all sentence 6 € FO(o) and k such that f(k) > qr(6)
Ay |= 0 implies By |= 0
then, for all o-sentence 0 € Q(0) and k such that f(k) > qr(0),
Ay = 0 implies By =0 .

Proof: Let 0 := QAT1é1,...,T,0r, Y101, - - -, G20 (C), where, for some [ > 0,
each |T;| = la;, each |7;| = [, C'is a tuple of constant symbols, and ¢, ..., ¢, 1,

.., P, are first-order formulas. Recall that ¢r(0) := maz[la;+qr(¢p;), {+qr(y;) :
1 <i<r;1<j5<c¢. Let k such that f(k) > gr(0); let A:= A and B := By,
and assume A |= 6. We have to show B |= 6. For that it is sufficient to show that
Duplicator has a winning strategy in the -game of ¢r(#) many moves consisting
of one Q;-move followed by ¢r(f) — 1 3- and V-moves. By hypothesis (item (iii)),
Duplicator has a winning strategy in all but the first move of the game (the -
move), so we need only to describe a winning strategy for this part of the game.
This would be achieved if we can show that, for each S4 € Q with |S4] = |A[\,
there exists Sz € Q with |Ss| = |B|' such that for each 7 € {1,...,r} and each
lei guch that @, € R;SB if v; € R;SA.

So, let S4 € Q with [Su| = |A|' and CP4,....C% be the interpretations,

tuple u; € |B|", there exists a tuple v; € | A

in Sy, of the constant symbols. Let 7 : A < B be the isomorphism of A onto a
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substructure of B. Let Sy (4) be the isomorphic copy of S4 through the isomorphism
7 (50, |Sey| = 7(1Sa]) C B BT = x(R34), and €)™Y = 7(C54)). Then
Sr(ay is in £, since §) is closed under isomorphisms.

For each ¢ € {1,...,r} and each 77!(u) € |A
define

‘i such that Rf”(A) (@) holds,

O;(w) := {¢(T:) | ¢ € FO(0), |Ti| = la, qr(d) < qr(¢y), (A,n7'(7) [ o(T)}-

oi(@) == \/{\ @:(@) | =4 (@) € |A" and B;"™(w) holds }.

Note that o; € FO(o) and

./4 |: Hfz Ozz(fz)
Also that
qr(3Ti o) = la; + qr(a;) < la; + qr(é:) < f(k);

hence, by hypothesis
B |: Hfz Ozz(fz)

Let
SB = <|SB|7RfB7'"7R§B7Ci567"'70§8> 2
where
1S5 = |B]', €55 = 7™ and
R® = {v € [Ss|" | (B,v) = ai(Ti)}-
o Sz e

1Sz C |B], and for each U € |Sr(4)|" such that Rf”(A) (@) holds, we have
that (A, 77'(u)) E o(T:). Then (r(A),u) E ai(T;), where 7(A) is the

substructure of B isomorphic to A. On the other hand, B |= 37;0,(7;) since
A | 3%,0,;(7;). Therefore (B,u) [ a;(7;), so R;SB (@) holds.

Since Sr(4) € 2 and  is firmly monotone, we get the claim.
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e Sg is the required structure for Duplicator to win:

for each 7 € {1,...,r} and tuple u; € |B|'* we have

u; € R;SB — B E wu) <= AE J5 (7)) <= for some

D€ |Syul AEAN®(rTI(D)) <= T E R = r-1(%) € ¥ (and
1) € |Al'™).
This completes the proof. .

Theorem 3.3.5 Let Q) be a firmly monotone problem over T and let
¢ :=YuVoDTCA2y E(z,y)](u,v) .
If there exists some sentence © in VQ(0) logically equivalent to ® then
Q(0) € vQ(0).

Proof: For each positive integer k consider the following mo-structures: Ay a cycle
of length 2¥+2 with interpretations for the two constant symbols 0 and maz, and
By, the disjoint union of Ay with another cycle of length 252 without constants.
Then A; and By, satisfy the hypothesis of Theorem 3.3.4, and since Q is firmly
monotone, we have that these structures satisfy the same m-sentences in (0).

However,

Ay = ® and By, E —®

and, by hypothesis,
A E © and By, E 0.

From this it follows that ©(0) is properly contained in ¥(0). .

Corollary 3.3.6 HEX(0) € YHEX(0).
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Proof: HEX is firmly monotone. On the other hand, by Corollary 3.1.4, we have

E DTC\zyd(z,v)|(0, maz) +—

HEXNE'§ ¢(F.7))(0, maz),

for some ¢ in FO. Hence

= VuVoDTCATy0(T,9)](u,v) +—
Vavo HEX[AZ' Y &(T', )] (%, ).

We have fulfilled all the hypothesis of Theorem 3.3.5, and hence, HEX(0) C
VHEX(0).

Corollary 3.3.7 WHEX(0) C VWHEX(0).

Proof: The proof is analogous to that of Corollary 3.3.6, and uses the fact that
DTC'[FO] < WHEX*[FO], which is proven with the same formula ¢ in the proof
of Theorem 3.1.3. .

The results of this section were inspired by the work of Gréadel in [Gradl],
where he shows the existence of a strict hierarchy of sublogics of TC*[FO], obtained
by interleaving the V quantifier with the TC quantifier (our Definition 3.3.3 is a
generalization of Gradel’s definition of these TC-logics). Gradel’s main tool is a
TC-game which consists of 3- and V-moves, as in Definition 3.3.1, and a TC-move

defined as follows:

For some [ > 0, Spoiler selects a sequence ag, @y, ..., @, of [-tuples in
| A| such that @y and @,, consist only of constants and already pebbled

elements. Duplicator replies in B by selecting a sequence by, by, ...,
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b, of [-tuples in |B], with by and b, being in correspondence with @y
and @, respectively, and possibly n # m. Then Spoiler pebbles two
consecutive [-tuples b; and b;yq, for some 0 < i < n, and Duplicator
responds by pebbling two consecutive [-tuples @; and @4, for some

0<)<m.

