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Abstract

This work extends the theories of algorithmic randomness and Kolmogorov complexity

of bitstrings to the quantum realm. Nies and Scholz defined quantum Martin-Löf ran-

domness (q-MLR): the first notion of algorithmic randomness to be defined for infinite

sequences of qubits, which are called states. We define a notion of quantum Solovay ran-

domness and show it to be equivalent to q-MLR using purely linear algebraic methods.

Quantum Schnorr randomness is then introduced. A quantum analogue of the law of

large numbers is shown to hold for quantum Schnorr random states.

We next turn to a quantum analogue of Kolmogorov complexity. We introduce

quantum-K (QK), a measure of the descriptive complexity of density matrices using

classical prefix-free Turing machines and show that the initial segments of weak Solovay

random and quantum Schnorr random states are incompressible in the sense of QK.

Many properties enjoyed by prefix-free Kolmogorov complexity (K) have analogous

versions for QK; notably a counting condition. Several connections between Solovay

randomness and K, including the Chaitin type characterization of Solovay randomness,

carry over to those between weak Solovay randomness and QK. Schnorr randomness

has a Levin–Schnorr characterization using KC ; a version of K defined using an arbi-

trary computable measure machine, C. We similarly define QKC , a version of QK.

Quantum Schnorr randomness is shown to have a Levin–Schnorr and a Chaitin type

characterization using QKC .

We then show how classical randomness can be generated from a computable, non-

quantum random state. We formalize how ‘measurement’ of a state induces a probability
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measure on the space of infinite bitstrings. A state is ‘measurement random’ (mR) if

the measure induced by it, under any computable basis, assigns probability one to the

set of Martin-Löf randoms. I.e., measuring a mR state produces a Martin-Löf random

bitstring with probability one. While quantum-Martin-Löf random states are mR, we

show that the converse fails by defining a computable mR state ρ which is not quantum-

Martin-Löf random. In fact, something stronger is true. Measuring ρ in any computable

basis yields an arithmetically random sequence with probability one.

The work concludes by studying the asymptotic von Neumann entropy of computable

states.
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Chapter 1

Introduction

Quantum physics describes a physical system by a unit vector in an appropriate vector

space. Although the vector space can be infinite dimensional in general, this thesis deals

purely with finite dimensional spaces. The simplest setting is that of a two dimensional

vector space: a qubit is a unit vector in C2 and describes a two dimensional quantum

system. Consider the orthonormal basis of C2 comprised of the unit eigenvectors of

the z-operator denoted (in the usual bra-ket notation) by |0
〉

and |1
〉
. Recall that the

z-operator is a Hermitian operator measuring the spin of a two dimensional quantum

system in the z direction [27]. An arbitrary qubit has the form α|0
〉
` β|1

〉
where

|α|2 ` |β|2 “ 1. The |0
〉

and |1
〉

are the quantum analogues of the classical 0 and 1

respectively. While a bit can only take on two possible values (0 or 1), a qubit can

be any unit length linear combination of the basis vectors |0
〉

and |1
〉
. So, a qubit

generalizes the classical bit. This suggests that notions concerning classical bits can be

extrapolated to qubits.

Section 1.1, which may be skipped by the reader familiar with quantum theory,

reviews some quantum theory background relevant to this work.

Information theory has been generalized to the quantum realm [27]. Similarly, the

theory of computation has been extended to the quantum setting, a notable example

being the conception of a quantum Turing machine [7, 26]. It hence seems natural to
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extend algorithmic randomness, a discipline using concepts from computation and in-

formation, to the quantum realm. Algorithmic randomness studies the randomness of

infinite bitstrings using two main tools: (1) effective measure theory and (2) Kolmogorov

complexity. While classical Kolmogorov complexity has inspired many competing defi-

nitions of quantum Kolmogorov complexity [8,26,35], effective measure theory has only

recently been extended to the quantum setting [11,31].

What does algorithmic randomness study? Consider infinite sequences of ones and

zeroes (called bitstrings in this paper). First consider the bitstring 101010101010 ¨ ¨ ¨ . It

has an easily describable ‘pattern’ to it; namely that the ones and zeroes alternate. Now

take a bitstring obtained by tossing a fair coin repeatedly. Intuitively, it seems that the

second bitstring, in contrast to the first, is unlikely to have patterns. Algorithmic ran-

domness tries to quantify our intuition that the second bitstring is more ‘random’, more

‘structureless’ than the first. For this, it uses two central concepts: (1) An effectively

null set and (2) Kolmogorov complexity. Roughly speaking an ‘effectively null set’ is one

which can be approximated by a computable sequence of open sets whose measures tend

to zero in a nice way. Varying the precise definition of ‘effectively null’ yields various

randomness notions such as for example, Martin-Löf randomness, Solovay randomness

and Schnorr randomness. See [28] and [21] for more details on effective measure theory

and its use in algorithmic randomness.

The Kolmogorov theoretical approach quantifies the randomness of infinite bitstrings

by measuring the incompressibility of their finite initial segments. Roughly speaking,

a finite bitstring σ is ‘incompressible’ if Kpσq is close to |σ|. Here, K stands for the

prefix-free Kolmogorov complexity. See [28] and [21] for an exposition on K and its

properties. The Kolmogorov theoretical approach considers an infinite bitstring X to
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be ‘random’ if its finite initial segments are asymptotically incompressible as n goes to

infinity. I.e., if X æ n is the first n bits of X, then KpX æ nq is close to n as n tends to

infinity.

It turns out that the randomness of an infinite bitstring measured via the effective

measure theory approach is intimately related to its randomness measured in terms of

their initial segment incompressibility.

While algorithmic randomness is concerned with the randomness of bitstrings, the

present thesis is concerned with quantum algorithmic randomness: the study of the

randomness of qubitstrings (infinite sequences of qubits), also called states [11, 31].

Building on the work of Nies and Scholz [31], Chapter 2 extends the classical effective

measure theory approach to the quantum realm. It studies the quantum analogues of

Martin-Löf, Solovay and Schnorr randomness, which are defined using effectively null sets

in the classical theory. Chapter 3 extends the theory of classical Kolmogorov complexity

to the quantum setting. It introduces quantum-K pQKq, a quantum version of K, and

relates it to the three quantum randomness notions defined in Chapter 2. The remaining

two chapters explore interesting applications of the main theory developed in Chapters 2

and 3. In Chapter 4, we construct a computable state which is not quantum Martin-Löf

random but which yields an arithmetically random bitstring with probability one when

‘measured’ (the notion of measuring a state is also defined in Chapter 4). Arithmetic

randomness is a strong form of classical randomness, strictly stronger than Martin-Löf

randomness (See 6.8.4 in [21] for details on arithmetic randomness).

The final chapter explores the von-Neumann entropies of the finite initial segments

of computable states.

Section 1.1 reviews some background from quantum theory and the following sections
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give an overview of each chapter.

1.1 Quantum theory background

A more detailed account may be found in the textbook by Nielsen and Chuang [27]. We

assume the reader to be familiar with the bra-ket notation. A n-dimensional system is

described by |ψ
〉
, a unit vector in Cn. A physical quantity corresponds to a Hermitian

operator H on Cn. By Hermicity, H has a spectral decomposition:

H “
ÿ

iďn

ei|i
〉〈
i|

where, p|i
〉
qiďn is the complete orthonormal set of eigenvectors of H. Measuring H on

|ψ
〉

produces outcome ei with probabilty |
〈
i|ψ

〉
|2 “ Trp|ψ

〉〈
ψ||i

〉〈
i|q. So, the outcome is

non-deterministic except when the |ψ
〉

is an eigenvector of H. The only possible outcomes

of measurement of H are its eigenvalues. If the outcome is ei, the post-measurement

system is in the eigenspace spanned by t|j
〉

: ej “ eiu. In particular, if all the eis are

distinct, then the post-measurement system is |i
〉

if the measurement outcome is ei. As

usual, we denote the eigenvectors of the z-operator (a operator on C2) by |1
〉

and |0
〉
.

Any |ψ
〉
“ α|1

〉
` β|0

〉
with α, β P C and |α|2 ` |β|2 “ 1 is said to be a qubit. A

sequence of n qubits is modeled by a unit vector in pC2qbn which has an orthonormal

basis comprised of elements of the form

â

iăn

|σpiq
〉

:“ |σ
〉

for a σ P t0, 1un

States which are not pure tensors are said to be entangled. If |ψ
〉
P pC2qbn is entangled,

its subsystem in pC2qbk for some k ă n is not a single quantum state but rather is

a probabilistic mixture of multiple quantum states. To describe such subsystems, we
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reformulate the above in the density matrix language by replacing pC2qbn with Ln,

the space of linear operators on pC2qbn and by replacing |ψ
〉

with |ψ
〉〈
ψ|. A positive

semidefinite matrix ρ P Ln is a density matrix if Tr(ρ) = 1. By Hermicity, ρ has a

complete orthonormal set of eigenvectors pψiqiă2n . So, it is unitarily diagonalizable and

has eigenpairs pαi, ψiq

ρ “
ÿ

iă2n

αi|ψi
〉〈
ψi| (1.1)

This sum must be convex as, 1=Tr(ρ)=
ř

i αi. A density matrix ρ P Ln is said to

be a strictly mixed state if 1.1 is a strictly convex sum and is said to be a pure state if

ρ “ |ψ
〉〈
ψ| for some unit vector ψ. A density matrix which may be pure or strictly mixed

is simply referred to as a mixed state. In the density matrix language, a system |ψ
〉

is

represented by the pure state |ψ
〉〈
ψ|. A system which is in |ψi

〉〈
ψi| with probability

αi is described by the mixed state ρ “
ř

iă2n αi|ψi
〉〈
ψi|. Measuring H on ρ produces

outcome ei with probabilty |
〈
i|ρ|i

〉
|2 “ Trpρ|i

〉〈
i|q. The expected value of measuring H

on ρ is

rHsρ :“
ÿ

i

eiTrpρ|i
〉〈
i|q “ TrpHρq

A system which is a composite of systems given by σ P Ln and τ P Lk is described by

ρ “ σ b τ P Ln`k.

1.2 An Overview of Chapter Two

This chapter concerns the generalization of effective measure theory as used in classical

algorithmic randomness to the quantum world. The basic definitions from algorith-

mic randomness we state below may be found in books by Nies [21] and Downey and
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Hirschfeldt [28]. Roughly speaking, a Martin-Löf random bitstring is one which has no

algorithmically describable regularities. Slightly more rigorously, an infinite bitstring is

said to be Martin-Löf random if it is not in any ‘effectively null’ set. In the context of

Martin-Löf randomness, a measurable set A is effectively null if there is a computable

sequence of effective open sets, pUnqn such that the measure of Un is at most 2´n and

A Ď Un for all n. By varying the definition of ‘effectively null’, we get other notions

of randomness like Solovay randomness and Schnorr randomness. Note that the ran-

domness of a bitstring defined using this approach crucially depends on the notion of

computability. In a broad sense, a bitstring is random if it has no ‘computably describ-

able’ patterns.

The notion of a computable real number will come up when we discuss quantum

Schnorr randomness.

Definition 1.1. A real number r is said to be computable if there is a computable

function f such that for all n, |fpnq ´ r| ă 2´n.

We describe how classical algorithmic randomness generalizes to qubitstrings. We

refer the reader to the book by Nielsen and Chuang [27] for preliminaries on quantum

theory.

While it is clear what one means by a infinite sequence of bits, it is not immediately

obvious how one would formalize the notion of an infinite sequence of qubits. Many

authors have independently come up with notions describing infinite sequences of qubits

[6, 12, 31]. We will use the one given by Nies and Scholz [31] called a state. Recall that

a positive semidefinite matrix with trace equal to one is called a ‘density matrix’ and is

commonly used to represent a probabilistic mixture of pure quantum states (See [27]).
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Definition 1.2 ( [31]). A state ρ “ pρnqnPN is an infinite sequence of density matrices

such that ρn P C2nˆ2n and @n, PTC2pρnq “ ρn´1.

The idea is that ρ represents an infinite sequence of qubits whose first n qubits are

given by ρn. Here, PTC2 denotes the partial trace which ‘traces out’ the last qubit from

C2n . The definition requires ρ to be coherent in the sense that for all n, when ρn is

‘restricted’ via the partial trace to its first n ´ 1 qubits, it has the same measurement

statistics as the state on n´ 1 qubits given by ρn´1.

Definition 1.3 ( [31]). Let τ “ pτnqnPN be the state given by setting τn “ b
n
i“1I where

I is the two by two identity matrix.

Definition 1.4 ( [31]). A special projection is a hermitian projection matrix with com-

plex algebraic entries.

Since the complex algebraic numbers (roots of polynomials with rational coefficients)

have a computable presentation, we may identify a special projection with a natural

number and hence talk about computable sequences of special projections. Let I denote

the two by two identity matrix.

Definition 1.5 ( [31]). A quantum Σ0
1 set (or q-Σ0

1 set for short) G is a computable

sequence of special projections G “ ppiqiPN such that pi is 2i by 2i and rangeppi b Iq Ď

range ppi`1q for all i P N.

While a 2n by 2n special projection may be thought of as a computable projective

measurement on a system of n qubits, a q-Σ0
1 class corresponds to a computable sequence

of projective measurements on longer and longer systems of qubits. We motivate the

definition of a quantum Σ0
1 set by relating it to the classical Σ0

1 class. Let 2ω, called
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Cantor space, denote the collection of infinite bitstrings, let 2n denote the set of bit

strings of length n, 2ăω “
Ť

n 2n, and let 2ďω :“ 2ăω Y 2ω. Cantor space can be

topologized by declaring the cylinders to be the basic open sets. If π P 2n for some n,

then the cylinder generated by π, denoted JπK, is the set of all sequences extending π:

JπK “ tX P 2ω : X æ n “ πu.

If C Ď 2n, let

JCK :“
ď

πPC

JπK,

be the set of all X P 2ω such that the initial segment of X of length n is in C. One of

the many equivalent ways of defining a Σ0
1 class is as follows.

Definition 1.6. A Σ0
1 class S Ď 2ω is any set of the form,

S “
ď

iPN

JAiK

where

1. Ai Ď 2i, @i P N

2. The indices of Ai form a computable sequence. (Being a finite set, each Ai has a

natural number coding it.)

3. JAiK Ď JAi`1K, @i P N.

Letting JAiK :“ Si, we write S “ pSiqi. A Σ0
1 class S is coded (non-uniquely) by

the index of the total computable function generating the sequence pAiqiPN occurring

in (2) in the definition of S. Hence, the notion of a computable sequence of Σ0
1 classes

makes sense. One sees that the special projections qi in the definition of the q-Σ0
1 play



9

the role of the Ai’s which generate the Σ0
1 class S. The following notion is a quantum

analog of the Lebesgue measure of S, which equals limnp2
´n|An|q, where |.| refers to the

cardinality. (The uniform measure on 2ω is the measure induced by letting the measure

of JτK be 2´|τ | for each τ P 2ăω. Here, |τ | :“ n if τ P 2n.)

Definition 1.7 ( [31]). If G “ ppnqnPN is a q-Σ0
1 class, define τpGq :“ limnp2

´n|qn|q

where, |qn| is the rank of qn.

Informally, and somewhat inaccurately, a q-Σ0
1 class, G “ ppnqnPN, may be thought

of as a projective measurement whose expected value, when ‘measured’ on a state ρ “

pρnqnPN is ρpGq :“ limn Trace pρnpnq. In reality, a q-Σ0
1 class, G “ ppnqn, is a sequence of

projective measurements on larger and larger finite dimensional complex Hilbert spaces.

This sequence can be used to ‘measure’ a coherent sequence of density matrices (i.e., a

state), the expected value of which is the limit of the Tracepρnpnq (the expected value

of measuring the nth ‘level’).

Definition 1.8. A classical Martin-Löf test (MLT) is a computable sequence pSmqmPN

of Σ0
1 classes such that the Lebesgue measure of Sm is less than or equal to 2´m for all

m.

Its quantum generalization is:

Definition 1.9 ( [31]). A quantum Martin-Löf test (q-MLT) is a computable sequence,

pSmqmPN of q-Σ0
1 classes such that τpSmq is less than or equal to 2´m for all m.

Definition 1.10 ( [31]). A state ρ is q-MLR if for any q-MLT pSmqmPN, infmPN ρpSmq “ 0.

Roughly speaking, a state is q-MLR if it cannot be ‘detected by projective measure-

ments of arbitrarily small rank’.
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Definition 1.11 ( [31]). A state ρ is said to fail the q-MLT pSmqmPN, at order δ, if

infmPN ρpSmq ą δ. ρ is said to pass the q-MLT pSmqmPN at order δ if it does not fail it at

δ.

So, ρ is q-MLR if it passes all q-MLTs at all δ ą 0.

Remark 1.12. A few remarks on notation: By ‘bitstring’, we mean a finite or infinite

classical sequence of ones and zeroes. It will be clear from context whether the specific

bitstring under discussion is finite or infinite. We use 2n to denote the set of bitstrings of

length n. Let Bn denote the standard computational basis for C2n . I.e., Bn :“ t|σ
〉

: σ P

2nu. If S Ď 2n, let PS :“
ř

σPS |σ
〉〈
σ|. ‘Tr’ stands for trace. A sequence of q-Σ0

1 classes

will be indexed by the superscript. The subscript will index the sequence of special

projections comprising a q-Σ0
1. For example, pSmqmPN is a sequence of q-Σ0

1 classes and

Sm “ pSmn qmPN is a class from the sequence. So, a sequence of q-Σ0
1 classes can be

thought of as a double sequence of special projections: pSmn qm,nPN. Lebesgue measure is

denoted by µ.

In addition to continuing the investigation of quantum Martin-Löf randomness begun

by Nies and Scholz [31], we introduce and study quantum Solovay and quantum Schnorr

randomness in Chapter 2.

1.3 An Overview of Chapter Three

As mentioned before, effective measure theory (using ‘effectively null sets’) and Kol-

mogorov complexity theory (using descriptive complexity of initial segments) are two

seemingly unrelated but equivalent approaches to study the randomness of bitstrings.

Chapter 2 of this thesis and other works [9,11,31] have generalized the first approach to
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the quantum realm. We work towards generalizing the second approach in Chapter 3 of

which we give an overview here.

The most basic definition from the classical theory is that of K: The prefix-free

Kolmorogov Complexity pKq of a finite bit string σ is defined as

Kpσq “ mint|x| : Upxq “ σu,

where the x’s are finite bitstrings and U is the universal prefix-free Turing Machine (See

[21,28] for detailed expositions). Martin-Löf randomness (which is equivalent to Solovay

randomness) and Schnorr randomness for infinite bitstrings, defined using the concept of

‘effective null sets’, have characterizations in terms of prefix-free complexity [14,21,28].

The Chaitin characterization (See [16] and theorem 3.2.21 in [28]),

X is Martin-Löf random ðñ limnKpX æ nq ´ n “ 8,

and the Levin–Schnorr characterization (See theorem 3.2.9 in [28]),

X is Martin-Löf random ðñ Dc@nrKpX æ nq ą n´ cs,

are important characterizations of Martin-Löf randoms. A prefix-free machine C is

said to be a computable measure machine if the Lebesgue measure of its domain is

a computable real number [20]. For an arbitrary computable measure machine C we

define [20]

KCpσq “ mint|x| : Cpxq “ σu.

Schnorr randomness has a Levin–Schnorr type characterization using KC ;

X is Schnorr random ðñ @CDc@nrKCpX æ nq ą n´ cs.



12

Quantum Solovay randomness and quantum Schnorr randomness for states are de-

fined in Chapter 2. Analogously to the classical situation, one may explore the connec-

tions between quantum Solovay randomness and quantum Schnorr randomness and the

initial segment descriptive complexity of states.

Motivated by this, we asked whether there is a quantum analogue of K which yields

a characterization of quantum Solovay and quantum Schnorr randomness. We define

a family pQKεqεą0 of complexity measures for density matrices based on prefix-free,

classical Turing machines. The abbreviation QK stands for ‘quantum-K’, reflecting our

intention of developing a quantum analogue of K, the classical prefix-free Kolmogorov

complexity.

To the best of our knowledge, all notions of quantum Kolmogorov complexity devel-

oped so far, with one exception [35], exclusively use machines which are not prefix-free

(plain classical machines or quantum Turing machines) [7, 8, 26]. KQ, a notion devel-

oped in [35] uses a quantum Turing machine, Q together with the classical prefix-free

Kolmogorov complexity in its definition.

Many properties enjoyed by K, notably a counting condition, have analogous versions

for QKε for each fixed ε ą 0. Many connections between Solovay randomness and K,

including the Chaitin type characterization of Solovay randomness, carry over to those

between weak Solovay randomness and QKε for each fixed ε ą 0. We work towards a

Levin–Schnorr type characterization of weak Solovay randomness in terms of pQKεqεą0.

As mentioned above, Schnorr randomness has a Levin–Schnorr characterization us-

ing the family of complexity measures tKC : C is a computable measure machineu. We

similarly define the family tQKε
C : ε ą 0, C is a computable measure machineu. Each
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QKε
C here is defined exactly like QKε with C replacing the universal prefix-free Tur-

ing machine. Quantum Schnorr randomness is shown to have a Levin–Schnorr and a

Chaitin type characterization using the family tQKε
C : ε ą 0, C is a computable mea-

sure machineu. The latter implies a Chaitin type characterization of classical Schnorr

randomness using tKC : C is a computable measure machineu.

1.4 An Overview of Chapter Four

This chapter investigates the following question: Can the quantum non-randomness of

a state always be detected using ‘qubitbitwise measurements’? To make this question

fully precise, we need to define what we mean by ‘qubitbitwise measurements’. To this

end, we formalize a notion of ‘measuring a state’. With this notion in hand, we will

construct a computable, non-q-MLR state which yields a MLR bitstring almost surely

when measured qubitwise. This implies that it is not always possible to detect q-MLR

using only qubitwise measurements.

Measuring a finite dimensional quantum system or a composite system of finitely

many qubits is a pivotal concept in quantum information theory [17]. It hence seems

natural to consider defining a notion of ‘measuring’ a state. We first formalize how

‘measurement’ of a state in a basis induces a probability measure on Cantor space. A

state is ‘measurement random’ (mR) if the measure induced by it, under any computable

basis, assigns probability one to the set of Martin-Löf randoms. Equivalently, a state is

mR if and only if measuring it in any computable basis yields a Martin-Löf random with

probability one. While quantum-Martin-Löf random states are mR, the converse fails:

there is a mR state, ρ which is not quantum-Martin-Löf random. In fact, something
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stronger is true. While ρ is computable and can be easily constructed, measuring it in

any computable basis yields an arithmetically random sequence with probability one.

I.e., classical arithmetic randomness can be generated from a computable, non-quantum

random sequence of qubits.

1.5 An Overview of Chapter Five

As quantum Martin-Löf randomness is a notion of ‘randomness’ for states, we don’t

expect computable states to be quantum Martin-Löf random. However, the tracial state,

which is computable, is quantum Martin-Löf random. This rather surprising fact justifies

a study of the computable quantum Martin-Löf randoms. The theme of this chapter is

to use the von Neumann entropy as a measure of the randomness of computable states.

Recall that the von-Neumann entropy of a density matrix is the Shannon entropy

of the distribution given by its eigenvalues (As a density matrix is positive semidefi-

nite and has trace equal to one, its eigenvalues are real non-negative and sum to one.

