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Abstract

In this dissertation, we present a number of results in the broad theory of word maps

on groups. Many of these results were done with a variety of coauthors. Using ideas

motivated by group theory we show how the structure of word maps on a group can

be used to obtain bounds on the order of the group. These bounds include statements

about the number of not-powers in a finite group and the number of not solutions to a

word map.

In addition, we present an algorithm and results about conditions that determine

when a group is chiral. We also present the smallest chiral groups and give a family

of chiral groups. Using the concept of weakly chiral as defined by Gordeev et. al., we

present a weakly chiral group that is not chiral. Moreover, we give a witness to the

chirality of the Mathieu group of order 7920.

We show how the probability distributions induced by word maps can be used to

verify the nilpotency of a finite group: a finite group is nilpotent if every surjective word

map is uniform. We also provide a few other novel characterizations of nilpotency for

finite groups.

For a fixed group, we present new bounds for the number of distinct word maps over

the group and show that these bounds are tight for infinitely many groups. We then

expand upon a theorem of Lubotsky dealing with the images of word maps in finite

simple groups. Finally, we briefly touch upon the connection between word maps and

character theory.
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Chapter 1

Introduction.

1.1 Introduction.

The title of this dissertation is “Idle Words: Word Maps on Finite Groups”. We will

assume that the reader is familiar with the concept of a group, but perhaps unfamiliar

with the study of word maps on groups. The present chapter provides an overview of

the author’s work in the area. The theorems presented have been chosen to convey not

only the breadth, but some of the depth of the theory. Within this chapter we will only

state the theorems, but proofs of all main results appear in the later chapters. The

theorems presented were all proven by the author, many times with various coauthors.

The original works containing the results are cited whenever applicable, although many

of the results are still in preparation; if however, the result includes a coauthor, then a

citation is given to acknowledge the collaborative effort. The other references are from a

variety of authors in the area of word maps. Currently, the study of word maps continues

to incorporate new areas of mathematics, so much so that many of the authors of the

works cited would be surprised to find their work included in a dissertation on word

maps. We hope the present work helps to enlarge the community of researchers engaged

in the study of word maps.

A word w is an element of the free group Fn〈x1, . . . , xn〉. We will say that w is an
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n-variable word, even when all of the xi do not appear in w [95]. The word w can also

be described in the following way, let Σ = {x1, . . . , xn}. We call Σ an alphabet. Words

over Σ consist of strings of elements of Σ together with their inverses [12]. We note that

there is a possibility of confusion regarding the potential difference between the words

x1 and x1x
−1
1 x1. One can restrict to studying only reduced words, but because we are

ultimately interested in the maps corresponding to the words, such semantic differences

are of no consequence. The author’s favorite way to define a word w is that w occurs

as an element of the algebra of terms in the language L = {1, ∗,−1 }, the language of

groups. An n-variable word occurs as an element in the algebra of terms restricted to

only using n variables [66].

Given a group G, not necessarily finite, and a word w ∈ Fn, there is a map, which

by abuse of notation we write as w from Gn to G defined by:

w : (g1, . . . , gn) −→ w(g1, . . . , gn).

That is w(g1, . . . , gn) is the evaluation of w replacing x1, . . . , xn with g1, . . . , gn. We

will write w(G) for the image of w in G. We will not assume that w(G) is closed under

inverses, in contrast to some other conventions. The reason for this distinction will be

made clear in Chapter 5. In general w(G) is not a subgroup of G. For example, there

are groups of order 96 such that for the word w = [x, y] = x−1y−1xy, the set w(G) is

not a group [34].

The first interest in words as maps is attributed to Ore with his observation that every

element of an alternating group occurs as a commutator [88]. Ore’s original observation

led to the Ore conjecture: given a finite nonabelian simple group G and g ∈ G, there

are a, b ∈ G such that g = [a, b] = a−1b−1ab, i.e., the image w(G) = G for the word
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w = [x, y]. The Ore conjecture was recently proven by Liebeck, O’Brien, Shalev, and

Tiep; their work utilized the connection between character tables and the image of the

commutator map, along with the classification of finite simple groups [67]. Various

generalizations of the Ore conjecture have been proven using different words w. Many

of these generalizations utilize character theory. We will discuss the connection between

words and character tables in Chapter 9.

The author’s own interest in word maps began with a question about the number of

elements of a finite group G that do not occur as a square in G, i.e., the subset G\w(G)

where w = x2. Surprisingly the case for x2 provides general insight for words of the form

xk. For any positive integer k let nk(G) be the number of elements of G that are not

k-th powers in G, i.e., if w = xk, then nk(G) = |G| − |w(G)|; we will also write Nk(G)

for G \ w(G). The author, together with Marty Isaacs and Dane Skabelund proved the

following theorem [18].

Theorem A. [18, Theorem B] Let G be a finite group, and write n = nk(G). If n > 0,

then |G| ≤ n(n + 1) and in fact |G| ≤ n2, except in the case where G is a Frobenius

group with kernel of order n + 1 and Nk(G) is the set of nonidentity elements of the

Frobenius kernel.

Surprisingly the bound in Theorem A is entirely independent of k. A slightly looser

bound was given previously by Bannai et al. [4] and by Lévai and Pyber [64]. More

recently, Lucido and Pournaki [70, 71] investigated the proportion of elements of G that

are squares, and provided another proof that n2(G) ≥ b
√
Gc. Moreover, the finiteness

in Theorem A can be relaxed to other finite-like conditions. For example, if the group

G is residually finite and the number of not k-th powers in G is a positive integer, then
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G is actually finite. However, independent constructions of Pálfy and Ivanov produce

an infinite group with exactly p − 1 not p-th powers [51]. In Chapter 3 we will prove

Theorem A and some interesting results about the sequence of not powers of a group.

We next turn to related questions about the word w as a map from Gn to G.

For any word the size of w(G) does not bound the order of G, but for words of the

form w = xk, we have that |G \ w(G)| can bound the size of G. A “dual” question of

sorts relates

|{(g1, . . . , gn) ∈ Gn : w(g1, . . . , gn) 6= 1}|

and |G|. The author and Sara Jensen showed the following. [19].

Theorem B. [19, Theorem A] Let G be a group, and let w be a word. Let

k = |{(g1, . . . , gn) : w(g1, . . . , gn) 6= 1}|.

If k > 0, then |G| ≤ 2k2. Moreover, if n > 1, then |G| ≤ k2. In particular if k is finite,

then G is finite.

As before, the bound in Theorem B is sharp. Moreover, unlike Theorem A the bound

in Theorem B holds for all groups G. Along with the proof of Theorem B, Chapter 4

will contain a discussion about the differences between Theorem A and Theorem B;

namely why does one bound require some finiteness property while the other does not.

Regardless, both theorems are related by the following idea. Choose any property P

of a group element x that somehow “propagates” through the centralizer of x. Then

the number of elements of G that satisfy property P can be used to bound the order of

a group G. As another example, we will mention the work of the author and Geetha

Venkataraman wherein we show that the number of elements of maximal order in a

group can be used to bound the order of the group [21].
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Motivated by the connection between word maps and first-order properties of a group,

the author asked the following vague question: “In what ways can a group distinguish

between g and g−1?” While inversion is not in general an automorphism of a group G,

is it the case that there could be an “orientation” to the set {g, g−1} for a given group

G and g ∈ G? In particular, the author and “Turbo” Ho Meng-che defined the following

property.

Definition 1.1. A group G is chiral is there is a word w and an element g ∈ G such

that g ∈ w(G) and g−1 /∈ w(G). We will call (G,w) a chiral pair. If G is not chiral, then

we say that G is achiral.

We found families of chiral groups. Our main results about chirality include the

following two theorems.

Theorem C. [16, Theorem A] The only chiral groups with order less than 108 are

SmallGroups (63, 1) and (80, 3).

Theorem D. [16, Theorem C] The free nilpotent group of class ≥ 3 is chiral and the

free nilpotent group of rank 3 and class 2 is achiral.

Gordeev, Kunyavskĭı, and Plotkin extend the concept of chiral to weakly chiral in

[30]. In Chapter 5 we prove Theorems C and D as well as provide some explicit examples

motivated by questions of Gordeev et. al. It should be noted that Ashurst independently

formulated some questions about chirality in her dissertation, although she gave no

examples of chiral or weakly chiral groups [3].

We will also look at how word maps can be used to define various classes of groups.

In general the collection of groups defined by the vanishing of certain words is called a
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variety [84]. We want to examine some other ways that word maps can characterize a

group, in particular how the probability function associated to a word can be used to

derive information about the group. Formally, let w be a word. If G is finite then the

word map w induces a probability distribution on G where

µw,G(g) =
|{(g ∈ Gn : w(g) = g}|

|G|n
.

Often information about G can be obtained from the function µw,G, or from the

collection of functions µw,G as w varies. For example, as a combination of results by

Abért [1] and Nikolov and Segal [87], a finite group is solvable if and only if there is

some ε > 0 so that for all words w we have µw,G(1) ≥ ε.

Restricting to words on 2 variables we have the following. For w ∈ F2 and a group

G we can define a structure (G, ∗w) where G is the set G and ∗w is the binary operation

x ∗w y = w(x, y). In general, we do not expect the structure (G, ∗w) to have interesting

mathematical properties. However, let P be the set of all words in F2 for which the

total number of times x and y each appear up to multiplicity is ±1. For example xy

and x−1yx2 are both in P . Then P can be described using nilpotent groups, i.e., w ∈ P

if and only if (G, ∗w) is a quasigroup for every nilpotent group G. Moreover, we can

describe finite nilpotent groups using P as follows.

Theorem E. [13, Theorem C] A finite group G is nilpotent if and only if for all w in

P with length less than 4|G|, we have µG,w(1) = 1
|G| .

It turns out that the set P can be defined using nilpotent groups in a similar manner.

In our proof of Theorem E we will utilize the following novel result of the author’s which

has interest independent of the study of word maps.
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Theorem F. [13, Theorem A] Let G be a finite group and p a prime. Then G is not

p-nilpotent if and only if there are two elements g, h ∈ G with o(g) = o(h) = qk for some

prime q 6= p and o(gh) = p or possibly 4 when p = 2.

A generalization of Theorem E appeared in [17] and we include it here.

Theorem G. [17, Theorem B] Let G be a finite group. Then G is nilpotent if and only

if for every surjective word map w, the distribution µG,w is uniform.

Theorems E, F, and G appear in Chapter 6. We also discuss an interesting avenue

of research in the broad category of word maps undertaken by Bastos and Shumyatsky

regarding the nilpotency of the commutator subgroup [6].

We now turn to consider the collection of all n-variable word maps on a group G.

The collection of word maps on n variables on a group G defines a group where

(v · w)(g1, . . . , gn) = v(g1, . . . , gn) · w(g1, . . . , gn).

We will write the set of all word maps from G(n) to G as Fn(G). It is not hard to see

that Fn(G) is a group under the action of point-wise multiplication. As noted in [16],

for a finite group G, the group Fn(G) can be explicitly computed.

In their work, Amit and Vishne [2] define Fn(G) as follows: Let

K(G) =
⋂

α:Fn→G

ker(α).

Then Fn(G) is the quotient Fn/K(G). The two formulations of Fn(G) are equivalent.

The group Fn(G) is also the rank n free group in the variety generated by G [84], and

is called the reduced free group on d variables of G.
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To familiarize the reader with word maps, we now discuss the example of the two-

variable word maps and probability distributions on the quaternion group G = Q8.

There are 32 two-variable word maps on G; this means that there are 32 maps

fi : G×G 7→ G, i ∈ {1, . . . , 32}

such that for any element w ∈ F2, the map

w : G×G 7→ G,

is in {fi : 1 ≤ i ≤ 32}; equivalently, the order of F2(G) is 32. The following set of 32

words give the 32 distinct word maps:

{w = xiyj[x, y]k : i, j ∈ {1, . . . , 4}, k ∈ {0, 1}.}

Any of the word maps fi can be induced by multiple elements of F2, i.e., every word

determines a word map, but for every word map there are multiple words corresponding

to it. Consider, for example, the following two words x4 and 1 (the empty word). Over

any 2-tuple (g, h) ∈ G × G, these maps evaluate to g4 and 1. Since G has exponent 4,

we conclude that the word maps x4 and 1 are equal, that is to say that the words induce

the same map.

Fix 32 words w1, . . . , w32 ∈ F2 such that the word map of each wi is fi. While each

wi induces a unique word map, the probability distributions µG,wi
are not distinct. In

fact there are only 4 distinct probability distributions induced by the wi. In Table 1,

we give the four distributions, µ1, . . . , µ4 over G, where the µi row and the gj-column

intersect to give µi(gj).

We will now examine certain computational questions regarding word maps in finite

groups. Many of the theorems above were motivated by computations. Some of our early
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Table 1: The Probability Distributions of Word Maps of Q8.
g1 g2 g3 g4 g5 g6 g7 g8

µ1 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8
µ2 1 0 0 0 0 0 0 0
µ3 5/8 3/8 0 0 0 0 0 0
µ4 1/4 3/4 0 0 0 0 0 0

computations involving word maps failed simply because the number of word maps for a

finite group G, even when G has relatively small order, can be quite large. For example,

when G is the group of affine transformations of the field with 5 elements, the order of

G is 20, but

|F2(G)| = 12207031250000.

An even more extreme example occurs when G is the alternating group on 5 symbols,

i.e., G = A5. We will prove that

|F2(A5)| = 4738381338321616896000000000000000000000000.

The next few theorems verify these numbers and demonstrate a remarkable bound on

Fn(G).

Theorem H. Let G be a finite group with exponent e. Let Ω be a set of orbit repre-

sentatives of the diagonal action of Aut(G) on the set of n-tuples (g1, . . . , gn) of G such

that 〈g1, . . . , gn〉 is not abelian. Then

|Fn(G)| ≤ en
∏

(x1,...,xn)∈Ω

|〈x1, . . . , xn〉′|.

We will show that the bound in Theorem H is sharp. In particular we have the

following theorem.
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Theorem I. Let Cp be the cyclic group of order p, where p is prime. Let G = Cp o

Aut(Cp) then

|F2(G)| = (p− 1)2p2+p(p−2),

and

F2(G)′ = (Cp)
p(p−2) .

We can also show via computation that Theorem H is sharp for the group A5.

Theorem J. Let G = A5. Then

|F2(G)| = 3023344536019

and

F2(G)′ = (C3)3 × (K4)4 × (C5)3 × (A5)19

As a corollary to Theorem J we see something very interesting about word maps over

A5, namely that for any subset A of A5 that is closed under automorphisms of A5 and

contains 1, there is a commutator word w with w(A5) = A. Lubotzky showed that for

any simple group G and subset A of G closed under automorphisms and containing 1,

there is a word w such that w(G) = A [69]. The author and Turbo Ho observed the

following improvement.

Theorem K. [15] Let G be a finite simple group, n > 1, and A ⊆ G such that A is

closed under automorphisms and 1 ∈ A. Assume that v ∈ Fn is not a law on G. Then

there is a word w ∈ 〈v(Fn)〉 such that A = w(G).

While Theorem K is effective, it is not efficient. However, in certain circumstances

we can find relatively short words.
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We conclude by mentioning some other results connecting word maps and character

theory. These results are largely observations that came from a database of finite groups

with the same character table. The author together with Steve Goldstein and Michael

Stemper constructed the database using a large distributed computing network. The

following is included among our results.

Theorem L. [14] Let w be the word x2. There are finite groups G and H of order 64

such that G and H have the same character table, but |w(G)| 6= |w(H)|.

It should be noted that in contrast to Theorem L it is well-known that for two

groups G and H with the same character table with w = x2y2 then |w(G)| = |w(H)|.

This means that for the word w = x2 the character table of G can determine the

characteristic subgroup 〈w(G)〉, but not the subset x2. Squares here are interesting, in

that the character table of a group G cannot determine 〈w(G)〉 for w = xp for any prime

p > 2.

1.2 Outline.

The dissertation is divided into a number of chapters. Most chapters can be read inde-

pendently of the rest, although Chapters 3 and 4 are best read together. The preliminary

results in Chapter 2 will be used throughout the dissertation, but can be referenced if

needed. The rest of the dissertation proceeds as follows:

Chapter 2 contains many results that will be utilized throughout the dissertation.

This Chapter concludes with a negative answer to a question of Amit and Vishne [2].

Results about the not images of a word map are explored in Chapter 3. Chapter

4 contains the proof of Theorem B, which deals with the number of not solutions to a
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word map. At the end of Chapter 4 we discuss the differences between Theorems A and

B.

Chapter 5 presents some of the author’s work on chirality; in particular the existence

of families of chiral groups is noted and Theorems C and D are proved. As Theorem

C is based on a computation, the relevant code can be found in Appendix A. Within

this chapter, we present a word that witnesses the chirality of the Mathieu group M11.

There is also an example of a weakly chiral group, answering a question of Gordeev et.

al. [30].

In Chapter 6 we examine some of the author’s characterizations of nilpotent groups

including Theorems E, F, and G.

Chapter 7 contains work on the free groups in the varieties generated by a finite

group and contains proofs of Theorems H, I, and J.

In Chapter 8 we review some of the work done on word maps in finite simple groups

and prove Theorem K.

Chapter 9 focuses on the connections between character tables and word maps in

finite groups. We prove Theorem L and mention some other observations from our

database of small groups with the same character table.

The dissertation concludes in Chapter 10, which includes some open questions and

directions for the study of word maps on finite groups.
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Chapter 2

The Study of Word Maps.

In general the study of word maps in groups has focused on three areas which we broadly

classify as

(1) Results about specific words, e.g., the commutator word w = [x, y] = x−1y−1xy.

(2) Results about certain families of groups, e.g., varieties of groups, finite simple

groups.

(3) Asymptotic results, e.g., length of laws, diameter of Cayley graphs, growth, etc.

We note that the categories above are not all inclusive, nor are they mutually dis-

joint. The present dissertation deals primarily with results about abstract words in finite

groups. However, many of our results can be placed in one or more of the categories

above. We recommend [95] as a general reference for asymptotic results and Shalev [96]

for a survey on progress regarding finite simple groups.

The results of this chapter will be used repeated throughout the dissertation. We

will first show that all word maps are essentially power maps times some element of the

commutator subgroup.

Lemma 2.1. Let w ∈ Fn. Then for some integers e1, . . . , en and a suitably chosen

c ∈ F′n we can write

w = xe11 . . . xenn · c.
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Proof. Similar to the proof of Dietzmann’s theorem in Isaacs [48, Theorem 5.10] we will

collect copies of x1 towards the front of w. Suppose that w = ux1v for some words u

and v where we assume that x1 only appears in u as part of a commutator. Then

w = xuu−1x−1uvx = xu[u, x]v.

Iterating this processes we can write w = xe11 v where all copies of x1 in v occur inside

commutators. Continuing in this manner we can write w in the prescribed form.

We note that the numbers e1, . . . , en in the above theorem are unique, since the total

number of times a variable can appear up to multiplicity is an invariant of w. We will

call the total number of times a variable x appears in w the total degree of x and will

write this as Totx(w). Define the weight of w ∈ Fn to be

weight(w) = (Totx1(w),Totx2(w), . . . ,Totxn(x)).

Hence the ei in the above lemma are exactly the values of Totxi(w).

Since the weight of a word is invariant, we have the following corollary to the above

lemma:

Corollary 2.2. Let w ∈ Fn. Then w is in F′n if and only if weight(w) = (0, 0, . . . , 0).

Recall the following well-known theorem about Aut(Fn).

Theorem 2.3. [85] The group Aut(Fn) is generated by the following types of automor-

phisms where one changes a word w to a word w̃ as described below:

(1) Switch the variables xi and xj.

(2) Replace xi with x−1
i .
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(3) Replace xi with xixj.

A proof of the above theorem can be found in Lyndon and Schupp [73], although

their argument is more modern than Nielsen’s original argument.

We can now prove that any word is equivalent up to automorphism to a power word

times an element of the commutator subgroup.

Lemma 2.4. Let w ∈ Fn. Write w = xe11 . . . xenn · c where c is in F′n. Then there is an

automorphism σ of (Fn) such that σ(w) = xd1·c′ where c′ is in F′n and d = gcd(e1, . . . , en).

Proof. There is a Nielsen transformation taking w(x1, . . . , xn) to w(x1xi, . . . , xn). Such

a transformation changes the weight of w as follows.

weight(w(x1, . . . , xn)) = (a1, . . . , an)→ weight(w(x1xi, . . . , xn) = (a1 + ai, a2, . . . , an).

Swapping variables will naturally swap their place in the Nielsen transformation as well.

Hence by applying the appropriate Nielsen transformations we can run the Euclidean

algorithm on the weight of w until we arrive at a word v with weight(v) = (d, 0, 0, . . . , 0).

The combination of the transformations gives us a σ ∈ Aut(Fn) such that σ(w) = xd1c
′

where c′ is in F′n.

Corollary 2.5. Let G be a finite group and suppose that (|G|, p) = 1. Then for w = xp

we have that w(G) = G.

Lemma 2.6. Let Fn be the free group on the symbols x1, . . . , xn and let w ∈ Fn be a

word. Let σ ∈ Aut(Fn) and u = σ(w). Then for any group G, w(G) = u(G).

Proof. The elementary Nielsen transformations do not change the image of a word map

in a group.
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Recall that K(G) is the set of all words in Fn that are laws on G, i.e., that as maps

evaluate to the identity for any n-tuple of elements of G. More precisely

K(G) =
⋂

α:Fn→G

ker(α).

We now present the following lemma, which has some surprisingly powerful applica-

tions.

Lemma 2.7. Let w ∈ Fn and let G be a group. Suppose that σ is an automorphism of

Fn. Let

σ(w) = w′ = xd1c, where c ∈ F′n.