However, we noted, that at the heart of the proof of the separation result in
[Gragl], there is used a rather nice property of locality that few problems except
TC enjoys: namely, that in order to verify that a given sequence @y, @y, ..., @,
does indeed define a path from @y to @,,, we only have to check that every two
consecutive elements of the sequence are in the edge relation E, without taking into
account any other element of the sequence. Note that, for example, this is not true
of the Hamiltonian path problem HP. Having realized this, it seemed to us that
the TC-game (and its generalization, the Generalized Ehrenfeucht-Fraissé game) is
too powerful as a tool, for it allows the players to construct a full path in one move,
when they could really do this in a stepwise manner through a sequence of “local”
moves, i.e., by defining just one or two tuples of elements at one time. Based on
these observations, we sought to modify Gradel’s technique in order to explore its

possible generalization to other logics, and ultimately to our logics HEX*[FO] and
WHEX"[FO]. We summarize our findings in the next chapter.
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Chapter 4

Program Schemes and Hierarchies

of Logics

We present a model of computation, namely, program schemes, that, although not
new, has not played such a popular role as the Turing machine model has played
in Complexity Theory. However, for the purpose of analyzing a computational
problem in terms of its expressibility in certain logics, this model is better suited,
because instead of requiring that its input be encoded as a string of, say, 0’s and 1’s,
it treats it as a finite structure over some vocabulary (see [Ste93] and the references
therein for further discussion on this model). On the other hand, this model has
a syntax very much like a Pascal pseudo-code, making it much easier to read and
write than a Turing machine program. Thus, program schemes seem to present a
nice link between Computational Complexity and Descriptive Complexity, and we
illustrate this by translating a result, due to Gradel [Gra91], on the existence of a
strict hierarchy of logics inside TC*[FO] to a theorem that states the existence of
a strict hierarchy of certain classes of program schemes that we define. We then
show how our Hierarchy Theorem for program schemes gives the TC-hierarchy in
[Gra9l] and in similar hierarchies inside other logics as, for example, DTC*[FO].
Throughout this chapter we work on unordered structures. Our notation and

basic definition of program schemes is derived from [Ste93].
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4.1 Program schemes

4.1.1 Syntax and semantics

Let 7 be some vocabulary. The class NPS(7) (i.e., Nondeterministic Program
Schemes over 7), has as its elements finite sequences of instructions, where the
first is an input instruction, the last is an output instruction, and the rest are
assignment instructions and test instructions built up from atoms, the relations of

7, and using the logical connectives =, V, and A (no quantifiers). More specifically:

(i) an atom of NPS(7) is any variable or constant symbol in 7 U {0, max};

(ii) an assignment instruction of NPS(7) has the form:
var := alom, or

guess(var),

where var denotes some variable and atom denotes some atom;

(iii) the test instructions of NPS(7) are defined, inductively, as follows:
First, let the while(0) instructions be of the form
WHILE ¢ DO I OD

where [ is a finite sequence of assignment instructions and ¢ is an atomic
test, that is, a conjunction or disjunction of simple tests or their negations.
The simple tests are of two types:

(equality test): atom = atom, and

(relational test): R(y1,...,ya), where R is an a-ary relation symbol of 7 and
Y1,...,Y, are atoms.

(We usually denote =(atom = atom) by atom # atom.)

Next, for i > 0, let the while(i 4+ 1) instructions be of the form
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WHILE ¢ DO I OD

where [ is a finite sequence of assignment instructions and while(k) instruc-
tions, for any k& <1, and ? is an atomic test.
A test instruction is, then, an element of | J while(7). (Thus, a while(t) test

i>0
instruction has at most ¢ nested WHILE ... DO ... OD instructions.)

the input and output instructions of NPS(7) are of the form input(xy, ...,
Tn,) and output(xy, ..., ), where 1, ..., x,, are the input/output vari-
ables, and are all the variables that appear in any program scheme. Also, in

any program scheme, there is exactly one input and one output instruction.

NPS = {p € NPS(7) |7 is some vocabulary}.

Thus, an NPS program scheme p is some finite sequence of instructions of the

type (ii)—(iv) above, defined with respect to some fixed vocabulary 7, and where the

test in any test instruction (if there is any) is a quantifier-free first-order formula.

We will write program schemes following standard conventions for writing, say,

Pascal programs; that is, by ordering the sequence of instructions in a top to

bottom fashion, with one instruction per line, and using appropriate indentation.

We will use in our program schemes instructions of the form

IF ¢t THEN [, ELSE I, FI

where I; and [ are valid sequences of instructions and ¢ is an atomic test. Formally,

this is an abbreviation for the following piece of code:
z:=0
WHILE t Az =0 DO

I

T = max

oD
WHILE =z =0 DO
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I,
T = max

OD

For a program scheme p, we denote by X, the set of all the variables that show
in p (the input/output variables). A program scheme p with input and output
instructions of the form input(x1, ..., @, ) and output(xy, ..., x,,) is said to be of

arity m.

The interpretation of a program scheme p € NPS(7) in some finite 7-structure
A of size n, denoted p#, is defined in the usual logical way on each one of its in-
structions and its constituent variables, constants and relations, with the following
exceptions: we assume that the initial values (taken from |.A|) of the input/output
variables are given; that 04 (resp. max?) is the 0 € |A| (resp. n — 1 € |A|); that
) )

(var := atom)* means to assign the value of atom” to var, and that guess(z;

means to nondeterministically assign some value from |A4]| to the variable z;.
Moreover, given p € NPS(7), with X, = {#1,..., 2}, A € STRUCT(7), and
(ar,...,am) € |A|™, a computation of p™ with input values (ay,. .., a,,) consists
of first assigning the value «; to the variable x; € X,, for each ¢ € {1,...,m},
and then executing each instruction in p#, after the input instruction, in the order
in which they appear (i.e, top to bottom). A WHILE ¢ DO [ OD instruction
is executed as follows. We first check the validity of ¢ in A: if ¢ is false in A,
control is passed to the first instruction after the OD; if ¢ is true in A then the
set of instructions [ is executed, the validity of ¢ in A is checked again, and the
whole process is repeated. Note that, due to the nondeterminism introduced by
the guess( ) instruction, there could be more than one computation of p* with

input values (a,...,an).
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We say that p# halts for input values (ai,...,a,) and output values (by, ...,

by,), for some (ay,...,an),(by,...,by) € |Al™, and write

[y /ar, .. am]p?[z1/br, - - o 2 /]

if for some computation of pA with input values (ai,...,a,), there is a (possibly
empty) sequence of guess(x;) instructions which nondeterministically assign values
to the variables of p4, causing the program to halt with all its variables (1, ..., z,,)
set to (b1,...,b,). (When the variables and the order of the assignment is clear
from the context we just write [ay, ..., an]pA[b1,. .., 0m].)