The eigenvalues hence form a probability distribution. See, for example [27]). So, the

von-Neumann entropy of a density matrix d reflects how ‘evenly spread out’ its eigen-

values are. If the eigenmass of d is ‘concentrated’ at a few (relative to the dimension

of d) eigenvectors then the von Neumann entropy of d is low. Informally speaking, if

a computable density matrix d has a low entropy, then the few eigenvectors at which

the eigenmass is concentrated can be used to construct a special projection ‘close’ to d.

Conversely, if the von Neumann entropy of d is high, then one cannot construct such a

special projection. In this chapter, we formalize this intuition and extend it from density

matrices d to states ρ “ pρnqn. This extension from individual density matrices to states
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involves studying the limiting behavior of the von Neumann entropy of ρn as n goes to

infinity.

Our results may be summarized by the following implications: For any computable

ρ,

Dc ą 0 D8n Hpρnq ą n´ cñ ρ is q-MLR ñ Hpρq :“ limn
Hpρnq

n
“ 1.

Further, we also show that these implications do not reverse.
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Chapter 2

Notions of quantum algorithmic

randomness

2.1 Introduction

This section has two major themes. First, it continues the study of quantum Martin-Löf

randomness initiated by Nies and Scholz [31]. Second, we define quantum Solovay and

quantum Schnorr randomness and prove results concerning these notions. Along with

Martin-Löf randomness, Solovay randomness and Schnorr randomness are important

classical randomness notions. While Solovay randomness is equivalent to MLR, Schnorr

randomness is strictly weaker. In Section 2.2 we define quantum Solovay and quantum

Schnorr randomness, show that quantum Solovay randomness is equivalent to q-MLR,

show the convexity of the randomness classes in the space of states (answering open ques-

tions [30,31]), and obtain results regarding q-MLR states. The equivalence of quantum

Solovay and quantum Martin-Löf randomness turns out to be a corollary of Theorem

2.9, a linear algebraic result of independent interest concerning the approximation of

density matrices by subspaces. This result, to the best of our knowledge, is novel and

may prove useful in areas where approximations to density matrices are used; for exam-

ple, quantum information and error correction, quantum Kolmogorov complexity [8,26]
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and quantum statistical mechanics.

In Section 2.3, we study states which are coherent sequences of diagonal density

matrices. These states can be thought of as probability measures on Cantor space.

Nies and Stephan [32] defined Martin-Löf absolutely continuity and Solovay randomness

for diagonal states. We show that these two notions are the restrictions of q-MLR and

quantum Solovay randomness to the space of diagonal states. We prove a result (Lemma

3.3) about approximating a subspace of small rank by another one with a different

orthonormal spanning set and of appropriately small rank. This result, novel as far

as we know, may be applied to the important problem of approximating an entangled

subspace (a subspace spanned by entangled pure states) by one spanned by product

tensors [13,19]. We discuss how quantum randomness notions restrict to classical states

(i.e., to infinite bitstrings) and note that quantum Schnorr randomness is strictly weaker

that q-MLR, as in the classical case.

Nies and Tomamichel [29] showed that q-MLR states satisfy quantum versions of the

law of large numbers and the Shannon–McMillan–Breiman theorem for i.i.d. Bernoulli

measures. In Sections 2.4 and 2.5 we strengthen their results by showing that in fact,

all quantum Schnorr random states (a set strictly containing the q-MLR states) satisfy

these properties.

Many results in this chapter have significantly different proofs, which may be found

in [11].
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2.2 Notions of quantum algorithmic randomness

2.2.1 Solovay and Schnorr randomness

An infinite bitstring X is said to pass the Martin-Löf test pUnqn if X R
Ş

n Un and is said

to be Martin-Löf random (MLR) if it passes all Martin-Löf tests. A related randomness

notion is Solovay randomness. A computable sequence of Σ0
1 classes, pSnqn is a Solovay

test if
ř

n µpSnq, the sum of the Lebesgue measures is finite. An infinite bitstring X

passes pSnqn if X P Sn for infinitely many n. It is a remarkable fact that X is MLR if

and only if it passes all Solovay tests. Is this also true in the quantum realm? Nies and

Scholz asked [30] if there is a notion of a quantum Solovay test and if so, is quantum

Martin-Löf randomness equivalent to passing all quantum Solovay tests. We answer this

question in the affirmative by defining a quantum Solovay test and quantum Solovay

randomness as follows. Roughly speaking, we obtain a notion of a quantum Solovay test

by replacing ‘Σ0
1 class’ and ‘Lebesgue measure’ in the definition of classical Solovay tests

with ‘quantum-Σ0
1 set’ and τ (Definition 1.7) respectively. We show below that quantum

Solovay Randomness is equivalent to q-MLR.

Definition 2.1. A uniformly computable sequence of quantum-Σ0
1 sets, pSkqkPω is a

quantum-Solovay test if
ř

kPω τpS
kq ă 8.

Definition 2.2. For 0 ă δ ă 1, a state ρ fails the Solovay test pSkqkPω at level δ if there

are infinitely many k such that ρpSkq ą δ.

Definition 2.3. A state ρ passes the Solovay test pSkqkPω if for all δ ą 0, ρ does not fail

pSkqkPω at level δ. I.e, limkρpS
kq “ 0.
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Definition 2.4. A state ρ is quantum Solovay random if it passes all quantum Solovay

tests.

An interval Solovay test [21] is a Solovay test, pSnqn such that each Sn is generated

by a finite collection of strings. The following two definitions are due to Nies (personal

communication). The first is a quantum analogue of an interval Solovay test.

Definition 2.5. A strong Solovay test is a computable sequence of special projections

pSmqm such that
ř

m τpS
mq ă 8. A state ρ fails pSmqm at ε if for infinitely many m,

ρpSmq ą ε.

Definition 2.6. A state ρ is weak Solovay random if it passes all strong quantum Solovay

tests.

By 7.2.22 in the book by Downey and Hirschfeldt [21], a Schnorr test may be defined

as:

Definition 2.7. A Schnorr test is an interval Solovay test, pSmqm such that
ř

m µpS
mq

is a computable real number.

A bitstring passes a Schnorr test if it does not fail it (using the same notion of failing

as in the Solovay test). We mimic this notion in the quantum setting.

Definition 2.8. A quantum Schnorr test is a strong Solovay test, pSmqm such that

ř

m τpS
mq is a computable real number. A state is quantum Schnorr random if it passes

all Schnorr tests.
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2.2.2 A general result about density matrices

We prove a purely linear algebraic theorem about approximating density matrices by

subspaces and then use it to show the equivalence of quantum Solovay and quantum

Martin-Löf randomness in the next subsection.

In words, the theorem says the following. Let F be a set of subspaces of ‘small’ (at

most d) total dimension and let Q be the set of density matrices ‘δ close’ to at least m

many subspaces from F . Then, there is a subspace of small (at most 6d{δm) dimension

‘δ2{72 close’ to every density matrix in Q .

Theorem 2.9. Let m, d, n P N and δ P p0, 1q be arbitrary. Let F “ pTkqk be a set of

subspaces of Cn with
ř

k dimpTkq ď d, and let Mk be the orthonormal projection onto

Tk. Let

Q “ tρ : ρ is a density matrix on Cnwith TrpρMkq ą δ for at least m many ku ,

be non-empty. Then, there is a orthonormal projection matrix M such that

TrpMq ď
6d

δm
and TrpMρq ě

δ2

36
for every ρ P Q.

Proof. Let

L “

#

ψ P Cn : ||ψ|| “ 1,
ÿ

k

Trp|ψ
〉〈
ψ|Mkq ą

mδ

6

+

,

and letD be a maximal orthonormal subset of L and letM be the orthonormal projection

matrix onto the span of D.

Lemma 2.10. TrpMq ď
6d

δm
.

Proof. We prove this using that D is a orthonormal subset of L, that TrpMq “ |D| and
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that d bounds the sum of the dimensions.

d ě
ÿ

k

TrpMkq ě
ÿ

k

ÿ

ψPD

Trp|ψ
〉〈
ψ|Mkq “

ÿ

ψPD

ÿ

k

Trp|ψ
〉〈
ψ|Mkq

ą |D|
mδ

6
“ TrpMq

mδ

6
.

Take any ρ P Q. We can write it as

ρ “
ÿ

iďn

αi|ψ
i
〉〈
ψi|

for αi non-negative real numbers with
ř

iďn αi “ 1 and for each i, |ψi
〉
P Cn and

||ψi|| “ 1. For any i ď n we can decompose ψ “ ψi as

ψ “ coψo ` cpψp (2.1)

where ψo P rangepMq and ψp P rangepMqK are unit vectors and co, cp P C satisfy

|c0|
2 ` |cp|

2 “ 1. We now show that
δ2

36
ď TrpρMq =

ř

iďn αi|c
i
o|
2. Let k be arbitrary

and let Mk “ S. A routine computation gives,

TrpS|ψ
〉〈
ψ|q (2.2)

ď |co|
2
〈
Sψo|Sψo

〉
` |cp|

2
〈
Sψp|Sψp

〉
` 2|co||cp||

〈
Sψp|Sψo

〉
|. (2.3)

By the Cauchy-Schwarz inequality:

|
〈
Sψp|Sψo

〉
| ď ||Sψo||||Sψp||

ď pmaxt||Sψo||, ||Sψp||uq
2

ď ||Sψo||
2
` ||Sψp||

2.
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Putting this in 2.2, we have:

TrpS|ψ
〉〈
ψ|q (2.4)

ď |co|
2
〈
Sψo|Sψo

〉
` |cp|

2
〈
Sψp|Sψp

〉
` 2|co||cp|p||Sψo||

2
` ||Sψp||

2
q (2.5)

ď |co|
〈
Sψo|Sψo

〉
` |cp|

〈
Sψp|Sψp

〉
` 2|co|||Sψo||

2
` 2|cp|||Sψp||

2 (2.6)

“ 3p|co|
〈
Sψo|Sψo

〉
` |cp|

〈
Sψp|Sψp

〉
q. (2.7)

As ρ P Q, pick H such that |H| “ m and TrpρMkq ą δ for each k in H. Using the

above,

mδ ă
ÿ

kPH

TrpρMkq

“
ÿ

iďn

αi
ÿ

kPH

Trp|ψi
〉〈
ψi|Mkq

ď
ÿ

iďn

αi
ÿ

kPH

3p|cio|
〈
Mkψ

i
o|Mkψ

i
o

〉
` |cip|

〈
Mkψ

i
p|Mkψ

i
p

〉
q.

So,

mδ

3
ď

ÿ

iďn

αi
ÿ

kPH

p|cio|
〈
Mkψ

i
o|Mkψ

i
o

〉
` |cip|

〈
Mkψ

i
p|Mkψ

i
p

〉
q (2.8)

“
ÿ

iďn

αi|c
i
o|
ÿ

kPH

〈
Mkψ

i
o|Mkψ

i
o

〉
`
ÿ

iďn

αi|c
i
p|
ÿ

kPH

〈
Mkψ

i
p|Mkψ

i
p

〉
. (2.9)

Recall that our goal was to bound
ř

iďn αi|c
i
o|
2 from below by δ2{36. In what follows,

we achieve this by observing that the maximality of D implies that ψip R L.

Fix an arbitrary i and recall that ψip P rangepMqK. Hence, ψip is perpendicular to

each element of D. If, ψip P L, then tψipu Y D is a orthonormal subset of L strictly

containing D, contradicting the maximality of D. So, for each i it must be that ψip R L.
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But ||ψip|| “ 1. This implies that for each i,

ÿ

k

Trp|ψip
〉〈
ψip|Mkq ď

mδ

6
. (2.10)

As
ř

iďn αi “ 1 and |cip| ď 1, the second term in 2.9 can be bounded from above:

ÿ

iďn

αi|c
i
p|
ÿ

kPH

〈
Mkψ

i
p|Mkψ

i
p

〉
ď
mδ

6
. (2.11)

Also note that

ÿ

kPH

〈
Mkψ

i
o|Mkψ

i
o

〉
ď m. (2.12)

2.9, 2.11 and 2.12 imply that

δ

6
ď

ÿ

iďn

αi|c
i
o|.

By Jensen’s inequality,

δ2

36
ď
`

ÿ

iďn

αi|c
i
o|
˘2
ď

ÿ

iďn

αi|c
i
o|
2. (2.13)

Finally,

TrpρnMq “
ÿ

iďn

αiTrp|ψi
〉〈
ψi|Mq

“
ÿ

iďn

αiTrp|Mψi
〉〈
Mψi|q

“
ÿ

iďn

αiTrp|cioψ
i
o

〉〈
cioψ

i
o|q

“
ÿ

iďn

αi|c
i
o|
2
ě
δ2

36
.
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2.2.3 Quantum Solovay randomness is equivalent to quantum

Martin-Löf randomness

Theorem 2.11. A state is quantum Solovay random if and only if it is quantum Martin-

Löf random.

Proof. It suffices to show that if a state ρ is not quantum Solovay random then it is

not quantum Martin-Löf random. To this end, let ρ “ pρnqnPω be a state which fails a

quantum Solovay test, pSkqkPω at level δ. We show that ρ is not quantum Martin-Löf

random by building a quantum Martin-Löf test, pGmqmPω, with Gm “ pGm
n qnPω, which

ρ fails at level δ2{72. We will use an effective version of Theorem 2.9 . Without loss of

generality, assume that Skn “ H for k ą n and let
ř

k τpS
kq ă 1. We use the notation:

Amt “

#

ψ P C2t

alg : ||ψ|| “ 1,
ÿ

kďt

Trp|ψ
〉〈
ψ|Skt q ą

2mδ

6

+

,

for t,m P ω. This is analogous to L in 2.9 with the replacements, m ÞÑ 2m, n ÞÑ 2t and

d ÞÑ 2n and where we restrict attention to algebraic vectors. We use A instead of L to

emphasize that we only consider complex algebraic objects in A, a ‘computable’ version

of L

Construction of Gm: We build Gm inductively as follows. Given Cm
n´1 Ď C2n´1

alg , a

maximal (under set inclusion) orthonormal subset of Amn´1, let

Dm
n “

 

|ψ
〉
b |i

〉
P C2n

alg : i P t1, 0u, ψ P Cm
n´1

(

.

Note that Dm
n Ď Amn since Cm

n´1 Ď Amn´1. Define Cm
n to be S where S is a maximal

orthonormal set such that S Ď Amn and Dm
n Ď S. Let Gm

n be the projection:

Gm
n “

ÿ

ψPCmn

|ψ
〉〈
ψ|.
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End of construction.

Lemma 2.12. pGmqmPω is a quantum Martin-Löf test.

Proof. Fix m. Clearly, pCm
n qnPω is a uniformly computable sequence. By construction,

rangepGm
n´1bI2q Ď rangepGm

n q. So, Gm “ pGm
n qnPω is a quantum-Σ0

1 set for each m. The

sequence pGmqmPω is uniformly computable in m by construction. Since, 1 ě
ř

k τpS
kq,

we have that 2n ě
ř

k TrpSknq for all n. Now make the replacements m ÞÑ 2m, n ÞÑ 2n

and d ÞÑ 2n in the proof of 2.10 to see that TrpGm
n q ď p6{δq2n´m for all m,n. So

τpGmq ď p6{δq2´m for all m.

Lemma 2.13. ρ fails pGmqm at level
δ2

72
.

Proof. We must show that infmPωρpG
mq ą

δ2

72
. It suffices to show that for all m P ω,

there is an n such that TrpρnG
m
n q ą

δ2

72
. To this end, let m be arbitrary and fix a n big

enough so that there exist 2m many ks such that TrpρnS
k
nq ą δ. So, let |H| “ 2m and

TrpρnS
k
nq ą δ for each k in H. The projection Gm

n will play the role of M in the proof

of Theorem 2.9. Write ρn as

ρn “
ÿ

iď2n

αi|ψ
i
〉〈
ψi|

for αi non-negative real numbers with
ř

iď2n αi “ 1 and for each i, |ψi
〉
P C2n and

||ψi|| “ 1. First, consider the case where |ψi
〉
P C2n

alg for all i. For any i ď 2n we can

decompose ψ “ ψi as,

ψ “ coψo ` cpψp

as in the proof of Theorem 2.9, which we mimic now. By equation 2.9,

2mδ

3
ď

ÿ

iď2n

αi|c
i
o|
ÿ

kPH

〈
Sknψ

i
o|S

k
nψ

i
o

〉
`

ÿ

iď2n

αi|c
i
p|
ÿ

kPH

〈
Sknψ

i
p|S

k
nψ

i
p

〉
(2.14)
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Fix an arbitrary i and recall that ψip P rangepGm
n q
K XC2n

alg. Hence, ψip is perpendicu-

lar to each element of Cm
n . If ψip P A

m
n , then tψipu Y Cm

n is a orthonormal subset of Amn

strictly containing Cm
n , contradicting the maximality of Cm

n . So, for each i it must be

that ψip R A
m
n . But, ψip P C2n

alg and ||ψip|| “ 1. This implies that for each i,

ÿ

kďn

Trp|ψip
〉〈
ψip|S

k
nq ď

2mδ

6
.

We are now in the situation of equation 2.10. As the argument following it does not

need complex algebraic vectors and by recalling that M is replaced by Gm
n , we see that

TrpρnG
m
n q ě δ2{36 ą δ2{72. Now, suppose that not all |ψi

〉
are algebraic. By the density

of C2n

alg in C2n we can approximate ρn by a sequence pπkqkPN of density matrices each

satisfying the conditions of the previous case. So, TrpπkG
m
n q ě δ2{36. By continuity,

TrpρnG
m
n q ě δ2{36 ą δ2{72.

The theorem is proved.

2.2.4 Convexity

We show that all classes of random states are convex. The first result in this section is

a corollary of the main theorem from the previous section.

Corollary 2.14. A convex combination of q-Martin-Löf random states is q-Martin-

Löf random. Formally, if pρiqiăkăω are q-ML random states and
ř

iăkăω αi “ 1, then

ρ “
ř

iăk αiρ
i is q-ML random.

Proof. Suppose for a contradiction that there is a q-Martin-Löf test pGmqmPω and a

δ ą 0 such that @m P ω, ρpGmq ą δ. So, @m P ω, Dn such that TrpρnG
m
n q ą δ where
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ρn “
ř

iăk αiρ
i
n. So, @m P ω, Dn such that

δ ă Tr

ˆ

ÿ

iăk

αiρ
i
nG

m
n

˙

“
ÿ

iăk

αiTrpρinG
m
n q.

By convexity of the sum, there is an i such that TrpGm
n ρ

i
nq ą δ. In summary,

@m, there is an i and an n such that TrpρinG
m
n q ą δ.

Since there are only finitely many is, by the pigeonhole principle, there is an i such

that D8m with Tr pρinG
m
n q ą δ, for some n. So, D8m with ρipGmq ą δ. So, ρi fails the

q-Solovay test pGmqmPω and hence is not q-Martin-Löf random by our previous result.

This is a contradiction.

Theorem 2.15. A convex combination of quantum Schnorr random states is quan-

tum Schnorr random. Formally, if pρiqiăkăω are quantum Schnorr random states and

ř

iăkăω αi “ 1, then ρ “
ř

iăk αiρ
i is quantum Schnorr random.

Proof. Suppose for a contradiction that there is a quantum Schnorr test pGmqmPω and a

δ ą 0 such that D8m P ω, ρpGmq ą δ. Letting Gm be nm by nm, D8m, such that

δ ă TrpρnmG
m
nmq “ Trp

ÿ

iăk

αiρ
i
nmG

m
nmq “

ÿ

iăk

αiTrpρinmG
m
nmq.

By convexity of the sum, there is an i such that TrpGm
nmρ

i
nmq ą δ. In summary,

D
8m, there is an i such that TrpρinmG

m
nmq ą δ.

Since there are only finitely many i s, by the pigeonhole principle, there is an i such that

D8m with Tr pρinmG
m
nmq ą δ. So, D8m with ρipGmq ą δ. So, ρi fails the q-Schnorr test

pGmqmPω and hence is not q-Schnorr. This is a contradiction.

Noting that the above proof needed only the Solovay type of failing criterion, we get:
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Theorem 2.16. A convex combination of weak Solovay random states is q-weak Solovay

random. Formally, if pρiqiăkăω are weak Solovay random states and
ř

iăkăω αi “ 1, then

ρ “
ř

iăk αiρ
i is weak Solovay random.

The proof is almost identical to the previous one.

2.2.5 Nesting property of quantum Martin-Löf tests

It is interesting to see which classical results carry over to the quantum realm. For

example, the existence of a universal MLT, pUnqn such that a bitstring is MLR if and

only if it passes this pUnqn does carry over [31]. The ‘nesting property’ of the classical

Martin-Löf test says that we can, without loss of generality assume the universal test

pUnqn to be nested; i.e., to satisfy Un`1 Ě Un for all n. We extend this property to the

quantum setting:

Theorem 2.17. There is a q-MLT, pQmqmPN with the properties (1) If a state ρ fails

the universal q-Martin-Löf test pGmqmPN at δ ą 0, then, it also fails pQmqmPN at δ ą 0

(2) If Qm “ pQm
n qnPN for all m, then for all m and n, rangepQm`1

n q Ď range pQm
n q. In

particular, Qm`1 ď Qm for all m.

Proof. Informally speaking, we want to let Qm be
ř

iąmG
i. Precisely, we build Qm level

by level. For any natural numbers i ď n, let

Gi
n “

2n´i
ÿ

j“1

|vi,nj
〉〈
vi,nj |.

Let

Smn :“ span
n
ď

i“m

tvi,nj : 1 ď j ď 2n´iu,
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and let Qm
n be the special projection onto Smn . Let Qm “ pQm

n qn. Fix an m. We see that

Qm
n ď Qm

n`1, since Gi
n ď Gi

n`1 holds for all i, n. So, Qm is a q-Σ0
1 class. The dimension

of Smn is at most
řn
i“m TracepGi

nq ď
řn
i“m 2n´i ă 2n´m`1. So, pQmq8m“2 is a q-MLT. Let

m and n be arbitrary and n ě m ` 1. Then, clearly, by definition of Smn , we see that

rangepQm`1
n q Ď range pQm

n q. So, the nesting property holds. Let ρ “ pρnqn be a state.

By the nesting, and by properties of projection operators, we have that for a fixed m

and all n,

TrpρnQ
m`1
n q ď TrpρnQ

m
n q ď ρpQm

q.

So, ρpQm`1q “ supnTrpρnQ
m`1
n q ď ρpQmq for all m. (1) clearly holds.

2.3 Randomness for diagonal states

A state ρ “ pρnqn is defined to be diagonal if ρn is diagonal for all n. So, each ρn

in a diagonal state represents a mixture of separable states. A diagonal ρ “ pρnqn

can be thought of as a measure on Cantor space, denoted by µρ: if σ P 2n, we define

µρpJσKq :“
〈
σ|ρn|σ

〉
. We will write µρpσq instead of µρpJσKq. µρ is easily seen to be a

measure by noting that the partial trace over the last qubit of ρn`1 equals ρn for all n.

Recalling the notation in Remark 1.12 and as S is prefix free, we have,

µρpJSKq “
ÿ

σPS

µρpσq “
ÿ

σPS

〈
σ|ρn|σ

〉
“ TrpρnPSq.

This will be used frequently. Nies and Stephan have recently defined a notion of ran-

domness for measures on Cantor space called Martin-Löf absolute continuity [32].

Definition 2.18. A measure π on Cantor space is called Martin-Löf absolutely contin-

uous if infm πpGmq “ 0 for each classical MLT pGmqmPN.
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This notion turns out to be equivalent to quantum Martin-Löf randomness in the

sense that for a diagonal ρ, ρ is q-MLR if and only if µρ is Martin-Löf absolutely

continuous. It is easy to see that if a diagonal ρ is q-MLR, then µρ is Martin-Löf

absolutely continuous. We now show the other direction.