Then w ∈ K(G) if and only if xd1 ∈ K(G) and c ∈ K(G).

Proof. Clearly, if xd1 and c are both in K(G) then w′ and w are too. Suppose that

w′ ∈ K(G). Then as a map w′(g1, . . . , gn) = 1 for all g1, . . . , gn ∈ G. So w′(g, 1, . . . , 1) =

gd = 1 for all g ∈ G, i.e., xd1 ∈ K(G). Equivalently, x−d1 ∈ K(G) and we see that

c ∈ K(G) as well.

Corollary 2.8. Let G be a group with finite exponent. Let w = xe11 . . . xnn
n c, where c

is in F′n. Then the word map w is in Fn(G)′ if and only if the exponent of G divides

gcd(e1, . . . , en).

As another corollary to Lemma 7.1 we can answer a question of Amit and Vishne in

the negative. Regarding the probability distributions of word maps, Amit and Vishne

asked the following two questions. Let NG,w(g) = |{(g ∈ Gn : w(g) = g}|. Their Nw,G(g)

is simply the counting version of our µw,G, the probability distribution on G induced by

w. Thus, Nw,G = Nw′,G if and only if µw,G = µw′,G and w and w′ have the same number

of variables. Amit and Vishne asked [2]:
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Question 2.9. Suppose Nw,G = Nw′,G for every finite group G. Does it follow that w′

is mapped to w by some automorphism of Fn?

Question 2.10. Suppose Nw,G = Nw′,G for a fixed group G. Does it follow that w can

be mapped by an automorphism of Fn to some w′′, such that w′′ is equivalent to w′

modulo K(G), i.e., such that w′′ induces the same word map as w′.

We will answer Question 2.10 in the negative in Example 2.11 below. A work by

Puder and Parzanchevski has shown that in certain situations Question 2.9 is true: if

Nw,G and Nw′,G are uniform for all groups G, then there is some automorphism of Fn

taking w′ to w [93]. It is unknown whether Question 2.9 holds in general. The following

example is the answer in the negative to Question 2.10 of Amit and Vishne:

Example 2.11. [17, Example 5] There are word maps w and v over G = S3, the

symmetric group on 3 symbols, that induce the same probability distribution onG but no

automorphism of F2(S3) maps w to v. Consider the words w = x2 and v = [x, yx2y2] as

elements of F2. The corresponding word maps induce the same probability distribution

on G.

We will write w and v for the word maps on G associated to w and v respectively.

Suppose, by way of contradiction, that there were such an automorphism σ of F2, such

that σ(w) = v. Hence, x2 = σ−1(v). Equivalently, the word x2σ−1(v−1) is a law on G.

So on G, the word x2c would be a law for some c ∈ F′2. By Lemma 7.1 the word x2

would be a law of G, a contradiction.

Even restricting to nilpotent groups, the author and Turbo Ho have found that there

are 5 automorphism classes of word maps in F2(Q8), but only 4 probability distributions

over Q8. Hence it must be the case that there are two word maps w and v over Q8 that
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induce the same probability distribution, such that no element of Aut(F2) maps w to v,

where w and v are the images of w and v in F2(Q8).

We conclude this chapter by noting some elementary observations.

Lemma 2.12. Let G be a group and let w ∈ Fn. Then for H ≤ G we have that

w(H) ≤ H.

Lemma 2.13. Let G be a group and w ∈ Fn. The set w(G) is a union of conjugacy

classes of G.

The following theorem will be used in a few places. It was a conjecture of Frobenius

and proven by Iliyori and Yamaki using the classification of finite simple groups [46].

We will refer to it in the text as the Frobenius solution theorem.

Theorem 2.14 (Frobenius). Let G be a finite group and let X(d) = {x ∈ G : xd = 1}.

If |X(d)| = d then X is a normal subgroup of G.

A weaker, but more natural version of Frobenius’s theorem will suffice in many cases.

Lemma 2.15. If m divides |G|, then m divides

|{x ∈ G : xm = 1}|.

A nice, self-contained proof can be found in a note by Isaacs and Robinson [50].
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Chapter 3

The Not Images of Power Maps.

3.1 Power maps on groups.

The simplest words to investigate are those contained in F1. These words look like xk for

some integer k. We will call the words xk power words and refer to the induced map from

G to G as a power map. For the power word w = xk we will write nk(G) = |G| \ |w(G)|

and Nk(G) = G \ w(G).

Many mathematicians have looked at power maps on a finite group. Miller [79]

showed that the map w = x2 is a law on a group G if at least 3
4
|G| elements in G are

solutions to it, i.e., if µw,G(1) ≥ 3
4

then µw,G(1) = 1.

Recall Theorem A, restated below.

Theorem A. [18, Theorem B] Let G be a finite group, and write n = nk(G). If n > 0,

then |G| ≤ n(n + 1) and in fact |G| ≤ n2, except in the case where G is a Frobenius

group with kernel of order n + 1 and Nk(G) is the set of nonidentity elements of the

Frobenius kernel.

We will show that the bound in Theorem A is strict.

As mentioned in Chapter 1, Lucido and Pournaki [70, 71] investigated the proportion

of elements of a finite group G that are squares. They showed that n2(G) ≥ b
√
Gc and

noted that unless G is one of the exceptional groups in Theorem A then |G| ≤ n2(G)2
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is tight as exhibited by the cyclic group of order 4. After proving Theorem A, we will

show that this example is unique, i.e., that if G is a finite group and n = nk(G), then

|G| = n2 if and only if G is the cyclic group of order 4. We will also show that Theorem

A can be improved in the case that k is assumed to be odd.

Prior to Luicido and Pournaki, Bannai et al. [4] proved that nk(G) ≥ b
√
Gc using the

classification of finite simple groups. Lévai and Pyber [64] later produced a classification-

free proof of that result. The proof we present is elementary.

The chapter proceeds as follows. In section 3.2 we prove Theorem A. In section 3.3

we present some interesting refinements of Theorem A. Then we briefly recall the case

for infinite groups in section 3.4. Finally we conclude in section 3.5 with a result of the

author and Sara Jensen about what the sequence of not powers tells us about a group

G.

We now proceed with our proof of Theorem A.

3.2 Proof of Theorem A.

We will first prove Theorem A in the case where k is a prime number. We will then

show how the general case reduces to this case. Recall that for a prime p, an element g

of a group is called p-regular if o(g) is finite and not divisible by p; if o(g) is finite and

divisible by p we say that p is p-singular. Variations of all the theorems in this section

can be found in [18, Section 2].

We have the following observation.

Lemma 3.1. Let x ∈ G, and let p be a prime. Let w = xp. Then x /∈ w(G) if and

only if x is not p-regular and the cyclic group 〈x〉 does not have index p in any cyclic
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subgroup of G.

Proof. All p-regular elements are p-th powers, since w(G) = G by Corollary 2.5. If

x has infinite order and the cyclic group 〈x〉 has index p in the cyclic group Y , then

x ∈ 〈x〉 = Y p, a contradiction to x /∈ w(G).

The next lemma is rather surprising. It states that the number of not images of the

word xk decreases when the map is restricted to subgroups.

Lemma 3.2. Let G be a finite group and let H ≤ G. Let w = xp. Then np(H) ≤ np(G).

Proof. We will write w for the map G → G defined by w and wH for the map H → H

defined by w. We note the following

np(G) = |G| \ w(G)

=
∑

x∈w(G)

(
|w−1(x)| − 1

)
≥

∑
x∈wH(H)

(
|w−1(x)| − 1

)
≥

∑
x∈wH(H)

(
|w−1

H (x)| − 1
)

= np(H).

The first inequality holds because each summand is nonnegative.

Lemma 3.3. Let G be finite, and suppose that p divides |Z(G)|, where p is prime. Then

|G| ≤ 2np(G).

Proof. Let Z ⊆ Z(G) with |Z| = p. Since all elements in each coset of Z in G have the

same pth power, it follows that |w(G)| is at most the number of cosets which is |G|/p.
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Then

np(G) = |G| − |Gp| ≥ |G| − |G|
p

=
p− 1

p
|G| ≥ |G|

2
.

We will use the following characterization of Frobenius groups to establish when the

bound in Theorem A is obtained.

Theorem 3.4. [48, Theorem 6.4] Let N be a normal subgroup of a finite group G, and

suppose that A is a complement for N in G. The following are equivalent.

(1) The conjugation action of A on N is fixed point free.

(2) A ∩ Ag = 1 for all g ∈ G \ A.

(3) CG(a) ≤ A for all nonidentity elements a ∈ A.

(4) CG(n) ≤ N for all nonidentity elements n ∈ N .

When a group G has a normal subgroup N with complement A such that the con-

jugation action of A on N is fixed point free, we say G is a Frobenius group and call N

the Frobenius kernel of G.

We can now prove a variant of Theorem A when k is prime.

Theorem 3.5. Let G be a finite group and let p be a prime. Write n = np(G). If n > 0,

then |G| ≤ n(n + 1) and in fact |G| ≤ n2, except in the case where G is a Frobenius

group with kernel of order n + 1 and Nk(G) is the set of nonidentity elements of the

Frobenius kernel.

Proof. Since w(G) is a union of conjugacy classes, so is G\w(G). Suppose that G\w(G)

is not a single conjugacy class; then some class contained in it has size at most n
2
. Let
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x be a member of this class, and write C = CG(x), so |G : C| ≤ n
2
. Since x ∈ G \w(G),

we see that x is p-singular and thus p divides |Z(C)|. Hence |C| ≤ 2np(C) by Lemma

3.3. By Lemma 3.2 we know that np(C) ≤ n. We thus have

|G| = |C||xG| ≤ 2n|xG| ≤ n2.

Now suppose that G \ w(G) is a single class xG. We know that x is p-singular. Let

A be a cyclic p-subgroup of G having largest possible order. Then 1 < A and each

generator of A has order equal to |A| > 1. Moreover, A does not have index p in a larger

cyclic subgroup. Therefore the generators of A are in G \ w(G). Moreover, the order of

x is |A|.

Suppose that |A| > p. Then the pth powers of elements of xG form a conjugacy class

(xp)G with elements having order divisible by p. Moreover, the map xG → (xp)G is not

injective, so |(xp)G| < n. Write C = CG(xp). Then |G : C| < n, and since CG(x) ≤ C

it follows that |G : C| divides |G : CG(x)| = n. Therefore, |G : C| ≤ n
2
. As before

xp ∈ Z(C) and thus p divides the order of Z(C). We can apply Lemmas 3.2 and 3.3 to

obtain

|G| = |(xp)G||G : C| ≤ n

2
2n = n2.

We can now assume that G \w(G) is a single conjugacy class xG and that o(x) is p.

Let y be a p-singular element of G and let B be maximal among cyclic subgroups of G

containing y. Then B does not have index p in a larger cyclic subgroup, and p divides

|B|. Therefore, the generators of B are in G \ w(G). Hence, it must be the case that

|B| = p. So G \ w(G) is exactly the set of p-singular elements of G; moreover, all such

elements have order exactly p.

We note that all elements of C = CG(x) must have order p or 1. Otherwise, we could
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generate a p-singular element with order greater than p. Hence all nonidentity elements

of C have order p and are thus contained in G \ w(G). It follows that |C| ≤ n + 1. If

the inequality is strict, then |G| = |xG||C| ≤ n2. We can now assume that |C| = n + 1,

so |G| = n(n + 1). In this case C = {1} ∪ (G \ w(G)), so C C G, and thus C = CG(y)

for all y ∈ xG. Thus G is a Frobenius group with kernel C.

Many of the inequalities we used above can be tightened, and the object of section

3.3 is to demonstrate some refinements of Theorem A that are obtained by examining

the inequalities in greater detail.

The next lemma will be used to show how the general case of Theorem A follows

from Theorem 3.5.

Lemma 3.6. Let G be a group, and suppose that 0 < nk(G) <∞. Then there exists a

prime p dividing k such that 0 < np(G) ≤ nk(G).

Proof. We proceed by induction on k. Since nk(G) > 0, some element of G is not a kth

power, and thus k > 1. If k is prime, there is nothing to prove, so assume that k = ab,

where a > 1 and b > 1, and thus a < k and b < k. Now write w = xk, v = xa, u = xb. So

w(G) ⊆ u(G) ∩ v(G), so na(G), nb(G) ≤ nk(G). We note that na(G) and nb(G) cannot

both be 0, i.e., we cannot have u(G) = v(G) = G, because if u(G) = v(G) = G then

the map w(G) = v(u(G)) = G, a contradiction. So one of na(G) or nb(G) ≤ nk(G). By

induction there is some prime p with 0 < np(G) ≤ nk(G).

We now prove Theorem A.

Proof. Proof of Theorem A. From the lemma above, we can choose a prime p dividing

k such that 0 < np(G) ≤ n. By Theorem 3.5 we have that |G| ≤ np(G)(np(G) + 1) so
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if np(G) < n, then |G| < n2. Assume now that np(G) = n. Let w = xk and let

u = xp. Since p divides k we have that w(G) ⊆ u(G), and since np(G) = n we see

that w(G) = u(G). Hence |G| ≤ n(n + 1) by Theorem 3.5, and in fact |G| ≤ n2 unless

|G| = n(n+ 1), in which case G is a Frobenius group and G \w(G) is exactly the set of

nonidentity elements of the Frobenius kernel.

3.3 Some refinements of Theorem A.

As mentioned in section 3.2, the inequalities used to prove Theorem A can often be

sharpened if G has certain nice structural properties. In this section we examine some

of refinements of Theorem A. For convenience we will write Np(G) = G \ w(G), where

w is xp.

It was noted in the work of Lucido and Pournaki [71] that if G is not one of the

exceptional cases to Theorem A, then the bound |G| ≤ n2(G)2 is tight as exhibited by

the cyclic group of order 4. In this note, we prove this example is unique:

Theorem 3.7. If G is a finite group and |G| = nk(G)2 for some k, then k ≡ 2 (mod 4)

and G ∼= C4.

Restricting our attention to odd primes, we also prove the following specialized ver-

sion of Theorem A.
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Theorem 3.8. Let G be a finite group, and write n = np(G), where p is an odd prime

dividing |G|. Then G satisfies one of the following statements:

(1) |G| = n(n+ 1) and G is a Frobenius group as in Theorem A.

(2) |G| = n
2
(n+2) and G is a central extension of a Frobenius group of order n

2

(
n
2

+ 1
)

by C2.

(3) |G| = n
2
(n+ 1) and G is a Frobenius group with kernel of order n+ 1, and Np(G)

is the set of nonidentity elements of the Frobenius kernel.

(4) |G| ≤ n2

2
.

We note that when |G| = n
2
(n + 2), then G is a central extension of one of the

exceptional groups in Theorem A by C2.

In section 3.3.1 we will examine various inequalities regarding nk(G). Sections 3.3.2

and 3.3.3 contain the proofs of Theorem 3.7 and Theorem 3.8 respectively.

3.3.1 Inequalities involving nk(G).

The next lemma follows from the fact that if 〈x〉 = 〈y〉 then x ∈ Nk(G) if and only if

y ∈ Nk(G).

Lemma 3.9. Let p be a prime. If n = np(G) for a finite group G, then p− 1 divides n.

Proof. Let ∼ be the equivalence relation x ∼ y iff 〈x〉 = 〈y〉. We can partition Np(G)

into equivalence clases under ∼. Each such equivalence class has size divisible by p− 1

and thus n = |Np(G)| is divisible by p− 1.
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The following lemma is merely the strengthening of the one we used to prove Theorem

A. Let p be a prime. For H ≤ G the setNp(H) is not always a subset ofNp(G). However

np(H) ≤ np(H).

Lemma 3.10. Let G be a finite group and H be a subgroup of G. Let p be a prime.

Then np(H) ≤ np(G). Moreover np(H) = np(G) if and only if Np(H) = Np(G).

Proof. For x ∈ Gp, write θ(x) = {y ∈ G : yp = x}, and note that by assumption the sets

θ(x) are nonempty and disjoint, and their union is the whole group G. It follows that

np(G) = |G| − |Gp| =

(∑
x∈Gp

|θ(x)|

)
− |Gp| =

∑
x∈Gp

(|θ(x)| − 1).

Similarly, if x ∈ Hp, we write ϕ(x) = {y ∈ H : yp = x}. Then

np(H) =
∑
x∈Hp

(|ϕ(x)| − 1).

Now Hp ⊆ Gp and for x ∈ Hp we have ϕ(x) = H ∩ θ(x), so |ϕ(x)| ≤ |θ(x)|. Noting

that the terms |θ(x)| − 1 are nonnegative for x ∈ Gp \Hp we have:

np(G)− np(H) ≥
∑
x∈Hp

(|θ(x)| − |ϕ(x)|) ≥ 0. (3.1)

Hence np(H) ≤ np(G). If np(H) = np(G), then both

∑
x∈Gp

x 6∈Hp

|θ(x)| − 1 = 0 and
∑
x∈Hp

(|θ(x)| − |ϕ(x)|) = 0.

Thus every element of Hp has the same number of pth roots in H as it does in G and

all elements of Gp that are not in Hp have order not divisible by p.

If np(G) = np(H) then x ∈ Np(H) implies that x ∈ Np(G) and thus Np(G) =

Np(H).
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The following corollaries demonstrate some implications of np(H) = np(G) for H ⊆ G

and G finite:

Corollary 3.11. Let p be a prime and let G be a finite group. Suppose H < G with

np(H) = np(G). Then Op′(G) ⊆ H; in particular every Sylow p-subgroup of G is

contained in H.

Proof. The set X = {x ∈ G : o(x) = pk, k ∈ N} generates Op′(G). Since every element

of order pk is contained in 〈y〉 for some y ∈ Np(G), we conclude that

Op′(G) = 〈X〉 ⊆ 〈Np(G)〉 = 〈Np(H)〉 ⊆ H.

If S ∈ Sylp(G) then S ⊆ Op′(G).

Lemma 3.12. Let G be a finite group, and suppose that p divides |Z(G)|, where p is a

prime. Then

|G| ≤ p np(G)

p− 1
,

and if equality holds, then G has a normal cyclic Sylow p-subgroup.

Proof. Let Z ⊂ Z(G) have order p. Since all elements in each coset of Z in G have

the same pth power, it follows that |Gp| is at most the number of cosets of Z in G, i.e.,

|G : Z| = |G|/p. Then

np(G) = |G| − |Gp| ≥ |G| − |G|
p

=
p− 1

p
|G|.

If np(G) = p−1
p
|G|, then every coset of Z has a unique pth power. As in the proof of

Lemma 3.10, for x ∈ Gp write θ(x) = {y ∈ G : yp = x}. If np(G) = p−1
p
|G|, then θ(x) is

a single coset of Z, and thus |θ(x)| = p for all x ∈ Gp.



29

Consider the set

S = {x ∈ G : o(x) = pk, k ∈ Z}.

We claim S is a normal cyclic Sylow p-subgroup of G. Let s ∈ S have maximum order.

We claim that S = 〈s〉. Suppose that x ∈ S has minimal order such that x /∈ 〈s〉. Then

xp ∈ 〈s〉 and |〈s〉 ∩ θ(xp)| = p. But, |θ(xp)| = p. Hence x ∈ θ(xp) ⊆ 〈s〉.

Therefore S = 〈s〉.

As part of our proof of Theorem 3.7 we will see that the proportion of non-kth-powers

under the action of taking quotients behave nicely:

Lemma 3.13. Let G be a finite group. If k > 0 and N is a normal subgroup of G then

nk(G/N)

|G/N |
≤ nk(G)

|G|
,

with equality if and only if for all x ∈ G every coset representative of xkN is in G\Nk(G).

We now return our attention, for the moment, to the case k = p.

Theorem 3.14. Let G be a finite p-group of order pm, and write n = np(G). If G is

cyclic then n = pm − pm−1. Otherwise n ≥ pm − pm−2.

Proof. If G is cyclic, then the only elements of G in Np(G) are the elements with order

equal to |G|. Hence n = ϕ(pm) = pm − pm−1.

If G is not cyclic then G/Φ(G) is not cyclic and G has a normal subgroup F such

that G/F is elementary abelian of rank 2. By Lemma 3.13 we see that

n

|G|
≥ np(G/F )

|G : F |
=
np(Cp × Cp)

p2
=
p2 − 1

p2
.

Hence n ≥ pm − pm−2.
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We will now introduce some notation. For a prime p, the set Np(G) of non-p-th

powers of G is a union of conjugacy classes of G. Write

Np(G) = xG1 ∪ · · · ∪ xGm.

Without loss of generality, we will assume that the listing of conjugady classes is or-

dered so that o(xi) ≤ o(xj) whenever i ≤ j. The type of Np(G) is the m-tuple

(o(x1), . . . , o(xm)). We will refer to m as the length of Np(G).

Recall that an element y of a group G is said to be p-singular if p divides the order

of y.

Lemma 3.15. Let G be a finite group. Let m be the length of Np(G). Let Y denote

the set of orders of p-singular elements of G. Let X be the set of integers j such that

pkj ∈ Y and gcd(j, p) = 1. Then |X| ≤ m.

Proof. We know that for each a ∈ X there is an element y ∈ G such that o(y) = j. Let

z ∈ Np(G) such that zp
k

= y, with k minimal. Then o(z) = pk · j. Since z depends on j,

we conclude that distinct i, j ∈ X will yield distinct elements zj, zi. Since o(zj) 6= o(zi)

we conclude that zGj 6= zGi .

We will use Lemma 3.15 to analyze groups for which the length of Np(G) is small.

3.3.2 Proof of Theorem 3.7.

In this section, we will prove that the only group G for which there is an integer k such

that |G| = nk(G)2 is C4. Recall the following lemma:

Lemma 3.16 (Lemma 2.5 [18]). Let G be a group with 0 < nk(G) < ∞. Then there

exists a prime p dividing k such that 0 < np(G) ≤ nk(G).
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We immediately have:

Corollary 3.17. If |G| = nk(G)2 and G is finite, then |G| = np(G)2 for some prime p

dividing k.