A program scheme p € NPS(7) accepts a 7-structure A, in symbols A | p, if
and only if [0]p*[maz] (i.e., there exists a computation of p# that, starting with
all input/output variables set to 04, halts with all input/output variables set to

maz” ).

4.1.2 A digression on loop programs

The reader who is more familiar with the recursive function theoretical approach
to Computability Theory will probably recognize a similarity between program
schemes and loop programs (see [BL74] or [DW83]). Loop programs consists of

assignment instructions of the form
var := atom or wvar :=wvar + 1

(where var + 1 is interpreted as the successor of var), a
GOTO atom
instruction that transfers control to the instruction labelled with atom (and labels
are placed as the first word of the labelled instruction), and a
LOOP atom [ END
instruction, which produces the repeatedly execution of the set of instructions [

a number of times equal to the value assigned to atom. There are no guess( )



68

instructions.

One can show that the GOTO and LOOP instructions can be defined with
WHILE instructions and +1 (successor), and conversely, a WHILE instruction can
be defined with GOTO and LOOP (see [BL74, section 2.2]). Thus, syntactically,
loop programs are, essentially, program schemes over the empty vocabulary with
built—in successor and no guess( ) instruction (namely, the class DPS({ }, +1) of
deterministic program schemes with successor, over the empty vocabulary). Loop
programs, however, as they are considered in [BL74, DW83], are interpreted over
arbitrary structures, as opposed to finite structures, and with that semantic free-
dom loop programs (or program schemes in DPS({ },+1)) compute all primitive
recursive functions (a result due to Meyer and Ritchie dated 1967; see [BL74] for
further references). Also, one can define the class that functions computable by
loop programs belong to, by determining how deep the nesting of LOOP instruc-
tions is in these programs, and show that there are functions computable by loop
programs with ¢ 4+ 1 nested LOOP instructions that are not computable by loop
programs with ¢ nested LOOP instructions (see [BL74, chapter 10] or [DWS3,
chapter 13]). In the terminology introduced in our definition of program schemes
this says that, over arbitrary structures, the class while(i) is properly contained
in the class while(i + 1).

The result that we are about to present in this chapter can be seen as an
analog to this loop hierarchy, over finite and unordered structures, although it was
originally motivated by a hierarchy result for the logic TC*[FO]. We define in the
next section classes of program schemes obtained by allowing program schemes to
be taken as tests, and further, by nesting these “test” programs. Then, we show

in the following sections that the containment between these classes is strict.
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4.1.3 A class of program schemes

We are interested in allowing first-order formulas and other program schemes as

tests;

therefore, we will define a class of program schemes with such tests, namely

PS, extending NPS. First, we introduce some notation. For p € NPS, we denote

by p — 1/O the sequence of instructions in p except the input and the output

instructions. Fix some vocabulary 7 and let NPSo(7) be the class of all p — 1/0O,
where p € NPS(7). We define PSy(7) as the smallest class such that (i)—(iii) below

hold:

(i)
(i)

(iii)

If p € NPSq(7) then p € PSo(7).

If p € PSo(7), and z is a variable of p, then p[z] € PSo(7). We interpret p[z]

in such a way: For a finite T-structure A and for a € | A,
(A,a) = ple] iff [21/0,...,2,/0,z/a)p?[z1/maz, ...z, /maz, z/mazx),

where x4, ..., x,, and z, are the input variables of p. In words, (A, a) E p[z]
means that, initializing all variables but z to 04, and initializing z to a, a

computation of p# halts with all variables set to maz*.

If p1,p2 € PSo(7) and @ is a first-order T-formula, then
WHILE 0 A p; DO py OD

belongs to PSo(7). For a finite m-structure A, this instruction is executed as
follows: First, check if both A |= 6 and [0]pf'[faz] hold (in case p; = pi[2],
check if for some a € |A| [0, z/a]pf[maz) hold). If that is not the case, skip
execution of p3', passing control to the first instruction after OD; otherwise,

execute p3', and, then, repeat the process.

Let PSo = {p € PSo(7) |7 is some vocabulary}. Then, in PSy there are program

schemes with WHILE instructions with first-order formulas or program schemes as



70

tests. To deal with negations and quantifications of program schemes, we regard

them as the following abbreviations.

e For p € PSy with x4, ..., z, as input variables, —p stands for
IF p THEN
ry:=0
T, =0
ELSE
Ty = max
T, = mazx
FI

Note that this coincides with our logical notion of negation, because, for a

finite structure A of the appropriate vocabulary, we have

A —p iff AEp.

e For p € PSq and z an input variable of p, 3z p[z] abbreviates:
WHILE z # max DO
guess(z)
IF p[z] THEN
Z 1= max

ELSE
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FI
OD

For a finite structure A, we have

A | 3z plz] iff for some a € |A|] (A, a) E plz].

We will also consider Vz p[z] as an abbreviation for =3z —p[z].
In the presence of successor we could syntactically characterize Vz p[z] with the

following quantifier-free program scheme:

z:=10
WHILE z # max DO
IF p[z] THEN
zi=z+1
FI
oD

As a consequence of our results in section 4.3 we conclude that, indeed, we

cannot escape the use of successor for simulating the V quantifier as above.

Now, for each vocabulary 7, we define PS(7) to be the class of program schemes
such that each p € PS(7) is a finite sequence of instructions that belongs to
PSo(7), allowing the abbreviations =3, 3z3[z], and Vz[3[z], as tests (8 € PSo(7)),
and with an input and an output instructions. The input and output instruction
have the form input(xy, ..., x,) and output(xy, ..., x,), they are unique, and are,
respectively, the first and the last instruction of p.

Let PS = {p € PS(7) | 7 is some vocabulary}. Then, NPS C PS, and in PS we
have program schemes with test instructions where the test could be a first-order
formula, or a PSy (resp. quantified, negated) program scheme. We will define
below a particular class of these program schemes, but, before doing that, we need

to introduce more notation.
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We will often use k-tuples of variables, for £ > 1, in place of single variables
in our program schemes. In those cases we regard instructions as T := y, where

T = (x1,...,2;) and ¥ = (y1,...,Yx), as an abbreviation for the sequence of k

instructions
1 .= yl, Lo 1= yg, ceey T = yk,

and instructions as guess(¥) (again T = (x1,...,2x)), as an abbreviation for

guess(xy), guess(xs), ..., guess(xy).

The test in a WHILE instruction is treated as is usually done in Logic with formulas
that involves k-tuples of variables.