Theorem 2.19. Let ρ be diagonal. If it fails a q-MLT pGmqmPN at order δ, then there

is a classical MLT, pCmqmPN such that infm µρpC
mq ą δ{2.

Proof. We isolate here a simple but useful property.

Lemma 2.20. Let n be a natural number, E “ peiq
2n

i“1 be any orthonormal basis for C2n

and F be any hermitian, orthonormal projection matrix acting on C2n . For any δ ą 0,

let

SδE,F :“
 

ei P E :
〈
ei|F |ei

〉
ą δ

(

.

Then, |SδE,F | ă δ´1TrpF q.

Proof. Note that since F is a hermitian orthonormal projection,
〈
ei|F |ei

〉
“

〈
Fei|Fei

〉
“

|Fei|
2 ě 0. So,

δ|SδE,F | ă
ÿ

eiPSδE,F

〈
ei|F |ei

〉
ď

ÿ

iď2n

〈
ei|F |ei

〉
“ TrpF q.

We now prove Theorem 2.19. The intuition is as follows: given a special projection,

we take the set of bitstrings (thought of as qubitstrings) ‘close’ to it. If the special

projection ‘captures’ δ much mass of ρ, then the projection onto the span of these

qubitstrings must capture atleast δ{2 much mass of ρ. σ will always denote a finite length

classical bit string and |σ
〉
, the corresponding element of the standard computational
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basis. We may assume that δ is rational. Fix m. We describe the construction of

Cm “ pCm
n qnPN (See 1.6). Let

Tmn :“

"

σ P 2n :
〈
σ|Gm

n |σ
〉
ą
δ

4

*

.

These are those standard basis vectors ‘close’ to Gm
n . Let

Cm
n “

ď

σPTmn

JσK.

Lemma 2.21. Cm is a Σ0
1 class for any m.

Proof. It is easy to see that for all σ P Tmn and i P t0, 1u,

〈
σi|Gm

n`1|σi
〉
ě

〈
σ|Gm

n |σ
〉
ą
δ

4
.

So, tσi : σ P Tmn , i P t0, 1uu Ď Tmn`1. Also note that Tmn is uniformly computable in n

since Gm
n is.

Lemma 2.22. pCmqmPN is a MLT.

Proof. Fix m. Letting E “ Bn and F “ Gm
n in Lemma 3.3 and by definition of q-MLT,

|Tmn | ă
4

δ
2nτpGm

q ď
4

δ
2n´m.

So, µpCmq ă 2´m
4

δ
. Cm is computable in m since Gm is.

Now we show that infm µρpC
mq ą δ{2. Fix a m and a n (depending on m) such that

TrpρnG
m
n q ą δ. Let ρn “

ř

σP2n ασ|σ
〉〈
σ|. Then,

δ ă TrpρnG
m
n q “

ÿ

σP2n

ασ
〈
σ|Gm

n |σ
〉
“

ÿ

σPTmn

ασ
〈
σ|Gm

n |σ
〉
`

ÿ

σP2nzTmn

ασ
〈
σ|Gm

n |σ
〉

ď
ÿ

σPTmn

ασ `
ÿ

σP2nzTmn

ασ
δ

4
ď

ÿ

σPTmn

ασ `
δ

4
“ TrpρnPCmn q `

δ

4
“ µρpC

m
n q `

δ

4
.

The last equality follows as Tmn is prefix free. So, µρpC
mq ě µρpC

m
n q ě 3δ{4.
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Nies and Scholz showed that a measure, µ is Martin-Löf absolutely continuous if and

only if for any Solovay test pSkqk, limk µpSkq “ 0 [32]. Adapting the proof of Theorem

2.11 yields another proof of this.

Theorem 2.23. Let ρ be diagonal. If for some Solovay test pSkqk and δ ą 0 we have

D8k, µρpSkq ą δ, then there is a Martin-Löf test pJmqm such that infm µρpJ
mq ą δ{2.

The theorem will follow from the two lemmas below. Write Sk “ pSknqn as in Defini-

tion 1.6. Without loss of generality, let Skn “ H for k ą n. Let

Cm
t “

#

σ P 2t :
ÿ

kďt

|
〈
σ|Skt |σ

〉
| ą 2m´1δ

+

,

and let Gm
t :“ PCmt (See Remark 1.12). Let Gm “ pGm

n qn. It is easy to see that Gm is a

q-Σ0
1 set for each m. Let Jmn :“ JCm

n K and Jm “ pJmn qn. One can check that that pJmqm

is a MLT if and only if pGmqm is quantum Martin-Löf test. So, pJmqm is a MLT since:

Lemma 2.24. pGmqm is quantum Martin-Löf test.

Proof. Identical to the proof of 2.10.

Lemma 2.25. We have that infm µρpJ
mq ą δ{2.

Proof. Let m be arbitrary. By assumption, there are infinitely many ks such that

µρpS
kq ą δ. For each of these, there is an n such that µρpS

k
nq ą δ. So, fix a n so

that there are 2m many ks such that µρpS
k
nq ą δ. Since ρn is diagonal, let

ρn “
ÿ

σP2n

ασ|σ
〉〈
σ|.

By the choice of n, pick M Ď t1, 2 ¨ ¨ ¨ , nu such that |M | “ 2m and µρpS
k
nq ą δ

for each k in M . Note that µρpS
k
nq “ TrpρnPSknq, since Skn is prefix free. We write

TrpρnPSknq “ TrpρnS
k
nq to avoid clutter. So,
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2mδ ă
ÿ

kPM

µρpS
k
nq “

ÿ

kPM

TrpρnS
k
nq “

ÿ

σP2n

ασ
ÿ

kPM

Trp|σ
〉〈
σ|Sknq

“
ÿ

σPCmn

ασ
ÿ

kPM

〈
σ|Sknσ

〉
`

ÿ

σRCmn

ασ
ÿ

kPM

〈
σ|Sknσ

〉
ď

ÿ

σPCmn

ασ
ÿ

kPM

〈
σ|Sknσ

〉
` 2m´1δ

ď 2m
ÿ

σPCmn

ασ ` 2m´1δ.

The second last inequality follows from the definition of Gm
n and convexity; the last from

the choice of M . Finally, we get that,

δ{2 ă
ÿ

σPCmn

ασ “ µρpJCm
n Kq ď µρpJ

m
q.

Next, we discuss a subset of the diagonal states; the Dirac delta measures on Cantor

space.

2.3.1 Quantum randomness on Cantor Space

A classical bitstring can be thought of as a diagonal state: If X is a real in Cantor space,

the state ρX “ pρnqn given by ρn “ |X æ n
〉〈
X æ n| is the quantum analog of X. Do

the quantum randomness notions agree with classical notions when restricted to Cantor

space? By Theorem 2.19, we see that ρX is q-MLR if and only if X is MLR. Further,

ρX is q-MLR if and only if ρX is weak Solovay random. Also, X is MLR if and only if it

passes all interval Solovay tests (the classical analog of strong Solovay tests). So, we see

that q-MLR and weak Solovay randomness agree with the classical versions on Cantor

space. What about quantum Schnorr randomness?
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Lemma 2.26. ρX is quantum Schnorr random if and only if X is Schnorr random.

Proof. Let pQrqr be a quantum Schnorr test which ρX fails at some rational δ. Let Qr

be nr by nr. Using notation of Lemma 3.3, let T r :“ SδE,Qr where E is the set of length

nr standard basis vectors. We think of T r as a set of classical bitstrings. By Lemma 3.3,

τpT rq ď δ´1τpQrq. So,
ř

r 2´nr |T r| “
ř

r τpT
rq ď δ´1

ř

r τpQ
rq is computable because

ř

r τpQ
rq is. So, pT rqr is a finite total Solovay test. Let m be one of the infinitely many

r such that δ ăTrpρXpQ
rqq. Then, by definition, X æ nr is in T r. So, X fails pTrqr

and hence is not Schnorr random (by 7.2.21 and 7.2.22 in the book by Downey and

Hirschfeldt [21]). The other direction is trivial.

2.3.2 Relating the randomness notions

We have seen that

Solovay R “ q-MLR Ď weak Solovay R Ă quantum Schnorr R.

The equality follows by Theorem 2.11. The second inclusion is strict as there is a

bitstring which is Schnorr random but which fails some interval Solovay test [21] and

since by Theorem 2.26, this bitstring must be quantum Schnorr random. It is open

whether the first inclusion is strict.

2.4 A law of large numbers for quantum Schnorr

randoms

The law of large numbers (LLN), specialized to Cantor space says that the limiting

proportion of ones is equal to 0.5 for almost every bitstring. Random bitstrings satisfy
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the LLN. In fact, satisfying the LLN is the weakest form of randomness [21]. This is

quite intuitive; one would not call a bitstring ‘random’ if it has more ones than zeroes

in the limit. Analogously, we expect even our weakest notion of quantum randomness

(quantum Schnorr randomness) to satisfy a quantum analogue of the LLN. This suggests

that the quantum randomness notions are ‘natural’ and mirror the classical situation.

In this section, σ will always denote a classical bitstring thought of as a qubit string.

Definition 2.27. [29] ρ satisfies the LLN if limnn
´1

ř

iănTrpρnP
n
i q “ 0.5, where for all

i ě 0, n ą 0,

P n
i :“

ÿ

σ:|σ|“n,σpiq“1

|σ
〉〈
σ|.

The intuition is that P n
i is the projection observable which measures whether a given

density matrix on n qubits ‘has a one in the ith spot’. TrpρnP
n
i q is the probability that

ρn ‘has a one in the ith spot’. If the average over i of these probabilities tends to 0.5 as

n goes to infinity, then the state satisfies the LLN.

Theorem 2.28. Quantum Schnorr random states satisfy the LLN.

Proof. We prove it by contradiction. Suppose ρ is quantum Schnorr random but does not

satisfy the LLN. So, there is a δ such that either D8n, with n´1
ř

iănTrpρnP
n
i q ą δ` 0.5

or D8n, with n´1
ř

iănTrpρnP
n
i q ă ´δ`0.5. Suppose first that the former holds. A rough

outline of this proof is as follows. For each n we take Sn to be the subspace spanned by

the classical strings with the fraction of 1s more than 0.5`δ{2. pSnqn is easily seen to be

a quantum Schnorr test and it only remains to show that ρ fails it. This is not obvious

as ρ is not necessarily classical, while pSnqn is composed of classical vectors. To show

this, we consider one of the infinitely many ns such that n´1
ř

iănTrpρnP
n
i q ą δ ` 0.5.

For such an n, we break up n´1
ř

iănTrpρnP
n
i q into two parts: the first corresponding to
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the projection of ρn onto SKn and the other corresponding to the projection onto Sn (see

for example in equation 2.29). The definition of Sn enables us to upper bound the first

part (see 2.30). The second part is forced to be big since n´1
ř

iănTrpρnP
n
i q ą δ ` 0.5.

So, ρ fails pSnqn. The details are: Define for all n,

Cn “

#

σ : |σ| “ n, n´1
ÿ

iăn

|
〈
σ|P n

i |σ
〉
| ą δ{2` 0.5

+

.

In other words,

Cn “
 

σ : |σ| “ n, n´1|ti ă n : σpiq “ 1| ą δ{2` 0.5
(

.

Let Sn be the special projection,

Sn :“
ÿ

σPCn

|σ
〉〈
σ|.

pSnqn is a computable sequence since we may let δ be rational. By the Chernoff bound,

τpSnq “ 2´n|Cn| ď 2expp´0.5nδ2q for all n. So,
ř

n τpSnq is computable showing that

pSnqn is a quantum Schnorr test.

For all n, let

ρn “
ÿ

kă2n

αk|ψ
k
n

〉〈
ψkn|

for αk non-negative real numbers with
ř

kă2n αk “ 1 and for each k, |ψkn
〉
P C2n and

||ψkn|| “ 1. Fix an n is such that n´1
ř

iănTrpρnP
n
i q ą 0.5 ` δ. We will drop the n

subscript of ψkn as the n is fixed. For any k ă 2n we can decompose ψk as,

ψk “ ckoψ
k
o ` c

k
pψ

k
p (2.15)

where ψko P rangepSnq and ψkp P rangepSnq
K are unit vectors and cko , c

k
p P C satisfy

|ck0|
2 ` |ckp|

2 “ 1. We now show that
δ2

36
is a lower bound for TrpρnSnq =

ř

kă2n αk|c
k
o |

2.
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Note that

n´1
ÿ

iăn

TrpρnP
n
i q (2.16)

“ n´1
ÿ

iăn

ÿ

kă2n

αk
〈
ψk|P n

i |ψ
k
〉

(2.17)

“
ÿ

kă2n

αk
`

n´1
ÿ

iăn

〈
ψk|P n

i |ψ
k
〉˘
. (2.18)

For each fixed k and i, by the same argument as in equation (2.2) and using that

|ckp|, |P
n
i ψ

k
p | ď 1 we have that

〈
ψk|P n

i |ψ
k
〉
ď |cko |

2
|P n
i ψ

k
o |

2
` |ckp|

2
|P n
i ψ

k
p |

2
` 2|cko ||P

n
i ψ

k
o |. (2.19)

Using this, we bound the term in parentheses in equation (2.18) for each k. As k is

fixed, replace ψk and ck in equation (2.19) by ψ and c respectively for convenience.

n´1
ÿ

iăn

〈
ψ|P n

i |ψ
〉

(2.20)

ď |co|
2n´1

ÿ

iăn

|P n
i ψo|

2
` |cp|

2n´1
ÿ

iăn

|P n
i ψp|

2
` 2|co|n

´1
ÿ

iăn

|P n
i ψo| (2.21)

ď |co| ` n
´1

ÿ

iăn

|P n
i ψp|

2
` 2|co| (2.22)

“ n´1
ÿ

iăn

|P n
i ψp|

2
` 3|co|. (2.23)

We used convexity and |cp|
2 ď 1, |co| ď 1, |P n

i ψo| ď 1 when obtaining the last inequality.

Let ψ :“ ψp and for a fixed i ă n, let P :“ P n
i and consider the summand, |Pψ|2 in

the sum in equation (2.23) (we suppressed the indices merely for convenience). Since

ψ P rangepSnq
K “ spanpCc

nq, let aσ be complex numbers such that

ÿ

σRCn

a2σ “ 1,
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and

ψ “
ÿ

σRCn

aσσ.

Using that P ˚ “ P and P “ P 2,

|Pψ|2 “
〈
Pψ|Pψ

〉
“

〈
ψ|Pψ

〉
(2.24)

“
〈 ÿ

σRCn

aσσ|
ÿ

τRCn

aτPτ
〉

(2.25)

“
ÿ

σRCn

ÿ

τRCn

a˚σaτ
〈
σ|Pτ

〉
. (2.26)

Note that Pτ “ τ or Pτ “ 0 and that
〈
σ|τ

〉
“ δσ“τ . So,

〈
σ|Pτ

〉
is zero whenever σ ‰ τ

(Here we used that the orthonormal vectors spanning Cc
n are eigenvectors of P ). So,

(2.26) becomes,

|Pψ|2 ď
ÿ

σRCn

a2σ
〈
σ|Pσ

〉
.

Using this and reinserting the indices, the first term in (2.23) is bounded above by

n´1
ÿ

iăn

ÿ

σRCn

pakσq
2
〈
σ|P n

i σ
〉
.

Finally, putting this back in (2.18),

ÿ

kă2n

αk
`

n´1
ÿ

iăn

〈
ψk|P n

i |ψ
k
〉˘

(2.27)

ď
ÿ

kă2n

αk
`

n´1
ÿ

iăn

ÿ

σRCn

pakσq
2
〈
σ|P n

i σ
〉
` 3|cko |q (2.28)

ď
ÿ

kă2n

αk
`

ÿ

σRCn

pakσq
2n´1

ÿ

iăn

〈
σ|P n

i σ
〉
q `

ÿ

kă2n

αk3|c
k
o | (2.29)

ď
`

ÿ

kă2n

αk
ÿ

σRCn

pakσq
2
pδ{2` 0.5q

˘

` 3
ÿ

kă2n

αk|c
k
o | (2.30)

ď pδ{2` 0.5q
`

ÿ

kă2n

αk
ÿ

σRCn

pakσq
2
˘

` 3
ÿ

kă2n

αk|c
k
o | (2.31)

ď pδ{2` 0.5q ` 3
ÿ

kă2n

αk|c
k
o |. (2.32)
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In getting (2.30) we used the definition of Cn. In the last step we used that

ř

σRCn
pakσq

2 “ 1 for all k and convexity. In summary, we have shown that for infinitely

many n,

0.5` δ ă n´1
ÿ

iăn

TrpρnP
n
i q “

ÿ

kă2n

αk
`

n´1
ÿ

iăn

〈
ψk|P n

i |ψ
k
〉˘
ď pδ{2` 0.5q ` 3

ÿ

kă2n

αk|c
k
o |.

So, by Jensen’s inequality

δ2{36 ă
`

ÿ

kă2n

αk|c
k
o |
˘2
ď

ÿ

kă2n

αk|c
k
o |

2
“ TrpρnSnq,

for infinitely many n. So, ρ fails a quantum Schnorr test at δ2{36, a contradiciton. Now

if D8n, with n´1
ř

iănTrpρnP
n
i q ă ´δ ` 0.5 then define

Qn
i “ pP

n
i q
K :“

ÿ

σ:|σ|“n,σpiq“0

|σ
〉〈
σ|.

Note that TrpρnQ
n
i q`TrpρnP

n
i q “ 1 for all i, n. So, for infinitely many n, 1 “

n´1p
ř

iănTrpρnP
n
i q `

ř

iănTrpρnQ
n
i qq ă ´δ ` 0.5`TrpρnQ

n
i qq. I.e, n´1

ř

iănTrpρnQ
n
i q ą

δ`0.5 for infinitely many n. Now, we can repeat the proof as in case 1 with Q replacing

P and 0s replacing the 1s.

2.5 A Shannon–McMillan–Breiman Theorem for quan-

tum Schnorr randoms

The Shannon–McMillan–Breiman (SMB) theorem for bitstrings roughly says that for an

ergodic measure, µ, on Cantor space the empirical entropy for µ almost every trajectory

(infinite bitstring) equals the entropy of µ. There have also been effective versions of the

SMB. For example, it has been shown that the exception set for the SMB theorem in the
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classical setting can be covered by a Martin-Löf test [24]. In the quantum setting, where

we do not have a notion of ‘almost every’, we may replace ‘µ almost every trajectory’ by

‘every µ Schnorr random state’ as we do here. A special case of the SMB theorem for

infinite sequences of qubits was first studied by Nies and Tomamichel [29]. To formalize

a µ Schnorr random state in the quantum setting, we need a definition

Definition 2.29. A computable sequence of special projections is a µ quantum Schnorr

test if
ř

kPω µpS
kq is computable.

A state ρ is µ quantum Schnorr random if it passes all µ quantum Schnorr tests.

A similar definition for quantum MLR states was made by Nies and Tomamichel [29].

Intuitively, a µ quantum Schnorr random state is a ‘trajectory’ in the state space [31]

which is random in the sense of µ.

Theorem 2.30. Let µ “ pµnqn be a state of the form µn “ b
n
1M for an M of the form

»

—

–

p 0

0 1´ p

fi

ffi

fl

,

for some computable p P p0, 1q. If ρ is µ quantum Schnorr random, then

limnn
´1Trp´ρnlogpµnqq= hpµq, the von-Neumann entropy of M .

Intuitively, the theorem says that along any µ Schnorr random state, ρ, the empirical

entropy, n´1Trp´ρnlogpµnqq limits to the entropy of µ, which equals that of M as µ is a

product tensor.

Proof. Let M be as given and first, assume that p ď 0.5. We prove it by contradiction.

Define Ln “ ´ logµn for all n and h :“ hpµq. Suppose ρ is quantum Schnorr random but

there is a δ such that either D8n, with n´1TrpρnLnq ą δ`h or D8n, with n´1TrpρnLnq ă
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´δ`h. Suppose first that the former holds. The proof is similar to that of the law of large

numbers, but different techniques are needed as Ln is not a projection. σ will always be

used to denote classical bitstrings. For σ of length n,
〈
σ|µn|σ

〉
“ µpσ, σq “ pkp1´ pqn´k

where k “ numbers of zeros in σ. So, µ can be thought of a i.i.d. measure on Cantor

space assigning µp0q “ p, µp1q “ 1´ p.

Define for all n,

Cn “
 

σ : |σ| “ n,´n´1logµpσq ą δ{2` h
(

.

Let Sn be the special projection,

Sn :“
ÿ

σPCn

|σ
〉〈
σ|.

pSnqn is a computable sequence since we may let δ be rational. By the Chernoff bound,

µpSnq “ 2´n|Cn| ď 2expp´0.5nδ2q for all n. So,
ř

n µpSnq is computable showing that

pSnqn is a µ´quantum Schnorr test.

For all n, let

ρn “
ÿ

kă2n

αk|ψ
k
n

〉〈
ψkn|

for αk non-negative real numbers with
ř

kă2n αk “ 1 and for each k, |ψkn
〉
P C2n and

||ψkn|| “ 1. Fix an n is such that n´1TrpρnLnq ą δ ` h. We will drop the n subscript of

ψkn as the n is fixed. For any k ă 2n we can decompose ψk as,

ψk “ ckoψ
k
o ` c

k
pψ

k
p (2.33)

where ψko P rangepSnq and ψkp P rangepSnq
K are unit vectors and cko , c

k
p P C satisfy
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|ck0|
2` |ckp|

2 “ 1. We find a lower bound, for TrpρnSnq =
ř

kă2n αk|c
k
o |

2 independent of n.

n´1TrpρnLnq (2.34)

“ n´1
ÿ

kă2n

αk
〈
ψk|Ln|ψ

k
〉

(2.35)

“
ÿ

kă2n

αk
`

n´1
〈
ψk|Ln|ψ

k
〉˘
. (2.36)

Fix a k and suppress it in the indices (i.e for example, let ψ “ ψk). By Cauchy-Schwarz

and by the self-adjointness and positivity of Ln,

〈
ψk|Ln|ψ

k
〉
ď |co|

2
〈
ψo|Lnψo

〉
` |cp|

2
〈
ψp|Lnψp

〉
` 2|co||cp||

〈a
Lnψp|

a

Lnψo
〉
|

ď |co|
2
〈
ψo|Lnψo

〉
` |cp|

2
〈
ψp|Lnψp

〉
` 2|co||

a

Lnψp||
a

Lnψo|

ď |co|
2
〈
ψo|Lnψo

〉
` |cp|

2
〈
ψp|Lnψp

〉
` 2|co|p||

a

Ln||2q
2,

where || ¨ ||2 denotes the L2 operator norm. Mn, the maximum element of the set

t´jlogp´ pn´ jqlogp1´ pq : 0 ď j ď nu

is the largest eigenvalue of Ln and so,
?
Mn is the largest eigenvalue of

?
Ln. Noting

that the L2 norm of a real diagonal matrix is equal to its largest eigenvalue and that the

Rayleigh quotient of a Hermitian matrix is bounded above by the largest eigenvalue, we

see that

〈
ψk|Ln|ψ

k
〉
ď |co|

2
〈
ψo|Lnψo

〉
` |cp|

2
〈
ψp|Lnψp

〉
` 2|co|

a

Mn

2

ď |co|
2Mn ` |cp|

2
〈
ψp|Lnψp

〉
` 2|co|Mn

ď 3|co|Mn ` |cp|
2
〈
ψp|Lnψp

〉
.
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By this and noting that n´1Mn ď θ “ the maximum of ´log(p) and ´log(1´ p), we get

an upper bound for the term in parentheses in equation (2.36) for each k:

n´1
〈
ψk|Ln|ψ

k
〉
ď 3|cko |θ ` n

´1
〈
ψkp |Lnψ

k
p

〉
. (2.37)

Since ψkp P rangepSnq
K “ spanpCc

nq, there are aσs such that

ÿ

σRCn

a2σ “ 1,

and

ψkp “
ÿ

σRCn

akσσ.