In the rest of the section we will prove that |G| = np(G)2 for a prime p, if and only

if p = 2 and G ∼= C4.

Lemma 3.18. Let G be a finite group and write n = np(G) for a prime p. If |G| = n2

and m is the length of Np(G), then one of the following holds:

(1): m = 1.

(2): p = 2 and m = 2.

Proof. There is some x ∈ Np(G) with |xG| ≤ np(G)/m. Moreover, x ∈ Z(CG(x)) and p

divides o(x). We conclude that

np(G)2 = |G| = |xG||CG(x)| ≤ np(G)

m

p

p− 1
np(G).

Hence (p− 1)m ≤ p and we conclude that either m = 1; or p = 2 and m = 2.

Theorem 3.19. Let G be a finite group with n = np(G) > 0. If Np(G) has length 1,

then |G| 6= n2.

Proof. We first note that n must be greater than 1, since n = 1 implies that G = C2 by

Theorem A.

By way of contradiction assume that |G| = n2. There is an x ∈ Np(G) of order

pk, for some positive integer k. Since the length of Np(G) is 1 we conclude that all

non-pth powers in G have order pk. Consider C = CG(x). Lemma 3.15 shows that C is
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a p-group, or else the length of Np(G) would be greater than 1. Let |C| = pj for some

j ≥ k ≥ 1.

We now have that |G| = n2 = |xG| · |C| = n · pj. Hence n = pj and G is a p-group of

order p2j. Theorem 3.14, gives us

pj = n ≥ (p2 − 1)p2j−2.

Dividing both sides by pj gives us

1 ≥ (p2 − 1)pj−2,

and thus j = 1 and we conclude that |G| = p2. A contradiction to |xG| = n > 1.

We can now prove Theorem 3.7.

Proof. of Theorem 3.7. Let G be a finite group satisfying |G| = nk(G)2 for some

k. Then |G| = np(G)2 for some prime p dividing k by Corollary 3.17. Furthermore by

Lemma 3.18 and Theorem 3.19, we may assume that the length of Nk(G) is exactly 2,

and that p = 2. Let n = n2(G).

Let x ∈ N2(G) such that |xG| is minimal, and write C = CG(x). We have

n2 = |G| = |xG||C| ≤ n

2
2n2(C)) ≤ n2.

Therefore, we must have the following equalities: |xG| = n
2
, n2(C) = n, and |C| = 2n for

any x ∈ N2(G). By Lemma 3.10, we are guaranteed that N2(C) = N2(G). Moreover, by

Lemma 3.12, we know that the Sylow 2-subgroup of C is cyclic. Now, fix an x ∈ N2(G)

such that o(x) = 2j. Because o(x) is 2j and x is not a square in C, we see that the Sylow

2-subgroup of C is generated by x and has order 2j. By Corollary 3.11, 〈x〉 is a Sylow

subgroup of G. Moreover, 〈x〉 is normal in G.
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Lemma 3.15 further tells us that C can be divisible by at most one odd prime. Let

|C| = 2jq`. Then n = 2j−1q` and |G| = 22j−2q2`. Since 〈x〉 is a Sylow 2-subgroup of G, we

see that 22j−2 = 2j and thus j = 2; moreover, G has a cyclic Sylow 2-subgroup and thus

has a normal 2-complement H. Since normal subgroups commute, H ⊂ C = CG(x).

We conclude that ` = 2`. Hence ` = 0 and we conclude that |G| = 4 and G is cyclic.

3.3.3 Proof of Theorem 3.8.

To prove Theorem 3.8 we will first examine how the type of Np(G) gives a bound on the

order of G.

Lemma 3.20. Let G be a finite group and write n = np(G) for a prime p. If |G| > n2

2

and m is the length of Np(G), then either m ≤ 2 or p = 2 and m = 3.

Proof. There is some x ∈ Np(G) with |xG| ≤ np(G)/m. Moreover, x ∈ Z(CG(x)) and p

divides o(x). We conclude that

n2

2
< |G| = |xG||CG(x)| ≤ n

m

p

p− 1
n.

Hence (p− 1)m < 2p and we conclude that either m ≤ 2; or p = 2 and m = 3.

Lemma 3.21. Let G be a finite group and p a prime. If G contains an element of order

pk for k > 1, then |G| ≤ np(G)2

pk−2(p−1)
.

Proof. Let S be a Sylow p-subgroup of G and let pk be the exponent of S. Suppose that

k > 1. We will show that |G| ≤ np(G)2

pk−2(p−1)
.

Let K be the set of all elements of G of order pk. Then K ⊆ Np(G) and is a normal

subset of G. Consider the set Kpk−1
of pk−1 powers of elements of K. Let µ : G → G
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take x→ xp
k−1

. For an element y ∈ K, we see that µ(y) ∈ Kpk−1
; moreover, µ is at least

pk−1 : 1 from 〈y〉 to yp
k−1

. Hence |Kpk−1| ≤ |K|
pk−1 . Therefore

|G| =
∣∣∣(ypk−1

)G
∣∣∣ · ∣∣∣CG(yp

k−1

)
∣∣∣ ≤ |K|

pk−1

p

p− 1
np(G) ≤ np(G)2

pk−2(p− 1)
.

As seen in both Lemma 3.20 and 3.21 the prime 2 is special and will often require

a separate argument. Recall that the type of Np(G) is a list of the orders of conjugacy

classes in Np(G). By combining Lemmas 3.20, 3.21, and 3.15 we can greatly restrict the

type of Np(G) in the case that p is an odd prime and |G| > np(G)2

2
.

Corollary 3.22. Let G be a finite group and p an odd prime dividing |G|. Write

n = np(G) and let m be the number of conjugacy classes of G contained in Np(G).

If |G| > n2

2
, then the type of Np(G) is either (p),(p, p) or (p, qp).

Of course there is a corresponding classification for the case p = 2, but the parametriza-

tion of possible types is not as succinct.

If p is an odd prime then we have the following theorem classifying when the type of

Np(G) is (p) in Corollary 3.22:

Theorem 3.23. Let G be a finite group and p an odd prime dividing the order of G.

Write n = np(G). If the type of Np(G) is (p) and |G| 6= n(n+ 1), then |G| ≤ n(n+1)
3

.

Proof. Let x ∈ Np(G). By Lemma 3.15, CG(x) is a p-group and is contained in a Sylow

p-subgroup of S. Since Np(G) has type (p) we know that all nontrivial elements of S are

in Np(G) and hence conjugate to x. Let y ∈ Z(S)\1. Let C = CG(y). Since y ∈ Np(G),

we have that C = S. Let |C| = |S| = pk. We know that pk divides |G|. By the theorem
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of Frobenius, pk|(n+ 1). We have

|G| = |xG||C| = n · pk.

If pk = n+ 1, then |G| = n(n+ 1). Otherwise suppose pk = n+1
2

and n = 2pk− 1. By

Lemma 3.9, we know that n is divisible by p− 1 which is even since p is an odd prime;

This contradicts n = 2pk − 1. Therefore if pk 6= n+ 1, then pk ≤ n+1
3
.

We note that

n(n+ 1)

3
≤ n2

2
,

when n ≥ 2. When n = 1, |G| ≤ 2 by Theorem A and hence no odd primes divide |G|.

We now handle the two remaining cases in Corollary 3.22.

Theorem 3.24. Let G be a finite group and p an odd prime dividing the order of G.

Write n = np(G). Assume Np(G) has length 2. If |G| > n2

2
then one of the following

happens:

• The type of Np(G) is (p, p) and |G| = n
2
(n+ 1) and G is a Frobenius group.

• The type of Np(G) is (p, 2p) and |G| = n
2
(n+ 2) and G is a central extension of a

Frobenius group of order n
2
(n

2
+ 1).

Proof. By Corollary 3.22, we know that the type of Np(G) is either (p, p) or (p, pq) for

q a prime. We proceed by cases.

Suppose that the type of Np(G) is (p, p). Let x, y be elements of Np(G) in different

conjugacy classes. Without loss of generality assume that |xG| ≤ |yG|, so |xG| ≤ n
2
. By

Lemma 3.15, we know that C = CG(x) is a p-group and thus |C| ≤ (n+ 1). Therefore:

|G| = |xG||C| ≤ |xG|(1 + n) ≤ n

2
(n+ 1).
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If |xG| < n
2
, then since n is even by Lemma 3.9, we know that |xG| ≤ n

2
− 1 and thus

|G| ≤ (
n

2
− 1)(n+ 1) ≤ n2

2
.

Suppose |x| = n
2

and that |C| < (n+ 1). Then |C| ≤ n and

|G| ≤ n2

2
.

Hence if the type of Np(G) is (p, p) and |G| > n2

2
then |G| = n

2
(n + 1). If we have

|G| = n
2
(n+1), then for all x ∈ Np(G) we have |xG| = n

2
and C = CG(x) has order n+1.

Moreover C = Np(G) ∪ 1 is a normal subgroup of G. We further note that n+ 1 and n
2

are coprime, so by the Schur–Zassenhaus theorem C has a complement in G. Since the

centralizer of any nontrivial element of C is contained in C, we see that G is a Frobenius

group with Frobenius kernel C consisting of Np(G) together with the identity.

Suppose that the type of Np(G) is (p, pq) for some prime q. Let x ∈ Np(G) have

order p and y ∈ Np(G) have order pq. We note that xG contains all elements of G of

order p. Hence yq ∈ xG. Moreover, every qth power of an element of yG is in xG. The

qth power map from yG to xG is j to 1 for some positive integer j. Since |yG|+ |xG| = n

we have

n = (j + 1)|xG| and |xG| = n

j + 1
.

Now consider C = CG(x). Every element of C has order 1, p, q or pq. We wish to bound

the number of elements in C of each of order. We note that there are exactly j elements

in C of order pq whose qth power is xq. Moreover, any element s ∈ C of order q will

satisfy (xs)q = xq. Hence there are at most j elements s ∈ C of order q. Since all

elements of yG that have xq as their q-power commute with x, we conclude that there

are exactly j elements of order q in C. We also know that there are at most n elements
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total of orders p and pq in C. Hence |C| ≤ n+ j + 1. We thus have

|G| = |xG||C| = n

j + 1
|C| ≤ n

j + 1
(n+ j + 1).

For j > 1 and n > 8, we have n
j+1

(n + j + 1) ≤ n2

2
. Therefore if |G| > n2

2
and

|G| > 56, we can assume that j = 1. (For groups with order less than or equal to 56, we

verified the theorem directly in Magma [9].) Since the map qth power map from yG to

xG is 1:1, we can assume that q = 2, otherwise C would contain more than j elements

of order q. Hence the element of order 2 in C is central in C (since there is only one

such element). Therefore the number of elements of G of order p and 2p are equal and

thus n is even. Hence if |C| < n+ 2, then |C| ≤ n (since |C| is even) and we have that

|G| = |xG|C| ≤ n2

2
.

Therefore if |G| > n2

2
and the type of Np(G) is not (p, p) then the type of Np(G) is

(p, 2p) and |G| = n
2
(n+ 2). Suppose |G| = n

2
(n+ 2) and let x ∈ Np(G) satisfy o(x) = p.

Let C = CG(x). Then |C| = n + 2 and C contains a unique involution z. Moreover, C

is normal, since it is generated by the normal set Np(G). Hence z is central in G, being

the unique element of order 2 in a normal subgroup of G.

We now ask about the group G = G/〈z〉. What is np(G)? It must be the case that

np(G) ≤ n/2. By Theorem A, we are guaranteed that np(G) = n
2

and G is a Frobenius

group with kernel of order n
2

+ 1 and complement of order n
2
. Hence G is a central

extension of such a Frobenius group.

We can now prove Theorem 3.8:

Proof. of Theorem 3.8. By Corollary 3.22 we can reduce to either the length of Np(G)

is 1 or 2. If the length ofNp(G) is 1, then Theorem 3.23 demonstrates that |G| = n(n+1)
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or |G| ≤ n2

2
. If the length of Np(G) is 2, then by Theorem 3.24, either |G| ≤ n2

2
or G

satisfies hypotheses (2) or (3) of the theorem.

3.4 Infinite groups.

The finiteness in Theorem A can be relaxed to other finite-like conditions. In [18] the

author, Marty Isaacs, and Dane Skabelund give the following theorem.

Theorem 3.25. [18, Theorem C] Let G be a group, and assume that 0 < nk(G) < ∞.

Suppose also that one of the followings holds.

(1) G satisfies the maximal condition on cyclic subgroups.

(2) G has a finite-index nilpotent subgroup, i.e., G is virtually nilpotent.

(3) G is residually finite.

Then G is finite.

However, independent constructions of Pálfy and Ivanov [51] produce an infinite

group G with np(G) = p− 1 . We next turn to a question about the sequence of values

(nk(G))k∈N tells us about a group G.

3.5 The sequence of not powers in a group.

In this section, we explore the connection, for a group G, between the sequence (nk(G) :

k ∈ N), which we write (nk(G)), and structural information about G. We will also

mention a result about the set {nk(G) : k ∈ N}. The results in this section were joint

work with Sara Jensen [20].
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It should be noted, that the sequence (nk(G)) bears resemblance to another arith-

metic sequence of interest, namely the order type of G [97]. Recall that the order type

of G is the sequence (G(d) : d ∈ N) where

G(d) = |{x ∈ G : o(x) = d}|.

We will discuss this interesting relationship later in the section.

We will show that whether or not a group is nilpotent is determined by the sequence

(nk(G)). However, (nk(G)) does not always determine G even for nice families of groups.

Nevertheless (nk(G) conveys interesting information about a group G.

For a given group G, most of the properties we will discuss about (nk(G)) are also

true for the order type of G. For example, whether or not a finite group G is nilpotent

can be deduced from either sequence. However, the two sequences are not equivalent,

e.g.,

(Q8(d)) 6= (D8(d))︸ ︷︷ ︸
order type

, but (nk(Q8)) = (nk(D8))︸ ︷︷ ︸
not powers

and

((C4 × C4)(d)) = ((Q8 × C2)(d)), but (nk(C4 × C4)) 6= (nk(Q8 × C2)).

Both sequences are ostensibly infinite. The sequence (G(d)) satisfies G(d) = 0 for all

d ≥ |G|. However, from the initial entries of the sequence it is impossible to determine

|G|. For example, let G be a finite group and M the |G|-th prime number. Then

(G× CM)(d) = G(d) for all d < M . However any nonzero term of (nk(G)) can be used

to bound |G| and thus calculate when the sequence effectively terminates. Specifically,

for two groups if n = nk(G) = nk(H) > 0 then either |G| = |H| or for some j < n(n+ 1)

we have nj(G) 6= nj(H).
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The following problem is called Thompson’s problem and originated from correspon-

dence between Thompson and Shi [97].

Question 3.26. Let G and H be finite groups with (G(d)) = (H(d)). If H is solvable

must G be solvable?

The problem tries to understand how much information about a group is contained

in the order type of G. It is still open, but is known to be true in a number of cases

such as when G has exactly 30 elements of maximal order [11].

We have tested the analogous problem concerning (nk(G)) for all groups with order

up to 2000 and subsequently ask the following open question:

Question 3.27. Let G and H be finite groups with (nk(G)) = (nk(H)). If H is solvable

must G be solvable?

Let G be a finite group and suppose that |G| = mr where (m, r) = 1. A subgroup of

G of order m is called a Hall m-subgroup of G. In general, a group G does not have Hall

subgroups of every possible order; for example, A5 has no subgroup of order 15 order 20.

Moreover, unlike Sylow subgroups, two Hall subgroups of the same order do not have to

be conjugate, or even isomorphic. However, a group G has exactly one Hall subgroup

H of order m if and only if H CG. The existence of a normal Hall subgroup of order m

can be determined by examining nr(G).

Theorem 3.28. Let G be a finite group of order mr, where (m, r) = 1. Then G has a

normal Hall subgroup of order m if and only if

nr(G) = (r − 1)m.
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Proof. Note that since m and r are coprime, an element x ∈ G is an rth power if and

only if o(x) divides m. Hence Nr(G) consists precisely of those elements whose order

does not divide m.

Suppose that G has a normal Hall subgroup of order m. Then there are exactly m

elements in G with order dividing m. Equivalently, there are exactly |G|−m = (r−1)m

elements of G with order not dividing m. These (r − 1)m elements of G are precisely

the elements of Nr(G).

Now suppose that nr(G) = (r − 1)m. Then the number of elements in G with order

dividing m is exactly m and by the Frobenuis solution theorem we see that G has a

normal Hall subgroup of order m.

The next few results serve as observations that will help us obtain information about

subgroups of G from the sequence (nk(G)).

Lemma 3.29. Let G be a finite group with exponent e. Then the sequence (nk(G)) is

periodic of period e. Further, nk(G) ≤ |G| − 1 with equality if and only if e divides k.

Proof. Since xk+e = xk for all x ∈ G and all positive integers k, we see that Gk = Gk+e

and therefore nk(G) = nk+e(G) for all k. It follows that the sequence (nk(G)) is periodic

with period at most e.

Let k be arbitrary with k > 0. As nk(G) = |G| − |Gk| and 1 ∈ Gk for all k, we have

that nk(G) is at most |G| − 1. Equality holds if and only if xk = 1 for all x ∈ G; that is,

if e divides k. This shows that |G| − 1 is a value in the sequence (nk(G)) that does not

appear in the sequence until k = e; hence the period of the sequence is at least e.

A direct consequence of Lemma 3.29 is that |G| is determined both by (nk(G)) and

{nk(G)}. The sequence (nk(G)) also determines the exponent of G.
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Corollary 3.30. If H is a finite cyclic group, then (nk(H)) = (nk(G)) if and only if G

is isomorphic to H.

Proof. If G is isomorphic to H then it is clear that (nk(H)) = (nk(G)). Both |G| and the

exponent of G are determined from (nk(G)), by Lemma 3.29, we have the converse.

Although the period of (nk(G)) is the exponent of G by Lemma 3.29, there are some

values of (nk(G)) that repeat earlier in the sequence, as shown in our next lemma.

Lemma 3.31. Suppose G is a finite group of exponent e. Then Gk = G(k,e) for all

k ∈ N.

Proof. Let k ∈ N be arbitrary, and write d = (k, e). First, suppose g ∈ Gk, so that

g = xk for some x ∈ G. As d divides k, there exists a positive integer q for which

k = qd, and it follows that g = xk = xqd = (xq)d. This shows that g ∈ Gd, and therefore

Gk ⊆ Gd.

Now suppose that g ∈ Gd, so that g = xd for some x ∈ G. Write d = sk + et, where

s, t ∈ Z. We compute that

g = xd = xsk+et = (xs)k(xe)t = (xs)k ,

where the ultimate equality follows from the fact that e is the exponent of G. We

conclude that g ∈ Gk, establishing that Gd ⊆ Gk.

Returning to Theorem 3.28, we note that in general (nk(G)) cannot determine the

isomorphism type of a Hall m-subgroup of G. However, some properties of a Hall sub-

group of G can be determined from (nk(G)). These next results discuss the relationship

between (nk(G)) and Sylow subgroups of G.
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Lemma 3.32. Let G be a finite group with p prime. If G has a normal nontrivial Sylow

p-subgroup P , then (nk(G)) determines the sequence (nk(P )).

Proof. Write |G| = par where (p, r) = 1. Let q = pj for some j ≤ a. We claim that

g ∈ Gqr if and only if g ∈ P q. To see this, first suppose g ∈ Gqr, so that there exists

some x ∈ G for which g = xqr. We claim that xr ∈ P and hence g = (xr)q belongs

to P q. To see this, note that (xr)p
a

= xp
ar = 1, and therefore o(xr) is a p-power. It

follows that xr belongs to the unique Sylow p-subgroup of G and that g belongs to P q.

Conversely, suppose g ∈ P q. Because q = (q, qr), Lemma 3.31 implies that P q = P qr.

As P qr ⊆ Gqr, the converse is established.

Finally, we establish that (nk(P )) is determined by (nk(G)). Let i be an arbitrary

positive integer and let q be the p-part of i. As ni(P ) = nq(P ) by Lemma 3.31, it is

without loss that we assume that i is a power of p. Now nq(P ) = |P | − |P q|, and we

claim that both |P | and |P q| are determined by (nk(G)). By the previous paragraph,

|P q| = |Gqr|, and |Gqr| = |G| − nqr(G). It follows from Lemma 3.29 that |G| and

therefore |P | can be determined from (nk(G)), and the result holds.

Lemma 3.33. Let G be a finite nonabelian nilpotent group of odd order with nilpotency

class 2. Then there is an abelian group H such that (nk(G)) = (nk(H)) and G(d) = H(d)

for all d.

Proof. This follows immediately from the Baer trick, see Isaacs [48, 4.37].

The lemma above together with Theorem 3.35 gives the following corollary:

Corollary 3.34. Let G be a finite nilpotent group of odd order with nilpotency class 2.

Then the set {nk(G)} determines both (nk(G)) and G(d) for all d.
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We conclude by mentioning the following theorem from the authors work with Sara

Jensen [20].

Theorem 3.35. [20, Theorem C] Suppose G and H are abelian groups. Then the sets

{nk(G)} and {nk(H)} are equal if and only if G and H are isomorphic.

A few remarks about Theorem 3.35 are in order. It should be noted that D8 and Q8

are groups with nk(D8) = nk(Q8) for all positive integers k, so Theorem 3.35 cannot be

improved to yield the same result under the assumption that G and H are nilpotent.

Similarly, G = C4 × C2 satisfies nk(G) = nk(D8) for all positive integers k, so knowing

that G is abelian and nk(H) = nk(G) for all k does not imply that H is abelian.
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Chapter 4

The Not Solutions of a Word.