Thus, given an integer k£ > 0 and a program scheme p of arity m, we denote
by p* the program scheme of arity km obtained by substituting in p each one of
its input variables by k-tuples of variables, and allowing its instructions to act on

these k-tuples according to the above convention.

We now define the classes of program schemes that we are interested in study-
ing. For the sake of clarity we restrict our vocabulary 7 to have only one binary
relation symbol F.

Let p € NPS(7). We define inductively the following classes of program schemes
(in PS) related to p:

p(0) is the class of program schemes 3 such that: for some vocabulary ¢ and for
some k > 0, 3 is p* with at most one of its relational tests having all occur-
rences of E substituted by a o-formula of the form Vz; ...V ¢(7, 7, Z), where
1 is a quantifier-free first-order formula in the variables 7 = (@q,..., %), ¥ =
(Y1.--suw) € Xppy T = (21,...,21) € X (I is some positive integer),
and possibly some other variables. Furthermore, we require that the for-
mula Vz; ...z ¢(%,7,Z) constitutes a k-ary 7-translation of STRUCT (o)
to STRUCT(7) (cf. Definition 2.2.2).
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p(m) is the class of program schemes 3 such that: 3 is p¥, for some k > 0, with
exactly one of its tests being of the form Vz;...Vz; o, where o is a program
scheme in p(m — 1) not necessarily of the same arity as (3, without the
input and output instructions, { > 0, z1,...,2 € X, \ Xz, and X, N Xp is
not necessarily empty, but any variable in Xz that shows in any assignment
instruction of « is treated as a constant, i.e., it does not appears in a guess( )
instruction, and only on the right hand side of a var := atom instruction of

Q.

(The general case is treated similarly: we consider a set ¥ of 7-descriptive k-ary
—universally quantified— o-formulas, and in the definition of p(0) we ask that the
relational test has all its relations substituted by their corresponding formulas of

3

Example 4.1.1 Consider the following program scheme p € NPS(73), where 75 =
{£}:

input(z,y)

WHILE 2 # maxz DO

guess(y)
IF E(x,y) THEN

ri=y
FI

oD

output(z,y)

By definition of p(0), p is in p(0). .

Example 4.1.2 Consider p as in the previous example. Then the following pro-

gram scheme (3 is in p(1):



74

input(z,y)
WHILE = # max DO

guess(y)
WHILE  # v DO
guess(w)
IF E(u,w) THEN
IF YVuVv THEN
U= w
FI
OD
Y := max
FI
Ti=y

oD
output(z,y)

Remark 4.1.1 We often use abbreviations as, for example,
B = pMlinput(Ty, ..., Tp) ... VZal..\] ...,

to explicitly indicate some parts of a program scheme 3 to which we are referring in
the course of our arguments. These abbreviations should be clear from the context.
The example above says that 3 is a program scheme which has the structure of p*,

input instruction input(z1,...,%,), and a nested program scheme VZa. .

We define a measure of complexity for a program scheme p based on the quan-
tifier rank of its tests. Define the rank of p, rank(p), as follows: Let t1,...,t,, be
all the tests that show in p, then

rank(p) = arity(p) + max[rank(t;) : 1=1,...,m]
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where

qr(t;) if ¢; is a first-order formula

k) max[qr(t),rank(3)] ift; =1 A 3, where t is a first-order formula
rank(t;) =
and 3 is a program scheme

rank(3) +1 if t; = Vz([z], where (3 is a program scheme

(gr is the quantifier rank of a first-order formula as defined in Definition 2.2.4).

4.2 k-pebble infinitary games

Definition 4.2.1 Let 7 be some vocabulary, let A and B be two 7-structures,
k> 0, and [ > 0. The infinitary game of k-pebbles and (Fy, ..., P)-coloring on
(A, B), consists of a set P of k pairs of pebbles and a board formed with the
structures A and B, and it is played by two players, Spoiler and Duplicator, as

follows:

First, Duplicator gives a partition of P into [ 4+ 1 subsets of ko, ..., k; pairs
of pebbles respectively, so that kg + --- + &k = k and, for each 1 = 0,....,

the k; pairs of pebbles in each subset is colored P;. We indicate each one of

these subsets by {(pi1,¢i1), - (Piks i) }-

Next, the players take turns placing pebbles on the structures A and B, with
Spoiler making the first move and using the pebbles colored F, first. There
are four type of moves, which are described below, and Spoiler is free to
choose which move to make.

Let Ag := A and By := B, and for i > 0 A; (resp. B;) is an extension of A
(resp. B) with at most ko + - - - + k;—1 new constants determined by elements
upon which pebbles of colors Fy, ..., Pi_y are placed. For ¢ > 0 the allowable

moves are:



76

Vi-move: For some s < k;, Spoiler picks pebbles ¢; ;,, gi iy, - - -, i ;. colored P,
which may or may not have been previously used, and places them on s ele-
ments of |B;|. Duplicator must respond by picking pebbles p; ;,, p;

g2y Piges

and placing them on s elements of |A4;].

A;-move: Similar to the ¥;-move but Spoiler pebbles on |A;| (with the p; ;
pebbles) and Duplicator responds on |B;| (with the ¢; ; pebbles).

test,-move: Spoiler leaves fixed all his pebbles colored Fy,..., P;, that are
already on the board (A, B), and continue playing with the set of k; 41 pairs

of pebbles colored P;;y. Duplicator does the same.

reset;-move: Spoiler removes from the board all his pebbles colored Py,
and continue playing with the set of k; pairs of pebbles colored P;. Duplicator

does the same.

Spoiler wins if at any point of the game the function defined by both mapping
each element of |A|, upon which a pebble currently rests, to the element of |B],
upon which the pebble of same color and in its corresponding pair rests, and
mapping each constant of A to the corresponding constant of B, is not a partial
isomorphism from A to B, or is not well-defined. The game can go forever. We
say that Duplicator has a winning strategy in the infinitary game of k-pebbles and
(Fo, ..., P)-coloring on (A, B), if regardless of how Spoiler moves, Duplicator can
prolong the game indefinitely. .