Letting ψ “ ψkp and dropping the k indices for convenience.

n´1
〈
ψ|Lnψ

〉
(2.38)

“ n´1
〈 ÿ

σRCn

aσσ|
ÿ

τRCn

aτLnτ
〉

(2.39)

“ n´1
ÿ

σRCn

ÿ

τRCn

a˚σaτ
〈
σ|Lnτ

〉
. (2.40)

As Ln is diagonal and Cn is composed of classical bitstrings, equation (2.40) becomes,

ď
ÿ

σRCn

|aσ|
2n´1

〈
σ|Lnσ

〉
“ ´

ÿ

σRCn

|aσ|
2n´1logµpσq

ď
ÿ

σRCn

|aσ|
2
pδ{2` hq ď δ{2` h.

We used here that the σth entry along the diagonal of Ln is ´logµpσq “ ´klogp´ pn´

kqlogp1 ´ pq where k “ number of zeros in σ and the definition of Cn. This and (2.37)

gives that,

n´1
〈
ψk|Ln|ψ

k
〉
ď 3|cko |θ ` δ{2` h. (2.41)
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Finally, putting this back in (2.36),

ÿ

kă2n

αk
`

n´1
〈
ψk|Ln|ψ

k
〉˘
ď

ÿ

kă2n

αk
`

3|cko |θ ` δ{2` hq ď pδ{2` hq ` 3θ
ÿ

kă2n

αk|c
k
o |.

In summary, we have shown that for infinitely many n,

h` δ ă n´1
ÿ

iăn

TrpρnP
n
i q ď pδ{2` hq ` 3θ

ÿ

kă2n

αk|c
k
o |.

So, by Jensen’s inequality

δ2{36θ2 ă
`

ÿ

kă2n

αk|c
k
o |
˘2
ď

ÿ

kă2n

αk|c
k
o |

2
“ TrpρnSnq,

for infinitely many n. So, ρ fails a µ´quantum Schnorr test; a contradiciton. We need

to now consider the other case: D8n, with n´1TrpρnLnq ă ´δ ` h. Define M 1 to be the

reflection of M . I.e., M 1 is
»

—

–

1´ p 0

0 p

fi

ffi

fl

,

and µ
1

is the i.i.d. measure on Cantor space given by M 1. Let L
1

n :“ ´log bn1M
1. Note

that for σ of length n,
〈
σ| bn1 M

1|σ
〉
“ pn´kp1 ´ pqk where k “ numbers of zeros in σ.

Letting Qn :“ Ln ` L
1

n, for any length n string σ having k many zeros,

〈
σ|Qn|σ

〉
“ ´pn´kqlogp1´pq´klogppq´pn´kqlogppq´klogp1´pq “ ´nplogppq`logp1´pqq.

So, Qn “ ´nplogppq ` logp1´ pqqI2n .

n´1TrpρnLnq ` n
´1TrpρnL

1

nq “ n´1TrpρnQnq “ ´logppq ´ logp1´ pq. (2.42)
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We see that,

2h ď ´logppq ´ logp1´ pq

ðñ 2plogppq ` 2p1´ pqlogp1´ pq ě logppq ` logp1´ pq

ðñ logp1´ pq ě logppq ðñ p ď 0.5.

(We used here that p ď 0.5 and hence that p1 ´ 2pq ě 0.) So, for one of the infinitely

many n such that, n´1TrpρnLnq ă ´δ ` h, equation (2.42) gives that

p´δ ` hq ` n´1TrpρnL
1

nq

ą n´1TrpρnLnq ` n
´1TrpρnL

1

nq “ ´logp1´ pq ´ logppq ě 2h.

So, there are infinitely many ns with

n´1TrpρnL
1

nq ą δ ` h.

Since M 1 has the same entropy as M , we can repeat the proof of the former case using

L
1

n, µ
1

instead of Ln, µ respectively. This completes the proof for p ď 0.5. If p ą 0.5,

then repeat the proof for p ď 0.5 with 1 ´ p ď 0.5 replacing p [The first case has the

same proof as it does not depend on the value of p. When proving the second case, M 1

is diagpp, 1´ pq and the proof goes through since 1´ p ď 0.5.]
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Chapter 3

Prefix-free quantum Kolmogorov

Complexity

3.1 Introduction

The results in this chapter have been published already in the literature [10]. With the

intent of developing a quantum version of K, we introduce QK, a notion of descriptive

complexity for density matrices using classical prefix-free Turing machines. Many con-

nections between K and Solovay and Schnorr randomness in the classical theory turn out

to have analogous connections connections between QK and weak Solovay and quantum

Schnorr randomness.

To the best of our knowledge, the current work is the only one to study the incom-

pressibility of initial segments (in the sense of prefix-free classical Turing machines) of

weak Solovay and quantum Schnorr random states. Nies and Scholz have explored con-

nections between quantum Martin-Löf randomness and a version of QC using unitary

(quantum) machines [31]. We give an overview of the main points in this chapter.

In Section 3.2 we introduce quantum-K (QK) for density matrices and some of its

properties. Theorem 3.2 (generalized in Lemma 3.6) shows that QK agrees with K on

the classical qubitstrings. Theorem 3.7 is a tight upper bound for QK similar to that for
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K. Theorem 3.10 is a counting condition similar to that for QC [8], C and K [21, 28].

Section 3.3, the main focus of this chapter, connects QK with two quantum algorith-

mic randomness notions: weak Solovay randomness and quantum Schnorr randomness.

Two important characterizations show that the initial segments of Martin-Löf randoms

(equivalently, of Solovay randoms) are asymptotically incompressible in the sense of K:

the Chaitin characterization (See [16] and theorem 3.2.21 in [28]),

X is Martin-Löf random ðñ limnKpX æ nq ´ n “ 8,

and the Levin–Schnorr characterization (See theorem 3.2.9 in [28]),

X is Martin-Löf random ðñ Dc@nrKpX æ nq ą n´ cs.

(Characterizations having the former form will be called ‘Chaitin type’ and those having

the latter form will be called ‘Levin–Schnorr type’). We investigate the extent to which

these classical characterizations carry over to weak Solovay randoms and QK.

Theorem 3.11 is a Chaitin type of characterization of weak Solovay randomness (ρ is

weak Solovay random ðñ limnQK
εpρnq´n “ 8). This shows that the Levin–Schnorr

condition (@nrQKεpρnq ą
` ns) is implied by weak Solovay randomness.

Theorem 3.13 shows both Chaitin and Levin–Schnorr type characterizations of weak

Solovay randomness when restricting attention to a specific class of states. It is worth

noting that Theorem 3.13 uses the proof of our main result (Theorem 2.11) in [11].

For general states, subsection 3.3.3 shows that the Levin–Schnorr condition implies

something slightly weaker than weak Solovay randomness.

While K plays well with Solovay randomness, KC , a version of K using a com-

putable measure machine, C (a prefix-free Turing machine whose domain has computable
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Lebesgue measure) gives a Levin–Schnorr characterization of Schnorr randomness (See

theorem 7.1.15 in [21]). Motivated by this, we introduce QKC a version of QK using

computable measure machines in subsection 3.3.4.

It turns out that QKC yields not just a Levin–Schnorr type (Theorem 3.22), but also

a Chaitin type (Theorem 3.23) characterization of quantum Schnorr randomness.

Theorem 3.23 together with Theorem 3.20 and lemma 3.9 in [11], implies that Schnorr

randoms have a Chaitin type characterization in terms of KC (Theorem 3.24). So, results

in the quantum realm imply a new result in the classical setting.

In summary, we introduce QK and show that the initial segments of weak Solovay

random and quantum Schnorr random states are incompressible in the sense of QK.

3.2 The Definition and Properties of QK

We assume familiarity with the notions of density matrix (See for example, [27]), prefix-

free Kolmogorov complexity (K) and U, the universal prefix-free (or self-delimiting)

Turing machine (See [14,21,28]).

The output of U can be interpreted as unordered tuples of complex algebraic vectors

(equivalently, finite subsets of natural numbers).

The notation Upσq Ó“ F means that Upσq outputs the index of F with respect to

some fixed canonical indexing of finite subsets of the naturals. We will never use an

ordering on the elements of F in any of our arguments: F will be used to define an

orthogonal projection :
ř

vPF |v
〉〈
v| which clearly does not depend on an ordering on F .

As explained in [31], the quantum analogue of a bitstring of length n is a density

matrix on C2n .
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For a density matrix, τ , let |τ | denote the s such that τ is a transformation on C2s .

For any n, C2n

alg is the space of elements of C2n with complex algebraic entries.

Logarithms will always be base 2. The notation ď`,ě`,“` will be used for ‘upto

additive constant’ relations.

For ε ą 0, QKεpτq is defined to be

Definition 3.1. QKεpτq :“ inft|σ| ` log |F | : Upσq Ó“ F , a orthonormal set in C2|τ |

alg

and
ř

vPF

〈
v|τ |v

〉
ą εu

The term
ř

vPF

〈
v|τ |v

〉
is the squared length of the ‘projection of τ onto span(F )’

which also equals the probability of getting an outcome of ‘1’ when measuring τ with the

observable given by the Hermitian projection onto spanpF q [27]. Although it is useful to

intuitively think of
ř

vPF

〈
v|τ |v

〉
as the ‘projection of τ onto span(F )’, we use quotes as

τ is a convex combination of possibly multiple unit vectors, while the notion ‘projection

onto a subspace’ refers usually to a single vector.

Note that for a given τ , QKεpτq is determined by the classical prefix-free complexities

and dimensions of those subspaces, spanpF q, such that the projection of τ onto spanpF q

has squared length atleast ε. I.e., QKεpτq depends only on the K-complexities and ranks

of those projective measurements of τ such that the probability of getting an outcome

of ‘1’ is atleast ε. Roughly speaking, QKεpτq depends on the dimensions and prefix-free

complexities of subspaces which are ε ‘close’ to τ .

This is in contrast to QCεpτq which depends on the quantum complexities of density

matrices, not classical prefix-free complexities of subspaces, which are ε close to τ (Recall

that QC is based on quantum Turing machines) [8]. Also, while the rank of the approx-

imating projection is taken into consideration in QK, the rank of the approximating
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density matrix is not taken into account in QC.

So, QCεpτq quantifies the quantum complexity of approximating τ by density ma-

trices upto ε while QKεpτq measures the sum of the prefix-free complexity and the

logarithm of the dimension of subspaces ε close to τ .

A test demonstrating the quantum non-randomness of a state, ρ uses computable

sequences of projections of ‘small rank’ which are ε-close to initial segments (density

matrices) of ρ. It hence seems plausible that a complexity measure for a density matrix,

τ must reflect the complexities and ranks of projections ε-close to τ in order to play well

with quantum randomness notions for states.

We mention that our QK is entirely different from the QKM and QKδ
M notions

defined in Definition 3.1.1 in [26] using quantum Turing machines.

QKε would not be a ‘natural’ complexity notion for density matrices if the following

theorem did not hold:

Theorem 3.2. Fix a rational ε. Kpσq “ QKεp|σ
〉〈
σ|q holds for all classical bitstrings

σ, upto an additive constant depending only on ε.

We isolate here a simple but useful property which will be used for proving Theorem

3.2.

Lemma 3.3. Let n be a natural number, E “ peiq
2n

i“1 be any orthonormal basis for C2n

and F be any Hermitian projection matrix acting on C2n . For any δ ą 0, let

SδE,F :“ tei P E :
〈
ei|F |ei

〉
ą δu.

Then, |SδE,F | ă δ´1TrpF q.
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Proof. Note that since F is a Hermitian projection,
〈
ei|F |ei

〉
“

〈
Fei|Fei

〉
“ |Fei|

2 ě 0.

So,

δ|SδE,F | ă
ÿ

eiPSδE,F

〈
ei|F |ei

〉
ď

ÿ

iď2n

〈
ei|F |ei

〉
“ TrpF q.

Proof. We now prove Theorem 3.2, the idea of which is as follows: Given a classical

bitstring and a subspace ‘close’ to it, we find a subspace spanned only by classical

bitstrings ‘close’ to this subspace. Then we compress each of the spanning classical

strings and show that the string we began with must be one of these. Fix a rational ε.

Consider the machine P doing the following:

1. On input π, P searches for π “ στ such that Upσq Ó“ F , an orthonormal set,

F Ď C2n

alg for some n and |τ | “ rlogpε´1|F |qs.

2. Letting O :“
ř

vPF |v
〉〈
v| and E, the standard basis of C2n , find the set SεE,O from

Lemma 3.3.

3. Take a canonical surjective map g from the set of bitstrings of length rlogpε´1|F |qs

onto SεE,O. (g exists since |SεE,O| ă ε´1|F | by 3.3). Output gpτq.

We first show that P is prefix-free. Suppose π and π1 are in the domain of P and π ĺ π1.

Then, π “ στ and π1 “ σ1τ 1 and σ and σ1 are in the domain of U. π ĺ π1 implies that

σ ĺ σ1 or σ1 ĺ σ. But as U is prefix-free, σ “ σ1 must hold. Since the computations

Upπq, and Upπ1q and not stuck forever at (1), it must be that |τ | “ rlogpε´1|F |qs and

|τ 1| “ rlogpε´1|F 1|qs where Upσq Ó“ F “ F 1 “ Upσ1q Ó. So, τ and τ 1 have the same

length implying that π “ π1.

Now, let σ P 2n be any classical bitstring. Let λ and F Ď C2n

alg a orthonormal set



52

such that |λ| ` logp|F |q “ QKεp|σ
〉〈
σ|q,

ř

vPF

〈
v|σ

〉〈
σ|v

〉
ą ε and Upλq “ F . Let

O :“
ř

vPF |v
〉〈
v|. Note that since ε ă

ř

vPF

〈
v|σ

〉〈
σ|v

〉
“

〈
σ|O|σ

〉
, σ P SεE,O where E is

the standard basis. Let τ be a length rlogpε´1|F |qs string such that gpτq “ σ. Then, we

see that P pλτq “ σ.

Kpσq ď` |λ| ` |τ | ď` |λ| ` logpε´1q ` logp|F |q ď` QKε
p|σ

〉〈
σ|q

This establishes one direction. Note that the additive constant depends on ε. The

constant (zero) in the other direction turns out to be independent of ε: Given some

classical bitstring σ, let Upπq “ σ and |π| “ Kpσq. Then, letting F “ tσu in 3.19,

QKεpσq ď QK1pσq ď |π| “ Kpσq, for any ε ą 0.

Definition 3.4. A ‘system’ B “ ppbn0 , b
n
1 qqnPN is a sequence of orthonormal bases for C2

such that each bni is complex algebraic and the sequence ppbn0 , b
n
1 qqnPN is computable.

Remark 3.5. Let B “ ppbn0 , b
n
1 qqnPN be a system, as in 4.2. Let AB be the set of all pure

states, σ such that σ is a product tensor of elements fromB. For example, b10bb
2
1bb

3
1bb

4
0 P

AB. Then, the previous theorem generalizes to the following: Fix a rational ε, a B and

a AB as above. Kpσq “` QKεp|σ
〉〈
σ|q holds for all σ P AB, upto an additive constant

depending only on B and ε. Here, Kpσq is defined in the obvious way. For example,

Kpb10b b
2
1b b

3
1b b

4
0q “ Kp0110q. This is proved by replacing SεE,O with SεB,O in the proof

of Theorem 3.2.

The following lemma can be proved similarly to Theorem 3.2.

Lemma 3.6. Fix a rational ε and let pBnqn be a computable sequence such that Bn

is a orthonormal basis for C2n composed of algebraic complex vectors. Then, for all
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σ P
Ť

nBn, Kpσq “ QKεp|σ
〉〈
σ|q, upto an additive constant depending only on ε and

pBnqn.

Note that Kpσq is well-defined as σ is complex algebraic. The following Theorem

3.7 agrees nicely with the upper bound for K in the classical setting: for all strings x,

Kpxq ď |x| `Kp|x|q ` 1 (See theorem 2.2.9 in [28].).

Theorem 3.7. There is a constant d ą 0 such that for any ε and any τ , QKεpτq ď |τ |`

Kp|τ |q ` d.

Proof. Let k ą 1. Let P be the prefix-free Turing machine which on input π, such that

Upπq “ n outputs E “ peiq
2n

i“1, the standard computational basis of C2n .

It may seem that this upper bound, given by the apparently inefficient device of

using 2|τ | many orthonormal vectors to approximate τ , can be improved. However, the

bound is tight by Theorem 3.2 together with the classical counting theorem (see [21],

theorem 3.7.6.).

As we shall see later, the unique tracial state τ “ pτnqnPN where for all n, τn is the

2n by 2n diagonal matrix with 2´n along the diagonal is quantum Martin-Löf random.

Theorem 3.8 shows that its initial segments achieve the upper bound given by Theorem

3.7.

Theorem 3.8. Let k be any natural number. There is a constant t such that for all n,

QK2´kpτnq ě n`Kpnq ´ t.

Proof. Fix a k and suppose towards a contradiction that for all t P N, there is a nt such

that QK2´kpτntq ă nt ` Kpntq ´ t. So, for all t, there are Ft Ď C2nt and σt such that

Upσtq “ Ft and
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2´k ă
ÿ

vPFt

〈
v|τnt |v

〉
“ 2´nt |Ft|,

and

|σt| ` logp|Ft|q ă nt `Kpntq ´ t.

Taking log on both sides of the first inequality and inserting in the second gives that for

all t, nt and σt,

t´ k ` |σt| ă Kpntq. (3.1)

Now, define a prefix-free machine M as follows. On input π, M checks if Upπq halts and

outputs a orthonormal set F Ď C2n for some n. If so, then Mpπq “ n. Let r be the

coding constant of M . Note that for all t, Mpσtq “ nt. So, Kpntq ď |σt| ` r. Together

with (3.1), we have that for all t, t ´ k ` |σt| ă |σt| ` r. So, t ´ k ă r for all t, a

contradiction.

In contrast to Lemma 3.6, we have,

Lemma 3.9. Fix an ε ą 0 and an n P N. It is not true that for all σ, complex algebraic

pure states in C2n , QKεp|σ
〉〈
σ|q “` Kpσq.

Proof. Clearly, for all σ, complex algebraic pure states, QKεp|σ
〉〈
σ|q ď` Kpσq holds.

Suppose that for some ε and n P N, for all σ P C2n

alg, pure states, QKεp|σ
〉〈
σ|q ě` Kpσq

holds. By Theorem 3.7, for all σ P C2n

alg, pure, Kpnq`n ě` QKεp|σ
〉〈
σ|q ě` Kpσq. This

is a contradiction as there are only finitely many programs of length atmost n `Kpnq

but there are infinitely many complex algebraic pure states, σ of length n.
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Analogously to QC [6,8] a ‘counting condition’ also holds for QK: the cardinality of

a orthonormal set of vectors with bounded complexity has an upper bound depending on

the complexity bound. The counting condition for QK is established in a different fash-

ion than that for QC (which uses entropy inequalities like Holevo’s-chi [8] and Fanne’s

inequality [6]). This reflects once again that QC invloves approximating a density ma-

trix by another density matrix while QK involves ‘projecting’ a density matrix onto a

subspace.

Theorem 3.10. Let V “ pviq
N
i“1 Ă C2s be a collection of orthonormal vectors with

QKεp|vi
〉〈
vi|q ď B for all i. Then, N ď ε´12B.

Proof. For each vi, we have σi and Fi,

Fi “
ÿ

tPAi

|t
〉〈
t|,

with Ai Ă C2s orthonormal, such that
〈
vi|Fi|vi

〉
ą ε, Upσiq “ Fi and |σi|`log|Ai| ď B.

Let D Ď t1, 2 ¨ ¨ ¨Nu be maximal such that Fi ‰ Fj for i, j in D. (D ‰ t1, 2 ¨ ¨ ¨Nu

may hold as there may be i, j with Fi “ Fj). Let F be the orthogonal projector onto

the subspace spanned by A :“
Ť

iPD Ai. Then, A has dimension atmost
ř

iPD |Ai|. By

|Ai| ď 2´|σi|2B for all i and noting that σi ‰ σj for i, j in D,

TrpF q ď
ÿ

iPD

|Ai| ď
ÿ

iPD

2´|σi|2B ď 2B
ÿ

σPdompUq

2´|σ| ď 2B.

The reason behind summing over i P D, rather than over i ď N was to get the second

to last inequality. By the maximality of D, A “
Ť

iďN Ai and so, Ai is a subspace of A

for all i ď N . So,
〈
vi|F |vi

〉
ě

〈
vi|Fi|vi

〉
ą ε for all i ď N . By orthonormality of V ,

εN ă
ÿ

i

〈
vi|F |vi

〉
ď TrpF q.
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3.3 Relating QK to randomness

3.3.1 A Chaitin type result

Theorem 3.11 is a Chaitin type characterization of the weak Solovay random states in

terms of QK. (Chaitin’s result in the classical setting says that an infinite bitstring X

is Solovay random if and only limnKpX æ nq ´ n “ 8).

Theorem 3.11. A state ρ “ pρnqn is weak Solovay random if and only if

@ε ą 0@c ą 0@8nQKε
pρnq ě n` c.

Proof. (ðùq: Suppose for a contradiction that ρ fails a strong Solovay test pSmqm at

ε ą 0. The idea will be to use the subspaces given by the Sms, to approximate ρ. More,

precisely, the F appearing in the definition of QKε will be the orthonormal vectors given

by the projection Sm for an appropriate m. The details are as follows. Let M be the

prefix-free machine doing the following. On input σ, if Upσq “ m, then output pviqi

where

Sm “
ÿ

i

|vi
〉〈
vi|.

Let cM be it’s coding constant. Take an m such that TrpρnmSmq ą ε (Notation: nm is

the natural number n such that Sm is a projection on n qubits.). By the choice of m,

QKε
pρnmq ď Kpmq ` cM ` logp2nmτpSmqq “ nm `Kpmq ´ fpmq ` cM ,

where f is the function: fpmq “ ´logpτpSmqq. As f is computable and as
ř

m 2´fpmq ă 8

by the definition of a strong Solovay test, Lemma 3.12.2 in [21] implies that for all m,
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Kpmq ´ fpmq ď q for some constant q. Noting that we may assume the sequence nm

to be strictly increasing in m and letting c :“ q ` cM ` 1, we see that D8n such that

QKε
pρnq ă n` c.

(ùñ): Suppose toward a contradiction that there is a ε ą 0 and a constant c ą 0 such

that there are infinitely many n with QKε
pρnq ă n ` c. Define a strong Solovay test S

as follows. Let T be the set of all σ such that Upσq halts and outputs an orthonormal

set Fσ Ď C2nσ such that |σ|` log |Fσ| ă nσ ` c. For all σ P T , let

Pσ :“
ÿ

vPFσ

|v
〉〈
v|

and let S :“ pPσqσPT . For all σ P T , 2|σ||Fσ| ă 2nσ`c. So, τpPσq “ 2´nσ |Fσ| ă 2c´|σ|. So,

ÿ

σPT

τpPσq ă 2c
ÿ

σPT

2´|σ| ă 2c
ÿ

σ:UpσqÓ

2´|σ| ă 8,

since U is prefix-free. This shows that S is a strong Solovay test. For any n such that

QKε
pρnq ă n` c, there is a σ P T such that TrpPσρnq ą ε. So, ρ fails S at ε.