In this chapter we examine a sort of dual to Theorem A. The work in this chapter is

joint work with Sara Jensen [19]. In Chapter 3 we showed that for a power word w

the number of elements of a group G not contained in w(G) can be used to bound |G|.

However, the order of w(G) can always be arbitrarily small compared to |G|. Another

property of the word map w of interest is the number of solutions to w, i.e., the number

of g ∈ G such that w(g) = 1. It turns out that this number can also be made arbitrarily

small compared to |G|.

Example 4.1. Let w = xk. Consider the group G = Ck×H where H has order coprime

to k. Then there are exactly k elements of G that are solutions to w. In particular, for

any group of odd order, the number of solutions to x2 = 1 is always 1.

Much like the case for the image of w, i.e., w(G), it turns out that the number of

not solutions to w, i.e., the number of g ∈ G such that w(g) 6= 1 can be used to bound

the order of G.

Theorem B. [19, Theorem A] Let G be a group, and let w be a word. Let

k = |{(g1, . . . , gn) : w(g1, . . . , gn) 6= 1}|.

If k > 0, then |G| ≤ 2k2. Moreover, if n > 1, then |G| ≤ k2. In particular if k is finite,

then G is finite.
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Note that Theorem B differs from Theorem A in two strong ways. First, the hy-

potheses of Theorem B hold for any word G. Second, as long as k is finite, we do not

need to presuppose a finite-like condition on G to bound the order of G. We will show

that the bound in Theorem B is obtained by infinitely many groups G for appropriate

words w.

4.1 History of the not solutions of word maps.

Our Theorem B was motivated by work on the the number of elements of maximal order

in a group and some well-known results about the probability that two elements of a

group commute. The author and Geetha Venkataraman showed the following somewhat

surprising result [21]. Consider a group G with finite exponent and let m be the largest

order of an element of G. Then one of the follow holds:

• There are infinitely elements in G of order m.

• The group G is finite.

In our notation, the result above says that if xm has only finitely many not-solutions

in G then G is finite. More famously, if w = [x, y] then the number k of not solutions

to w in a group G, if nonzero, bounds the order of G by

|G|2 ≤ 8k

3
.

A similar bound is known when w = x2. Let k be the number of not solutions to w in

a group G, then

|G| ≤ 4k.
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Less well-known is the case when w = x3. Let k be the number of not solutions to

w in a group G, then Laffey has shown the following bound [58, 57].

|G| ≤ 9k

2
.

Returning to the case w = x2 we see an interesting connection between the study

of word maps and the study of other functions on a group. Tărnăuceanu in [100] first

considered the following problem, which appears seemingly unrelated to word maps. Let

C(G) denote the set of cyclic subgroups of G, and let ∆(G) = |G| − |C(G)|. Can all

groups with ∆(G) = d be classified? In [100] and [101], Tărnăuceanu classified all groups

that occur when d is 1 and 2. Belshoff, Dillstrom, and Reid were able to extend this

result to classify all groups that have ∆(G) as 3, 4, and 5 in [8]. A later addendum to

[8] by Belshoff, Dillstrom, and Reid showed that if δ = ∆(G) then |G| ≤ 8δ, allowing

them to use GAP to classify all groups with ∆(G) values in the range of 1 to 32. We

present our proof of their result now.

Theorem 4.2. Let G be a finite group with ∆(G) = δ. Then |G| ≤ 8δ.

Proof. We want to count the number of cyclic subgroups of G by taking a weighted

sum over elements of G. For any g ∈ G, assign the weight 1
ϕ(o(g))

, i.e., the number of

generators of 〈g〉. Then ∑
g∈G

1

ϕ(o(g))
= |C(G)|,

and

∑
g∈G

1− 1

ϕ(o(g))
= |G| − |C(G)| = δ.
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The only elements in g with ϕ(o(g)) = 1 are solutions to the equation x2 = 1 in

G. Let X = {g ∈ G : g2 = 1.}. Then
∑

g∈G\X 1 − 1
ϕ(o(g))

= δ and we conclude that

|G| − |X| ≤ 2δ, i.e., that the number of elements of G that do not satisfy g2 = 1 is

at most 2δ. By the result above about not solutions to the word x2, we conclude that

|G| ≤ 8δ.

In [19], we extrapolate the relationship between ∆(G) and the map x2 to obtain the

following theorem.

Theorem 4.3. [19] Suppose G is a finite group with δ = ∆(G), where δ ≥ 1. Suppose

further that |G| = 2n ·m where (2,m) = 1 and m > 1. Then one of the following holds.

(a) If |G| = 6δ then m = 3 and G ∼= S3×E where E is an elementary abelian 2-group

of order 2n−1.

(b) If m ≥ 5, then |G| ≤ 5δ.

We note that Edmonds proves something similar to our part (a) above, but the proof

involves many different case analyses [23]. Our proof is an independent simplification.

4.2 Proof of Theorem B.

Proof of Theorem B. Consider the set of n-tuples Gn. The group G acts on these tuples

diagonally, i.e.,

(g1, . . . , gn)g = (gg1 , . . . , g
g
n).

(Note we are acting on the right so conjugation behaves appropriately.) We see that

w(g1, . . . , gn)g = w(gg1 , . . . , g
g
n). Hence if w(g1, . . . , gn) 6= 1, then w(gg1 , . . . , g

g
n) 6= 1. Now
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let

N = {(g1, . . . , gn) : w(g1, . . . , gn) 6= 1.}

We can partition N into a number of orbits under the action of G.

Fix γ = (h1, . . . , hn) an element of N and let X be its orbit under the action of

G. Let Gγ be the stabilizer of γ. Then |G| = |X| · |Gγ|. By hypothesis we have that

|X| ≤ k. We will show that |Gγ| ≤ 2k.

Let s ∈ Gγ. Now γs = γ and we have that hsi = hi for all i. Equivalently s commutes

with all of the hi, we have the equality

w(h1s, h2s, . . . , hns) = w(h1, . . . , hn)w(s, . . . , s).

Since γ ∈ N we know that either (h1s, . . . , hns) or (s, . . . , s) must be in N . We can

define a map fγ : Gγ → N , where

f(s) =


s̃ if (s, . . . , s) ∈ N

(h1s, . . . , hns) otherwise.

Note that the map f is only a map on sets. We will show that for any η ∈ N

the fibre f−1
γ (η) has size at most 2. Suppose that for distinct s, t ∈ Gγ we have that

fγ(s) = fγ(t). If (s, . . . , s) ∈ N , equivalently fγ(s) = s̃, then fγ(t) = (h1t, . . . , hnt). If

(s, . . . , s) /∈ N , then fγ(s) = (h1s, . . . , hns) and fγ(t) = (t, . . . , t). Hence, for any η ∈ N ,

the fibre f−1
γ (η) has size at most 2. We conclude that |Gγ| ≤ 2k. Hence |G| ≤ 2k2.

If there is more than one orbit of N under the action of G, then one of orbits has

size less than or equal to k/2 and we conclude that |G| ≤ k2. Assume that n > 1 and

that we have fixed a γ = (h1, . . . , hn) and that N is the orbit of γ under the action of G.

Either γ = (h, . . . , h) or for all s ∈ Gγ we have that (s, . . . , s) /∈ N . But, if (s, . . . , s) is
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not in N for all s ∈ Gγ, then fγ is bijective and we conclude that |Gγ| ≤ k and |G| ≤ k2.

Suppose by way of contradiction that γ = h̃ and n > 1.

Recall that for any word w, there is an automorphism σ of Fn such that σ(w) = xkc

where c ∈ F′n. It must be the case that xk is a law on G, otherwise

w(h, 1, 1, . . . , 1) = w(h, . . . , h),

but (h, 1, . . . , 1) is in a different orbit than γ under the action of G. But, then σ(w) = c

and c(h, . . . , h) = 1; this contradicts the assumption that N was the orbit of γ and that

γ = (h, . . . , h).

We now show that the bound in Theorem B is obtained infinitely often. Let H be

the cyclic group of order 2m. Let G be the holomorph of H, i.e.,

G = Hol(H) = H o Aut(H).

Then |G| = 2m(2m−1). Let w be the word x2m−1
. Then there are exactly k = 2m−1

tuples in G that are not solutions to w. Hence, |G| = 2mk = 2k2. This also shows that

the bound obtained by the author and Geetha Venkataraman involving the number of

elements of maximal order is tight for another infinite family of groups [21, Theorem A].

We examine this bound in section 4.4 as an example of the ideas discussed in section

4.3 below.

4.3 General bounding statements.

Theorems B and A are remarkable similarly in structure. Broadly speaking they have

the following form which we will not make precise at this time.
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Theorem: Let P be a property of group elements definable by a sentence in the

language of groups. Let G be a finite group and let g ∈ G have property P . If P

“propagates” through CG(g), then we use the number of elements in G having property

P to bound the order of G.

Theorem A does not actually have this form, but a close counterfeit form. In The-

orem A, the property of not being in w(G) did not propagate through CG(g), instead

we showed that on CG(g) the map w(g) was many-to-one and hence could not be very

surjective. The assumption that very injective and very surjective are correlated de-

pends on some form of finiteness. In contrast, in the proof of Theorem A we actually

constructed new elements that were not solutions to the word w.

We give the following toy example of a first order property that can be used to bound

the order of G.

Example 4.4. Let G be a group. We say that property P holds on g ∈ G if and only

if CG(g) has order 7. Suppose that exactly n elements of G satisfy property P where

0 < n <∞. Let x ∈ G have property P . Then all elements of xG have property P and

hence |xG| ≤ n. Moreover, |CG(x)|| = 7 and thus |G| = 7n.

It is easy to construct more complicated, but equally trivial examples. The following

section discusses an example that is deeply related to Theorem B, but appeared in

previous work of the author and Geetha Venkataraman.
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4.4 The number of elements of maximal order in a

group.

In this section we present an example of a property of group elements that propagates

through the center of G. We note that our example can be viewed as a special case

of Theorem B, however we feel the exposition warrants its inclusion. The work in this

section was joint work with Geetha Venkataraman and the author wishes to once again

thank the Center for South Asia for a travel award in support of this research.

In this note we investigate how the number of elements of maximal order in a group

affects the order of the group. We show that if a group has only finitely many elements

of maximal order, then the group itself is finite. This is a surprising result: if G is a

group and m is the maximal order of an element G, then either there are infinitely many

elements of order m, of G is finite. We note that a group with finitely many elements

of maximal order cannot have any elements of infinite order, since a group having one

element of infinite order must have infinitely many elements of infinite order. Moreover,

we then give a few explicit bounds for the order of a group in terms of the number of

elements of maximal order. The first of these bounds is attained infinitely often by the

holomorphs of cyclic groups of prime order, i.e., Cp o Cp−1.

There has been interest in studying groups with a certain fixed number of elements

of maximal order; for example, see [11, 38, 39, 40, 52, 102]. These papers investigate the

structure of finite groups with a stated number of elements of maximal order, often an

explicit integer such as 24 or 42. By Theorem 4.5 below, groups with a fixed number of

elements of maximal order are necessarily finite, hence the restriction to finite groups in

the titles is superfluous.
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For a group G, and x ∈ G, we will denote the order of x as o(x). We will also denote

the Euler totient function as ϕ(n). We show the following.

Theorem 4.5. Let G be a group. If m = max{o(g) : g ∈ G} is finite, and exactly k

elements of G have order m, where k <∞, then G is finite and

|G| ≤ mk2

ϕ(m)
.

Using the notation of Theorem 4.5, we note that if G has exactly k <∞ elements of

maximum order, then there are only finitely many possibilities for m since ϕ(m) divides

k. In fact, k = ϕ(m) · n, where n is the number of cyclic subgroups of order m in G.

For a given k, the set of y where ϕ(y) divides k is bounded, since by using properties of

ϕ one can show that such y cannot be divisible by large primes, or by large powers of

smaller primes. We write θ(k) to denote the largest integer y such that ϕ(y) divides k.

We have the following Corollary to Theorem 4.5.

Corollary 4.6. Let G be a group. If m = max{o(g) : g ∈ G} is finite, and exactly k

elements of G have order m, where k <∞, then G is finite and

|G| ≤ θ(k)k2.

Proof. Since ϕ(m) divides k, we have that m ≤ θ(k). Hence Theorem 4.5 implies

|G| ≤ mk2

ϕ(m)
≤ mk2 ≤ θ(k)k2.

As part of our proof of Theorem 4.5 we will show the following.
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Theorem 4.7. Let G be a group and let

X = {x : x ∈ G and o(x) <∞}.

Suppose that m = max{o(x) : x ∈ X} is finite and exactly k elements of G have order

m, where k < ∞. Suppose for some g ∈ Z(G), we have that o(g) = m. Then X is a

finite characteristic subgroup of G and

|X| ≤ mk

ϕ(m)
.

The proof of Theorem 4.7 will utilize a theorem of Dietzmann’s. Dietzmann showed

that given a group G and a finite subset X of G, if every element of X has finite order

and X is closed under conjugation, then 〈X〉 is finite.

4.4.1 Proofs of Theorems 4.5 and 4.7.

In general, “x has order n” is not a well-behaved property on a group G because the

order function behaves very erratically. For example, knowing o(x) and o(y) tells us

nothing about o(xy). Even when x and y commute, the order of the product is not

determined. Recall the following lemma.

Lemma 4.8. Let G be a group and n and m be positive integers. For x, y ∈ G, if

o(x) = n, o(y) = m, and x and y commute, then there is an element of 〈x, y〉 with order

equal to the least common multiple of m and n.

Proof. Let d be the least common multiple of m and n. For a prime p, if pe is the

largest power of p that divides d, then pe divides either m or n. Hence the abelian group

〈x, y〉 has an element of order pe. The product of these elements for the various primes

dividing d will have order d.
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Hence, for a group G, if x ∈ G has maximal order, and y ∈ G commutes with x,

then o(y) must divide o(x). In this sense, “having maximal order” is a very well-behaved

property as demonstrated below.

Lemma 4.9. Let G be a group, and m and n be positive integers such that n divides

m. Let x, y ∈ G such that o(x) = m and o(y) = n, and x and y commute. Write

X = 〈x〉 and Y = 〈y〉. Then the coset Xy has at least ϕ(m) elements of order m. Hence

H = XY has at least ϕ(m)t elements of order m, where t = |Y : X ∩ Y |.

Proof. We will show that X has a complement in the abelian group H. It suffices to

show for each prime p that the Sylow p-subgroup of X has a complement in the Sylow

p-subgroup of H. Let p be a prime dividing |H|. Let P be the Sylow p-subgroup of

X and let S be the Sylow p-subgroup of H. To show that P has a complement in S,

we appeal to the following result used in one of the standard proofs of the fundamental

theorem of finite abelian groups (see, for example, 7.12 of [49]), i.e., in an abelian group

a cyclic subgroup of maximal possible order has a complement. Since n divides m, P is

a cyclic subgroup of maximal order in S, and we conclude that P has a complement in

S. Since X is a direct product of its Sylow p-subgroups, all of which have a complement

in H, we conclude that X has a complement in H.

Hence H is of the form X ×K for some subgroup K in H of order t. It follows that

the coset Xy has at least ϕ(m) elements of order m.

Note: In the notation of Lemma 4.9, it is not necessarily the case that the element

xy has order m. Consider, C6 × C2 where C6 = 〈a〉 and C2 = 〈b〉, and let x = (a2, b)

and y = (1, b). So o(x) = 6 and o(y) = 2, but o(xy) = 3. However, o(x2y) = 6.

Our proof of Theorem 4.7 will use a remarkable theorem of Dietzmann.
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Theorem 4.10 (Dietzmann). Let G be a group, and let X = {x1, . . . , xk} be a finite

subset of G that is closed under conjugation. If there is a positive integer n such that

xn = 1 for all x ∈ X, then 〈X〉 is a finite subgroup of G.

Dietzmann’s theorem appears as Exercise 6.15 in Lam [59] and Theorem 5.10 in

Isaacs [48]. The theorem follows since any product of at least (n − 1)|X| + 1 elements

of X is equal to a product of a smaller number of elements of X. Hence, the subgroup

generated by X has bounded size. Note that any product of elements of X can be

conjugated by an element of X and remains a product of elements of X. Hence, if a

product of elements of X contains n copies of the same element, conjugating the product

can allow one to combine and eliminate them, since xn = 1 for all x ∈ X.

We now prove Theorem 4.7.

Proof. Let Z = 〈g〉. We note that Z acts by multiplication on X, so X is a disjoint

union of |X|/m distinct cosets of Z. Since g has maximal order in X and is central,

every element of X has order dividing m. By Lemma 4.9, every coset of Z contains at

least ϕ(m) elements of order m. Hence X contains at least |X|
m
ϕ(m) elements of order

m, and so

k ≥ |X|ϕ(m)

m
.

Since m is finite, every element x of X satisfies xm! = 1. We also know that X is

closed under conjugation and, from above, finite. Applying Dietzmann’s theorem shows

that 〈X〉 is a finite subgroup of G. As the set of torsion elements of G, we see that X

is in fact a characteristic subgroup of G.

We now prove Theorem 4.5.
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Proof. The group G must be a torsion group with m being the maximum order of any

element of G.

Let g ∈ G have order m. Write C = CG(g). Since every conjugate of g has order m,

we have that |gG| ≤ k. Applying Theorem 4.7 to the group C, if follows that

|G| = |gG| · |C| ≤ k|C| ≤ k

(
mk

ϕ(m)

)
.

As mentioned at the end of section 4.2 the bound in Theorem 4.5 is sharp and

obtained infinitely often.
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Chapter 5

Chirality in word maps.

The material in this chapter is joint work with Turbo Ho [16].

In this chapter we consider subsets of a group that arise as the realizations of a

word. The most famous example of such a subset is the set of commutators [x, y], the

realizations of the word x−1y−1xy, within a group. It is a basic property of commutators

that [x, y]−1 = [y, x], and hence the set of commutators in any group G is closed under

inverses in G. We investigate groups and words whose corresponding sets are not closed

under inversion.

In Segal’s Words [95] the set w(G) has a slightly different definition than the one we

use. Segal sets w(G) to be the image of the map w together with the image of the map

w−1.We do not assume that w(G) is closed under inverses and instead we investigate

the following property:

Definition 5.1. A pair (G,w), where G is a group and w is a word, is called chiral if

w(G) 6= w−1(G). Equivalently, the pair w(G) is chiral if the set w(G)−1, the inverses of

elements of w(G), does not equal w(G). We say G is chiral if w(G) is chiral for some

w. Otherwise G is achiral. We say x ∈ G witnesses the chirality of G if x ∈ w(G) and

x−1 /∈ w(G) for some w.

The existence of chiral groups can be shown from a result of Lubotzky [69]: In a

finite simple group G the images of word maps are exactly the subsets of G closed under
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automorphisms and containing the identity. Consider G = M11, the Mathieu group of

order 7920. G is chiral since an element of order 11 is not conjugate to its inverse and

Out(G) is trivial. Using Lubotzky’s result, it is easy to verify that M11 is the smallest

chiral simple group. In section 5.5 we present a calculation giving an explicit example

of a word w that witnesses the chirality of M11; we also show the existence of a weakly

chiral group that is not chiral, answering a question of Gordeev et. al. [30] inspired by

the chirality of M11.

In this chapter we begin the process of classifying all finite chiral groups. We will

prove

Theorem C. [16, Theorem A] The only chiral groups with order less than 108 are

SmallGroups (63, 1) and (80, 3).

Theorem D. [16, Theorem C] The free nilpotent groups of class ≥ 3 is chiral and the

free nilpotent groups of rank 3 and class 2 is achiral.

Section 5.1 demonstrates how structural information about a group can force achi-

rality of the group; for example finite Frobenius groups with abelian kernel and achiral

complement are achiral.

In section 5.2 we recall an algorithm of Neumann [83], for constructing all word maps

on a finite group with a given number of variables. We prove the following theorem:

Theorem 5.2. If a group G is generated by d elements, then G is chiral if and only if

there is a word w on d variables such that (G,w) is chiral.

Hence the chirality of a finite group is recursive. In section 5.3 we give an explicit

infinite family of pairs of finite groups and words that have no nontrivial chiral quotient
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groups. Interestingly both chiral groups in Theorem C are in this infinite family. In

section 5.4 we turn our attention to nilpotent groups and prove Theorem D.

5.1 Properties of Chirality.

Most of our results about achirality come from the following line of reasoning: a group

G is chiral if and only if there is a word w such that (G,w) is chiral. (G,w) is chiral if

and only if some element x ∈ G that witnesses the chirality of (G,w). If no element x

can be a witness of the chirality of (G,w) for any w, then G is achiral.

For a group G, and x, y ∈ G we say x is automorphic to y if there is an automorphism

σ of G such that σ(x) = y. We likewise will say that x is homomorphic to y if there is

a homomorphism φ from G to G such that φ(x) = y. Clearly, an element x ∈ G cannot

be a witness to chirality if x is homomorphic to x−1. This gives us the following simple

observation:

Lemma 5.3. Let G be a group with the property that for every x ∈ G there is a φ, a

homomorphism of G (dependent on x), such that φ(x) = x−1. Then G is achiral.

The following lemmas will be useful in developing a computational test for chirality.

The first lemma shows that w(G) depends only on the equivalence class of w via auto-

morphisms in a free group containing w. This lemma was first observed via examples

using the automated proof software Prover9 [77]. Using Prover9 the authors found au-

tomorphisms taking the 2-Engel word [x, y, y] and the 3-Engel word [x, y, y, y] to their

inverses respectively, thus showing that the images of maps associated with each of them

are closed under inversion in all groups. For n greater than 3, we do not know whether

the image of the n-Engel word is closed under inversion for all groups.
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It is worth noting that for a w ∈ Fn, w(G) = w−1(G) for all groups G if and only

if there is a homomorphism of Fn taking w to w−1. However, we do not know if it is

necessary that there is an automorphism in this case.