Theorem 4.2.2 Let 7 be some vocabulary, A and B be two 7-structures such that
A C B, 1l >0, and p € NPS(7). If Duplicator has a winning strategy in the
infinitary game of k-pebbles and (P, ..., Pip1)-coloring on the extended structures,
(A,0,max) and (B,0,max) then, for every 3 € p(l) with rank(p) +1 < k,
A E 3 implies B |= 5.
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Proof: The proof is by induction on the complexity of the tests in 3. Let P be
the set of k pairs of pebbles. We first note that, for all cases, Duplicator’s partition
of P depends on the depth of the nesting of program schemes in 3. In general, say
B = p’linput(Ty, ... Tm) .. YZroq[... YZ2oe[... YZiat ... .,

where s > 0, each T; is an s-tuple, each «o; € p(I — i), and ¢ is a quantifier-free
first-order formula. Then Duplicator takes

ko > arity(f)=sm

ky > arity(ozl)

ki

kiyr > qr(Vzigan)

Y

arity(oy)

so that k = ko + k1 + -+ - + kig1 > rank(3).

The first step of our induction is the case when all tests in  are quantifier-free
first-order formulas, that is, 5 € NPS(7). Then, according to the above note,
Duplicator needs to take ko > arity(3) = rank(f) and k; > 1, so the partition
consists of two subsets colored Fy and P; respectively, although only the pebbles
colored Py will be used, since no test moves (and no reset moves) are needed. As it
is noted in [CS96], each instruction of a 3 € NPS determines a move of the pebbles
in the input structure A, or B, as follows: since arity(3) = sm and k = ko > sm,
the players take the first sm pairs of pebbles {(po1,90.1),- - -, (Po,sm>o,sm)} colored
Py, and make each pebble pg; and ¢o; correspond to the variable x;. Initially, the
pebbles are placed on the 0 of | A| (resp. |B|), since what the players are trying to

determine is

[0)84[maz) implies [0]3" [maz).
Then, to continue simulating the computation of 34 (resp. 3%), each instruction of

the form z; := atom corresponds to placing the i-th pebble on top of the element
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upon which the j-th pebble resides, if atom = z;, or on top of the constant element
C, if atom = C; an instruction of the form guess(x;) corresponds to placing the
i-th pebble on an arbitrary element; the tests are evaluated with respect to the
extended structure (A, aq,...,a5m) (resp. (B,b1,...,bsn) ), where aq,..., a5y
(resp. by, ..., bsy) are the elements upon which the pebbles are currently placed.
Moving pebbles as described above one sees that [0]34[maz] (resp. [0]3%[maz))
if and only if there is a sequence of moves such that all pebbles end up placed on

A (resp. max®). Assuming that there is such a sequence for

the element max
B4, Spoiler wants to show that there is no such a sequence for 3%. Therefore,
Spoiler wants to do Ag-moves at all times in order to challenge Duplicator to find
such convergent computation of 3°. By hypothesis, Duplicator has a winning
strategy in the general game of k-pebbles (not just restricted to the kind of moves
described above) and all the tests are atomic, therefore, using his winning strategy,
Duplicator can make the extended structures (A, a1,...,as,) and (B, by, ..., bsy,)
indistinguishable through atomic formulas; hence, the outcome of the tests is the

same for both $4 and %; hence, the flow of control is the same, and, hence, the

computations are the same. Thus, Duplicator wins in this case.

Inductively, let
B = p’linput(Ty, ..., Tp) ... YZal...] .. ],

where VZa is the (only) non-atomic test that shows in 3, and a € p(I — 1).
According to our remark, at the beginning of the proof, Duplicator’s partition

of P includes

ko > arity(f)= sm, and

kr > arity(a).

Then, the game starts with the players moving at most kg pairs of pebbles colored

Py, and for all those moves that corresponds to instructions with atomic tests,
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Duplicator applies his winning strategy as in the basic case. When the game arrives
to the test Vza the players do a testg-move: they leave fixed their respective sm

pebbles colored Fy, thus defining the extended structures
A= (Aay, ... asy) and By := (Byby, ... bg)
and using the ky pairs of pebbles colored P; they need to determine if
A EVza iff By E Vza.

[=]: Suppose A; E VZa and By £ VZa. Then Spoiler does a Vi-move: since there

exists a tuple b € |B;|l that would make the program (a[b])®' reject its input
(i.e., it never halts or output # maz), Spoiler pebbles that tuple. Then, whatever

|Z|-tuple @ Duplicator pebbles in A;, we get

(A1,a) E aand (By,b) [~ «a.

This yields a contradiction: o € p(I — 1), so Duplicator only needs a partition of
P into (Fo,..., P) coloring to play the game with respect to a. By hypothesis,
Duplicator has a winning strategy for a game that involves partitions of P up to (42
sets, and so he has a winning strategy for the game of k-pebbles and (P, ..., P)-
coloring, and therefore, by inductive hypothesis, A = « implies B |= «, and hence,

Ay E o implies By | a, contradicting the equation above. Thus, it is true that if

Ay E VZa then B, E Vza.

[<]: We show A; £ VZa implies By = VZa or, equivalently, A; | 3zZ—a implies
By E dz—a. In terms of games, we need to show that if Spoiler can find a tuple
@ € | A" such that (A;,@) = —a[z], then Duplicator can find a corresponding
tuple b € |B,|Fl such that (By,b) |= —a[z]. This follows from the hypothesis
A C B: for then A; C B; and Duplicator can choose b isomorphic to @ through

the natural embedding of A; into By. Hence, (A;,a@) | —alZ] implies (B,b) |

—a[z].
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Thus, the outcome of the test is the same in both computations * and 35;
hence, the next instruction is the same in both. The players do a reseto-move and
perform that next instruction with their pebbles colored Fy. Duplicator has won
through the whole testing process, and continues playing according to his winning

strategy for the simpler instructions. .

Note that for the proof of Theorem 4.2.2 we need only be concerned with those
moves of the infinitary game that are dictated by the instructions in the program
scheme (3, in order to conclude that A = § implies B |= 3. Thus, let the infinitary
game of k-pebbles and (P, . .., P)-coloring on (A, B) played according to (program
scheme) 3 be the game, as defined in Definition 4.2.1, where the players are only
allowed to make moves that corresponds to instructions in (3, as explained in the
course of the proof of Theorem 4.2.2. That is, in this restricted game, Spoiler (resp.
Duplicator) begins placing his pebbles on the 0 of |A| (resp. |B|) and continues
moving pebbles in the order in which the sequence of instructions in 3 appear,
with each pebble move reflecting what the corresponding instruction in 3 says. If
the third instruction in 3 is guess(xz), for example, and the game has been played
up to this point with the pebbles colored Fy, then the third move of Spoiler should
be the Ag-move of placing the pebble pg 7 on an arbitrary element of | A|. For this
restricted infinitary game we have the following result, whose proof is contained in

the proof of Theorem 4.2.2.