The following corollary shows the equivalence of weak Solovay and q-ML randomness

for a specific type of states. Let B “ ppbn0 , b
n
1 qqnPN be a system ( Definition 4.2). Let

A8B be the set of all states which are limits of elements from AB as in 3.5. For example,

b10 b b
2
1 b b

3
0 b b

4
1 ¨ ¨ ¨ “: ρ P A8B .

Corollary 3.12. For any B, weak Solovay randomness is equivalent to q-MLR on A8B .

Proof. Fix a system B “ ppbn0 , b
n
1 qqnPN and let ρ P A8B be weak Solovay random. Let

ρ1 be the bitstring induced by ρ. I.e., for example if ρ “ b10 b b21 b b30 b b41 ¨ ¨ ¨ , then

ρ1 :“ 0101 ¨ ¨ ¨ . By Theorem 3.11, for ε “ 0.5

@c ą 0@8nQK0.5
pρnq ě n` c.
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By Remark 3.5, Kpρ1 æ nq “MK0.5pρnq upto a constant depending only on B. So,

@c ą 0@8nKpρ1 æ nq ě n` c.

By Chaitin’s result, [16] ρ1 is MLR. Now, by an easy modification of 3.13 from [31], ρ is

q-MLR. We already know that q-MLR implies weak Solovay randomness for any state

from before.

3.3.2 Chaitin and Levin–Schnorr type results

It turns out that weak Solovay randomness is equivalent to q-MLR and has both Chaitin

((3) in Theorem 3.13 ) and Levin–Schnorr ((4) in Theorem 3.13) type characterizations

in terms of QK when the states are restricted to a certain class, L defined below. To

define this class we need to consider the halting set over the halting set : H2 “ pH1q1

(See [28]). Let L denote the union of the two classes of states.

1. States in A8B for some B, as in Corollary 3.12

2. States which do not Turing compute H2.

Nies and Barmpalias (in personal communication) have shown that q-MLR is equivalent

to weak quantum Solovay randomness for states which do not compute H2. The same

equivalence also holds on A8B by Corollary 3.12. This similarity motivates our study of

L.

Theorem 3.13. If ρ “ pρnqn P L, then the following are equivalent

1. ρ is q-MLR.

2. ρ is weak Solovay random.
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3. @ε ą 0@c ą 0@8n,QKεpρnq ě n` c.

4. @ε ą 0Dc@n,QKεpρnq ą n´ c.

Proof. (1) ðñ (2) follows from the previous remarks.

(4)ùñ(1):

Proof. First, let ρ P A8B for some B and let (4) hold. By the same argument as in

Corollary 3.12, we get that

Dc ą 0@n,Kpρ1 æ nq ě n´ c.

The classical Levin–Schnorr result [21] implies that ρ1 is MLR. Using once more 3.13

in [31] as in 3.12, we see that ρ is q-MLR. Now suppose ρ does not Turing compute H2.

We will show that (4) implies (2). Suppose for a contradiction that pSmqm is a strong

Solovay test which ρ fails at ε1 ą 0. By Theorem 2.11 in [11], we can effectively compute

a q-MLT pGmqm which ρ fails at some rational ε ą 0. Let gpmq :“ the least s such

that TrpρsG
2m
s q ą ε. As ρ computes g, by Martin’s high domination theorem (see [21]

for a proof), there is a total computable function f such that D8gpnq ă fpnq. We may

assume that fptq ą 3t for all t by taking the max of 2 computable functions. Fix this f

(non-uniformly) and consider the following machine, M :

On input 0m1, M outputs Fm where Fm is such that

G2m
fpmq “

ÿ

vPFm

|v
〉〈
v|.

Clearly M is prefix free. Let l ´ 1 be it’s coding constant. Let t be so that fptq ą gptq.

Let F t be defined similarly to Fm above. Then, by definition of g, we have that

ε ă
ÿ

vPF t

〈
v|ρfptq|v

〉
.
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Mp0t1q “ F t and so, there is a π such that |π| ď t ` l and Upπq “ F t. Also note that

|F t| ď 2fptq´2t by the definition of a q-MLT. So, QKε
pρfptqq ď t`l`fptq´2t “ fptq´t`l.

Recall that t was an arbitrary element of the infinite set ts : fpsq ą gpsqu. So, for

infinitely many ts, there is an n “ fptq such that QKε
pρnq ď n ´ t ` l, contradicting

p4q.

p3q ùñ p4q is obvious and p2q ùñ p3q was done in Theorem 3.11.

We apply the preceding theorem to get the following quantum analog of a classical

result, Proposition 3.2.14 in [28].

Theorem 3.14. Let C be an infinite computable set, ρ P L and ε ą 0. If there is a d

such that for all m P C, QKεpρmq ą m´ d, then ρ is weak Solovay random.

Proof. Let M be the machine doing the following: On input σ, check if Upσq “ F , an

orthonormal set F Ď C2n . If such a F and n exist, compute s such that n ` s is the

least element of C greater than n and output the set:

T :“ tv b π : v P F, π P 2su.

Note that |T | “ 2s|F |. It is easy to see that M is prefix-free. Let l be it’s coding

constant. Suppose for a contradiction that ρ is not weak Solovay random. 3.13 implies

that @c, Dnc such that QKεpρncq ď nc ´ c. Let c be arbitrary and take such an n :“ nc.

There is a σ and F such that Upσq “ F P C2n , |σ|`logp|F |q ď n´ c and

ÿ

vPF

〈
v|ρn|v

〉
ą ε.



61

Let t “ n ` s be the least element of C greater than n. On input σ, M outputs T as

above. Note that

Q :“
ÿ

wPT

|w
〉〈
w| “

ÿ

vPF,πP2s

|v
〉〈
v| b |π

〉〈
π| “

`

ÿ

vPF

|v
〉〈
v|
˘

b
`

ÿ

πP2s

|π
〉〈
π|
˘

“ W b I,

where W :“
ř

vPF |v
〉〈
v| and I be the identity on C2s . Then, by the coherence property

of states,
ÿ

wPT

〈
w|ρt|w

〉
“ TrpρtQq “ TrpρtrW b Isq “ TrpρnW q ą ε.

Consequently,

QKε
pρtq ď |σ| ` logp|T |q ` l “ |σ| ` logp|F |q ` s` l ď n´ c` s` l “ t´ c` l.

Since d and l were constants and c was arbitrary, this contradicts the assumption.

3.3.3 A weak Levin–Schnorr type result

Theorem 3.11 implies that if ρ is weak-Solovay random then, @ε ą 0Dc@n,QKεpρnq ą

n ´ c. I.e., being strong-Solovay random implies the Levin–Schnorr condition. Does

this reverse? We give two partial results in this direction: the Levin–Schnorr condition

implies that ρ passes all strong-Solovay tests of a certain type.

Definition 3.15. For a rational s P p0, 1q, a s-strong Solovay test is a strong Solovay

test pSrqr such that
ř

r τpS
rqs ă 8 and

ř

r τpS
rq is a computable real number.

Theorem 3.16. If @ε ą 0Dc@n,QKεpρnq ą n ´ c, then ρ passes all s-strong Solovay

tests for all rational s P p0, 1q.

Proof. Suppose for a contradiction that pSmqm is a s-strong Solovay test which ρ fails at

ε ą 0 and
ř

i τpS
iq “ Q, computable. For all m, let Sm be 2nm by 2nm and we may let
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the nms be distinct. Let fpmq :“ ´ logpτpSmqq and gpmq :“ rsfpmqs. Partition ω into

the fibers induced by g. (P is a fiber of g if P “ g´1ptxuq “ ty : gpyq “ xu, for some x.).

Note that gprq ě ´slogτpSrq, and hence 2´gprq ď τpSrqs. In particular, this implies that

P is finite. So, there are countably infinitely many fibers, tP1, P2 . . . u and ω “
Ť

m Pm,

where for all m, there is an xm such that Pm “ g´1ptxmuq and m ÞÑ xm is injective.

The fiber P of x “ gpzq can be computed from x as follows. Note that gpcq “ x

iff, fpcq P rs´1px ´ 1q, s´1xs. As Q is computable, compute an interval J such that,

|J | ă 2´s
´1x, Q P J and

ř

rďq 2´fprq P J for some q. So, fpcq ą s´1x if c ą q. P can be

computed by evaluating g on r0, qs.

The idea is to describe Sr by computing the fiber P containing r and then specifying

the location of r in the lexicographical ordering on P . As pSrqr is a s-strong Solovay test,

this description of Sr is short enough to derive a contradiction. Consider the machine,

M doing the following: On input λ, check if there is a decomposition λ “ πσ such that,

• There is an m such that Upπq “ 0gpmq.

• |σ| “ t “ rlogp|P |qs where P is the fiber of gpmq. (Recall that P can be computed

from gpmq.)

If these hold, then order P lexicographically using the ordering on 2t and let r be

the σth element in this ordering. Output F r where F r is such that Sr “
ř

vPF r |v
〉〈
v|.

Note that M is prefix free: Suppose λ, λ1 P dompMq as witnessed by λ “ πσ and

λ “ π1σ1. So, M finds m and m1 such that Upπq “ 0gpmq and Upπ1q “ 0gpm
1q. Let

πσ ĺ π1σ1. Then, it must be that π ĺ π1 or π1 ĺ π. Since U is prefix free, it follows

that π “ π1. So, gpmq “ gpm1q. Hence, m and m1 are in the same fiber, P . Letting

t “ rlogp|P |qs, λ, λ1 P dompMq implies that |σ| “ |σ1| “ t.
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For each m P ω, let rm be any element from Pm. Then,

ÿ

m

|Pm|2
´gprmq “

ÿ

m

ÿ

rPPm

2´gprq ď
ÿ

m

ÿ

rPPm

τpSrqs “
ÿ

i

τpSiqs ă 8. (3.2)

Let h be the function defined by, hpmq :“ logp|Pm|q ´ gprmq where rm is any repre-

sentative from Pm. By (3.2), |Pm|2
´gprmq Ñ 0 as m Ñ 8. So, hpmq Ñ ´8 as m Ñ 8.

Each fiber is finite and ρ fails the test at ε. So, there is an infinite set I “ tPj1 , Pj2 , . . . u

such that for all i, there is a ti P Pji with TrpρntiS
tiq ą ε. ji Ñ 8 as i Ñ 8 and so,

hpjiq “ logp|Pji |q´gprtiq Ñ ´8 as iÑ 8. This asymptotic behavior will be used below

to derive a contradiction.

Fix an arbitrary i and a t “ ti P Pji as above. So, ε ă
ř

vPF t

〈
v|ρnt |v

〉
.

Let t be the σth element of Pji in the lexicographic ordering used by M and let

Upπq “ 0gptq and Kp0gptqq “ |π|. Then, Mpπσq “ F t and so, there is a bitstring ι such

that |ι| ď` Kp0gptqq ` rlogp|Pji |qs and Upιq “ F t. Note that log|F t| “ log(Tr(Stqq “

logpτpStqq ` nt “ ´fptq ` nt. Let d :“ p1 ´ sqs´1 ą 0. So, tprnds, 0nq : n P ωu, is a

bounded request set (see [21] for a definition) and hence Kp0nq ď` rnds. Using all this,

we get that:

QKε
pρntq ď

` Kp0gptqq ` rlogp|Pji |qs´ fptq ` nt

ď
` rdgptqs` rlogp|Pji |qs´ fptq ` nt

ď
` dsfptq ` rlogp|Pji |qs´ fptq ` nt

“ fptqpds´ 1q ` rlogp|Pji |qs` nt

“ ´sfptq ` rlogp|Pji |qs` nt

ď
`
´gptq ` rlogp|Pji |qs` nt

“ hpjiq ` nt.
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The last equality follows as t “ ti is in Pji . This means that there is an infinite sequence

pntiqi such that

QKε
pρnti q ă

` nti ` hpjiq.

Finally, recall that hpjiq Ñ ´8 as iÑ 8 and we have a contradiction.

Theorem 3.16 can be strengthened by weakening the defining criteria for a s-strong

Solovay test.

Definition 3.17. Let s P p0, 1q be a rational. Let φ be any computable, non-decreasing,

non-negative function on the reals such that φpsrq ěˆ sφprq (I.e., there is a C ą 0

independent of s, such that for all r, Cφpsrq ě sφprq) and
ř

n 2´nφpnq ă 8 (So, φ does

not tend to infinity too fast). A pφ, sq-strong Solovay test is a strong Solovay test pSrqr

such that

ÿ

r

τpSrqs

φp´logpτpSrqqq
ă 8, (3.3)

and
ÿ

r

τpSrq “ Q,

where Q is a computable real number.

The term in the denominator in (3.3) tends to infinity with r and hence it is easier

for a strong Solovay test to be a pφ, sq-strong Solovay test than to be a s-strong Solovay

test. So, passing all pφ, sq-strong Solovay tests is a more restrictive notion of randomness

than passing all s-strong Solovay tests. So, the following theorem is an improvement of,

and implies Theorem 3.16.

Theorem 3.18. If @ε ą 0Dc@n,QKεpρnq ą n´ c, then ρ passes all pφ, sq-strong Solovay

tests for all rational s P p0, 1q and all φ as in Definition 3.17.
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Proof. Suppose for a contradiction that pSmqm is a pφ, sq-strong Solovay test which ρ

fails at ε ą 0 and
ř

i τpS
iq “ Q, computable. For all m, let Sm be 2nm by 2nm and we

may let the nms be distinct. For ease of presentation, we do the proof in 2 cases. First,

let s ď 0.5. Let fpmq :“ ´ logpτpSmqq and let gpmq :“ rsfpmqs. Partition ω into the

fibers induced by g. Fix some fiber P of some x “ gprq. I.e., r is a representative from

P . Then, gprq “ rsp´logτpSrqqs. So, gprq ě ´slogτpSrq, and hence 2´gprq ď τpSrqs.

In particular, this implies that each fiber is finite. So, there are countably infinitely

many fibers, tP1, P2 . . . u. So, ω “
Ť

m Pm, where for all m, there is an xm such that

Pm “ g´1ptxmuq and m ÞÑ xm is injective. For each m P ω, let rm be any representative

from Pm. For all r, sfprq ď gprq and φ is non-decreasing. So,

ÿ

m

|Pm|
2´gprmq

φpgprmqq
“
ÿ

m

ÿ

rPPm

2´gprq

φpgprqq
ď
ÿ

m

ÿ

rPPm

τpSrqs

φpsfprqq
ď
ˆ
ÿ

r

τpSrqs

sφpfprqq
ă 8. (3.4)

The fiber P of x “ gpzq can be computed from x for the same reason as in the

previous proof. Its idea of ‘compressing’ Sr is also used here.

Consider the machine, M doing the following: On input λ, search for a decomposition

λ “ πσ, such that

• Upπq “ 0gpmq for some m.

• |σ| “ t where P is the fiber containing m, (which can be computed from gpmq)

and t “ rlogp|P |qs.

If found, order P lexicographically using the ordering on 2t and let r be the σth element

in this ordering. Output F r where F r is such that Sr “
ř

vPF r |v
〉〈
v|. Note that M is

prefix free for the same reason as in the previous proof. Let l be M ’s coding constant.

Let h be the function defined by, hpmq :“ logp|Pm|q ´ gprmq´log φgprmq, where rm is
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any representative from Pm. By (3.4),

|Pm|2
´gprmq

φgprmq
Ñ 0

as m Ñ 8. So, hpmq Ñ ´8 as m Ñ 8. Each fiber is finite and ρ fails the test at ε.

So, there is an infinite set I “ tPj1 , Pj2 , . . . u such that for all i, there is a ti P Pji with

TrpρntiS
tiq ą ε. ji Ñ 8 as i Ñ 8 and so, hpjiq Ñ ´8 as i Ñ 8. This asymptotic

behavior will be used below to derive a contradiction.

Fix an arbitrary i and a t “ ti P Pji as above. So,

ε ă
ÿ

vPF t

〈
v|ρnt |v

〉
. (3.5)

Let t be the σth element of Pji in the lexicographic ordering used by M . Let π

be such that Kp0gptqq “ |π| and Upπq “ 0gptq. Then, Mpπσq “ F t and so, there is a

bitstring κ such that |κ| ď Kp0gptqq` rlogp|Pji |qs` l and Upκq “ F t. Note that log|F t| “

log(Tr(Stqq “ logpτpStqq ` nt “ ´fptq ` nt. So,

QKε
pρntq ď Kp0gptqq ` rlogp|Pji |qs` l ´ fptq ` nt.

Note that tpn ´ rlogpφpnqqs, 0nq : n P ωu is a bounded request set by definition of a

pφ, sq test and so Kp0gptqq ď` gptq´logpφgptqq. So,

QKε
pρntq ď

` gptq ´ logpφgptqq ` rlogp|Pji |qs´ fptq ` nt.

Since gptq ´ 1 ă sfptq, we have

´gptq ` 1 ą ´sfptq. (3.6)

Since s ď 0.5 we have that 1´ s ě s.

So, gptq ´ fptq ď sfptq ´ fptq ` 1 “ ´p1´ sqfptq ` 1 ď ´sfptq ` 1. Using (3.6),

gptq ´ fptq ă ´gptq ` 2.



67

So,

QKε
pρntq ă

`
´gptq ` rlogp|Pji |qs´ logpφgptqq ` nt “ hpjiq ` nt.

The equality follows as t “ ti is in Pji . This means that there is an infinite sequence

pntiqi such that QKε
pρnti q ă

` nti ` hpjiq. Finally, recall that hpjiq Ñ ´8 as iÑ 8 and

we have a contradiction.

Now let s ą 0.5 and let f, g be as in the previous case. Let bpmq :“ rp1 ´ sqfpmqs

and let C :“ rs{p1´ sqs` 1.

Consider the machine M doing the following: on input π1y0σ, check if the following

conditions hold.

• There is m such that Upπq “ 0bpmq.

• If x “ bpmq, J “ psp1´ sq´1px´ 1q, sp1´ sq´1x` 1s X ω and w is the yth element

of J , then there is a z such that gpzq “ w.

• If P is the fiber of g containing z (P is computable from w “ gpzq just as in the

previous case) and t “ rlogp|P |qs, then |σ| “ t

If all the above are met, then order P lexicographically using the ordering on 2t and

let r be the σth element in this ordering. Output F r.

Roughly, the idea is as follows: Just as in the previous case, we want to compress

F r where r is the σth number in the fiber of w “ gpmq. The first step to achieve this is

to describe gpmq. While in the previous case we used an ι such that Upιq “ 0gpmq and

|ι| “ Kp0gpmqq), we use here the shorter string π where Upπq “ 0bpmq and |π| “ Kp0bpmqq

together with 1y for describing gpmq. From π, we get x “ bpmq which in turn gives J

which contains gpmq. So, π along with y, the location of gpmq in J , describes gpmq.
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After gpmq is found, F r can be described just as in the previous case. The details are: As

x “ bpmq, p1´sqfpmq P px´1, xs and hence sfpmq lies in psp1´sq´1px´1q, sp1´sq´1xs.

So, rsfpmqs “ gpmq P J “ psp1´sq´1px´1q, sp1´sq´1x`1sXω. Since |J | ď C, gpmq P J

can be determined by specifying y ď C, it’s location in J . So, M can recover gpmq.

From this point on, the remaining procedure is the same as in the previous case.

We see that M is prefix-free: Let π1y0σ and π11y
1

0σ1 be in the domain of M and let

π1y0σ ĺ π11y
1

0σ1. By the same argument as in case1, π “ π1 and M finds some m,m1

with x “ bpmq “ bpm1q. It follows that y “ y1. So, if w is the yth (and y1th) element

of J (as above), then M finds z, z1 such that gpzq “ w “ gpz1q. So, z and z1 are in

the same fiber P and it hence follows as in the previous case that |σ| “ |σ1|. Define I

and h exactly as in the previous case. Fix some i and let t “ ti be an element of Pji

such that (3.5) holds. Let t be the σth element of Pji . Let x “ bptq “ rp1 ´ sqfptqs.

So, p1 ´ sqfptq P px ´ 1, xs and sfptq P psp1 ´ sq´1px ´ 1q, sp1 ´ sq´1xs. Hence, gptq P

psp1´ sq´1px´ 1q, sp1´ sq´1x` 1s X ω “ J and let gptq be the yth element of J . Let π

be such that Upπq “ 0bptq and |π| “ Kp0bptqq. Then, on input π1y0σ, M finds some z (it

could be that z “ t, but not necessarily) such that bptq “ bpzq “ x and then finds that

the yth element of J is gpz1q for some z1 (again, although gpz1q “ gptq, it could be that

t “ z1 but not necessarily). Since z1 and t are both in Pji , M outputs F t after reading

σ. So, there is a π such that Upπq “ F t and |π| ď` Kp0bptqq ` C ` rlogp|Pji |qs.

So, QKε
pρntq

ă
` Kp0bptqq ` rlogp|Pji |qs` logp|F t

|q

ď
` bptq ´ rlogpφpgptqqqs` rlogp|Pji |qs` nt ´ fptq

ď
`
´gptq ´ rlogpφpgptqqqs` rlogp|Pji |qs` nt
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The last inequality is since, by (3.6) (which holds for any s), bptq´fptq ď p1´sqfptq´

fptq`1 “ ´sfptq`1 ă ´gptq`2. Since t “ ti P Pji , we see that QKε
pρntq ă

` hpjiq´nti .

for all i. This gives a contradiction for the same reason as in the previous case.

3.3.4 QK and computable measure machines

Schnorr randomness is an important randomness notion in the classical realm [21,

28]. While K plays well with Solovay randomness, KC , a version of K using a com-

putable measure machine, C (a prefix-free Turing machine whose domain has computable

Lebesgue measure) gives a Levin–Schnorr characterization of Schnorr randomness (See

theorem 7.1.15 in [21]).

So, with the intention of connecting it to quantum Schnorr randomness, we define

QKC a version of QK using a computable measure machine, C.

Theorem 3.20 shows that QKC agrees with KC on the classical bitstrings. Analo-

gously to the classical case, Theorem 3.22 is a Levin–Schnorr type of characterizations

of quantum Schnorr randomness using QKC . Theorem 3.23, a Chaitin type character-

ization of quantum Schnorr randomness using QKC implies Theorem 3.24, a Chaitin

type characterization of classical Schnorr randomness in terms of KC .

For C a computable measure machine and σ a string, KC is defined analogously to

K; KCpσq :“inft|τ | : Cpτq “ σu. The quantum version is: for C, a computable measure

machine and a ε ą 0, define QKε
Cpτq to be:

Definition 3.19. QKε
Cpτq :“ inf t|σ|`log|F | : Cpσq Ó“ F , a orthonormal set in C2|τ |

alg

and
ř

vPF

〈
v|τ |v

〉
ą εu
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The infimum of the empty set is taken to be 8. Notation: In this section, µ de-

notes Lebesgue measure and Ct denotes C run upto the t steps. We may assume that

dompCtq Ď 2t. By a sequence, we mean a countable collection whose elements may

possibly be repeated. If S is a sequence, the sum
ř

sPS will be over all elements of S,

with repetition.

Similarly to Theorem 3.2, we show that QKC ‘agrees with’ KC on the classical

qubitstrings. In Theorem 3.20 and its proof, P and C will stand for computable measure

machines.