We can use Nielsen transformations to show that for a group G and a word w (G,w)

is chiral if and only if (G, v) is chiral for a word v of specified form:

Theorem 5.4. A group G with exponent e is chiral if and only if (G,w) is chiral for

some word w = xkc where k divides e and c is a product of commutators.

Proof. Let σ ∈ Aut(Fn). Then w(G) = σ(w(G)). Since w is automorphic to a word of

the xdc where c ∈ F′n, we see that over G, w is automorphic to a word map of the form

xkc where k has the desired form.

We will use the above theorem to prove the following:

Corollary 5.5. Let G be a group with finite exponent e. Let Gk be the set of kth powers

in G. If for every k dividing e, every element of GkG′ \Gk is not a witness of chirality,

then G is achiral.

Proof. Consider a word w of the form xkc. Clearly, the image of w is inside GkG′.

Suppose by way of contradiction that (G,w) is chiral as witnessed by g ∈ G. Then g ∈

GkG′ and by hypothesis g ∈ Gk. Let g = hk for some h ∈ G. Hence w(h, 1, . . . , 1) = g.

But, then g−1 = h−k and w(h−1, 1, . . . , 1) = g−1, contradicting g as a witness to the

chirality of (G,w). Therefore G is achiral.

The next few results show how the structure of a group G limits the potential wit-

nesses to the chirality of G.
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Lemma 5.6. Let N be an abelian group. Suppose another group H acts on N via

automorphisms and consider G = N o H. Then there is an automorphism of G that

acts as inversion on N and fixes H pointwise.

Proof. Let σ be a set map that inverts N and fixes H point-wise. We will show that σ

is a homomorphism of G. We will denote the action of h on n via nh. Let n,m ∈ N and

h, j ∈ H then

(nhmj)σ = (nmh−1

hj)σ

= (mh−1

)−1n−1hj

= n−1hm−1j

= (nh)σ(mj)σ.

Hence σ is a homomorphism. It is clearly surjective and injective, thus an automor-

phism.

Lemma 5.7. Let G be a group with a normal subgroup N , such that N is complemented

in G by H. Let w be a word on d variables. Suppose w(g1, . . . , gd) = h ∈ H for some

g1, . . . , gd ∈ G. Write gi = nihi. Then w(h1, . . . , hd) = h.

Proof. By considering the action ofH onN , w(g1, . . . , gd) can be written as n·w(h1, . . . , hd)

for some n ∈ N . Since N ∩H = 1 we conclude that n = 1 and w(h1, . . . , hd) = h.

Corollary 5.8. Let N and H be groups and G = N o H. If H is achiral, then no

element of H can witness the chirality of G.

Proof. For a group G = N oH, h ∈ H is a witness to the chirality of (G,w) if and only

if h ∈ H is a witness to the chirality of (H,w).
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Theorem 5.9. Let N be an abelian group and H be an achiral group with G = N oH.

No witness of the chirality of G can be automorphic to an element of N or H.

Proof. From Lemma 5.6 there is an automorphism σ of G that acts as inversion on N

and fixes H. If g ∈ G is automorphic to an element of N , then g is automorphic to its

own inverse, and thus not a witness to the chirality of G.

Corollary 5.8 states that no element of H can witness the chirality of (G,w), and

hence there are no witnesses of the chirality of G automorphic to an element of H.

We have the immediate corolloary:

Corollary 5.10. Let N be an abelian group and H be an achiral group with G = NoH.

If every element of G is automorphic to an element of either N or H, then G is achiral.

5.2 The Computability of Chirality.

We will give an algorithm that determines if a given finite group is chiral. As part of our

algorithm, we will calculate for all words on some specified number of variables all of the

sets w(G); this part of our algorithm is similar to an algorithm originally discovered by

Neumann in [83]. We start by proving the following lemma, which says that the chirality

of a finitely generated group is only dependent on words of a given number of variables.

Lemma 5.11. If a group G is generated by d elements, then G is chiral if and only if

there is a word w on d variables such that (G,w) is chiral.

Proof. We need only to show that if G is chiral, then there is a word w on d variables

that witnesses the chirality of G.
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Fix a generating set g1, g2, . . . , gd of G, and fix d-variables words u1, u2, . . . , u|G|,

such that ui(g) enumerates G. Let v be a word with k variables. Then

v(ui1 , ui2 , . . . , uik)(G(d)) ⊆ v(G(k)).

On the other hand, every k-tuple from G can be written as (ui1(g), . . . , uik(g)), so we

have ⋃
1≤ij≤|G|

v(ui1 , ui2 , . . . , uik)(G(d)) = v(G(k))

Now, if (G, v) is chiral, then v(G(k)) is not closed under inverse for some v, thus there

are some i such that w = v(ui1 , ui2 , . . . , uik) witnesses the chirality of G.

To check chirality, it suffices to check the d-variable words. We are now ready to

state our variant of Neumann’s algorithm:

Theorem 5.12. There is an algorithm, when given a finite group as input, outputs

whether G is chiral.

Proof. Let G be d-generated. We first build the Cayley graph of Fd(G). For a vertex

with label w, a word in Fd, there is an outward edge labeled xi that connects to a vertex

labeled by the word map wxi. We then check if this (as a map) is equal to some existing

vertex. For every existing vertex, the check is finite since the group is finite, and there

are only finitely many existing vertices. This process terminates since Fd(G), being a

subgroup of G(d), is finite. Now for each vertex, we check if the (finite) image of the

map is chiral. If it is chiral for any word map, we return chiral, otherwise we return

achiral.

This construction is actually related to the theory of varieties of groups.
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Note that this also shows once again that for a finite group G, Fd(G) is finite, since

Fd(G) ⊆ G(d) is finite. Furthermore, the algorithm actually builds the group Fd(G), and

in particular, enumerates all the d-variable laws satisfied by G. In [83], it was pointed

out that this can be used to find all laws satisfied by G with a bounded number of

variables, but does not give a finite process to find all laws. In our case, since chirality

can be reduced to a property on words with a bounded number of variables, it suffices

to stop at a finite stage, hence yielding an algorithm.

In practice, Neumann’s algorithm and our implementation of it are time and memory

intensive and do not yield a practical method for determining if a finite group is chiral.

For example, F2(S3) has order 972. By Theorem I we see that if G is C5 o C4, where

the action is faithful, then

|F2(G) = 122070317250000.|

As this section contained an algorithm to determine whether a finite group G is

chiral, we present an interesting variation of chirality below. We will say that a word

w is chiral if there is some group for which (G,w) is chiral. The chirality of a word is

decidable, i.e., there is an algorithm, when input a word, outputs whether the word is

chiral or not. Indeed, Given a word w, the word is chiral if and only if it is chiral in some

free group, which is equivalent to saying the free group does not satisfy the first-order

sentence ∀x∃yw(x) ·w(y) = 1. This is a sentence in the positive theory of the free group,

which coincides for all nonabelian free groups [78] and is decidable [74].

5.3 An Infinite Family of Minimal Chiral Groups.

We first note that achirality is preserved under quotienting:
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Lemma 5.13. Let H be a homomorphic image of G. If H is chiral, then G is also

chiral.

Proof. Let φ be the epimorphism taking G onto H. Let w be a word witnessing the

chirality of H, i.e. there is h ∈ w(H) with h−1 /∈ w(H). Suppose w(y) = h for y ∈ H.

Let x ∈ G be such that φ(x) = y, and we have φ(w(x)) = h. Write g = w(x).

Now we claim that g−1 /∈ w(G). If not, let w(x′) = g−1. Then h−1 = φ(g−1) =

φ(w(x′)) = w(φ(x′)) ∈ w(H), a contradiction. Thus G is also achiral as witnessed by w

and g.

Hence a classification of all finite chiral groups depends only on classifying those that

do not have a proper chiral quotient. We call such groups minimal chiral. The next

theorem shows the existence of an infinite family of minimal chiral groups. Moreover,

both SmallGroup(63,1) and SmallGroup(80,3) are part of in this family.

Lemma 5.14. Let p and q be primes. Let Zp act on Zq by multiplication by φ, and

assume that φ has order p and φ − 1, φ + 1 are both coprime to q. Then for p | r, the

group Zq o Zpr, where the action is multiplying by φ, is chiral as witnessed by the word

w = ap[a, b][a−1, b]φ.

Proof. Write a = (x, n) and b = (y,m) in Zpr n Zq. We compute:

ap = (px, n+ φxn+ · · ·+ φx(p−1)n)

[a, b] = (0,−n− φxm+ φyn+m)

[a−1, b] = (0, φ−xn− φ−xm− φy−xn+m)

Note that when x = 1, ap = (p, 0) since gcd(φ−1, q) = 1 implies 1 +φ+ · · ·+φp−1 ≡

0(q).
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Note that the first coordinate of w is p if and only if px = p(pr), thus x = 1(r). Note

that φr = 1(q) since the action has order p | r. Thus, when x = 1(r), we have:

ap = (p, 0)

[a, b] = (0,−n− φm+ φyn+m)

[a−1, b] = (0, φ−1n− φ−1m− φy−1n+m)

Thus, ap[a, b][a−1, b]φ = (p, 0) if the first coordinate is p.

Now consider when the first coordinate is −p. Again, this happens if and only if

x = −1(r). We again compute:

ap = (−p, 0)

[a, b] = (0,−n− φ−1m+ φyn+m)

[a−1, b] = (0, φn− φm− φy+1n+m)

And

ap[a, b][a−1, b]φ = (−p,−n− φ−1m+ φyn+m+ φ2n− φ2m− φy+2n+ φm)

= (−p, (φ+ 1)(φ− 1)(1− φy)n+ (1 + φ)(1− φ)(1− φ−1)m)

Since φ−1 and φ+1 are both coprime to q, as n,m, y ranges over various values, this

ranges over the coset (−p, 0)Cq. The inverse of the coset (−p, 0)Cq is (p, 0)Cq, but the

image of the word does not include any elements of the form (p, 0)Cq except for (p, 0).

Therefore, (G,w) is chiral.

Hence we have shown that SmallGroup(63, 1) and SmallGroup(80, 3) are achiral. We

can now prove Theorem C, i.e., that the only chiral groups with order less than 108 are

SmallGroup (63, 1) and SmallGroup (80, 3).
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Proof of Theorem C. Recall that any chiral group must have an element x ∈ G

such that σ(x) 6= x−1 for all automorphisms σ of G. There are only 44 groups with

this property of order less than 108. Of those 44 groups, only SmallGroup (63, 1),

SmallGroup(80, 3), and SmallGroup(81, 10) are not shown to be achiral by Corollary

5.5 as tested using Magma [9]. From the above we know that SmallGroup(63, 1) and

smallGroup(80, 3) are chiral.

To show that SmallGroup(81, 10) is achiral, we performed a search in Magma over

the Mal’cev coordinates of all possible words over SmallGroup(81,10). This is possible,

since SmallGroup(81,10) is nilpotent. Any word over SmallGroup(81,10) has a unique

Mal’cev coordinate, and there are only finitely many such coordinates.

5.4 Nilpotent Groups.

It is clear that every abelian group is achiral. In this section we will see that there are

chiral nilpotent groups and prove Theorem D.

Lemma 5.15. A reduced free group G is achiral if and only if every element is homo-

morphic to its inverse.

Proof. Suppose first every element in G is homomorphic to its inverse. Then if g ∈

w(G) for some word map w and g ∈ G, we have w(a) = g for some a ∈ G and the

homomorphism φ sending g to g−1 gives w(φ(a)) = g−1, so g−1 ∈ w(G). Thus G is

achiral.

Now suppose G is achiral and let g ∈ G. Fix a generating set S of G and write g as

a word w in S. Considering w as a word map, we see g ∈ w(G) by evaluating on S. By

achirality of G, we have g−1 ∈ w(G), say by evaluating on T . Consider the map that
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maps elements of S to corresponding elements of T . Since G is a reduced free group,

this map can be extended to an homomorphism on G, and it maps g to g−1.

Theorem 5.16. The class 2 rank 3 free nilpotent group N = N2,3 is achiral. As a result,

every class 2 rank 3 nilpotent group is achiral.

Proof. Write the generators of N to be a, b, c and the commutators to be d = [a, b],

e = [a, c], f = [b, c]. Since every element in N is automorphic to some element of

the form a∗d∗e∗f ∗, it suffices to show that elements of this form is homomorphic to its

inverse.

Fix g = aidjekf l ∈ N . Consider the homomorphism φ with φ(a) = a−1, φ(b) = bxcy,

and φ(c) = bzcw. We have φ(d) = d−xe−y, φ(e) = d−ze−w, and φ(f) = fxw−zy. Thus, to

have φ(g) = g−1, we need

a−id−je−kf−l = (a−1)i(d−xe−y)j(d−ze−w)k(fxw−zy)l,

which is equivalent to the following system of equations:

xj + zk = j

yj + wk = k

xw − zy = −1.

However, this is again equivalent to finding an integer matrix M =

x z

y w

 such that its

determinant is -1 and the vector

j
k

 is its eigenvector with eigenvalue 1. This matrix

can be found by starting with the matrix

1 0

0 −1

 and do a change of bases such that
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(gcd(j, k), 0) gets mapped to (j, k). Thus, we see that every g ∈ N is homomorphic to

its inverse, and thus N is achiral by the previous lemma.

Theorem 5.17. Let N3,2 = 〈a, b〉 be the free nilpotent group of class 3, rank 2, and let

c = [a, b], d = [c, a], and e = [c, b] be the standard Mal’cev basis of N3,2. Then for any

odd prime p, the element g = ap
2
cpd is not homomorphic to its inverse. Thus, N3,2 is

chiral.

Proof. Suppose φ is an automorphism such that φ(g) = g−1 = a−p
2
c−pdp

3−1. For sim-

plicity, we will use ∗ to denote unknown (possibly different for different ∗’s) integers,

and n∗ to denote integers divisible by n. By considering the power of a in φ(g), we see

φ(a) must have the form a−1c∗d∗e∗. Suppose φ(b) = a∗bxc∗d∗e∗. Thus, φ(c) = c−xd∗e∗

and φ(d) = dx.

We then compute

φ(g) = (a−1c∗d∗e∗)p
2

(c−xd∗e∗)p(dx)

= (a−p
2

cp
2∗d−

p2(p2−1)
2

∗+p2∗ep
2∗)(c−pxdp∗ep∗)(dx)

= (a−p
2

cp
2∗−pxdp∗+xep∗)

By considering the exponent of c modulo p2, we see −px ≡ −p modulo p2, so x ≡ 1

modulo p. However, considering the exponent of d modulo p, we get x ≡ −1 modulo p,

a contradiction. Thus the theorem follows.

The previous argument and hence chirality still holds for (finite) quotients of the free

nilpotent group with the order of a being infinity or divisible by p3, order of b being

infinity or divisible by p2, and order of c being infinity or divisible by p.
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5.5 Weakly chiral groups and the chirality of M11.

Gordeev et. al. defined the following concept, which they call weakly chiral [30].

Definition 5.18. A group G is weakly chiral, if for some word w and g ∈ G we have

that 0 < µw,G(g) < µw,G(g−1). The pair (G,w) is called a weakly chiral pair.

The above definition was motivated by an observation of Elkies that for the Mathieu

group of G = M11 and the word w = xy2xy3x3 the pair (G,w) is weakly chiral, while

words v such (G, v) is chiral were unknown [24]. In this section we give a word w so that

(M11, w) is a chiral pair. Moreover, we answer a question of Gordeev et. al. by providing

an example of a weakly chiral group G that is not chiral.

Theorem 5.19. Let G be the Mathieu Group M11 and let w be the word

[x−440(x−440)(y−440)x−440, (y−440)(x−440y−440)y−440].

Then w(G) contains an element g such that o(g) = 11 and g−1 /∈ w(G), i.e., the word

w witnesses the chirality of G.

Proof. All elements of M11 have order either 1, 2, 3, 4, 5, 6, 8, or 11. For an element g of

M11 we have

g−440 =



1 if o(g) /∈ {3, 6},

g if o(g) = 3,

g4 if o(g) = 6.

If a ∈ G does not have order 3 or 6, then w(a, b) = w(1, b) = 1 for all a ∈ G, since w is

a commutator. Similarly, if b ∈ G does not have order 3 or 6, then w(a, b) = w(a, 1) = 1

for all a ∈ G. Moreover, w(a, b) = w(a4, b4) for all a, b ∈ G. Hence to determine w(G)
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we need to determine w(a, b) where both a and b have order 3. There are 93600 such

tuples from G. Let X = {a ∈ G : o(a) = 3.}

Let v = [x(xy)x, y(xy)y]. Using Magma it is easy to compute the value of w on all

a, b ∈ X, by noting that w(a, b) = v(a, b) [9]. Computing the value of w(a, b) for all

a, b ∈ X, there are elements of order 1,2,4,5,6, and 11. However, all of the elements of

order 11 that occur in the image of w are conjugate. For g ∈ M11 with o(g) = 11 we

have that g−1 /∈ gG. We conclude that w witnesses the chirality of M11.

We note that w has length equal to 9680 =(440)(22), and is a relatively short straight-

line program.

We now turn to the question of whether there is an achiral group that is weakly

chiral. Using Magma [9] we can verify the following theorem. The relevant Magma code

can be found in Appendix A.

Theorem 5.20. Let G = 〈N2,3 | a32 = d, b32 = 1, c3 = d−1, d3 = 1, e = 1〉 with c = [b, a],

d = [c, a], e = [c, b]. Then G is weakly chiral with witness d and w = x32 [x, y]3[x, y, x].

Moreover, we can computationally show that G is not chiral.

Proof. An exhaustive Magma-aided search shows that G is not chiral. Using Magma

we directly calculate the fiber sizes and we see that there are w−1(a20) = 255879 and

w−1(a−20) = 78732.
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Chapter 6

Verbal descriptions of finite

nilpotent groups.

In this chapter we investigate conditions on a finite group G that ensure G is nilpotent.

For example, Baumslag and Wiegold [7], showed that a finite group is nilpotent if and

only the product of elements of coprime order m and n has order mn.

Recall that Nikolov and Segal [87] have shown the following:

Theorem 6.1. A finite G is solvable if and only if µG,w(1) is bounded away from zero

as w ranges over all words.

Work by Bray et. al. [10] described a sequence of words that can identify when a

finite group G is solvable. In this note, we do likewise for nilpotent groups, giving yet

another characterization of finite nilpotent groups. We note that the Engel words can

also be used to determine when a finite group is nilpotent. Our result seems independent

of this fact.

Recall the following from Chapter 1. For w ∈ F2 and a group G, define the structure

(G, ∗w) where G is the set G and ∗w is the binary operation x∗w y = w(x, y). In general,

we do not expect the structure (G, ∗w) to have interesting mathematical properties.

However, let P be the set of all words in F2 for which the total number of times x

and y each appear up to multiplicity is ±1. We will see that membership in P can
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be determined using the structure (G, ∗w) where G ranges over a set of abelian groups.

Moreover, we can describe finite nilpotent groups using P as follows.

Theorem E. [13, Theorem C] A finite group G is nilpotent if and only if for all w in

P with length less than 4|G|, we have µG,w(1) = 1
|G| .

It turns out that the set P can be defined using nilpotent groups in a similar manner.

In our proof of Theorem E we will utilize the following novel result of the author’s which

has interest independent of the study of word maps.

Theorem F. [13, Theorem A] Let G be a finite group and p a prime. Then G is not

p-nilpotent if and only if there are two elements g, h ∈ G with o(g) = o(h) = qk for some

prime q 6= p and o(gh) = p or possibly 4 when p = 2.

By extending the the techniques used to prove Theorem E, the author and Turbo

Ho were able to prove the following characterization of finite nilpotent groups.

Theorem G. [17, Theorem B] Let G be a finite group. Then G is nilpotent if and only

if for every surjective word map w, the distribution µG,w is uniform.

We start by proving Theorem F in Section 6.1 and then proving Theorems E and G in

Sections 6.2 and 6.3 respectively. In Section 6.4, motivated by Bastos and Shumyatsky

[6] we demonstrate an application of Theorem F to determining whether or not the

derived subgroup of a group is nilpotent.

6.1 Normal p-complements.

Recall, that a finite group is nilpotent if and only if it has a normal p-complement for

every prime p dividing the order of G. If G has a normal p-complement for a prime p,
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then we say that G is p-nilpotent. We will use the Frobenius Complement Theorem as

found in Isaacs [48]:

Theorem 6.2. Let G be a finite group, and suppose p is a prime. Then the following

are equivalent:

(1) G is p-nilpotent.

(2) NG(X) is p-nilpotent for every nonidentity p-subgroup X ⊆ G.

(3) NG(X)/CG(X) is a p-group for every p-subgroup X ⊆ G.

We will also use the following Lemma, taken from an exercise in Isaacs.

Lemma 6.3 (Exercise 4D.4 [48]). Let A act via automorphisms on G, where (|G|, |A|) =

1 and G is a p-group. Suppose that A acts trivially on every A-invariant proper subgroup

of G, but that the action of A on G is nontrivial. Then the exponent of G is p or 4.

We can now prove Theorem F

Proof of Theorem F. Since G does not have a normal p-complement for the prime

p, by the Frobenius Complement Theorem, there is a p-subgroup H < G, such that

|NG(H) : CG(H)| is divisible by q for a prime q. We can assume H is minimal with this

property, i.e., for all p-subgroups K < H, the groups NG(K)/CG(K) are p-groups. Let

Q be a Sylow q-subgroup of NG(H). Then Q acts on H via automorphisms non-trivially,

and by the minimality of H, we see that Q centralizes every Q-invariant subgroup of H.