Theorem 4.2.3 Let 7 be some vocabulary, A and B be two 7-structures such that
ACB, 1 >0, and p € NPS(7). Let k > 0 and let 3 € p(l) with rank(3) +1 <
k. If Duplicator has a winning strategy in the infinitary game of k-pebbles and
(FPo,..., Pry1)-coloring on ( (A,0,max) , (B,0,max) ) played according to 3, then
A E 3 implies B |= 5.
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4.3 A Hierarchy Theorem for program schemes

In this section 7 is some vocabulary with at least a binary relation symbol.

For our separation results we employ the following structures, Ay ., and By,

that were defined in [Gra9dl].

Definition 4.3.1 (The m-extensions) Let {A;}i>0 and {Bg}i>0 be two fami-
lies of 7-structures. For each m > 0, we define the m-extensions { Ay }eso and
{Brm ti>o of {Ar}iso and {Bg}rso , inductively as follows:

For m = 0 we extend 7 with a new unary relation symbol Uy and we define, for
each k >0, Apo:= (Ap,{co}) and Bro:= (Bi,{co}) , and the following hold on

these structures:
(i) ¢o is a new element different from all the elements in Ay (resp. By).
(ii) ¢o is the unique element that satisfies Uy in Ay (resp. Brpo).

(iii) ¢o is connected to all points. More formally, the sentence VY E(co, ) holds

in Ago (resp. Bro).

¢o is called the root of Ay (resp. Brpo).

For m > 0 assume Ay, and By, have been defined and 7 has been extended with
m + 1 new unary relation symbols Uy, ..., U,. Then, for each k > 0, Ay 41 and

Bi,m+1 are define, according to the parity of m, as follows:

1. If m is even then Ay .41 consists of the disjoint union of k copies of By,
one copy of A, and a new element ¢,,11 (the root). By .41 consists of the

disjoint union of k 4 1 copies of By, and the root ¢,,4;.

2. If mis odd then Ay 41 consists of the disjoint union of k+1 copies of Ay, .,
and the root ¢;,41. By mi1 consists of the disjoint union of k copies of Ay .,

one copy of By, and the root ¢,41.
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For both cases the following hold on these structures:
(i) cmy1 is different from all the elements in Ay 41 (resp. Bimi1)-
(ii) ¢mp1 is the unique element that satisfies Uypq in Ag i (resp. Bromt1).

(iii) ¢mq1 is connected to the roots of each of the substructures Ay, or By, in

Ap g1 (resp. B ntr).

Figure 10 shows the m-extensions Ay ., and By .

Co Co
Ak@ : [ Bk@ . [
.Ak Bk
Com Com
Ak,Qm : Bk,?m :
e ‘e e ‘e
Ak,?m—l Ak,?m—l Bk,?m—l Ak,?m—l Ak,?m—l
k+1 k
Com+1 Com+1
Ak72m+1 :%\ Bk,2m+1 : /\
e ‘e e ‘e
Ak,Qm Bk,?m Bk,?m Bk,?m Bk,?m
k k+1

Figure 10: The m-extensions.
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Lemma 4.3.2 Let p € NPS(7) with arity(p) = n. Let {Ar}tiso and {Bg}rso be
families of T-structures such that, for each k > 0, A, C By and for all sentence
of the form ¢ 1= Jay ... 2, VYo(T,7), with ¢ a quantifier-free first-order formula,

[yl <r and sn+r < k, we have
A By il By E .
Then, for all m > 0 and 8 € p(m) with rank(8) + 1 < k,
Apom = 3 implics Byon = 5.

Proof: By Theorem 4.2.3 it is sufficient to show that for all m > 0 and 3 € p(m),
with rank(3) + 1 < k, Duplicator has a winning strategy in the infinitary game
of k-pebbles and (Fy,..., Ppi1)-coloring on ( (Agam,0,max) , (Bkam,0,mazx) )
played according to 3. The proof is by induction on m.

Case m = 0: Then ( has the form

B = p’linput(Ty, ..., Tn) .. Myr...Vy0) ...,

where r, s > 0, each T; is an s-tuple, ¢ is a quantifier-free first-order formula, and
Yyi...Vy,¢ is the non-atomic test that shows in 3. To simplify notation we put
A= Ao and B := Byg. Note that A (resp. B) is essentially Ay (resp. By),
with an extra element ¢y, and so, whenever Spoiler pebbles the ¢q of one structure,
Duplicator must pebble the ¢y of the opposite structure. Next, we describe how
Duplicator must play for the rest of the elements. Duplicator’s partition of the set
of k pairs of pebbles P consists of a set of kg > sn pairs of pebbles colored Fp,
and a set of k; > r pairs of pebbles colored P;. The players start playing with the
sn pairs of pebbles colored Fy. Since Ay C By, Duplicator’s strategy through all
the assignment and the simple test instructions! of 3 is obvious: Wherever Spoiler

pebbles on | A|, Duplicator replies with the isomorphic element on |B| given by the

Li.e., the test is at most atomic
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natural embedding of A C B. When the game arrives to simulating the instruction
with the test Yy, ...Vy,¢, the players have to check the validity of this test with
respect to the extended structures (A, @) and (B,b) , where @ (resp. b) is the
sn-tuple of elements of |A| (resp. |B|) upon which the pebbles reside. That is, the
players must verify that

AE vy Fa, Vyo(z,y) iff Bl ey ... J2s,Vyo(T, 7).

But this is true by hypothesis. Therefore, Duplicator can pebble so as to make the
value of the test in $% the same as that in ## and, hence, the flow of control in
both computations is identical, that is, the next instruction to be executed after
the test is the same in 84 and 3%. Thus, Duplicator wins on this part of the game,
and thereafter the remaining instructions have, at most, simple tests for which

Duplicator’s strategy is the same as was explained earlier.

Case m > 0: Then ( has the form

B = p’linput(Ty, ..., Tn) ... Vyr...Vya) ..,

where r,s > 0, each T; is an s-tuple, y1,...,y, € X,, o € p(m — 1), and our

inductive hypothesis is that

Duplicator has a winning strategy in the infinitary game of k-pebbles
and (P, ..., Puy1)-coloring on  (Ag9m-2,0,mazx) and (Bgam-2, 0,

mazx) , which is played according to a.