Theorem 3.20. For all rational ε ą 0 and all C, there exists a P such that KP pσq ď

QKε
Cp|σ

〉〈
σ|q ` 1 for all classical bitstrings σ.

Proof. The proof is almost identical to that of Theorem 3.2. Fix a rational ε ą 0 and a

C. Consider the machine P from the proof of Theorem 3.2 but with U replaced by C.

We now show that µpdompP qq is computable. Let δ ą 0 be arbitrary. Since µpdompCqq

is computable, find a stage t so that µpdompCqq ´ µ(dompCtqq ă δ. (The t can be found

as follows: Compute a q1 such that |q ´ q1| ă δ{2. So, q1 ´ δ{2 ă q ă q1 ` δ{2. Since

µ(dompCtqq Õ q, as t Ñ 8, we can compute a t such that, q1 ´ δ{2 ă µ(dompCtqq ă

q1 ` δ{2.). We may compute S, the set of those strings π “ στ P dompP q and σ P

dompCtq. So, dompP qzS consists of strings π “ στ such that σ P dompCqzdompCtq.

So, it is easy to see that µpdompP qq-µpSq ă µpdompCqq-µpdompCtqq ă δ. As δ ą 0

was arbitrary, this shows that µpdompP qq is computable. Now, let σ P 2n be any

classical bitstring such that QKε
Cp|σ

〉〈
σ|q ă 8. Let λ and F Ď C2n

alg orthonormal

such that |λ| ` logp|F |q “ QKε
Cp|σ

〉〈
σ|q,

ř

vPF

〈
v|σ

〉〈
σ|v

〉
ą ε and Cpλq “ F . Let

O :“
ř

vPF |v
〉〈
v|. Note that since ε ă

ř

vPF

〈
v|σ

〉〈
σ|v

〉
“

〈
σ|O|σ

〉
, σ P SεE,O where E is
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the standard basis. Let τ be a length rlogpε´1|F |qs string such that gpτq “ σ. Then, we

see that P pλτq “ σ. So,

KP pσq ď |λ| ` |τ | ď |λ| ` logpε´1q ` 1` logp|F |q “ QKε
Cp|σ

〉〈
σ|q ` 1.

Remark 3.21. Theorem 3.20 establishes one direction of the coincidence of KC and

QKC for classical qubitstrings. In the other direction, take some classical bitstring σ

with KCpσq ă 8 for some C. Let Cpπq “ σ and |π| “ KCpσq. Then, letting F “ tσu in

3.19, QKε
Cp|σ

〉〈
σ|q ď QK1

Cp|σ
〉〈
σ|q ď |π| “ KCpσq, for any ε ą 0.

3.3.5 Quantum Schnorr randomness and QKC

Theorem 3.22 is a quantum analogue of the classical characterization of Schnorr ran-

domness: X is Schnorr random if and only if for any computable measure machine, C,

there is a constant d such that for all n, KCpX æ nq ą n´ d.

Theorem 3.22. A state ρ is quantum Schnorr random if and only if for any computable

measure machine, C and any ε ą 0, there is a constant d ą 0 such that for all n,

QKε
Cpρnq ą n´ d.

Proof. (ñ) We prove it by contraposition. I.e., show that ρ is not quantum Schnorr

random if there is a C and an ε ą 0 such that for all d, there is an n “ nd such that

QKε
Cpρnq ď n ´ d. Let Ts be the set of all σ such that Cspσq Ó“ Fσ, an orthonormal

set such that |σ|` log |Fσ| ă nσ and Fσ Ď C2nσ for some nσ. Let T “
Ť

s Ts. For all

strings σ, let Pσ :“
ř

vPFσ
|v
〉〈
v|. Let Qs be the sequence of those Pσ for σ P Ts, Q the

sequence of those Pσ for σ P T and Ds the sequence of those Pσ for σ P T zTs. Next, we
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show that α :“
ř

PPQ τpP q is computable by showing how to approximate it within 2´k

for an arbitrary k: Computably find a t (using the same method as in Theorem 3.20)

such that µpdompCqq ´ µ(dompCtqq ă 2´k. We show that
ř

PσPQt
τpPσq is within 2´k of

α. Note that for all σ P T , 2|σ||Fσ| ă 2nσ . So, τpPσq “ 2´nσ |Fσ| ă 2´|σ|.

α ´
ÿ

PσPQt

τpPσq “
ÿ

PσPDt

τpPσq “
ÿ

σPT {Tt

|Fσ|2
´nσ ď

ÿ

σPT {Tt

2´|σ|

ď
ÿ

σPdompCq{dompCtq

2´|σ| ď pµpdompCqq ´ µpdompCtqqq ă 2´k

Note that
ř

PσPQt
τpPσq is a rational, uniformly computable in t since dompCtq Ď 2t

is uniformly computable in t. This shows that Q is a quantum Schnorr test. By the

assumption, we see that is a infinite sequence d1 ă d2 ă ¨ ¨ ¨ and a list of distinct natural

numbers nd1 , nd2 ¨ ¨ ¨ so that for all i, there is a Pi in Q such that TrpPiρndi q ą ε. So, ρ

fails Q at ε.

(ð) We prove it by contraposition. Suppose that ρ fails a quantum-Schnorr test,

pSrqr at ε. For all j, let sj be the least t such that

t
ÿ

i“0

τpSiq ą α ´ 2´j.

We show how the sequence psjqj can be computed. First, let
ř

r τpS
rq “ α, be a

computable real which is not a dyadic rational. sj may be computed as follows: Note

that as α is not a dyadic rational but τpSiq is a dyadic rational for all i, we have that

sj´1
ÿ

i“0

τpSiq ă α ´ 2´j ă

sj
ÿ

i“0

τpSiq.

By Proposition 5.1.1 in [21], the left cut, Lpα ´ 2´jq of α ´ 2´j is computable. So, we

may search for rationals q P Lpα ´ 2´jq, q1 R Lpα ´ 2´jq and for a t such that,

t´1
ÿ

i“0

τpSiq ď q ă q1 ď
t
ÿ

i“0

τpSiq.
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This t is the needed sj. Now, let α be a dyadic rational. Then, α ´ 2j has a finite

binary representation and sj can be directly computed. So, in summary, the psjqj is a

computable sequence, after (non-uniformly) knowing whether α is a dyadic rational or

not. For all r ě 0, define special projections

Gr :“

sr`1
ÿ

i“sr`1

Si.

So,

τpGrq ď

8
ÿ

i“sr`1

τpSiq “ α ´
sr
ÿ

i“0

τpSiq ă 2´r.

Notation: Let each Si be an operator on C2ni . Let nr “ maxtni : sr ` 1 ď i ď sr`1u.

By tensoring with the identity, we may assume that all Si, for sr ` 1 ď i ď sr`1, are

operators on C2nr . Let Fr Ď C2nr be an orthonormal set of complex algebraic vectors

spanning the range of Gr. Define a computable measure machine, C as follows. On

input 0r10, C outputs F2r and on input 0r11, C outputs F2r`1. C is clearly prefix-free

and the measure of its domain is
ř

r 2´r`2, which is computable. Since each Gr is a

finite sum of the Sis and as ρ fails pSiqi at ε, there exist infinitely many r such that

TrpρnrGrq ą ε. Since we may let nr be strictly increasing in r, there are infinitely

many such nr. Fix such an nr and let x “ tr{2u (I.e., r “ 2x or r “ 2x ` 1). Then,

QKε
Cpρnrq ď x ` 2 ` nr ` logτpGrq ď x ` 2 ` nr ´ 2x. So, tr{2u ´ 2 ď nr´QKε

Cpρnrq.

Letting r go to infinity completes the proof.

Theorem 3.23 is a Chaitin-type characterization of quantum-Schnorr randomness

using QKε
C . Together with Theorem 3.20 and lemma 3.9 in [11], it implies that Schnorr

randoms have a Chaitin type characterization in terms of KC (Theorem 3.24). To the
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best of our knowledge, this is the first, albeit simple, instance where results in quantum

algorithmic randomness are used to prove a new result in the classical theory.

Theorem 3.23. ρ is quantum Schnorr random if and only if for all computable measure

machines C and all ε, @d@8n QKε
Cpρnq ą n` d.

Proof. (ñ) Suppose toward a contradiction that there is a C, an ε ą 0 and c ą 0 such

that there are infinitely many n with QKε
Cpρnq ď n` c. Define a quantum Schnorr test

Q as follows. Let Ts be the set of all σ such that Cspσq Ó“ Fσ, an orthonormal set such

that |σ|` log |Fσ| ă nσ ` c and Fσ Ď C2nσ for some nσ. Let T “
Ť

s Ts. For all strings

σ, let Pσ :“
ř

vPFσ
|v
〉〈
v|. Let Qs be the sequence of those Pσ for σ P Ts and Q the

sequence of those Pσ for σ P T . That Q is a quantum Schnorr test is shown by replacing

2´k by 2´k´c in the ùñ direction of the proof of Theorem 3.22. For any n such that

QKε
Cpρnq ă n` c, there is a σ P T such that TrpPσρnq ą ε. So, ρ fails Q at ε.

(ð) If ρ is not quantum Schnorr random then by Theorem 3.22, there is a C and an

ε such that @dDn such that QKε
Cpρnq ď n´ d.

We now show the classical version of Theorem 3.23.

Theorem 3.24. An infinite bitstring X is quantum Schnorr random if and only if for

all computable measure machines C, @d@8n KCpX æ nq ą n` d.

Proof. pùñq : Suppose first that X is Schnorr random. Then, ρ :“ ρX , the state induced

by X is quantum Schnorr random by lemma 3.9 in [11]. Suppose for a contradiction

that there is a C and a d such that D8n such that KCpX æ nq ď n`d. By Remark 3.21,

D8n such that QK0.5
C pρnq ď n` d, contradicting Theorem 3.23. (ðùq : Suppose that X

is not Schnorr random. Once again, by lemma 3.9 in [11], we have that ρ :“ ρX is not
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quantum Schnorr random. By Theorem 3.23, there is a C, an ε and a d such that D8n

such that QKε
Cpρnq ď n ` d. By Theorem 3.20, there is a P such that D8n such that

KP pρnq ď n` d` 1, a contradiction.
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Chapter 4

Generating classical randomness

from a non-quantum random state

4.1 Introduction

This chapter investigates the following question: Can the quantum non-randomness of

a state always be detected using qubitbitwise measurements? We show that it is not

always possible to do so by constructing a computable, non-qMLR state ρ which yields

a Martin-Löf random bitstring with probability one when measured qubitwise. I.e., the

quantum non-randomness of ρ cannot be detected by qubitwise measurements as these

yield a random bitstring almost surely.

We first formalize our main question in the language of quantum algorithmic random-

ness [11,31]. While versions of this question have been studied in the past [1,3–5,25,33],

this work is the first one to study it using notions from quantum algorithmic randomness.

We let 2ω denote Cantor space (the collection of infinite sequences of bits), let 2n

denote the set of bit strings of length n, 2ăω :“
Ť

n 2n and let 2ďω :“ 2ăω Y 2ω. Martin-

Löf randomness (MLR) and Quantum-Martin-Löf randomness (q-MLR) has been defined

already in previous chapters. Our motivating question can now be framed as: Is there a

computable, non q-MLR state which can be used to ‘generate’ a MLR sequence of bits.
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To make the question fully precise, we define ‘generate’.

Measuring a finite dimensional quantum system is a pivotal concept in quantum

theory [17]. It hence seems natural to extend the notion of measurement from finite

dimensional systems to states, which are coherent, increasing sequences of finite dimen-

sional systems. We define (see Section 4.2) such a notion and explain how measuring a

state yields an infinite bitstring. With this notion in hand, our main question assumes

the precise form: Is there a computable, non q-MLR state which yields a MLR bitstring

with probability one when measured?

We give an overview of the chapter. Section 4.2 formalizes how ‘measurement’ of

a state in a computable basis induces a probability measure on Cantor space. Section

4.3 introduces the key notion of measurement randomness for states. A state is defined

to be ‘measurement random’ (mR) if the measure induced by it, under any computable

basis, assigns probability one to the set of Martin-Löf randoms. Equivalently, a state

is mR if and only if measuring it in any computable basis yields a Martin-Löf random

with probability one.

We then show that quantum-Martin-Löf random states are mR. As an answer to our

main question, we show in Section 4.4 that the converse fails: there is a computable

mR state, ρ which is not quantum-Martin-Löf random. In fact, something stronger is

true. Measuring ρ in any computable basis yields an arithmetically random sequence

with probability one. Our result hence provides a scheme for generating randomness

from a quantum source. To the best of our knowledge, none of the schemes proposed so

far [1, 3–5,25,33] generate arithmetic randomness.

Section 4.6 shows that mR is equivalent to q-MLR for a certain special class of states.

Let A P 2ω. We define an A-computable function to be a total function that can
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be realized by a Turing machine with A as an oracle. By ‘computable’, we will refer

to H-computable. The concept of an A-computable sequence of natural numbers will

come up frequently in our discussion.

Definition 4.1. A sequence panqnPN is said to beA-computable if there is aA-computable

function φ such that φpnq “ an

4.2 Measuring a state

To fix notation, let Xpnq denote the nth bit of an X P 2ďω , let ppEq stand for the

probability of the event E.

Definition 4.2. An A-computable measurement system B “ ppbn0 , b
n
1 qq

8
n“1 (or just ‘mea-

surement system’ for short) is a sequence of orthonormal bases for C2 such that each bni

is complex algebraic and the sequence ppbn0 , b
n
1 qq

8
n“1 is A-computable.

Let ρ “ pρnq
8
n“1 be a state and B “ ppbn0 , b

n
1 qq

8
n“1 be a measurement system. We now

work towards formalizing a notion of qubitwise measurement of ρ in the bases in B. A

(probability) premeasure [21],p (also called a measure representation [28]), is a function

from the set of all finite bit strings to r0, 1s satisfying @n, @τ P 2n, ppτq “ ppτ0q`ppτ1q. p

induces a measure on 2ω which is seen to be unique by Carathéodory’s extension theorem

(See 6.12.1 in [21]). Flipping a 0, 1 sided fair coin repeatedly induces a probability

measure (which happens to be the uniform measure) on 2ω as follows. Let the random

variable Zpnq denote the outcome of the the nth coin flip. The sequence pZpnqqnPN

induces a premeasure, p, on 2ăω which extends to the uniform measure on 2ω. Here,

ppσq “ 2´n is the probability that Zpiq “ σpiq for all i ď |σ|. Similarly the act of
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measuring ρ qubit by qubit in B induces a premeasure on 2ăω which extends to a

probability measure (denoted µBρ ) on 2ω as follows. Let the random variable Xpnq

be the 0, 1 valued outcome of the measurement of the nth qubit of ρ. Let p be the

premeasure induced by the sequence pXpnqqnPN on 2ăω. p extends to µBρ on 2ω. For any

A Ď 2ω, µBρ pAq is the probability that X P A where X is the element of 2ω obtained in

the limit by the qubit by qubit measurement of ρ in B. The most conspicuous difference

between the two situations is that while the pZpnqqnPN are independent, pXpnqqnPN need

not be independent as the elements of ρ can be entangled. We now formalize the above.

The following calculations follow from standard results mentioned, for example, in [17].

We now define pXpnqqnPN and p, the induced premeasure. Measure ρ1 by the mea-

surement operators t|b10
〉〈
b10|, |b

1
1

〉〈
b11|u and define Xp1q :“ i where i P t0, 1u is such that

b1i was obtained by the above measurement. Let ρ̂2 be the density matrix corresponding

to the post-measurement state of ρ2 given that ρ2 yields |b1Xp1q
〉〈
b1Xp1q| b I if measured

in the system

p|b1i
〉〈
b1i | b IqiPt0,1u.

I.e,

ρ̂2 “
p|b1Xp1q

〉〈
b1Xp1q| b Iqρ2p|b

1
Xp1q

〉〈
b1Xp1q| b Iq

trpp|b1Xp1q
〉〈
b1Xp1q| b Iqρ2

˘ .

To define Xp2q, measure ρ̂2 by the measurement operators

pI b |b2i
〉〈
b2i |qiPt0,1u,

and set Xp2q :“ i where i P t0, 1u is such that Ib|b2i
〉〈
b2i | is obtained after the measure-

ment. We use ρ̂2 instead of ρ2 to define Xp2q to account for the previous measurement

of the first qubit. Xpnq is defined similarly. By the above,

ppijq :“ ppXp1q “ i,Xp2q “ jq “ ppXp1q “ iqppXp2q “ j|Xp1q “ iq “
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ppXp1q “ iqtr
“

I b |b2j
〉〈
b2j |p

p|b1i
〉〈
b1i | b Iqρ2p|b

1
i

〉〈
b1i | b Iq

trpp|b1i
〉〈
b1i | b Iqρ2q

q
‰

.

Since PTC2pρ2q “ ρ1, ppXp1q “ iq “ trpp|b1i
〉〈
b1i | b Iqρ2

˘

. So,

ppijq “ tr
“

ρ2p|b
1
i b

2
j

〉〈
b1i b

2
j |q
‰

.

Given τ P 2n, similar calculations show that

ppτq :“ ppXp1q “ τp1q, . . . , Xpnq “ τpnqq “ tr
“

ρnp|
n
â

i“1

biτpiq
〉〈 n

â

i“1

biτpiq
ˇ

ˇ

‰

. (4.1)

This defines p. The following lemma shows that pp.q is a premeasure. Define µBρ to

be the unique probability measure induced by it.

Lemma 4.3. @n, @τ P 2n, ppτq “ ppτ0q ` ppτ1q

Proof. Noting that for j P t0, 1u,

ρn`1p|
n
â

i“1

biτpiq b b
n`1
j

〉〈 n
â

i“1

biτpiq b b
n`1
j |q “ ρn`1p|

n
â

i“1

biτpiq
〉〈 n

â

i“1

biτpiq| b |b
n`1
j

〉〈
bn`1j |q,

and letting A :“ |
Ân

i“1 b
i
τpiq

〉〈
Ân

i“1 b
i
τpiq|, the right hand side is

“ tr
“

pAb |bn`10

〉〈
bn`10 |qρn`1 ` pAb |b

n`1
1

〉〈
bn`11 |qρn`1s

“ tr
“

pAb p|bn`10

〉〈
bn`10 | ` |bn`11

〉〈
bn`11 |qqρn`1s “ tr

“

pAb Iqρn`1s “ trrAρns “ ppτq

Remark 4.4. If B is S-computable and ρ is T -computable, then the sequence tµBρ pσquσPN

is S ‘ T -computable.

Here, S ‘ T is obtained by putting S on the even bits and T on the odd bits [28].
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4.3 Measurement randomness

Let MLR Ă 2ω be the set of MLR bitstrings. If ρ is a state and B a measurement system,

µBρ pMLRq is the probability of getting a MLR bitstring by a qubit-wise measurement

of ρ as described in the previous section.

Definition 4.5. ρ is measurement random (mR) if for any computable measurement

system, B, µBρ pMLRq “ 1

Theorem 4.6. All q-MLR states are also mR states.

Proof. Let ρ “ pρnqnPN be q-MLR. Suppose towards a contradiction that there is a

δ P p0, 1q and a computable B “ ppbn0 , b
n
1 qq

8
n“1 such that µBρ p2

ω{MLRq ą δ. Let pSmqm

be the universal MLT [28] and let for all m,

Sm “
ď

mďi

JAmi K, (4.2)

where the Ami s satisfy the conditions of Definition 1.6. By the definition of a MLT, for

all m and all i ě m, we can write Ami “ tτ
m,i
1 , . . . , τm,i

km,i
u Ă 2i for some 0 ď km,i ď 2i´m.

Now define a q-MLT as follows. For all m and i ě m, let τa “ τm,ia for convenience and

define the special projection:

pmi “
ÿ

aďkm,i

p|

i
â

q“1

bqτapqq
〉〈 i

â

q“1

bqτapqq
ˇ

ˇ

˘

. (4.3)

Letting Pm :“ ppmi qmďi, we see that pPmqmPN is a q-MLT (For each m, the sequence

ppmi qmďi is computable since B and pAmi qmďi are computable. Condition 3 in Definition

1.6 implies that for all i, rangeppmi q Ďrangeppmi`1q. So, Pm is a q-Σ1
0 class for all m.

km,i ď 2i´m for all m, i implies that τpPmq ď 2´m for all m. Since pSmqmPN is a MLT,

pPmqmPN is a computable sequence.) For all m, p2ω{MLRq Ď Sm holds by the definition
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of a universal MLT. Hence, since 4.2 is an increasing union and as µBρ p2
ω{MLRq ą δ,

for all m there exists an ipmq ą m such that

µBρ pJA
m
ipmqKq ą δ. (4.4)

Fix such an m and corresponding i “ ipmq and let Ami “ tτ1, . . . , τkm,iu for some km,i ď

2i´m as in 4.3. By 4.1 and 4.4, we have that

δ ă
ÿ

aďk

ppτaq “
ÿ

aďkm,i

tr
“

ρip|
i

â

q“1

bqτapqq
〉〈 i

â

q“1

bqτapqq
ˇ

ˇ

˘‰

“ tr
“

ρi
ÿ

aďkm,i

p|

i
â

q“1

bqτapqq
〉〈 i

â

q“1

bqτapqq
ˇ

ˇ

˘‰

(4.5)

So, by 4.3 and 4.5, we see that for all m there is an i such that,

δ ă trrρip
m
i s ď ρpPm

q.

So, infmpρpP
mqq ą δ, contradicting that ρ is q-MLR.

Definition 4.7. ρ “ pρnqnPN is computable if the sequence pρnqnPN is computable.

4.4 A measurement random, non q-MLR state

We show that Theorem 4.6 does not reverse:

Theorem 4.8. There is a computable state which is not q-MLR but is mR.

Proof. All matrices in this proof are in the standard basis. Let ρ “
Â8

n“5 dn and for

N ą 5, SN :“
ÂN

n“5 dn. where dn is a 2n by 2n matrix with 2´n along the diagonal and

rn :“ t2n{nu many 2´ns on the extreme ends of the anti-diagonal. Formally, define dn to

be the symmetric matrix such that: For i ď rn, dnpi, jq “ 2´n if j “ i or j “ 2n ´ i` 1
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and dnpi, jq “ 0 otherwise. For rn ă i ă 2n ´ rn, dnpi, jq “ 2´n if j “ i and dnpi, jq “ 0

otherwise. For example, r3 “ 2 and so,

d3 “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

2´3 0 0 0 0 0 0 2´3

0 2´3 0 0 0 0 2´3 0

0 0 2´3 0 0 0 0 0

0 0 0 2´3 0 0 0 0

0 0 0 0 2´3 0 0 0

0 0 0 0 0 2´3 0 0

0 2´3 0 0 0 0 2´3 0

2´3 0 0 0 0 0 0 2´3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Clearly, dn is a density matrix. The theorem will be proved via the following lemmas.

Lemma 4.9. ρ is not q-MLR.

Proof. It is easy to see that zero has multiplicity rn as an eigenvalue of dn. Hence,

letting qn “ 2n ´ rn, the eigenpairs of dn can be listed as tαni , v
n
i u

2n

i“1 where αni “ 0 if

qn ` 1 ď i ď 2n and pvni q
2n

i“1 is a orthonormal basis of C2n .