By Lemma 6.3 the exponent of H is either p or 4.

Let x ∈ H such that for some t ∈ G we have xt 6= x. Then

xtx−1 = t−1xtx−1 = t−1(xtx−1).

The order of xtx−1 is either p or 4 and o(t−1) = o(xtx−1) = qk.
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6.2 Proof of Theorem E.

The following lemmas will help prove Theorem E.

Lemma 6.4. Let G be a group and let Z = Z(G). Let w ∈ P. The structure (G, ∗w) is

a quasigroup if and only if (G/Z, ∗w) is a quasigroup.

Proof. Suppose that (G, ∗w) is a quasigroup. Then w(a, b) = w(a, c) implies b = c.

Use the “overbar notation” and suppose w(a, b) = w(a, c). Then w(a, b) = w(a, c)

and we conclude that w(a, b) = w(a, c)z for some z ∈ Z. Since w ∈ P , we see that

w(a, c) = w(a, cz±1) and thus b = c. By symmetry, w(a, b) = w(c, b) implies that b = a

and (G/Z, ∗w) is a quasigroup.

Suppose that (G/Z, ∗w) is a quasigroup and w(a, b) = w(a, c). Then as before b = c

and we conclude that c = bz for some z ∈ Z. But, w(a, c) = w(a, bz) = w(a, b)z±1 =

w(a, b) and we conclude that z = 1 and thus c = b. By symmetry, we see that (G, ∗w)

is a quasigroup.

Iterating Lemma 6.4 we have

Corollary 6.5. Let G be a nilpotent group and let w ∈ P. Then (G, ∗w) is a quasigroup.

Proof. Observe that in an abelian group H, the action x ∗w y is x±1y±1.

We now proof that membership in P can be determined by examining nilpotent

groups.

Theorem 6.6. A word w ∈ F2 is in P if and only if the length of w is greater than 1

and for any nilpotent group G with order less than the length of w, the structure (G, ∗w)

is a quasigroup.
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Proof. By Lemma 6.4 and its corollary we see that w ∈ P only if for any nilpotent group

G the structure (G, ∗w) is a quasigroup.

Now suppose that w is not in P and the length or w is greater than 1. Without loss

of generality, either the degree of x in w is 0 or there is a prime p that divides the degree

of x. If the degree of x in w is 0, then for any abelian group g ∗ 1 = 1 for all g ∈ G.

Suppose the degree of x is nonzero and let p divides the degree of x. Then consider Cp,

the cyclic group of order p and note that g ∗ 1 = 1 for all g ∈ G. Note that either the

total number of times y appears is 0 or p is less than the length of w.

We now prove Theorem E.

Proof of Theorem E. By Lemma 6.4 and its corollary we know that for a nilpotent

group G, the structure (G, ∗w) is a quasigroup; therefore µG,w(g) = 1
|G| . for all g ∈ G.

Suppose that G is not nilpotent. We will construct a word w, so that (G, ∗w) is not a

quasigroup. In particular, let G fail to be p-nilpotent. Then by Theorem F there are two

elements g and h in G of order qk such that o(gh) = p or 4. Let 0 < a < qk be an inverse

of p modulo qk, that is ap ≡ 1 (mod qk). Since (a, qk) = 1, there are unique ĝ and ĥ

such that ĝa = g and ĥa = h. Moreover, o(ĝ) = o(ĥ) = qk. Let b satisfy ap− bqk = 1.

If o(gh) = p, consider the word:

w(x, y) = (xaya)p−1(xa−bq
k

ya−bq
k

).

Then

w(ĝ, ĥ) = (gh)p−1(ĝa−bq
k

ĥa−bq
k

) = (gh)p = 1.

By construction the degree of both x and y is ap− bqk = 1. Hence w(k, k−1) = 1 for

all k ∈ G. Therefore µG,w(1) > 1
|G| . The length of w is 2(ap+ bqk). We note that a < qk

and bqk = ap− 1 < |G|. Hence the length of w is less than 4|G|.
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The construction of w works mutatis mutandis when o(gh) = 4.

We remark, that the theorem is still true if P is replaced with the subset of all words

w with total degree of x and y both being 1. Such words will generate a loop on every

nilpotent group.

6.3 Proof of Theorem G.

The arguments used to prove Theorem E can be generalized to prove Theorem G, i.e.,

that a finite group G is nilpotent if and only if every surjective word map induced the

uniform distribution on G. What’s more, using Theorem F we see that for non-nilpotent

groups G we can construct a surjective word w that fails to induce a uniform distribution.

The work in this section was joint work with Turbo Ho [17]. The authors were interested

in the follow question.

Question 6.7. Fix n ∈ N, a finite group G, and an enumeration of the elements of G.

Let gi be the i-th element of G. Consider the probability distribution of the word map

w as a function fw : {1, 2, · · · , |G|} → Q where

fw(i) = µG,w(gi).

The functions fw and µG,w differ in their domains of definition, an important, if somewhat

pedantic, distinction. Given the distributions of all n-variable word maps of G as a set,

what information can be recovered about G?

In addition to Theorem F, in this section we will show the following:

Theorem 6.8. For all n ∈ N, we can identify when a finite group G is nilpotent from

the set of distributions of all n-variable word maps on G.
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Theorem 6.9. For n > 1, the set of distributions of all n-variable word maps on G

can be used to identify whether G is abelian; moreover, if G is abelian, then the set of

distributions identifies G up to isomorphism.

For a word w, we will use the notation w(x; g) to refer to w(x1, . . . , xn; g1, . . . , gm),

the word w now taken to include parameters g1, . . . , gm in some group N . Klyachko and

Mkrtchyan [55] call the elements of g the coefficients of w.

Lemma 6.10. Let N be a finite nilpotent group, and w(x; g) be a word with parameters

g ∈ N . Then the following are equivalent:

1. w(x; g) has uniform fiber size over N .

2. w(x; g) is surjective.

3. The greatest common divisor of the exponents of variables in x in w(x; g) together

with the exponent of N is 1.

Proof. (1)→ (2) is obvious.

(2) → (3): Suppose (2) holds, but the greatest common divisor of the exponents of

variables in x in w(x; g) together with the exponent of N is d > 1. Let p be a prime

divisor of d. Then p divides the exponent of the abelianization N/N ′. In N/N ′, the

image of w(x; g) is a coset of w(x; 1). However, if p divides the greatest common divisor

of the exponents of x in w, we have that w(N/N ′; 1) ⊆ (N/N ′)p, which is strictly smaller

than N/N ′ since p divides the exponent of N/N ′.

(3)→ (1): Suppose (3) holds, then w has uniform fiber size over N if and only if any

element u in the orbit of w under the action of automorphisms of Fm(N) has uniform

fiber size over N . By (3), we have an automorphism of the Fm(N)/Fm(N)′ that maps
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the abelianization of w to the product of a generator and some parametes. Hence, by

lifiting this autormophism to an automorphism of Fm(N), we can assume that w has

the form x1hc where h is a word in g and c is a commutator word in the variables x and

parameters g. It is clear that this has uniform fiber size over an abelian group.

We now induct on the nilpotency class of N . Let Z(N) be the center of Z. By the

induction hypothesis, w(x; g) has uniform fiber size over N/Z(N), after replacing the pa-

rameters by their canonical image. Thus, it suffices to show that for every a, b ∈ N such

that a−1b ∈ Z(N), w has the same fiber size over a and b. However, we have the bijection

(x1, x2, x3, · · · ) → (x1a
−1b, x2, x3, · · · ) between the fibers of a and b. Indeed, suppose

that w(x1, x2, · · · ) = a. As a−1b is in the center and c is a commutator word, we have

c(x1a
−1b, x2, · · · ) = c(x1, x2, · · · ), thus w(x1a

−1b, x2, · · · ) = x1a
−1bhc(x1a

−1b, x2, · · · ) =

(a−1b)(x1hc(x1, x2, · · · )) = a−1ba = b. The other implication can be established simi-

larly. So w has uniform fiber size over N , completing the proof.

We now prove a slightly stronger version of Theorem G.

Theorem 6.11. Let G be a finite group. Then the following are equivalent:

1. G is nilpotent.

2. For every surjective word map w, the distribution µG,w is uniform.

3. There is some n > 1 such that for every n-variable surjective word map w, the

distribution µG,w is uniform.

Proof. (1)→ (2) We first suppose that G is nilpotent. Then by the previous lemma, if

a word map is surjective, then is has uniform fiber size.

(2)→ (3) is obvious.



81

(3) → (1) Now suppose that n > 1 and every n-variable surjective word map on

G induces the uniform distribution. We will show G is p-nilpotent for every prime p.

Suppose by way of contradiction that G is not p-nilpotent for the prime p. Then by

Theorem F there are two elements a, b of G, such that o(a) = o(b) = qk and

o(ab)


= p for p an odd prime

∈ {2, 4} for p=2.

Since p and q are coprime there are r, s ∈ Z such that rp + sqk = 1; (in the event

o(ab) = 4 we will assume that 4r + sqk = 1). Consider the n-variable word

w(x) = xsq
k

1 xsq
k

2 (x1x2)rp,

(if necessary let p = 4). We have the following facts about w:

(a) For any g ∈ G, we have w(x) = g if x1 = g and x2 = 1.

(b) For any g ∈ G, we have w(x) = 1 if x1 = g and x2 = g−1.

(c) If x1 = a and x2 = b, we have

w(a, b) = asq
k

bsq
k

(ab)rp = 1.

By (a), w is surjective. By (b) and (c), there are at least (|G|+ 1) · |G|n−2 tuples in

Gn that map to the identity. So w is a surjective word map on G that does not induce

the uniform distribution. We conclude that if every n-variable surjective word map on

G induces the uniform distribution, then G is p-nilpotent for every prime p, and hence

nilpotent.
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Recall that a word c is a commutator if the total degree of any variable that appears

in c is 0. Equivalently, c is in the commutator subgroup of the appropriate free group.

Corollary 6.12. In a finite nilpotent group G, the equation x = c(x, y), where c is a

commutator word in x, y, has exactly |G| solutions; moreover, the solution set is exactly

the two-tuples in the set {(1, g) : g ∈ G}.

Proof. We note that a solution (a, b) to x = c(x, y) is also a solution to w(x, y) = 1

where w = x−1c(x, y). Since G is nilpotent and w is surjective, we see that there are

exactly |G| such solutions. Clearly, (1, g) is a solution for all g ∈ G.

The above corollary can easily be generalized to the following:

Corollary 6.13. In a finite nilpotent group G, the equation w(x) = c(x), where c is

a commutator word in x and w is a surjective word map on G, has exactly |G||x|−1

solutions.

Proof. By Theorem 6.10, the greatest common divisor of the exponents of variables in x

in w(x) together with the exponent of N is 1. However, as c is a commutator word, this

is also true for wc−1. Thus, again by Theorem 6.10, wc−1 has uniform fiber size over

N . Hence, there are exactly |G||x|−1 solutions to wc−1(x) = 1 and these are exactly the

solutions to w(x) = c(x).

It is natural to ask about the generalization of Corollary 6.13 to the equation w(x) =

v(x), without any restriction on w or v, which is equivalent to considering the equation

w(x) = 1. The following conjecture is attributed to Amit in [86, Question 24]:

Conjecture 6.14 (Amit). For every word map w(x) on a finite nilpotent group G,

µG,w(1) ≥ 1

|G|
,
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i.e., the number of solutions to w(x) = 1 is greater than or equal to |G||x|−1.

There are only some partial results in this direction. Levy [65] has shown that when

G has nilpotent class 2, then for any word w we have µG,w(1) ≥ 1
|G| ; showing that Amit’s

Conjecture holds for class 2 groups. Iñiguez and Sangroniz [45] have shown the stronger

condition that for free p-groups of nilpotency class 2 and exponent 2, it is true that

µG,w(g) ≥ 1
|G| . Solomon [99] showed that for any finite group G and w ∈ F2, we have

µG,w(1) ≥ 1
|G| .

We are also interested in understanding the information content of the distributions

of word maps of a group. Recall that we are interested in the following question:

Fix n ∈ N, a finite group G, and an enumeration of the elements of G. Let gi be

the i-th element of G. Consider the probability distribution of the word map w as a

function fw : |G| → N where fw(i) = |w−1(gi)|. Given the distributions of all n-variable

word maps of G as a set, what information can be recovered about G?

A priori, the answer of the question depends on n. We ask:

Question 6.15. Do we get more information as n gets larger?

From the distributions of word maps we can easily read off the size of the group.

Moreover, we can identify the identity element in G as it is the image of the only word

map (the identity map) that has an image of size 1.

We mention the following example:

Example 6.16. The dihedral group of order 8, which we write as D8, and Q8 have the

same reduced free group on two variables, i.e.,

F2(D8) ∼= F2(Q8).
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However using Magma [9] we find that they have different sets of distributions of 2-

variable word maps.

6.3.1 n = 1: words with a single variable.

When n = 1, the images of the word maps are exactly the sets Gk = {gk | g ∈ G}.

Example 6.17. The distribution of 1-variable word maps does not determine even nilpo-

tent groups up to isomorphism. Consider any nonabelian group of exponent p, for p ≥ 3

a prime. When looking at word maps on 1-variable, such a group is indistinguishable

from an elementary abelian group of the same order. For example, the Heisenberg group

H3(Z/pZ) =




1 a c

0 1 b

0 0 1

 | a, b, c ∈ Z/pZ

 over the field of p elements is a non-abelian

group of exponent p and order p3, and it cannot be distinguished by its 1-variable word

maps from the elementary abelian group of order p3.

Using the Frobenius Solutions Theorem we can now show:

Theorem 6.18. The distributions of 1-variable word maps on a finite group G determine

whether or not G is nilpotent.

Proof. We first note that the identity element is always determined by the set of dis-

tributions, i.e., the only element for which there is a distribution mapping entirely onto

it.

Let |G| = pkm where gcd(p,m) = 1 and k ≥ 1. Then, if G is nilpotent, there are

exactly pk solutions to the equation xp
k

= 1. Moreover, letting w = xp
k
, we see that for

every g ∈ w(G) there are exactly pk preimages in G and |w(G)| = m.
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Now suppose G is a group of order pkm, where (p,m) = 1, and w = xd such that the

following hold:

• For every g ∈ w(G) there are exactly pk preimages in G.

• |w(G)| = m.

We claim G must have a normal Sylow p-subgroup. Note that by the Frobenius Solutions

Theorem the number d is a p-th power.

Let X(m) be the solutions to the equation xm = 1. Also by the Frobenius Solutions

Theorem, |X(m)| ≥ m. But every element of X(m) is a solution to xm = 1, hence they

have order coprime to p. Since w = xp
j

for some j ≥ 1 and gcd(pj,m) = 1, the elements

in X(m) must also be in w(G). But, |w(G)| = m and we conclude that w(G) = X(m)

and contains no elements of order p. Hence every element whose order is a power of p

is a solution to w. Thus, G has a normal Sylow p-subgroup. Then G is nilpotent if and

only if there is such a w for all p dividing |G|.

6.3.2 n > 1: words with more than one variable.

From Theorem 6.11, we see that for n > 1, the set of all distributions of n-variable word

maps on G is enough to determine whether or not G is nilpotent, i.e., a finite group G is

not nilpotent if and only if there is some n-variable surjective map that is not uniform.

This, together with Theorem 6.18, proves Theorem 6.8.

Interestingly enough the set of all distributions of n-variable word maps can also

identify commutativity:

Lemma 6.19. For any n > 1, a finite group G is abelian if and only if the distribution

of every n-variable word map is uniform over its image.
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Proof. If G is abelian, then for every word map w, w−1(0) is a subgroup of Gk, and

w−1(g) is either a coset of it or empty. Thus every word map is uniform over its image.

If G is not abelian, then as shown by Ashurst, for w = [x, y], we have that µG,w(1) >

µG,w(g) for all g ∈ G [3, Lemma 2.2.8]. Also, as G is not abelian, µG,w(g) is not all

zero for g 6= 1. If we regard w as an n-variable word, then µG,w is not uniform over its

image.

We now prove Theorem 6.9.

Proof of Theorem 6.9. In an abelian group, every word is automorphic to a power

word, as can be seen by using a series of Nielsen transformation to cancel out all but a

single variable. Since the number of non k-powers in G is determined by the word map

xk, the set of distributions of word maps on G for any number of variables determines

the set of natural numbers m such that there exists a k so that the word w = xk satisfies

|G|−|w(G)| = m. If we are looking at all distributions induced by n-variable word maps

where n > 1, then we can determine if G is abelian. If G is abelian, then by Theorem

B above we have determined G up to isomorphism.

Remark 6.20. Note that as shown in Example 6.17, the distribution of 1-variable word

maps is not enough to identify whether a group is abelian. However, if in addition to

knowing that the distribution of 1-variable word maps, we also assume that G is abelian,

then Theorem B applies and we can still identify G up to isomorphism.

The reduced free group of a nilpotent group is the direct product of the reduced free

groups of its Sylow subgroups [84, p. 41]. We show that without the group structure,

the distributions of word maps of a nilpotent group determine the distributions of word
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maps of its Sylow subgroups, and similarly the distributions of word maps of all the

Sylow subgroups determine the distributions of word maps of G.

Theorem 6.21. The distributions of word maps of a nilpotent group uniquely determine

the distributions of word maps of its Sylow p-subgroups for all p, and vice versa.

Proof. Given the distributions of word maps of a finite group G, we will show how to

identify the sub-lists of the enumerated list G that correspond to the Sylow p-subgroups.

First, we note that from the distributions of word maps of G we can determine the order

of G. Write |G| = pnk such that p - k. Then the word map xk is uniformly distributed on

its image, the Sylow p-subgroup. Since G is nilpotent, we have G = PK where |P | = pn

and |K| = k. Then the following holds for every word map w and g ∈ P , h ∈ K:

w−1
G (gh) = w−1

P (g)w−1
K (h).

Suppose w have image of size pn and is uniform. Then it is uniform when projected

to both P and K. However, this means that the size of the image in K must divide

|K|2 = k2. But k and p are co-prime, so the size of the image of w in K is 1. Thus,

the image of w in G must be P . This allows us to identify the Sylow p-subgroups. For

every word map, we may find its distribution as a word map on P by looking at its

distribution on P and scale accordingly.

For the backward direction, if we enumerate elements in G as the Cartesian product

of the elements in the Sylow p-subgroups, then from the above discussion we have that

any distribution on G is a product of distributions on the Sylow subgroups in the sense

that

w−1
G (g1 · · · g`) = w−1

P1
(g1) · · ·w−1

P`
(g`).
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Thus, we only need to show that the products of distributions on the Sylow subgroups

are actually realized as the distribution of some word map on G. Let P be a Sylow p-

subgroup, and K be its complement. Suppose |P | = pn and |K| = k, and rpn + sk = 1.

Then for any word w, define ŵp(x1, x2, · · · ) = w(xsk1 , x
sk
2 , · · · ). Then w = ŵp in P , and

ŵp is a law on K. Thus, the product of distributions on the Sylow subgroups are realized

by the product of the ŵp as a word map in G.

6.4 The nilpotency of commutator subgroups.

An interesting line of study has emerged following the observation of Baumslag and

Wiegold [7] that a finite group is nilpotent if and only the product of elements of coprime

order m and n has order mn. Bastos and Shumyatsky showed a similar condition on

commutators was sufficient to guarantee that the commutator subgroup is nilpotent. In

this section, we will say that an element g of a group G is a commutator if there are

a, b ∈ G such that [a, b] = g.

Bastos and Shumyatsky showed the following.

Theorem 6.22. [6] Let G be a finite group. If for all commutators g, h ∈ G of coprime

order o(g)o(h) = o(gh), then G′ is nilpotent.

Bastos et. al. [5] extended that result to metanilpotency and Freitas de Andrade and

Carrazedo Dantas [27] showed a similar result regarding the nilpotency of the nilpotent

residue. We also note that Monakhov has done related work using just commutators of

prime power order [81, 80].

In the present section we show that Theorem F can be used to derive another test

for the nilpotency of the commutator subgroup.



89

Theorem 6.23. Let G be a finite group. The following are equivalent:

(1) The group G′ is nilpotent.

(2) For any prime p and two commutators x and y of order pk, the element xy does

not have order qj > 1 for q a prime different than p.

(3) For any prime p and any commutator x of order pk and an arbitrary y ∈ G, the

element x−1xy does not have order qj > 1 for q a prime different than p.

Lemma 6.24. Let G be a finite group and let H be a q-subgroup of G. Let p and q

be distinct primes dividing the order of G. Assume that for all commutators x in G of

order pk, there is no nontrivial commutator z of order qj such that the product of x and

z is conjugate to x. Then, if x ∈ NG(H) then x ∈ CG(H).

Proof. Let x ∈ NG(H) and let y ∈ H. Consider [x, y]. We claim that [x, y] = 1. To see

this, consider

x [x, y]︸︷︷︸
∈H

= xx−1y−1xy = xy.

By assumption we must have that [x, y] = 1. Hence x ∈ CG(H).

Theorem 6.25. Let G be a finite solvable group. If for any prime p and any commutator

x of order pk and an arbitrary y ∈ G, the element x−1xy does not have order qj > 1 for

q a prime different than p, then G′ is nilpotent.

Proof. Look at G′′ > 1. Consider any Sylow subgroup S of G′ and a different Sylow

subgroup T of G′′. Then ST is a characteristic subgroup of G′ and hence normal in G.

We note that S is generated by commutators. Moreover, for each commutator g that

is in S, we have that [g, T ] = 1 since T is a normal subgroup of G′. Hence, [S, T ] = 1
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and we conclude that S is characteristic in ST and thus normal in G. Therefore G′ is

nilpotent.

We can prove the general case, using the proven Ore Conjecture [67].

Proof of Theorem 6.23. (1)→ (2) follows since every Sylow subgroup ofG is normal.