We describe a winning strategy for Duplicator in the game played according to
(. Throughout the game, to any pebbling of the roots ¢; by Spoiler, Duplicator
responds by pebbling the corresponding root in the opposite model. The players
start moving the sn pairs of pebbles colored Py according to the assignment and
simple test instructions of 3. Thus, Spoiler begins placing pebbles on Ay 5,,,. Since

arity(#) < k and there are k + 1 copies of Ay -1 in Ag2m, one of these copies



85

remains free of pebbles once all the sn pebbles colored Py of Spoiler are on the
board. Hence, Duplicator responds by pebbling isomorphic elements among the k
copies of Ay 9m_1, in By 2, which leaves the copy of By 2m—1 free. When the game
comes to a point where it simulates the instruction with the test (Vy; ...Vy,a), the
players do a testy-move followed by a Vi-move: they leave their pebbles colored F,
fixed on the board and Spoiler places r pebbles colored Py on By 3,,. Duplicator
responds as follows: if Spoiler pebbles on a copy of A a,,-1, Duplicator pebbles
the isomorphic element on the corresponding copy of Ay om—1 in A 2m; if Spoiler
pebbles on the (up to now free) copy of By am—1, Duplicator should then place his
pebbles on isomorphic elements among the &k copies of By am—2, in Ag 2m—1, leaving
the copy of Ajom—2 free of pebbles. This is possible, since r < k. Also note
that the fact that » < k& and that there are £ 4 1 copies of By 2m—2, In Bi2m-1,
implies that one of these copies is not pebbled by Spoiler. The game continues with
moves dictated by the instructions in a: if Spoiler pebbles the copies of By 25,2, In
Ak 2m—1, Duplicator pebbles isomorphic elements among the k copies of By g2,
in Bg2m—1, and if Spoiler pebbles the free copy of Ay 2m—2, in Ag 2:,—1, Duplicator
pebbles in a free copy of By am—2, In Biam—1, according to his winning strategy
given by inductive hypothesis. Thus, Duplicator is always able to allocate his
pebbles so as to keep partial isomorphism through all stages of the game dictated
by the test (Yyi...Vy,); so the flow of control in 34k2m and B5k2m is the same
after the test. Then, once the players perform the necessary reset-moves in order
to remove all but the pebbles colored Fy from the board, the game resumes in the
same instruction in both #4¥2m and $%k2m and, from this point on, Duplicator’s

strategy is as it was described before reaching the test.
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Lemma 4.3.3 Let p € NPS(7). Let {Ap}rso and {Bpliso be families of 7-
structures such that, for some 3 € p(1) and all k >0,

Ai = B and By £ 5.

Then, for allm > 0 and k > 0, there exists a program scheme [3,, € p(m+1) such
that

Ak,Qm |: ﬁm and Bk,?m |7£ ﬁm

Proof: Assume, without loss of generality, that the program scheme 5 € p(1)
given in the hypothesis has the form

B: anput(xy,...,2,)

WHILE Vzq ... Vzt[... alz1,..., 25,01, ..., ...] DO
oD
output(xy, ..., x,)
where t[... afz1,...,25,w1,...,w] ...] is a boolean combination of atomic tests

and the (program scheme) test afz1,..., z5, w1, ..., w] € p(0), with X, = {z, ...,
Zgy Wiy «eny WL

Extend 7 with a new unary relation symbol Uy and let 70 = 7 U {Uy}. Let
Bo: input(yo, T1,. .., Ty)
WHILE yy # maz DO

guess(yo)
IF [Uo(yo) A N\ (E(yo,xi) V E(xi,y0)) A B|Uo] THEN
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Yo : =0
FI
0D

OUtPUt(y07 L1y 7xn)

where 3|Uy is the program scheme 3 with its input and output instructions stripped

away and the test, in the WHILE instruction, modified as follows:

B|Uq: % no input instruction

WHILE [ A (E(yo,w;) V E(w;,yo)) AVz1...Vzs[ N (E(yo,2) V E(z,40))

1<i<l 1<i<s

— t[... afz, .z w0, wy] L] DO

OD

% no output instruction

First note that, technically, 5y is not in p(1) even though [ is. This is because,
according to our definition of the classes p(m), By should have the structure of p,
and this is not so since we have defined it by adding extra instructions to 3. So,
formally, By € p(1) where p is a program scheme that has the form

input(y, 1, ..., T,)

WHILE y # maz DO

guess(y)
IF p THEN
Y = max
ELSE
y:=0
FI
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oD
output(y, x1,...,&,)
where {x1,...,2,} = X,.

One can see that for any A € STRUCT (1)
AEpiff Ak

and defining the classes p(m) as program schemes where the test p in p is substi-
tuted by an element of p(m), we see that for each m > 0 p(m) is equivalent to
p(m). Thus, showing our result for p(m) gives implicitly the result for p(m).

In particular, Ay o = o and By = o, since Ay |= 3 and By, = 3 by hypothe-
sis.

Inductively, for m > 1, let 7, = 7 U {Uy, ..., Uz} where Uy, ..., U, are new

unary relation symbols. Let

Bt input(yam)
WHILE ys,,, # maz DO
guess(Yam)
IF VY21 [Uzm (y2m) A Uzn—1(y2m-1) A
(E(Y2m»Yom-1) V E(Y2m—-1,Y2m)) A Br—1] THEN
Yom 1= Max
ELSE
Yorm = 0
FI
OD

output(yam)

Then, 8, € p(m+1), and Ay 2m = B and Bgam = Br. This follows from the
fact that, for the computations of 3,, on A, and on By a,, where the guessed

value of ys,, is the root ¢;,,, the test in the IF ... THEN instruction is true for



89

ﬁék’m but false for Tik’m. The reason is as follows: ¢y, is the unique value for
Yom that makes Uy, (Yo ) true, in both Ay 2, and By oy (any other guessed value
for y3,, makes both computations, ﬁék’m and ﬁﬁ“’", fail); however, in Ay 2, for
all roots ca,—1 there is a root cy,,—2 that can be the guessed value of the (input)
variable ya,,—2 of the program (3,,_1 and, by inductive hypothesis, Ay 2m-2 = Gm-1;

hence,

A2 E YY2m—11U2m (Y2m ) AUz —1(Y20m—1 ) ACE (Y2ms Y2m—1)V E(Y2m—1, Y2m ) ) A Bm—1].