Fix a N ą 5. By properties of the Kronecker product, SN has a orthonormal basis

of eigenvectors:

t

N
â

n“5

vnlpnq : plpnqqNn“5 is a sequence such that for all n, lpnq ď 2nu,

and
ÂN

n“5 v
n
lpnq has eigenvalue

śN
n“5 α

n
lpnq. Letting MN be those elements of the above

eigenbasis having non-zero eigenvalues, we have that

MN “ t

N
â

n“5

vnlpnq : plpnqqNn“5 is a sequence such that for all n, lpnq ď qnu. (4.6)
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(See Remark 4.13 for an intuitive explanation of the reason for choosing such an

MN .) By the definition of qn,

|MN | “

N
ź

n“5

2n´t2n{nu ď

N
ź

n“5

2n´p2n{nq`1 “
N
ź

n“5

2np1´n´1`2´nq “
N
ź

n“5

2n
N
ź

n“5

p1´n´1`2´nq.

Noting that
ś8

n“5p1´n
´1` 2´nq “ 0, define a q-MLT pTmqmPN as follows. Given m, we

describe the construction of Tm. Find N “ Npmq such that
śN

n“5p1´n
´1`2´nq ă 2´m.

Let γpNq :“
řN
n“5 n and let

pγpNq “
ÿ

vPMN

|v
〉〈
v|.

pγpNq is a special projection on C2γpNq having rank equal to |MN |. Let pk “ H for

k ă γpNq and

pk :“ pγpNq b
k´γpNq
â

i“1

I

for k ą γpNq. Using that ρ is computable, it is easy to see that ppkqkPN is a q-Σ0
1

class. Let Tm :“ ppkqkPN. pTmqmPN is a q-MLT since the choice of Npmq implies that

τpTmq ă 2´m and as Npmq can be computed from m. pTmqmPN demonstrates that ρ is

not q-MLR as follows. Fix m arbitrarily and let Npmq be as above. Recalling that MN

is the set consisting of all eigenvectors of SN with non-zero eigenvalue, we have that,

ρpTmq ě trpργpNqpγpNqq “ trpSNpγpNqq “ trpSNq “ 1.

Since m was arbitrary, infmPNpρpTmqq “ 1.

The following technical lemma, although seems unmotivated at this juncture, is

crucial at a later point in the proof.

Lemma 4.10. Let trai, bis
T uni“1 be a set of unit column vectors in C2. Let V “

Ân
i“1rai, bis

T be their Kronecker product. If V “ rv1, v2, . . . , v2ns
T , then for all k ď 2n´1,
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we have that

|vk||v2n´k`1| “
n
ź

i“1

|ai||bi|.

Proof. For natural numbers u and q, let rusq denote the remainder obtained by dividing

u by q. We use the following convention for the Kronecker product [34]:

»

—

–

a1

b1

fi

ffi

fl

b

»

—

–

a2

b2

fi

ffi

fl

“

»

—

—

—

—

—

—

—

—

–

a1a2

b1a2

a1b2

b1b2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

So, v1 “
śn

i“1 ai and v2n “
śn

i“1 bi. For any k ď 2n´1, vk has the form vk “
śn

i“1 c
k
i ,

for some cki P tai, biu and v2n´k`1 has the form v2n´k`1 “
śn

i“1 e
k
i , for some eki P tai, biu.

Note that ck1 “ a1 if and only if k is odd if and only if ek1 “ b1. Similarly, we have the

following. ck2 “ a2 if and only if rks22 P t1, 2u if and only if ek2 “ b2. c
k
3 “ a3 if and only

if rks23 P t1, . . . , 2
2u if and only if ek3 “ b3. In general, for i ď n, for all k ď 2n´1,

cki “ ai ðñ rks2i P t1, . . . , 2
i´1
u ðñ eki “ bi.

This proves the lemma. Intuitively, this happens for the following reason. Imagine

moving from v1 to v2n´1 (by incrementing k) and keeping track of the values of cki as you

move along the vks. Also, imagine moving from v2n to v2n´1 and keeping track of the

values of eki as you move along the v2n´k`1s. Both motions are in opposite directions

since as k is incremented, the first motion is from lower to higher indices and the second

is from higher to lower indices. Consider the behavior of ck1, e
k
1 as k is incremented.

At the ‘start’ point, c11 “ a1, e
1
1 “ b1. Now, as you move (i.e as you increment k), ck1

alternates between a1 and b1 equalling it’s starting value, a1 at odd ks and ek1 alternates
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between b1 and a1 equalling it’s starting value b1 for odd ks. Now, take any i ď n. cki

alternates between ai and bi in blocks of length 2i´1. cki “ ai when k is in the first

block, t1, 2, . . . , 2i´1u (i.e, when rks2i P t1, 2, . . . , 2
i´1u) and cki “ bi when k is in the

second block, t2i´1 ` 1, . . . , 2iu(i.e, when rks2i P t2
i´1 ` 1, . . . , 0u) and so on. Similarly,

eki alternates between bi and ai in blocks of length 2i´1.

Lemma 4.11. Let n P N and let trai, bis
T uni“1 be such that for all i, rai, bis

T is unit col-

umn vector in C2 and letW “
Ân

i“1rai, bis
T . Then, |

〈
W |dn|W

〉
| P r2´np1´2n´1q, 2´np1`

2n´1qs

Proof. Fix n and V as in the statement and write dn as a block matrix with each block

of size 2n´1 by 2n´1.

dn “

»

—

–

A B

BT A

fi

ffi

fl

.

Letting V “
Ân´1

i“1 rai, bis
T , in block form, W “ ranV

T , bnV
T sT . Let V “ rv1, v2, . . . , v2n´1sT .

It is easily checked that

〈
W |dn|W

〉
“ 2´n ` a˚nbnV

:BV ` anb
˚
nV

:BTV.

By the form of B we get,

V :BV “ 2´nrv˚1 , v
˚
2 , . . . , v

˚
2n´1srv2n´1 , v2n´1´1, . . . , v2n´1´rn`1, 0, . . . , 0s

T .

“ 2´n
rn
ÿ

k“1

v˚kv2n´1´k`1.

By the previous lemma,

|V :BV | ď 2´n
rn
ÿ

k“1

|vk||v2n´1´k`1| “ 2´nrn

n´1
ź

i“1

|ai||bi| “ 2´nrn

n´1
ź

i“1

|ai|
a

1´ |ai|2.
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Since x
?

1´ x2 has a maximum value of 1{2 and recalling definition of rn,

|V :BV | ď 2´n
1

2n´1
2n

n
“

21´n

n
.

Similarly, |V :BTV | ď
21´n

n
. Noting that |a˚nbn|, |anb

˚
n| ď 1{2,

|
〈
W |dn|W

〉
| ď 2´n ` |a˚nbnV

:BV | ` |anb
˚
nV

:BTV | ď 2´n `
21´n

n
,

and

|
〈
W |dn|W

〉
| ě 2´n ´ |a˚nbnV

:BV | ´ |anb
˚
nV

:BTV | ě 2´n ´
21´n

n
.

Lemma 4.12. ρ is mR.

If p is any measure on 2ω, we can define Martin-Löf randomness with respect to p

exactly as we defined it for the uniform measure. Denote by MLRppq, the set of bit-

strings Martin-Löf random with respect to p [22].

Proof. We use ideas similar to Theorem 196(a) in [22]. For convenience, for all i ą 5,

define

βi :“
i´1
ÿ

q“5

q.

Let B be any computable measurement system. We show thatMLRpµBρ q ĎMLR. Since

µBρ rMLRpµBρ qs “ 1, this implies that µBρ pMLRq “ 1. Denote µBρ by µ for convenience.

Let λ denote the uniform measure. We will abuse notation by writing µpτq instead of the

more cumbersome µpJτKq for τ P 2ăω. Let X PMLRpµq. Write X as a concatenation of

finite bitstrings : X “ σ5σ6 . . . σn . . . where σn P 2n for all n P N. Let Sn :“ σ5σ6 . . . σn
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be the concatenation upto n. Let µi be such that for all τ P 2i,

µipτq :“ tr
“

dip|
i

â

q“1

bq`βiτpqq

〉〈 i
â

q“1

bq`βiτpqq |q
‰

.

By 4.1 and by the form of ρ we see that,

µpSnq “
n
ź

i“5

µipσiq.

Note that µ is computable [22] since ρ and B are. Since X P MLRpµq, by the Levin-

Schnorr theorem (Theorem 90, section 5.6 in [22]) there is a C1 such that

@n,´ logpµpSnqq ´ C1 ď KMpSnq.

By Theorem 89, section 5.6 in [22] fix a C2 such that

@n,KMpSnq ď ´ logpλpSnqq ` C2.

By these inequalities and taking exponents, we see that there is a constant α ą 0 such

that

@n, µpSnq ě αλpSnq.

Letting ri :“ µipσiq and δi :“ λpσiq ´ ri in the above,

@n,
n
ź

i“5

ri ě α
n
ź

i“5

ri ` δi. (4.7)

Let µ1 be a probability measure on 2ω such that for all σ P 2ăω, µ1pσq :“ 2µpσq ´ λpσq.

In particular, this implies that

@n, µ1pSnq “
n
ź

i“5

ri ´ δi.

Note that µ1 is computable since µ and λ are. Applying the same argument which

resulted in 4.7, we get that there is an ε ą 0 such that,

@n,
n
ź

i“5

ri ě ε
n
ź

i“5

ri ´ δi. (4.8)
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By Lemma 4.11, for all i, ri P r2
´ip1 ´ 2i´1q, 2´ip1 ` 2i´1qs. So, |δi| “ |ri ´ 2´i| P

r0, 2´i`1i´1s. Hence,

ri` δi ě 2´i´2´i`1i´1´2´i`1i´1 “ 2´ir1´4i´1s ą 0, since i ě 5. Similarly, ri´ δi ě 0.

By this, multiplying 4.7 and 4.8 gives,

@n,
n
ź

i“5

r2i ě αε
n
ź

i“5

r2i ´ δ
2
i “ αε

n
ź

i“5

r2i

n
ź

i“5

`

1´
δ2i
r2i

˘

. (4.9)

By the above,

|δi|

ri
ď

2´i`1i´1

2´ip1´ 2i´1q
“ 2pi´ 2q´1.

Letting F ą 0 be the constant,

@n,
n
ź

i“5

`

1´
δ2i
r2i

˘

ě

8
ź

i“5

`

1´
δ2i
r2i

˘

ě

8
ź

i“5

`

1´ 4pi´ 2q´2
˘

“ F,

4.9 gives,

@n, pαεq´1
n
ź

i“5

r2i ě
n
ź

i“5

r2i ´ δ
2
i ě

n
ź

i“5

r2iF. (4.10)

From 4.7, 4.8 and 4.10, it is easy to see that there is a G ą 0 such that for all n

n
ź

i“5

ri ` δi ě G
n
ź

i“5

ri.

Recalling the definitions of ri and δi,

@n, λpSnq ě GµpSnq.

Letting D “ C1 ´ logpGq and recalling the definition of C1,

@n,´ logpλpSnqq ď ´ logpµpSnqq ´ logpGq ď KMpSnq `D.

By Theorem 85 in [22], KMp.q ď Kp.q `Op1q and so there is a E ą 0 such that

@n,´ logpλpSnqq ď KpSnq ` E.

Noting that ´ logpλpSnqq “ |Sn| “ βn ` n, 3.2.14 from [28] implies that X is MLR.



90

The theorem is proved.

Intuitively, the non-equivalence of mR and q-MLR should not be surprising given that

entanglement in composite systems cannot be detected by independent measurements

of the subsystems. Let us elaborate on this remark.

Remark 4.13. ρ in Theorem 4.8 is built up from dns where each dn has rn many entangled

eigenvectors with non-zero eigenvalue and rn many entangled eigenvectors with zero

eigenvalue. This inhomogeneity in the distribution of eigenvalues is solely due to these

entangled eigenvectors (all the 2n ´ 2rn many non entangled eigenvectors of dn have

the same non-zero eigenvalues). A crucial part in showing that ρ is non q-MLR was

to use the inhomogeneous eigenvalue distribution to bound the size MN (see 4.6 in the

proof of Lemma 4.9). Heuristically speaking, the the non-quantum randomness of ρ

is a reflection of the non-uniform eigenvalue distribution of dn which in turn is due to

the presence of entangled eigenvectors of dn. It is hence reasonable to expect that the

quantum non-randomness of ρ, which stems from entanglement, cannot be captured by

measurements in the sense of Definition 4.2 using pure tensors (i.e. measuring each

2-dimensional subsystem independently).

4.5 Generalizations

We sketch some ways in which the Section 4.4’s results generalize. Given S P 2ω, we

may relativize the notion of Martin-Löf randomness to define the set MLRS Ă 2ω of

infinite bitstrings which are Martin-Löf random with respect to S. The halting problem,

denoted by H1 Ă N is an incomputable set important in computability theory. Letting

Hpnq be the n´ 1th iterate of the halting problem, an element of Cantor space is said to
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be arithmetically random if it is in MLRH
pnq

for every n (see 6.8.4 in [21]). Given S P 2ω,

relativizing the proof of Lemma 4.12 shows that MLRSpµBρ q ĎMLRS as follows. Take

an X PMLRSpµBρ q. Relativizing Theorems 85 and 90 from [22] and 3.2.14 from [28] to

S and noting that KMSp.q ď KMp.q and following the proof of Lemma 4.12 shows that

X PMLRS. This shows that µBρ pMLRSq “ 1 holds for any S P 2ω and any computable

measurement system B. In particular, if B is any computable measurement system,

µBρ pMLRH
pnq
q “ 1 for all n. So,

µBρ
“

č

nPN

pMLRH
pnq

q
‰

“ 1.

So, measuring ρ, the state constructed in Theorem 4.8 in any computable measure-

ment system yields an arithmetically random infinite sequence of bits, with probability

one. The above note naturally suggests a definition:

Definition 4.14. ρ is said to be strong measurement random (strong mR), if µBρ pMLRSq “

1 holds for any S P 2ω and any computable measurement system B.

By Remark 4.4 and by the above discussion on relativizations, we can also consider

measurement of a state in non-computable measurement systems by using an appropriate

oracle. We do not explore this here.

One may ask if we can build other computable examples of ρs which are not q-MLR

and are mR. We note that a straightforward modification of the proof of Theorem 4.8

yields a family of such ρs. We do not provide all the details here for lack of space.

Let h : N ÝÑ N and g : N ÝÑ p0, 1q be computable, satisfying the following for some

constants δ P p0, 1q and F ą 0:

8
ź

n“5

p1´ hpnq2´nq “ 0,
8
ź

n“5

p1´ hpnqr2´n ´ gpnqsq “ δ,
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@n, gpnq ď 2´n and
8
ź

n“5

“

1´
4g2pnqh2pnq

p1´ 2gpnqhpnqq2
‰

“ F.

Let ρ be defined as in the proof of the main Theorem but with rn replaced by hpnq and

with the hpnq many entries on the extreme ends of the anti-diagonal of dn being equal

to gpnq instead of 2´n. Then, this ρ is computable and mR (in fact, it is strong mR)

and fails a q-MLT at order δ.

4.6 Measurement randomness and q-MLR for prod-

uct states

Although Theorem 4.8 shows that mR and q-MLR are not equivalent in general, it is

interesting to investigate if these notions are indeed equivalent for certain special states.

Definition 4.15. A state ρ “ pρsqs is defined to be a product state if there is a 2m by

2m computable density matrix d such that for all n, ρnm “ b
n
s“1d.

Theorem 4.16. Measurement randomness is equivalent to q-MLR for product states.

We first prove some purely linear algebraic lemmas. We will use the block matrix

and block vector notation; capital letters will indicate that the block is a matrix and

not a scalar. For n ě 1, unit vector v P C2n will be called atomic if it is of the form

v “ bns“1vs for some complex algebraic unit vectors vs P C2. I.e., v P C2n is atomic if it

is a product tensor of n many complex algebraic unit vectors, vs P C2.

Lemma 4.17. If E is 2n by 2n and v:Ev “ 0 for all atomic v P C2n , then E is the zero

matrix.
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Proof. The proof is by induction. Suppose E is 2n`1 by 2n`1 and satisfies the hypotheses

of the lemma. Let

E “

»

—

–

A B

C D

fi

ffi

fl

,

where each block is 2n by 2n. Let X be an arbitrary 2n by 1, atomic column vector.

Then, if 0 represents the 2n by 1 zero column vector,
»

—

–

1

0

fi

ffi

fl

bX “

»

—

–

X

0

fi

ffi

fl

is atomic too. So,
„

X: 0



»

—

–

A B

C D

fi

ffi

fl

»

—

–

X

0

fi

ffi

fl

“ X:AX “ 0.

As X was an arbitrary atomic vector, A is the zero matrix by the induction hypothesis.

Similarly, D is the zero matrix. Note that
»

—

—

–

1
?

2
1
?

2

fi

ffi

ffi

fl

bX “
1
?

2

»

—

–

X

X

fi

ffi

fl

is atomic. So,

0 “
1
?

2

„

X: X:



E
1
?

2

»

—

–

X

X

fi

ffi

fl

“

„

X: X:



»

—

–

0 B{2

C{2 0

fi

ffi

fl

»

—

–

X

X

fi

ffi

fl

“
pX:BX `X:CXq

2
.

So, for all atomic X, X:pB ` CqX “ 0. By the induction hypothesis, B “ ´C.
»

—

–

i

2?
3

2

fi

ffi

fl

bX “

»

—

–

i

2
X

?
3

2
X

fi

ffi

fl

is atomic. So,

0 “

„

´i

2
X:

?
3

2
X:



E

»

—

–

i

2
X

?
3

2
X

fi

ffi

fl

“

„

´i

2
X:

?
3

2
X:



»

—

–

0 ´B

B 0

fi

ffi

fl

»

—

–

i

2
X

?
3

2
X

fi

ffi

fl

“
i
?

3

2
X:BX.
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So, for all atomic X, X:BX “ 0. By the induction hypothesis, B “ 0. This proves the

induction step. We omit the details of the base case (i.e., when n “ 1 and E is two by

two) as it can be proved similarly to the induction step.

Let In denote the 2n by 2n identity matrix.

Lemma 4.18. If E is a 2n by 2n Hermitian matrix such that v:Ev “ 2´n for all atomic

v P C2n , then E “ 2´nIn.

Proof. The proof is by induction. Suppose E is 2n`1 by 2n`1 and satisfies the hypotheses

of the lemma. Note that because the standard (computational) basis vectors are atomic,

E has 2´n´1 along the diagonal. Let

E “

»

—

–

A B

B: C

fi

ffi

fl

,

where each block is 2n by 2n. Let X be an arbitrary 2n by 1, atomic column vector.

Then, if 0 represents the 2n by 1 zero column vector,

»

—

–

1

0

fi

ffi

fl

bX “

»

—

–

X

0

fi

ffi

fl

is atomic too. So,

„

X: 0



»

—

–

A B

B: C

fi

ffi

fl

»

—

–

X

0

fi

ffi

fl

“ X:AX “ 2´n´1.

So, for an arbitrary atomic vector X ,

X:
p2AqX “ 2´n.
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Note that 2A “ 2A: (as E “ E:) and that 2A has 2´n along the diagonal. So, by the

induction hypothesis, 2A “ 2´nIn. Similarly, 2C “ 2´nIn.

»

—

—

–

1
?

2
1
?

2

fi

ffi

ffi

fl

bX “
1
?

2

»

—

–

X

X

fi

ffi

fl

is atomic. So,

2´n´1 “
1
?

2

„

X: X:



E
1
?

2

»

—

–

X

X

fi

ffi

fl

“

„

X: X:



»

—

–

2´n´2In B{2

B:{2 2´n´2In

fi

ffi

fl

»

—

–

X

X

fi

ffi

fl

“
pX:BX `X:B:Xq

2
` 2´n´1.

So, for all atomic X, RepX:BXq “ 0. Similarly, we show that ImpX:BXq “ 0 as

follows:

»

—

—

–

1
?

2
i
?

2

fi

ffi

ffi

fl

bX “
1
?

2

»

—

–

X

iX

fi

ffi

fl

is atomic. So,

2´n´1 “
1
?

2

„

X: ´iX:



E
1
?

2

»

—

–

X

iX

fi

ffi

fl

“

„

X: ´iX:



»

—

–

2´n´2In B{2

B:{2 2´n´2In

fi

ffi

fl

»

—

–

X

iX

fi

ffi

fl

“
ipX:BX ´X:B:Xq

2
` 2´n´1.

So, for all atomic X, X:BX “ 0. By Lemma 4.17, B is the zero matrix. This proves

the induction step. We omit the details of the base case (i.e., when n “ 1 and E is

Hermitian two by two) as it can be proved similarly to the induction step.

We now prove Theorem 4.16.
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Proof. By Theorem 4.6, it suffices to show that if a product state ρ is mR, then it is

q-MLR. Let state ρ “ pρsqs be a mR product state. So, there is a 2m by 2m computable

density matrix d such that for all n, ρnm “ b
n
s“1d. We show, using Lemma 4.18, that d

must be the 2´nIn, and hence that ρ is q-MLR. Suppose that there is an atomic v P C2n

and a p such that v:dv “ p ‰ 2´n (Note that p P r0, 1s as d is a density matrix).

So, v “ bns“1vs for some complex algebraic unit vectors vs P C2. For each s, let ws

be the unique complex algebraic unit vector such that vs and ws form a orthonormal

basis of C2. Define a measurement system by B “ ppbt0, b
t
1qq

8
t“1 where bt0 :“ vs and

bt1 :“ ws for t “ s (mod n). I.e., informally speaking, B consists of copies of v. As v

has ‘length’ equal to n, B repeats with period n. Consider dividing an infinite bitstring,

X into blocks of length n (I.e., the first block is Xp1qXp2q ¨ ¨ ¨Xpnq, the second block is

Xpn` 1qXpn` 2q ¨ ¨ ¨Xp2nq and so on). Given an X, let fXpsq “ the number of blocks

which are equal to 0n in the first sn many bits of X. By the strong law of large numbers,

for µρB- almost every X,

lim
sÑ8

fXpsq

s
“ p.

However, it is known that if X is MLR, then

lim
sÑ8

fXpsq

s
“ 2´n ‰ p.

So, µρBpMLRq “ 0 and so ρ is not mR. So, such v and p cannot exist and by Lemma

4.18, d “ 2´nIn.
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4.7 Conclusion

We constructed a computable, non-random qubitstring which almost surely yields a

arithmetic random bitstring when measured. Formally, we construct a computable,

non q-MLR state which yields an arithmetically random bitstring with probability one

when ‘measured’. Arithmetic randomness is a strong form of classical randomness,

strictly stronger than Martin-Löf randomness (See 6.8.4 in [21] for details on arithmetic

randomness). Our result hence provides further evidence for the philosophically and

practically important claim that ‘true’ randomness (as against pseudorandomness) [15]

can be extracted from certain quantum systems. While several schemes exist for gen-

erating a random bitstring from a quantum source [1, 3–5, 15, 25, 33], to the best of our

knowledge, none of these produce arithmetic randomness. It hence seems plausible that

our results may prove to be relevant to the construction of quantum random number

generators [15,23].