(2) → (3) This is a tautological weakening.

(3)→ (1) Assume that G is a minimal counterexample to the implication (3)→ (1),

i.e., that for any x of order pk and any y, the product x−1xy does not have nontrivial

q-power order; but, G′ is not nilpotent. From Theorem 6.25, we see that G is not a

solvable group, and by induction we can assume that every subgroup H of G satisfies H ′

is nilpotent. Hence every subgroup of H is meta-nilpotent and thus solvable. Therefore,

G is either solvable or a minimal simple group. If G is solvable then from Theorem 6.25

we see that G′ is nilpotent. If G is simple, then by combining the Ore Conjecture and

Theorem F we see that G contains a commutator of order pk and an element y ∈ G such

that x−1xy nontrivial q-power order.
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Chapter 7

The number of word maps on a

finite group.

In this chapter we return to examining the group of word maps on a group G. This

group Fn(G) shares many of the interesting properties of the group Fn. The notation is

in part inspired by the fact that Fn(G) is the rank n-free group in the variety generated

by G [84]. All characteristic subgroups of Fn(G) are verbal, moreover any characteristic

subgroup is generated by a single word w, although w might be a word on more than n

variables. We can also formulate Fn(G) as the following quotient of Fn :

Let

K(G) = {w ∈ Fn : w(G) = 1}.

The group K is called the set of n-variable laws on G. Then

Fn(G) = Fn/K(G).

It should be noted that Fn(G) is a subgroup of the group of all maps from Gn → G.

Hence when G is finite it has order dividing |G||G|n . However, it is easy to show that

when |G| > 1 this bound is not sharp. Finding explicit formulas for |Fn(G)| for specific

groups has been a matter of some interest.

Several authors have worked on bounding the order of Fn(G) including the following:
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The observation that |Fn(G)| divides |G||G|n was originally made by Neumann in [83].

Restricting to dihedral groups, Fine gave a much tigher bound [25], which prompted

Kovács to announce a general formula for |Fn(Dm)| where Dm is the dihedral group of

order 2m [56]. However, it is known that his result is written incorrectly for the cases

where m is odd. A corrected formula previously appeared on Kovács website [53]. We

will give an explicit example showing the error in Kovács’ formula in Section I.

In this note we provide a new bound on Fn(G), motivated in large part by the desire

to determine the size of the reduced free group on two variables in the variety generated

by the alternating group on 5 elements, i.e., we want to find |F2(A5)|. As will we see in

Theorem J,

|F2(A5)| = 4738381338321616896000000000000000000000000.

Our new bound for general groups G is stated in the following theorem.

Theorem H. Let G be a finite group with exponent e. Let Ω be a set of orbit repre-

sentatives of the diagonal action of Aut(G) on the set of n-tuples (g1, . . . , gn) of G such

that 〈g1, . . . , gn〉 is not abelian. Then

|Fn(G)| ≤ en
∏

(x1,...,xn)∈Ω

|〈x1, . . . , xn〉′|.

We will show that the bound in Theorem H is sharp. In particular we have the

following theorem:

Theorem I. Let Cp be the cyclic group of order p, where p is prime. Let G = Cp o

Aut(Cp) then

|F2(G)| = (p− 1)2p2+p(p−2),
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and

F2(G)′ = (Cp)
p(p−2) .

It is worth noting that in our proof of Theorem I we have the following lemma,

which while elementary is nonetheless interesting and is related to the matrix examined

in Section 2 of [94] :

Let z be a primitive root of unity modulo p. Let M be the p − 2-by-p − 2 matrix

defined by (zij − 1). Then M4 = I.

Returning to the group A5, we used Magma [9] to perform calculations necessary to

verifiy the order of |F2(A5)|. We also determined the structure of F2(A5)′.

Theorem J. Let G = A5. Then

|F2(G)| = 3023344536019

and

F2(G)′ = (C3)3 × (K4)4 × (C5)3 × (A5)19

The rest of the note consists of Sections 7.1, 7.2, and 7.3, where we prove Theorems

H, I, and J respectively.

7.1 Proof of Theorem H.

Recall that any word w(x1, . . . , xn) can be written in the form

w = xk11 . . . xknn v(x1, . . . , xn), where v ∈ F′n.

By applying Nielson transformation to w, we see that w is automorphic to a word

w′ = xk1c where k is gcd(k1, . . . , kn) and c ∈ F′n. For a group G, the subgroup K(G) ≤
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Fn(G) is characteristic, and hence w ∈ K(G) if and only if w′ ∈ K(G). Equivalently, w

is a law on G if and only if w′ is a law on G. We have the following lemma:

Lemma 7.1. Let w ∈ Fn and let G be a group. Suppose that σ is an automorphism of

Fn. Let

σ(w) = w′ = xk1c, where c ∈ F′n.

Then w ∈ K(G) if and only if xk1 ∈ K(G) and c ∈ K(G).

Proof. Clearly, if xk1 and c are both in K(G) then w′ and w are too. Suppose that

w′ ∈ K(G). Then as a map w′(g1, . . . , gn) = 1 for all g1, . . . , gn ∈ G. So w′(g, 1, . . . , 1) =

gk = 1 for all g ∈ G, i.e., xk1 ∈ K(G). Equivalently, x−k1 ∈ K(G) and we see that

c ∈ K(G) as well.

From Lemma 7.1 we deduce the following corollary:

Corollary 7.2. Let G be a group. The exponent of G is e if and only if

|Fn(G) : Fn(G)′| = en.

Proof. The word maps xe11 . . . xenn for e1, . . . , en in {1..e} give a unique set of coset rep-

resentatives of Fn(G)′ in Fn(G).

Theorem H follows as a Corollary to the below theorem and an application of Lemma

7.1:

Theorem 7.3. Let G be a finite group with exponent e. Let Ω be a set of orbits of

representatives of the diagonal action of Aut(G) on the set of n-tuples of G such that

〈g1, . . . , gn〉 is not abelian. Then

|Fn(G)′| ≤
∏

(x1,...,xn)∈Ω

|〈x1, . . . , xn〉|′.
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Proof. Let w ∈ Fn(G)′. The word map w is determined by its value on the set of n-

tuples of G such that 〈g1, . . . , gn〉 is not abelian. Moreover, if for some σ ∈ Aut(G) and

(g1, . . . , gn) and (h1, . . . , hn) we have that σ(gi) = hi for all i, then

σ(w(g1, . . . , gn)) = w(σ(g1), . . . , σ(gn)).

Hence, knowing the value of w(g1, . . . , gn) determines the value of w(h1, . . . , hn). By

assumption w(g1, . . . , gn) ∈ 〈g1, . . . , gn〉′. Hence, there are at most

∏
(x1,...,xn)∈Ω

|〈x1, . . . , xn〉|′

commutator maps on G.

We note that the bound obtain in Theorem 7.3 is not strict. For example, let G be

the dihedral group of order 8. Applying Theorem 7.3 we see that |F2(G)′| ≤ 8; but, in

fact |F2(G)′| = 2, as seen by running an algorithm that calculates F2(G) [16, Theorem

3.3]. However, there is one family of groups where we obtain equality in Theorem H

when n = 2. In the next section we prove that Theorem H is sharp for the number of 2

variable word maps on the holomorphs of cyclic groups of order p, where p is prime.

7.2 Proof of Theorem I.

Let Cp be the cyclic group of order p, where p is prime. Let G = CpoAut(Cp) then We

will first show that when p = 3, we have C3 o C2 = S3 and

|F2(S3)| = 972.

The techniques and ideas used in the proof for p = 3 will carry directly over to our
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proof of Theorem I. As promised, the example of |F2(S3)| = 972 contradicts the formula

originally given by Kovács [56].

7.2.1 The case G = S3.

Let G = S3 = Hol(C3). By Theorem 7.3 we see that |F2(G)| = 972 if and only if

|F2(G)′| = 27. To determine the number of commutator word maps on G, we first

compute the number of noncommuting 2-tuples of G; in this case there 18 noncommuting

2-tuples. The automorphism group of S3 is S3 and under the diagonal action of S3 there

are exactly 3 orbits. Our choice of orbit representatives is:

• A = ((123), (12));

• B = ((12), (123));

• C = ((12), (13)).

Hence any commutator word map is determined entirely by its values on A, B, and

C. Consider the maps corresponding to [x3, y3], [x, y2], and [x2, y]. Since G′ is a group

of order 3, the group F2(G)′ is a vector space over G = F3, the field with 3 elements.

By choosing a generator of G′, we can evaluate commutator word maps on A, B, and C

to get vectors in F3
3, where each coordinate corresponds to the value over one of A, B or

C . Explicitly, let (123)→ 1. Then

[x, y](A) = [(123), (12)] = (132)(12)(123)(12) = (123)→ 1.

We construct a matrix M to manipulate the values of the various commutator maps

on A, B, and C. We note that given two commutator words w and v, the product map
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wv is also a commutator map and will correspond to adding the appropriate rows of the

matrix. Moreover, the evaluation of wv is the product of the evaluation map on w and

v.

M =


[x3, y3](A) [x3, y3](B) [x3, y3](C)

[x, y2](A) [x, y2](B) [x, y2](C)

[x2, y](A) [x2, y](B) [x2, y](C)

 =


0 0 2

0 1 0

2 0 0

 .

Hence, by using products of [x3, y3], [x, y2], and [x2, y] we could get any of the 27

vectors in F3 to occur as the values of a commutator word map on A, B, and C. We

conclude that F2(G)′ has order 27. In the present case it was a fortunate stroke of

serendipity that the commutator maps in questions are clearly independent as vectors

over F3. In general, we will need to demonstrate that some system of commutators

produces a non-singular matrix to show independence over Fp.

7.2.2 The general case.

For the general case we need to first determine the number of orbits of noncommuting

pairs of elements of G = Hol(Cp) = Cp oCp−1. We note that Out(G) is trivial. We will

first give a set of p(p − 2) elements that are a set of orbit representatives of the action

of Aut(G) on the set of noncommuting pairs of elements of G. Let z be a primitive p-th

root of unity. Let G = 〈a, b : ap, bp−1, ab = az〉 = Hol(Cp). Let

X = {(a, bj) : and j ∈ {1..p− 2}},

Y = {(bj, a) : and j ∈ {1..p− 2}},

Z = {(bi, (bj)a) : i, j ∈ {1..p− 2}}.
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Lemma 7.4. With the notation defined above, the set X ∪ Y ∪ Z is a set of orbit

representatives of noncommuting pairs of elements of G and |X ∪ Y ∪ Z| = p(p− 2).

Proof. By construction |X| = |Y | = p−2 and |Z| = (p−2)2. Hence |X∪Y ∪Z| = p(p−2).

We need to show that given s, t ∈ X ∪ Y ∪ Z there is no automorphism of G that takes

s to t.

Every automorphism of G is inner. Consider (a, bj) in X. Let g = anbm ∈ G. We

have

(a, bj)g = (a(bm)(bj)g), (a(zm), (bj)g).

Clearly, (a, bj)g is not in Y, Z for any g. A similar result holds for (bj, a) in Y . Therefore

for s, t ∈ X ∪Y ∪Z we see that sg = t if and only if s, t are in exactly one of X, Y , or Z.

But, it is obvious that for s, t ∈ X there is no g ∈ G such that sg = t; by symmetry the

same holds for Y , and by exclusion the result holds for Z as well. Therefore, X ∪ Y ∪Z

is a set of orbit representatives of the noncommuting pairs of elements of G.

Hence any commutator word map on G is determined by its values on X, Y, and Z.

Moreover, given a word w(x, y) ∈ F′2 we can construct a word vX(x, y) = w(x1−p, y). We

see immediately that vX has the following properties:

• For all (x, y) ∈ X, we have the equality w(x, y) = vX(x, y).

• For all (x, y) ∈ Y ∪ Z, we have that vX(x, y) = 1.

Heuristically, vX mimics w over the set X.

We can similarly construct vY (x, y) = w(x, y1−p) and vZ = w(xp, yp). Thus for any

word map w ∈ F2(G)′ we have w = vXvY vZ . Moreover, the words vX , vY and vZ pairwise

commute. Hence, F2(G)′ decomposes as a direct product of words taking values over X,
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Y , and Z. We will show that for any tuple in X ∪ Y ∪ Z there is a commutator w that

does not vanish on that tuple, but w does vanish on all other tuples in X ∪ Y ∪ Z, i.e.,

the word w isolates a single tuple.

7.2.3 Tuples in X and Y .

Consider the p − 2 tuples of the form (a, bj) where 1 ≤ j ≤ p − 2. Consider the words

wi = [x, yi] where i ∈ {1..p− 2}. What is the value of wi(a, b
j)? We compute

wi(a, b
j) = a−1b−ijabij = a(zij−1).

Let us fix a homomorphism f : G′ → F+
p such that f(a) = 1. The words wi on (a, bj)

give us the matrix

(
f(wi(a, b

j))

)
=



z z2 . . . zp−2

z2 z4 . . . z2(p−2)

...
... . . .

...

zp−2 z2(p−2) . . . z(p−2)2


.

We will show that the matrix above is invertible.

Lemma 7.5. Let z be a primitive root of unity modulo p. Let M be the p− 2-by-p− 2

matrix defined by (zij − 1). Then M4 = I.

Proof. Consider the ij-entry of M2, which we write as M2(i, j). We have that

M2(i, j) =

p−2∑
k=1

(zik − 1)(zkj − 1) =

p−2∑
k=1

zik+kj −
p−2∑
k=1

zkj −
p−2∑
k=1

zij +

p−2∑
k=1

1.

We note that
∑p−2

k=1 ζ
k of any element of Fp is 0, unless ζ = 1, in which case the

summation comes out to −2. Hence we immediately have
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M2(i, j) =


−2 if i+ j ≡ −1 (mod p)

−1 otherwise.

Hence

M2 =



−1 −1 −1 . . . −1 −2

−1 −1 −1 . . . −2 −1

...
...

... . . .
...

...

−2 −1 −1 . . . −1 −1.


Let M4(i, j) be the ij entry of M4. We have that

M4(i, j) =


p− 3 + 4 if i = j

p− 4 + 4 otherwise.

Since we are working over Fp we have

M4(i, j) =


1 if i+ j ≡ 0 (mod p)

0 otherwise.

So every tuple of X, and by symmetry Y , can be isolated by a commutator word

map. We now need to show that for any of the (p − 2)2 tuples in Z there is a word

map that vanishes on all but a single tuple. To do this, we will first show that there is

an invertible matrix Q that corresponds to the values of well-chosen words on the right

subsets of Z. We will use Q to construct an invertible (p−2)2-by-(p−2)2 matrix P over

Z that corresponds to a choice of (p− 2)2 words.
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7.2.4 Tuples in Z.

We will ultimately want to show that the values on tuples in Z of the words [xi, yj]

where i and j range from 1 to p − 2 can be used to construct an invertible matrix P .

However, such a direct approach might be unwise. We will instead show that P is the

Kronecker product of two invertible matrices (p− 2)-by-(p− 2) matrices.

We calculate the values of (b, (bj)a) and (bi, ba) under the words wi(x, y) = [x, yi] on

vi(x, y) = [xi, y].

We see that

wi(b, (b
j)a) = [b, a−1bija] = a1−z+z(ij+1)−z(ij) , (7.1)

and

vi(b
j, ba) = [bij, a−1ba] = a1−z+z(ij+1)−z(ij) . (7.2)

Identifying a with 1 in Fp under the map f then equations (7.1) and (7.2) give us

f(wi(b, (b
j)a) = f(vi(b

j, ba)) = 1− z + z(ij+1) − zij =
(
zij − 1

)
(z − 1) (7.3)

As before, we will need to show that a particular matrix is invertible.

Lemma 7.6. Let z be a primitive root of unity modulo p. Let Q be the (p−2)-by-(p−2)

matrix defined by (zij − 1) (z − 1). Then Q is invertible.

Proof. The matrix Q is (z−1) times the matrix M defined in the previous section. Since

M is invertible and (z − 1) is a unit, the matrix Q is invertible.
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We now ask the question, what is the value of [biα, (ba)jβ].

[bi, (ba)j] = a−z
i+zi+j−zj+1. (7.4)

Identifying a with 1 in Fp then equation (7.4) gives us

[bi, (ba)j] −→ −zi + zi+j − zj + 1 =
(
zi − 1

) (
zj − 1

)
(7.5)

We note combine equations (7.3) and (7.5) to get

f([bi, (ba)j]) =
(
zi − 1

) (
zj − 1

)
=
f ([bi, ba]) f

(
[b, (ba)j]

)
(z − 1)2

. (7.6)

What does equation (7.6) mean? We show below that Q⊗ (z − 1)−2Q is the matrix

P we wanted to construct. The following rather technical looking lemma, essentially

makes note of the fact we observed above in equation (7.6). Once the observation

relating [bi, (ba)j] and the values of [bi, ba], [b, (ba)j] has been made, the rest of the proof

is a game of tracking the right symbols to the right indexes.

Lemma 7.7. Let α, β be in {1, . . . , (p−2)2}. Write α = (i−1)(p−2)+(j−1) ·1 where

j ≤ p − 2 and β = (k − 1)(p − 2) + (` − 1) · 1 where ` ≤ p − 2. The α, β entry of the

(p − 2)2-by-(p − 2)2 matrix Q ⊗ (z − 1)−2Q corresponds (under the mapping f) to the

values of w = [xi, yj] on
(
bk, (ba)`

)
.
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Proof. Fix a β =
(
bk, (ba)`

)
and fix some α = (i, j). Then

f (wα(β)) = f
(

[bik, (ba)j`]
)

=
(
zik − 1

) (
zj` − 1

)
= Q[ik, 1] · (z − 1)−2Q[j`, 1]

= Q[i, k] · (z − 1)−2Q[j, `]

=
(
Q⊗ (z − 1)−2

)
[α, β].

7.2.5 Pulling it all together.

For the group G = Hol(Cp) = CpoCp−1 we showed that there are exactly p(p−2) orbits

of noncommuting 2-tuples under the action of Aut(G). We classified these orbits into

sets X, Y , and Z, and showed that for any tuple (g, h) of X ∪ Y ∪ Z there is a word w

such that w(g, h) 6= 1 and w(g′, h′) = 1 for all (g′, h′) in X ∪ Y ∪ Z not equal to (g, h).

Our proof is constructive, in that using linear algebra one could conjure up such a w

directly.

Proof of Theorem I. In the notation established in this section, any tuple (g, h) X∪Y ∪Z

can be isolated by a pure-commutator w. Hence for any possible map from ϕ : G2 →

G′ = C3 that respects automorphisms of G and vanishes on commuting tuples, we can

find a commutator word w that is identical, as a map, to ϕ.
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7.3 Proof of Theorem J.

By Corollary 7.2 we see that showing that

F2(G)′ = (C3)3 × (K4)4 × (C5)3 × (A5)19

immediately yields

|F2(G)| = 3023344536019.

As in the proof of Theorem I we want to show that all of the orbits of the action

of Aut(G) on the noncommuting subset of Gn occur independently from one another.

However, in the proof of Theorem I we utilized the fact that the commutator subgroup

had prime order and hence commutator word maps could be realized as vectors over Fp;

this realization enabled us to utilize linear algebra to avoid explicitly finding words w

that isolated each orbit. We cannot perform linear algebra over A5 and instead proceed

as follows.

There are 29 orbits of noncommutating 2-tuples over A5. Moreover, each group

appears the correct number of times. We will computational show that each orbit is

independent of the others. To do this we first observe the following information about

the orbits recorded in Table 2.

As seen in Table 2, the 29 orbits of noncommutating 2-tuples over A5 can be grouped

into 9 classes based on the orders of the first and second elements in the tuple. The group

A5 has the rather special property that all nontrivial elements of A5 have prime order.

This will allow us to work with each of the blocks independently from one another. We

will call the set of elements (g, h) with o(g) = p and o(h) = q the (p, q)-block of A5. This

is a nonstandard notation that merely serves to incapsulate the blocks seen in Table 2.
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Table 2: Orbit representatives of noncommuting 2-tuples of A5 under Aut(A5) showing
the breakdown into blocks based on the orders of the elements in the tuple.