On the other hand, in By s, there is a root c¢z,,—; such that all roots cg,_2,
with an edge to ¢y,—1, are in copies of By an,—2 and, by inductive hypothesis,

B 2m—2 = Bm-1, so the test is false in ﬁﬁ“m' i

Theorem 4.3.4 (Hierarchy Theorem for NPS) Let p € NPS(7). If there ex-
ists families of T-structures, {Ag}r>o and {Bi}rso, satisfying the hypotheses of
Lemmas 4.3.2 and 4.3.3, then, for all m > 0,

p(m) C plm +1).

Proof: Immediate from Lemmas 4.3.2 and 4.3.3. n

4.4 Applications to logics with generalized
quantifiers

4.4.1 A hierarchy for TC

We show how our results give Gradel’s hierarchy for TC in [Gradl]. Consider the

problem TC(0, max)?. This is accepted by the program scheme p of Example 4.1.1.

2TC(0, max) is the localization of the problem TC to the constants 0 and max; cf. Remark
3.1.1
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Let’s denote it by prc. Define TC(0) as the class of formulas of the form?

TCATyVz4(7,y,2)](0, maz),

where 1 is a quantifier-free first-order formula. Define the class of program schemes

prc(0) according to the general definition of p(0). Then, one can see that, for every

¢ € TC(0) there is a 8 € pp(0) such that, for every A € STRUCT(7),
Al o iff [0)54[maz] (4.2)

and conversely: for every 5 € pr(0) there is a ® € TC(0) such that (4.2) holds.

Inductively define, for m > 0, TC(m) as the class of formulas of the form
TC T vz U (7,7, )]0, maw),

where ¥ € TC(m — 1), and define, py(m), as the class of program schemes (3
such that: 3 is pk., for some k& > 0, and the test that shows in the IF ... THEN
instruction, in prc, is of the form VZ a where o € pr(m — 1), and similar proviso
about X, and Xp, as in the general definition of p(m), applies.

Then, again, one sees that for every ® € TC(m) there is a 8 € pyo(m) such
that, for every A € STRUCT(7y), equation (4.2) above holds, and conversely.

Now, for each k > 0, take A}, a cycle of length 22 with interpretations for the
two constant symbols 0 and max, and By the disjoint union of A; with another
cycle of length 22 without constants. Then, for all £ > 0, the program scheme
(# in Example 4.1.2 accepts Ap and rejects By. Thus, pro, Ay, and By satisfy
the hypotheses of Theorem 4.3.4 and we can apply that result to our particular

sequence of classes of program schemes, {p7c(m)}n>0, to obtain

prc(m) € pro(m+ 1), for all m > 0.

3¢f. Definition 3.3.3
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This implies TC(m) < TC(m + 1) for all m > 0: Suppose that there is an m such
that TC(m) = TC(m+1). Since ppe(m) € pre(m+1), thereisa 5 € ppe(m+1)

and two my-structures, B and C, such that

B = §and C =05,

and

BEa iff CE=a, forall o € ppo(m).

We have shown above that there is a ® € TC(m + 1) such that, for every A €
STRUCT (72),
A= o iff [0]p4maz).

So, in particular, B E ® and C E —®. By our assumption there is a ® €
TC(m) such that = ® <— ®’. On the other hand, there is a program scheme
B € ppe(m) such that, for every A € STRUCT(72),

Al o iff [0 [maz).

In particular, B |= ¢’ and C = ®', and since = ¢ +— &', we must have C = @

also, which is a contradiction.

Addendum: For the sake of illustrating the construction described in the proof

of Lemma 4.3.3, we give the program scheme in p;(2) that distinguish A 5 from

B2

input(z,yz)
WHILE 2 # maxz DO
guess(ys)
IF [ Vy1(Uz(y2) A Ur(y1) A E(yz, y1) A enlys, yo])] THEN
Yo 1= mazx

FI
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OD

output (. y2)

where o4 is the following program scheme:

Yo := 0
WHILE yo # maz DO
guess(uo)
IF [ V21V29(Uo(yo) A E(y1,y0) A az]z1, 22, 23])] THEN
Yo := max
FI
oD

and s 1s the following program scheme:

WHILE 2, # 2, DO

guess(zs)

IF[ A —Ulz)A =Ui(z3) AN E(z1, 23) A E(yo, 21) A E(yo, z3) | THEN

1=1,2,3 1=1,2,3
Z1 = Z3

FI
OD

4.4.2 A hierarchy for DTC and relatives

The following program scheme, pprc, accepts the problem DTC(0,max):
input(v, y)
WHILE = # max DO

guess(y)
IF (E(x,y) AVz(E(x,z) — z=y)) THEN

T =1y



FI
oD
output(z,y)

Define DTC(0) as the class of formulas of the form

DTCATF V=4 (7,7, 2))(0, 7).
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where ¢ is a quantifier-free first-order formula, and define the class pp;(0) ac-

cording to the general definition of p(0). Then, one can see that, for every ¢ €

DTC(0) there is a 8 € ppre(0) such that, for every A € STRUCT(7,),

A= o iff [0]p4[maz)

and conversely. For m > 0, define DTC(m) and pppe(m) analogous to TC(m) and

prc(m) in 4.4.1. Using the same families of r-structures, {Ag}i>0 and {Bg}iso,

defined in 4.4.1, and the program scheme

input(z,y)
WHILE = # max DO

guess(y)
WHILE  # v DO
guess(w)
IF Vv IF (E(u,w) ANVz(FE(u,z) — z=w)) THEN
U= w
FI
oD
Y i= mazx
FI
vi=y
oD

output(z,y)

THEN
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it is easy to see that the hypotheses of Theorem 4.3.4 are satisfied and, hence, we
obtain that the hierarchy {pprc(m)}m>o is strict at all levels, which implies that
the hierarchy {DTC(m)},>0 is also strict at all levels, by same arguments as in

4.4.1.
Another relative to the problem TC(0, max) is

STC(0,max) ={A € STRUCT(73) | there is a path in the (undirected)

graph A from vertex 04 to vertex max*}.

This problem is complete for NSYMLOG (symmetric logspace) via first-order
projections [Imm87], and it is accepted by a program scheme p, similar to that
in Example 4.1.1, interpreting the edge relation F(z,y) as a symmetric relation.
Then, doing the same analysis as in 4.4.1, we obtain that the hierarchy of logics
{STC(m)}m>o is strict at all levels.
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