Abbott, Calude and Svozil have also studied bitstrings resulting from measuring a

quantum system [1, 3]. However, their notion of measurement is significantly different

from ours. In contrast to our work which considers measurement of an infinite sequence

of qubits, they studied the randomness of a sequence of bits generated by repeatedly

measuring a finite dimensional quantum system. They go on to apply this to quantum

random number generators and their certification [1–3,15].
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Chapter 5

Entropy and computable states

The von Neumann entropy of a density matrix is the Shannon entropy of the distri-

bution given by its eigenvalues [27]. In this chapter, we are concerned with the von

Neumann entropies of the initial segments of states. Recall from Definition 1.7 that

each finite initial segment τn of the tracial state τ is the maximally mixed state with a

(maximum possible) von-Neumann entropy equal to n. This suggests that computable

states whose initial segments’ total eigenmass of one is ‘evenly spread out’ over all the

eigenvalues are quantum Martin-Löf random (q-MLR). Heuristically speaking, since the

eigenvectors of the initial segments of computable states are computable and hence easy

to describe, the randomness of computable states cannot stem from the randomness of

the individual eigenvectors of the initial segments. Rather, their randomness should re-

sult from the eigenvalue mass of their initial segments being ‘uniformly spread out’ and

hence difficult to ‘capture’ using a quantum Martin-Löf test. The uniform spreading of

the eigenvalues should be reflected in an asymptotically high von-Neumann entropy of

the state (States having initial segments whose eigenvalues are evenly spread out have

a ‘high von-Neumann entropy’, where we use the quotes as the von Neumann entropy is

defined for density matrices and not for states. We describe below a way to make sense

of von Neumann entropy for states).

Motivated by this, we explore the asymptotic behavior of the von-Neumann entropy
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of the initial segments of computable states. Let Hpρnq be the von-Neumann entropy of

ρn. We show Theorems 5.4 and 5.2 which can be summarized as: For any computable ρ

Dc D8n Hpρnq ą n´ cñ ρ is q-MLR ñ Hpρq :“ limn
Hpρnq

n
“ 1.

Further, we provide an example to show that the first implication does not reverse.

It is easy to see that the second does not reverse too. So, these implications are strict.

Recall that weak Solovay randomness is equivalent to q-MLR for computable states

and hence all results here also hold for weak Solovay random states.

Definition 5.1. The von-Neumann entropy Hpρnq of a density matrix ρn on n qubits

is defined as: Let ρn have a orthonormal eigenbasis p|ψi
〉
qiď2n and corresponding eigen-

values pαiqiď2n . So,

ρn “
ÿ

iď2n

αi|ψ
i
〉〈
ψi|.

Since ρ is a density matrix, Trpρq “
ř

i αi “ 1. So, we can define:

Hpρnq “ ´
ÿ

iď2n

αilog2pαiq.

5.1 q-MLR implies maximum entropy per qubit.

Theorem 5.2 shows that, asymptotically speaking, computable q-MLR states have max-

imum von-Neumann entropy ‘per qubit’.

Theorem 5.2. If ρ “ pρnqn is a computable quantum Martin-Löf random state, then

Hpρq :“ liminfn
Hpρnq

n
“ 1.

In fact, noting that for all n
Hpρnq

n
ď 1 we have limsupn

Hpρnq

n
ď 1. So, the theorem

implies that limn
Hpρnq

n
exists and is 1.
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Proof. Proof sketch: Suppose towards a contradiction that Hpρq ă ε ă 1. This implies

that (see Lemma 5.3) there is a δ ą 0 such that for infinitely many n, there are 2nε

many eigenvalues α1, ...., α2nε of ρn with
ř

i αi ą δ. To prove this one argues as follows:

If no such δ existed, then one can bound the entropies of the ρns from below and show

that Hpρq ě ε. Then, the computability of ρ allows us to build a test which ρ fails at δ.

Details: Towards a contradiction, let ρ “ pρnqn be q-MLR with Hpρq ă ε ă 1. Let

ρn “
ÿ

iď2n

αni |ψ
n
i

〉〈
ψni |,

where, αn1 ě αn2 ě ¨ ¨ ¨ ě αn2n .

We begin with a lemma.

Lemma 5.3. For the above ε there is a δ ą 0 such that D8n

ÿ

iďr2nεs

αni ą δ.

The lemma says that a constant (δ) amount of eigenvalue ‘mass’ concentrates at the

first r2nεs many largest eigenvalues, infinitely often.

Proof. Suppose towards a contradiction that @δ DNδ such that,

n ą Nδ ñ
ÿ

iďr2nεs

αni ď δ.

Fix a δ ă 0.5 and a n ą Nδ. For this n, define the sequence prni qiď2n as follows: For

i ă r2nεs, let rni :“ αni . For r2nεs ď i ă I (I P ω will be defined shortly), let rni :“ αn
r2nεs.

For I ď i ď 2n, let rni :“ 0. Here, I is picked to ensure that

1´ αnr2nεs ď
ÿ

iďI

rni ď 1. (5.1)
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So, ri “ αi from 1 ď i ď r2nεs and ri is the constant αn
r2nεs from r2nεs ď i ă I where

I is the largest number so that the ri’s sum to less than 1. Why does such an I exist?

ř

iăt r
n
i increases by αn

r2nεs when t increases by 1, for t ą r2nεs. We can keep increasing t

and stop the first time
ř

iăt r
n
i ą 1. I.e., we find a I such that

ř

iďI r
n
i ă 1 ď

ř

iďI`1 r
n
i .

Since,
ř

iďI`1 r
n
i ´

ř

iďI r
n
i “ αn

r2nεs, the inequality 5.1 holds. Let Sn “
ř

i r
n
iď2n and we

drop the subscript of S.

Let pni :“ S´1rni . So, p “ ppni qiď2n is a probability distribution on 2n and dominates

priqi. Let Hppq be its Shannon entropy, which we now bound from below.

Hppq “ ´
ÿ

iăr2nεs

S´1αni logpS´1αni q ´
ÿ

r2nεsďiďI

S´1αnr2nεslogpS´1αnr2nεsq.

n ą Nδ implies that αn1 ă δ ă 0.5 and hence that for all i,

αni ď αn1 ă δ ă 0.5. (5.2)

Note that 0.5 ă 1´ δ, since δ ă 0.5. So,

0.5 ă 1´ δ ă 1´ αnr2nεs ď S ď 1. (5.3)

Putting 5.1, 5.2 and 5.3 together, for all i,

αni ď αn1 ă δ ă 1´ δ ă 1´ αnr2nεs ď S ď 1. (5.4)

So, logpS´1αni q ď 0 for all i. So, the first sum in the expression for Hppq is non-

negative. This gives,

Hppq ą ´
ÿ

r2nεsďiďI

S´1αnr2nεslogpS´1αnr2nεsq “ ´pI ´ r2nεsqS´1αnr2nεslogpS´1αnr2nεsq.
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Again, since logpS´1αn
r2nεsq ă 0, this sum is non-negative. So, we can ignore S´1 ě 1 to

get:

Hppq ą ´pI ´ r2nεsqαnr2nεslogpS´1αnr2nεsq. (5.5)

Now, by choice of n ą Nδ,

S “
ÿ

i

rni “
ÿ

iăr2nεs

αni ` pI ´ r2nεsqαnr2nεs ď δ ` pI ´ r2nεsqαnr2nεs.

So,

S ´ δ ď pI ´ r2nεsqαnr2nεs.

By the inequality 5.4,

1´ δ ď 1´ αnr2nεs ď S.

This gives,

1´ 2δ ď pI ´ r2nεsqαnr2nεs.

Since, ´logpS´1αn
r2nεsq ą 0, we can put 1´ 2δ in place of pI ´ r2nεsqαn

r2nεs in 5.5 to get:

Hppq ą ´p1´ 2δqlogpS´1αnr2nεsq. (5.6)

Further, note that αn
r2nεs ď δ2´nε. (If not, then, for all i ď r2nεs, αni ě αn

r2nεs ą δ2´nε.

This would give
ÿ

iďr2nεs

αni ą r2´nεs2´nεδ ě 2nε2´nεδ “ δ,

contradicting the choice of n ą Nδ). So, taking log on both sides:

logpαnr2nεsq ď logpδq ` logp2´nεq.

So,

´logpαnr2nεsq ě ´logpδq ` nε. (5.7)
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Using

´logpS´1αnr2nεsq “ logpSq ´ logpαnr2nεsq,

we can write inequality 5.6 as

Hppq ą p1´ 2δqrlogpSq ´ logpαnr2nεsqs. (5.8)

Note that α “ pαni qi and p “ ppni qi are both distributions on 2n with p dominating α

on the support of p (Since S ď 1, we have that pi ą 0 ñ pi “ S´1ri ě ri ě αi) and α

dominating p outside the support of p. So, by inequality 5.8, we have,

Hpρnq ą p1´ 2δqrlogpSq ´ logpαnr2nεsqs. (5.9)

Recalling that 1´ δ ă S ď 1 we have that logpSq ąlogp1´ δq. By this and 5.7,

Hpρnq ą p1´ 2δqrlogp1´ δq ´ logpαnr2nεsqs ě p1´ 2δqrlogp1´ δq ´ logpδq ` nεs. (5.10)

So,

Hpρnq

n
ą p1´ 2δq

„

logp1´ δq ´ logpδq ` nε

n



.

But this holds for any n ą Nδ and so we have this inequality holding for each n in a

sequence. So, using that liminf(xn ` ynq ě liminf(xn) + liminf (ynq we get:

Hpρq “ liminfn
Hpρnq

n
ą p1´ 2δq

„

liminfn
logp1´ δq ´ logpδq

n
` ε



“ p1´ 2δqε.

Recall that δ was arbitrary and so we have that for all δ, Hpρq ą p1 ´ 2δqε. By

assumption, Hpρq ă ε and so we can find a δ0 such that Hpρq ă p1 ´ 2δ0qε ă ε.

Contradiction.

Now, to get a contradiction, we build a q-MLT capturing ρ. Let δ be as in the

previous lemma and without loss of generality, let δ be rational. Fix an m; we describe
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the construction of Gm “ pGm
n qn.

Find an n such that both of the following hold:

•
ř

iďr2nεs α
n
i ą δ. (Infinitely many such n exist by the previous lemma.)

•
2nε ` 1

2n
ă 2´m. (This holds for almost every n since ε ă 1.)

Recall that ρ is computable and so the n can be found computably, uniformly in m.

Set

Gm
n :“

ÿ

iď2nε

|ψin
〉〈
ψin|.

For k ă n, Gm
k “ H and for k ą n, Gm

k “ Gm
n b Ik´n where I is the 2-by-2 identity.

Note that 2´nTrpGm
n q ă 2´m by the second condition on n. Hence, pGmqm is a q-MLT

and TrpρnG
m
n q ą δ by the first condition on n. So, ρ fails this test at δ.

5.2 A condition on entropy which implies q-MLR.

Theorem 5.4 gives a condition on the von-Neumann entropy of a state which implies

that it is q-MLR. The condition says that there is a fixed c such that ρ’s von-Neumann

entropy differs from that of the tracial state by at most c infinitely often. Recall that

the tracial state is q-MLR. So, it is quite natural to expect that this condition implies

q-MLR. Note that Theorem 5.4 holds for any state (not necessarily computable).

Theorem 5.4. Let ρ “ pρnqn be any state such that Dc D8n Hpρnq ą n´ c. Then, ρ is

q-MLR.

Before proving this, recall the following consequence of the singular value decompo-

sition (SVD).
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Theorem 5.5. Let A be a n by d matrix with singular vectors v1, v2, . . . vr and cor-

responding singular values σ1 ě σ2 ě ¨ ¨ ¨ ě σr. Let k ď r and w1, w2, . . . , wk be any

orthonormal set. Then,
ÿ

iďk

|Avi|
2
ě

ÿ

iďk

|Awi|
2.

For ρ “ ρn as above with eigenvalues (equal to the singular values since ρ is symmetric

and positive semidefinite) α1 ě α2 ě ¨ ¨ ¨ ě α2n , let

?
ρ “

ÿ

iď2n

?
αi|ψ

i
〉〈
ψi|.

Note that
?
ρ has eigenpairs (ψi,

?
αi) and is positive semidefinite and symmetric. So,

its eigenpairs are the same as its singular vector-singular value pairs. If k ď 2n and

w1, w2, . . . , wk is any orthonormal set, then since the first k singular vectors of
?
ρ are

ψ1, . . . , ψk, Theorem 5.5 gives:

ÿ

iďk

|
?
ρψi|

2
ě

ÿ

iďk

|
?
ρwi|

2. (5.11)

Let P be the orthogonal projection onto the subspace spanned by w1, w2, . . . , wk.

Since
?
ρ is self-adjoint,

〈
x|
?
ρy

〉
“

〈
p
?
ρq˚x|y

〉
“

〈?
ρx|y

〉
. So,

TrpρP q “
ÿ

iďk

Trpρ|wi
〉〈
wi|q “

ÿ

iďk

〈
wi|ρ|wi

〉
“

ÿ

iďk

〈?
ρwi|

?
ρwi

〉
“

ÿ

iďk

|
?
ρwi|

2.

Similarly, if G is the orthogonal projection onto the subspace spanned by ψ1, . . . , ψk,

then

TrpρGq “
ÿ

iďk

|
?
ρψi|

2.

So, by 5.11, for any rank k orthonormal projection, G, if P is the orthogonal projection

onto the subspace spanned by the first k singular vectors of ρ, ψ1, . . . , ψk, then

TrpρGq ď TrpρP q “
ÿ

iďk

Trpρ|ψi
〉〈
ψi|q “

ÿ

iďk

αi. (5.12)

Now we can prove Theorem 5.4.
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Proof. Proof sketch: Suppose for a contradiction that ρ fails a q-MLT pGmqm at δ. Fix an

m. As ρ fails pGmqm at δ we have that for a.e. n, the sum Sn of the first 2n´m many largest

eigenvalues of ρn exceeds δ. This implies that for a.e. n, Hpρnq ď 1´mSn`n ă 1´mδ`n

(to get this bound, we consider a distribution more ‘uniform’ than that induced by ρn and

use its entropy to bound Hpρnqq. Noting that m was arbitrary, we get a contradiction.

Proof details: For a contradiction, let ρ satisfy the condition but not be q-MLR. Fix a

q-MLT, pGmqm and a δ ą 0 such that ρpGmq ą δ for all m. I.e., @m for almost every

n, we have that TrpρnG
m
n q ą δ. Note that since rankpGm

n q ď 2n´m, Gm
n is a orthogonal

projection onto a subspace spanned by atmost 2n´m orthonormal vectors. So, by 5.12,

we have that for all m for a.e. n,

δ ă TrpρnG
m
n q ď

ÿ

iď2n´m

αni . (5.13)

For a fixed m take a Nm such that for all n ą Nm, 5.13 holds. For an n ą Nm, let

Sm,n “
ÿ

iď2n´m

αni .

Let prmn piqqiď2n be the distribution on 1, 2, ...., 2n defined by:

rpiq “ Sm,n2m´n if i ď 2n´m,

rpiq “
p1´ Sm,nq

2np1´ 2´mq
if 2n´m ă i ď 2n.

The distribution prmn piqqiď2n is uniform on each of the two intervals t1, ..., 2n´mu and

t2n´m ` 1, ...., 2nu. Its total mass on the first interval is Sm,n and that on the second is

1´Sm,n. It is obtained by first considering the total mass of pαnpiqqiď2n on each interval

and then by uniformly distributing the mass within each interval. The distribution of the

total mass between the 2 intervals is same for both prmn piqqiď2n and pαnpiqqiď2n . Within

each interval, prmn piqqiď2n is at least as uniform as pαnpiqqiď2n . So, by Exercise 2.18 on
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page 50 of the book by Thomas and Cover [18], we have that,

Hpρnq ď Hpprmn piqqiď2nq. (5.14)

Recall that this holds for @m and @n ą Nm. Let, prmn piqqiď2n be denoted by rmn . We now

bound Hprmn q from above to get a contradiction.

Hprmn q “ ´

„

2n´mpSm,n2m´nlogpSm,n2m´nqq`p2n´2n´mq
1´ Sm,n

2np1´ 2´mq
log

ˆ

1´ Sm,n
2np1´ 2´mq

˙

.

This simplifies to:

Hprmn q “ hpSm,nq ´mSm,n ` n` p1´ Sm,nqlogp1´ 2´mq.

where hpSm,nq “ ´Sm,nlogpSm,nq ´ p1 ´ Sm,nqlogp1 ´ Sm,nq is a positive real number

between 0 and 1 and so we can replace it by 1 to get an upper bound. Note that

p1´ Sm,nqlogp1´ 2´mq ă 0. So, we can drop it to get an upper bound,

Hprmn q ď 1´mSm,n ` n. (5.15)

By 5.14 and 5.15, we get that for all m and for all n ą Nm,

Hpρnq ď Hprmn q ď 1´mSm,n ` n. (5.16)

By assumption fix a c such that

D
8n,Hpρnq ě n´ c. (5.17)

Now, for all m, 5.16 holds for almost every n and 5.17 holds for infinitely many n. So,

for all m, 5.16 and 5.17 hold for infinitely many n. I.e.,

@mD8n, such that n´ c ď Hpρnq ď 1´mSm,n ` n.
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So,

@mD8n, such that ´ c ď 1´mSm,n.

So,

@mD8n, such that c ě ´1`mSm,n.

Noting that Sm,n ą δ for n ą Nm, we get that

@mD8n, such that c ě ´1`mSm,n ě ´1`mδ.

So, @m, c` 1 ě mδ. Contradiction.

Remark 5.6. Any state differing from the tracial state at only finitely many qubits clearly

satisfies the hypothesis of Theorem 5.4. We construct another one: Let f be any function

on p0, 1q satisfying

ż 1

0

fpsqds “ 1 and ´8 ă ´

ż 1

0

fpsq logpfpsqqds ă 8.

For example, let

fpxq “
2

xp1´ lnxq3
,

on p0, 1q where ln stands for the natural logarithm. Define a diagonal state ρ “ pρnqn as

follows. Fix n. For all σ P 2n let

ασ “

ż

rσs

fpsqds.

Here, rσs Ă p0, 1s is the open interval defined by the string σ.

ρn “
ÿ

σP2n

ασ|σ
〉〈
σ|.
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Note that ρ is coherent since ασ “ ασ1`ασ0 by definition and since
ş1

0
fpsqds “ 1. Now

we show that ρ satisfies the hypothesis of Theorem 5.4. For any n by definition of the

α’s, we have,

Hpρnq “ ´
ÿ

σP2n

ż

rσs

fpsqds log

ˆ
ż

rσs

fpsqds

˙

.

By the mean-value theorem and continuity of f , for all σ there is a xσ P rσs such that

ż

rσs

fpsqds “ 2´nfpxσq.

So

Hpρnq “ ´
ÿ

σP2n

2´nfpxσq logp2´nfpxσqq

“ ´
ÿ

σP2n

2´nfpxσqp´n` logpfpxσqqq

“ ´
ÿ

σP2n

2´nfpxσqlogpfpxσqq ` n
ÿ

σP2n

2´nfpxσq

“ ´
ÿ

σP2n

2´nfpxσqlogpfpxσqq ` n
ÿ

σP2n

ż

rσs

fpsqds

“ Riemann Sumr´fp.qlogpfp.qq,Mesh Size “ 2´ns ` n

ż 1

0

fpsqds.

So, as the last integral is equal to 1,

Hpρnq ´ n “ Riemann Sumr´fp.qlogpfp.qq,Mesh Size “ 2´ns.

But,´
ş1

0
fpsqlogpfpsqqds “ c, for some constant c. Since the Reimann Sum converges to

c, we have that Hpρnq ´ n “ Op1q as required.

We now give an example to show that Theorem 5.4 cannot be reversed. The con-

struction will be along the same lines as the preceding remark. Let f be any function

on p0, 1q satisfying:

ż 1

0

fpsqds “ 1 and ´

ż 1

0

fpsqlogpfpsqqds “ ´8.
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For example, let

fpxq “
1

xp1´ lnxq2

on p0, 1q. Define a diagonal state ρ “ pρnqn as follows. Fix n. For all σ P 2n let

ασ “

ż

rσs

fpsqds.

Here, rσs Ă p0, 1s is the open interval defined by the string σ. We let

ρn “
ÿ

σP2n

ασ|σ
〉〈
σ|.

Note that ρ is coherent since ασ “ ασ1 ` ασ0 by definition.

Lemma 5.7. ρ is q-MLR.

Proof. Let pGmqm be the universal q-MLT. Given a δ ą 0 we find an m such that

ρpGmq ă δ. Since f is in L1r0, 1s, by absolute continuity, find a m such that

ż

I

fpsqds ă δ,

for any interval I Ă p0, 1q, with |I| ď 2´m. We claim that this m works by showing that

for all n, TrpρnG
m
n q ă δ. Fix an n. Gm

n is an orthogonal projection with rank at most

2n´m. By using the consequence of the singular value decomposition,

TrpρnG
m
n q ă

ÿ

σPL

ασ “
ÿ

σPL

ż

rσs

fpsqds “

ż

E

fpsqds ă δ,

where L is the set of σ’s corresponding to the 2n´m largest singular values of ρn, which

are the ασ’s. I.e., L = tσ1, .....σ2n´mu if tασ1 , .....ασ2n´mu are the first 2n´m largest α’s.

E “
Ť

Lrσs is a interval. Since |L| “ 2n´m and |rσs| “ 2´n, we have that |E| “

2´n2n´m “ 2´m.
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Lemma 5.8. For all c ą 0, for almost every n, Hpρnq ´ n ă ´c. So, the condition of

Theorem 5.4 does not hold for ρ.

Proof. For any n, by definition of the α’s, we have,

Hpρnq “ ´
ÿ

σP2n

ż

rσs

fpsqds log

ˆ
ż

rσs

fpsqds

˙

.

By the mean-value theorem and continuity of f for all σ there is a xσ P rσs such that

ż

rσs

fpsqds “ 2´nfpxσq.

So,

Hpρnq “ ´
ÿ

σP2n

2´nfpxσqlogp2´nfpxσqq

“ ´
ÿ

σP2n

2´nfpxσqp´n` logpfpxσqqq

“ ´
ÿ

σP2n

2´nfpxσqlogpfpxσqq ` n
ÿ

σP2n

2´nfpxσq

“ ´
ÿ

σP2n

2´nfpxσqlogpfpxσqq ` n
ÿ

σP2n

ż

rσs

fpsqds

“ Riemann Sumr´fp.qlogpfp.q,Mesh Size “ 2´ns ` n

ż 1

0

fpsqds.

So, as the last integral is equal to 1,

Hpρnq ´ n “ Riemann Sumr´fp.qlogpfp.q,Mesh Size “ 2´ns.

But, ´
ş1

0
fpsqlogpfpsqqds “ ´8. So,

lim
nÑ8

Hpρnq ´ n “ lim
nÑ8

Riemann Sumr´fp.qlogpfp.q,Mesh Size “ 2´ns

“ ´

ż 1

0

fpsqlogpfpsqds “ ´8.

So, for all c P ω there is an N such that n ą N implies that Hpρnq ´ n ă ´c.

So, ρ is the required computable q-MLR.
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Chapter 6

Open questions

An important open question is whether weak Solovay random states have a Levin–Schnorr

characterization in terms of QK. Techniques similar to those used in Subsection 3.3.3

may prove to be useful in answering this.

It still remains to find a complexity based characterization of q-MLR states. In this

direction, Nies and Scholz found a partial Miller–Yu theorem concerning the quantum

descriptive complexity of q-MLR and weak Solovay random states [31]. One can ask

whether a Miller–Yu type result holds for q-MLR and/or weak Solovay random states

when using QK as a complexity measure.

An interesting question is whether weak Solovay randomness is equivalent to q-MLR,

a positive answer to which will yield a QK based characterizations (namely, those in

Theorems 3.11 and 3.13) of q-MLR.

Another interesting question is to find a von-Neumann entropy based characterization

of q-MLR for computable states. Chapter 5 contains partial results towards answering

this question.
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