Orbit Rep. (g, h) (o(g), o(h)) |〈g, h〉′|.
( (1, 2)(3, 4) , (1, 2)(4, 5) ) ( 2 , 2 ) 3
( (1, 2)(3, 4) , (1, 4)(2, 5) ) ( 2 , 2 ) 5

( (1, 2)(3, 4) , (1, 5, 2) ) ( 2 , 3 ) 3
( (1, 2)(3, 4) , (1, 3, 2) ) ( 2 , 3 ) 4
( (1, 2)(3, 4) , (1, 5, 3) ) ( 2 , 3 ) 60

( (1, 2)(3, 4) , (1, 5, 2, 4, 3) ) ( 2 , 5 ) 5
( (1, 2)(3, 4) , (1, 2, 5, 3, 4) ) ( 2 , 5 ) 60
( (1, 2)(3, 4) , (1, 4, 5, 2, 3) ) ( 2 , 5 ) 60

( (1, 2, 3) , (1, 2)(4, 5) ) ( 3 , 2 ) 3
( (1, 2, 3) , (1, 2)(3, 5) ) ( 3 , 2 ) 4
( (1, 2, 3) , (1, 4)(3, 5) ) ( 3 , 2 ) 60

( (1, 2, 3) , (1, 5, 2) ) ( 3 , 3 ) 4
( (1, 2, 3) , (1, 5, 3) ) ( 3 , 3 ) 4
( (1, 2, 3) , (1, 5, 4) ) ( 3 , 3 ) 60

( (1, 2, 3) , (1, 2, 5, 3, 4) ) ( 3 , 5 ) 60
( (1, 2, 3) , (1, 3, 2, 5, 4) ) ( 3 , 5 ) 60
( (1, 2, 3) , (1, 4, 3, 5, 2) ) ( 3 , 5 ) 60
( (1, 2, 3) , (1, 5, 4, 2, 3) ) ( 3 , 5 ) 60

( (1, 2, 3, 4, 5) , (1, 2)(3, 5) ) ( 5 , 2 ) 5
( (1, 2, 3, 4, 5) , (1, 2)(4, 5) ) ( 5 , 2 ) 60
( (1, 2, 3, 4, 5) , (1, 4)(2, 5) ) ( 5 , 2 ) 60

( (1, 2, 3, 4, 5) , (1, 4, 2) ) ( 5 , 3 ) 60
( (1, 2, 3, 4, 5) , (1, 4, 5) ) ( 5 , 3 ) 60
( (1, 2, 3, 4, 5) , (2, 3, 5) ) ( 5 , 3 ) 60
( (1, 2, 3, 4, 5) , (2, 4, 3) ) ( 5 , 3 ) 60

( (1, 2, 3, 4, 5) , (1, 2, 3, 5, 4) ) ( 5 , 5 ) 60
( (1, 2, 3, 4, 5) , (1, 3, 5, 4, 2) ) ( 5 , 5 ) 60
( (1, 2, 3, 4, 5) , (1, 4, 2, 3, 5) ) ( 5 , 5 ) 60
( (1, 2, 3, 4, 5) , (1, 4, 3, 2, 5) ) ( 5 , 5 ) 60
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Lemma 7.8. For every commutator word w and noncommuting tuple (g, h) there is a

commutator word v such that the following hold for a, b ∈ G = A5:

• When (o(a), o(b)) = (o(g), o(h)) then v(a, b) = w(a, b);

• If (o(a), o(b)) 6= (o(g), o(h)) then v(a, b) = 1.

Proof. Let o(g) = p and o(h) = q. Then consider the commutator word v(x, y) =

w
(
x(30/p), y(30/q)

)
. Then the following hold:

• If (o(a), o(b)) = (p, q) then v(a, b) = w(a, b).

• if (o(a), o(b)) 6= (p, q) then either a30/p or b30/q is 1. Since w is a commutator, we

conclude that v(a, b) = 1.

Corollary 7.9. The group F2(A5)′ is a direct product of 9 different groups H(p,q), where

each H(p,q) corresponds to the set of commutator maps over the (p, q)-block.

However, it is expected that there will be 604 commutator maps on the (3, 5)-block,

the (5, 3)-block and the (5, 5)-block. Rather than compute these directly, we utilize the

the following lemma.

Lemma 7.10. The group A19
5 occurs as a subgroup of F2(A5)′. Hence H(3,5), H(5,3), and

H(5,5)
∼= A4

5.

Proof. We note that A19
5 occurs as a quotient of F2(A5)′. As observed in Theorem H,

the group F2(A5)′ is a subdirect product of subgroups of A5. Hence, the only way to

obtain A19
5 as a quotient of F2(A5)′ is for it to occur as a subgroup.
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We now prove Theorem J.

Proof of Theorem J. Write

F2(A5)′ =
∏

p,q∈{2,3,5}

H(p,q).

As noted in the above lemma, H(3,5), H(5,3) and H(5,5) are all isomorphic to A4
5. Using

Magma, we can calculate the following [9]:

• H(2,2) = C3 × C5.

• H(2,3) = H(3,2) = C3 × C4 × A5.

• H(2,5) = H(5,2) = C5 × A2
5.

• H(3,3) = K2
4 × A5.
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Chapter 8

On the images of word maps on

finite simple groups.

The image of various word maps in finite simple groups has been a topic of considerable

interest. The now-proved Ore conjecture asked whether every element of a finite non-

abelian simple group G is a commutator [67]. Recently, for any finite nonabelian simple

group G, it was shown that if N is the product of two prime powers, then every element

of G occurs as the product of two N -powers in G [36].

In examining word maps on finite simple groups, the question was asked at the

conference ‘Words and Growth’ (Jerusalem, June 2012) if every subset of a finite simple

group that is closed under endomorphisms of G occurs as the image of some word map.

Lubotzky responded in the affirmative with the following theorem.

Theorem 8.1. [69] Let G be a finite simple group, n > 1, and let A ⊆ G such that A is

closed under all endomorphisms of G, then there is a word w ∈ Fn such that A = w(G).

In the current section we extend Lubotzky’s result by showing that the structure of

w realizing A can be controlled in a very strong way; we also show that there are groups

G and A ⊂ G with A closed under endomorphisms such that A is not w(G) for any w.

Theorem K. Let G be a finite simple group, n > 1, and A ⊆ G such that A is closed
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under automorphisms and 1 ∈ A. Assume that v ∈ Fn is not a law on G. Then there is

a word w ∈ 〈v(Fn)〉 such that A = w(G).

We note Theorem K shows that any subset of G that is closed under endomorphisms

of G can occurs as the image of a word map w in v(Fn), it does not provide a description

of w. However, it is possible in some cases to explicitly find w.

In the case of a general group G, one might ask if being closed under endomorphisms

of G is a sufficient condition for a subset A to be w(G) for some G. We will show this

is false in Section 8.2, even in the case of abelian groups.

Theorem 8.2. Let G be the cyclic group of order 12. Then

A = {x2 : x ∈ G} ∪ {x3 : x ∈ G},

is closed under endomorphisms of G, but is not the image of any word map over G.

8.1 Proof of Theorem K.

The group Fn(G) is the free group of rank n in the variety generated by G. In particular,

any n-generated group in the variety generated by G occurs as a quotient of Fn(G). In

H. Neumann’s text Varieties of Groups, it is observed that for a finite simple group G,

we have

Fn(G) = Gd(n) × Fn(H)

where H is the direct product of all proper subgroups of G [84, pg 141] and d(n) is the

number of orbits of Aut(G) acting on the generating n-tuples of G. However, since this

occurs without proof, we will prove a slightly weaker statement below, which will be
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sufficient for our purposes. It is also the case that Gd(n) is n-generated, but Gd(n)+1 is

not [37].

Lemma 8.3. Let G be a finite simple group. Then

Fn(G) = Gd(n) ×H,

for some group H.

Proof. Since a word map w respects endomorphisms of G, the map w is defined by its

value on a set of representatives of the diagonal action of the automorphism groups of

G on Gn. Moreover the number of possible values of w on an orbit representative (g)

is less than or equal to |〈g〉|, the size of the subgroup generated by the orbit. There

are exactly d(g) orbits of n-tuples corresponding to n-tuples that generate G, and some

number of other orbits.

Therefore Fn(G) is a subgroup of the direct product Gd(n) × K where K is some

direct product of proper subgroups of G. But, any group of rank n that satisfies the

same laws as G occurs as a quotient of Fn(G). Hence Gd(n) must occur as a quotient of

Fn(G).

Before proving Theorem K, we need the following lemma which follows from the

work of Kantor and Guralnick, which depends heavily on the classification of finite

simple groups [35, Corollary p. 745].

Lemma 8.4. [35] For every nontrivial element g of a finite simple group G there is an

h ∈ G such that G = 〈g, h〉.

In particular, it is the case that for any finite simple group G, the number d(n) is

greater than the number of conjugacy classes of G.
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Proof of Theorem K. Since v is not a law on G, we know that 〈v(G)〉 = G. By

Lemma 8.3 we see that

〈v (Fn(G))〉 = 〈v(Gd(n))〉 × 〈v(H)〉 = Gd(n) × 〈v(H)〉,

for the appropriate group H.

Hence there is a word map w ∈ v((Fn(G)) that is defined by its value on the gener-

ating tuples with a value from the group Gd(n) × v(H). Given A, we can write A as a

union of m ≤ d(n) automorphism classes. There is a w so that on m different orbits of

generating tuples of G, the value of w is one of the distinct automorphism classes in A

and w vanishes elsewhere.

Now we need to find a word in 〈v(Fn)〉 such that it induces the word map w on G.

Consider the word maps induced by the words x1, · · · , xn. These word maps generate

Fn(G). Since w ∈ 〈v(Fn(G))〉, we can write w as product of elements of the form

v(u1, · · · , un) such that each uj is a product of x1, · · · , xn. Consider this spelling of w in

x1, · · · , xn as an element in Fn = F(x1, · · · , xn), we get a word in 〈v(Fn)〉 that induces

the word map w on G, which has image being A.

8.2 Proof of Theorem 8.2.

Recall that any word w(x1, . . . , xn) can be written in the form

w = xk11 . . . xknn v(x1, . . . , xn), where v ∈ F′n.

By applying Nielson transformations to w, we see that w is automorphic to a word

w′ = xk1c where k is gcd(k1, . . . , kn) and c ∈ F′n. Moreover, w is a law on a group G

if and only if w′ is a law on G. Since automorphic words have the same image over a
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group G, we see that w(G) = w′(G). Hence for a finite abelian group the only images

of word maps are exactly the images of the power maps, e.g., {xk : x ∈ G} for some k.

We now prove Theorem 8.2 showing that not every subset of a group G that is closed

under endomorphisms occurs as word map.

Proof of Theorem 8.2. Let G = 〈a|a12〉 be the cyclic group of order 12, then the

images of the power maps in G are exactly

1 = {x12}, G = {x1}, {1, a2, a4, a6, a8, a10} = {x2}, {1, a3, a6, a9} = {x3}

{1, a4, a8} = {x4}, {1, a6} = {x6}.

Any union of subsets closed under endomorphisms is closed under endomorphisms.

However, there is no power map, equivalently no word map, that has the set

{1, a2, a3, a4, a6, a8, a9, a10}

as its image.
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Chapter 9

Word maps and character tables.

The connection between certain word maps and character tables has been a source for

many new ideas and theorems, especially as it relates to the finite simple groups. In this

section we present a tool, developed by the author with Steve Goldstein and Michael

Stemper, to better understand this connection [14]. We also prove Theorem L.

Theorem L. Let w be the word x2. There are finite groups G and H of order 64 such

that G and H have the same character table, but |w(G)| 6= |w(H)|.

To prove that a property P of a group G cannot be determined from the character

table of G, one is often forced to look for a group H such that H has the same character

table as G, but H does not have property P . To aid in this endeavor, the author with

Steve Goldstein and Michael Stemper constructed a database of all finite groups with

order less than 2000 (excluding 1024) that share a character table [14]. We mention that

an earlier project was undertaken by Skrzipczyk in which she searched for a minimal

example of Brauer pairs [98]. Our approaches for distinguishing tables are different; we

are grateful to Gerhard Hiss for assisting us in obtaining copies of Skrzipczyk’s work.

In addition the structure of the database itself is of some interest. For example, we

can expand the table originally found in the book by Lux and Pahlings [72, Table 2.2

pg 136]:
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Order Number of Groups Number of Tables

2 1 1

4 2 2

8 5 4

16 14 11

32 51 35

64 267 146

128 2328 904

256 56092 9501

512 10494213 360135

The chapter is slightly different from the rest of the dissertation. Sections 9.1 and

9.2 contain historical material and well-known properties of character tables; they are

included for motivation. Section 9.3 contains some of our observations from the database

about character tables and word maps including the example promised in Theorem L.

9.1 Definitions and Previous Results.

For a finite group G, write the character table of G as CT (G). We note that in displaying

CT (G), we are forced to order the rows and columns. However, we adopt the convention

that any rearrangement of the rows and columns of CT (G) is still, as a character table,

equal to CT (G). Hence CT (G) = CT (H) means that some permutation of the rows and

columns of CT (H) gives the table CT (G). Let Char denote the class of finite groups

determined by their character tables, i.e., G ∈ Char means that G and H have the

same character table if and only if G ∼= H.
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It is a standard fact that all finite abelian groups are in Char. There has been quite

a bit of interest in showing that various other families of groups are subsets of Char.

Since there appears to be no source compiling many of the early results we will do our

best to provide a short history of the subject below. However, the uninterested reader

can move directly to the next section.

In 1957, Nagao [82] showed that the symmetric groups are in Char. Oyama [89] was

able to show that the alternating groups are in Char in 1964. In 1965, Yokonuma [103]

also showed that the wreath products of the cyclic group of order p, for p a prime with

symmetric groups are in Char. Yokonuma calls a group a Nagao group if G ∈ Char.

Higman [43] gave an alternative proof that the alternating groups are in Char,

and that the Janko group of order 175,560 was in Char in 1969. Of greater interest

Higman observed, in the same paper, that from the character table of a group G one

can read off the the primes divisors of the centralizer of the elements of a conjugacy

class. In 1971, Pahlings [90] showed that the Weyl-Group of type F4, was contained

in Char. Shortly thereafter, through 1972-74, Lambert showed that the Suzuki groups,

the groups PSL(2, q), and groups of Ree type [60], PSL(3, q) and PSU(3, q) [61], and

SL(n, 2) [62] are in Char. Klemm [54] proved many of the same results as Lambert,

almost simultaneously in 1973. Pahlings [91] also showed that the finite groups in

Fischer’s [26] list of groups genenerated by 3-transpositions, are in Char, in 1974. In

1976, Pahlings proved that the Weyl groups W (Dn) of the simple Lie algebras of type Dn

[91], Sp(2n, 2k),PSU(n, 2k), the orthogonal groups O+(2n, 2k) and O−(2n, 2k), and the

orthogonal groups εO+(n, 5) and εO−(n, 5) are in Char [92]. In 1977 and 1979, Herzog

and Wright showed that the groups G2(q) where q is coprime to 6 [41], and G2(q) where

q = 3f [42] are in Char.
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From the classification of finite simple groups [22] and work by Landazuri and Seitz

[63], all finite simple groups are in Char.

Recently, work of Humphries and Dane Skabelund [44] showed that all groups of

square-free order are in Char.

With the restriction to groups of cube-free order, work by Gorenstein and Walter

[31, 32, 33] establishes that the only finite simple groups of cube-free order are contained

in the family PSL(2, p) and are all determined by their character tables.

9.2 Character-theoretic Properties of a Group.

If P is a group-theoretic property of G, then we will say that CT (G) determines P if all

groups with the same character table as G have property P . Heuristically, properties

P that are determined by CT (G) are called character-theoretic. Many such properties

can be found in Isaacs [47]. For example, for a finite group G, CT (G) determines the

following:

• The order of the derived subgroup G′.

• The order of the center Z(G).

• The total number of normal subgroups of G, and their orders.

• Whether or not G is solvable.

• Whether or not G is nilpotent.

For a normal subgroup N of G identified as a union of conjugacy classes, CT (G)

determines CT (G/N) ([47] 2.22). However, in general one cannot tell from CT (G) the
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isomorphism type of N . The lattice of normal subgroups of G, where each subgroup is

identified as a union of conjugacy classes is determined by CT (G), that is to say, from

CT (G) one can read off all of the normal subgroups of G, their orders, and all inclusion

relations between them. The correspondence theorem holds over this action: if M is a

normal subgroup of G/N identified as a union of conjugacy classes in CT (G/N), then the

normal subgroup M of G containing N and mapping to M can be identified as a union of

conjugacy classes in CT (G). We will find it useful to distinguish the difference between

the phrases “CT (G) determines the isomorphism type of N”, and “CT (G) determines

the conjugacy classes contained in N”. We will say that CT (G) class-determines N , to

mean that CT (G) determines the conjugacy classes contained in N .

As stated above, CT (G) always determines whether or not G is solvable. For a

solvable group G, the derived length of G is not determined by CT (G); this was noted

by Mattarei [75, 76].

Garrison [29] showed that if G is not solvable, then CT (G) does not class-determine

Φ(G). He further showed that is G is solvable, then CT (G) class-determines Φ(G).

Hence CT (G) determines |Φ(G)|. If G has cube-free order, then not only does CT (G)

class-determine Φ(G), it determines the isomorphism type of Φ(G).

9.3 Applications and observations.

We highlight two interesting observations from our database, the existence of 2-groups

G,H with different derived length and CT (G) = CT (H), and that the image of the

word x2 is not determined from the character table.
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9.3.1 Derived Length.

Using the character table of a finite group, one can determine if the group is solvable

by constructing the lattice of normal subgroups of G and looking for a chain of normal

subgroups such that the index of each subgroup in the next is a prime power. Moreover,

the conjugacy classes contained in the derived subgroup can be readily identified from

the character table, as can the commutators. However, the derived length of the group

is not observable from the character table by itself.

Mattarei first observed that the derived lengths cannot be determined from the char-

acter table of a group; meaning that there are groups G and H with the same character

table, but with different derived lengths [75]. In later work he produced p-groups G and

H with the same character table, but different derived lengths [76]. However, for his p-

group examples, Mattarei required that p ≥ 5 and the groups themselves have order p11.

Using our database, we were able to identify the following examples of groups of order

512 = 29 that have the same character table, but different derived lengths; moreover,

we can easily verify that they are the smallest possible examples in terms of order.

Example 9.1. Search the database...

9.3.2 Character Theoretic Words.

It is well-known that the conjugacy classes of a group G whose elements occur as com-

mutaters can be identified from the character table of G, i.e., looking at the character

values over g we can tell if there is some x, y ∈ G with [x, y] = x−1y−1xy = g. Explicitly,

we have the following lemma, which is an exercise in [47, Exercise 3.10] and a lemma in

[72, Lemma 2.6.4].
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Lemma 9.2. Let G be a finite group and let g ∈ G. There is some x, y ∈ G with

g = [x, y] if and only if ∑
χ∈Irr(G)

χ(g)

χ(1)
6= 0.

The character table can also be used to determine the number of ways g occurs as a

commutator. The recently proven Ore conjecture asked whether every element of a finite

nonabelian simple group G occured as a commutator. The proof of the Ore conjecture

by Liebeck, O’Brien, Shalev, and Tiep utilized the character theoretic nature of the word

w = x−1y−1xy [67].There has been some interest over finite nonabelian simple groups of

the probability that g occurs as a commutator [28]; this probability is also determined

by the character table of G.

Besides [x, y], there are results known for other words, for example w = x2y2. The

word w is also character theoretic in that:

Lemma 9.3. [68, Lemma 2.2] Let G be a finite group and g ∈ G. The number of ways

g occurs as a product of two squares is

|G| ·
∑

χ∈Irr(G),χreal

χ(g)

χ(1)
.

The same authors who proved the Ore conjecture also showed that every element of

a finite nonabelian simple group is a product of two squares [68].

A natural question to ask is whether for every word w, there is some way to deduce

from the character table of a group G whether or not an element g ∈ G occurs in the

image of w. As seen above when w = [x, y] or w = x2y2 this is the case. However, when

w = xp for p an odd prime, we note that the extraspecial groups of order p3 share a

character table. Because one of the extraspecial groups of order p3 has exponent p and
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one has exponent p2, the image of w cannot be extracted from the character table by

itself.

What about the word w = x2. By using the character table database to look for

groups G and H such G and H have the same character table, but the number of squares

in G is different than the number in H we found the following example, which proves

Theorem L.

Example 9.4. Let G be SmallGroup(64, 100) and let H be SmallGroup(64, 98). Then

G and H share a character table. But, |{x2 : x ∈ G}| = 6 and |{x2 : x ∈ H}| = 5.

Hence the character table can determine the group generated by w(G), but not w(G)

when w = x2. The question of what words w have the property that w(G) is determined

from the character table, and what words w have the property that 〈w(G)〉 is open.
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Chapter 10

Final Words.

Word maps continue to find interesting applications. The theorems we examined above

do not represent the limit of the theory, but merely some of the work the author has

done in his study. There are a number of interesting directions one could take the study

of word maps. We mention some of these below.

In the spirit of Theorem A and B about the number of not images or not solutions

of a word map, we ask the following vague question.

Question 10.1. What properties P of group elements can be used to bound the order of

G in the following sense: if exactly n elements of G satisfy property P , then |G| ≤ f(n)

for some function f .

Our Theorems C and D started the formal study of chirality. There are many open

questions regarding chirality, weak chirality, and other properties of word maps. Origi-

nally the 2-Engel word was proposed as a potential example of a witness to the chirality

of F2. The author and Turbo Ho utilized automated theorem proving software to see

that the image of the 2-Engel word is always closed under inversion [16]. We ask the

following question, which could be partially answered via computation.

Question 10.2. For n greater than 3, is the image of the n-Engel word closed under

inversion for all groups.
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Theorem G showed that the probability distributions induced by word maps can be

used to determine whether or not a group is nilpotent. We ask:

Question 10.3. What other properties of a group can be determined from the proba-

bility distributions induced by word maps? Can the probability distributions determine

whether or not a group is a Frobenius group?

Another interesting direction of study would be to understand how the structures G

and (G, ∗w) relate for well-behaved words w.

Reduced free groups continue to attract attention due to their large number of au-

tomorphisms and nice properties. Extending the results of Theorems H, I, and J would

surely prove interesting. The author’s own hope is to use reduced free groups as platform

groups for group-theoretic cryptography.

We note that the author is involved in a few projects aiming to provide a computa-

tional version of Theorem K.

In Chapter 9 we presented Theorem L, which shows that when w = x2, the set w(G)

is not determined by the character table. In this vein we ask the following.

Question 10.4. What words w have the property that w(G) is determined from the

character table?

It would seem that there are many words left unsaid about word maps on groups.

There are many other directions that one could investigate. The author welcomes

friendly words and collaborations.
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Appendix A

Calculating Chirality.

The following functions can be used to calculate the chirality of a given group. We used

them to verify our claims about chirality.

Orb:=function(x,G,B,f)

Y:=[];

for g in B do

s:=g@@f;

Include(~Y,s(x));

end for;

return Y;

end function;

make_orbits:=function(G)

A:=AutomorphismGroup(G);

f,B:=PermutationRepresentation(A);

is_sym:=true;

X:={};

for x in ConjugacyClasses(G) do

include_x:=true;
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for y in X do

if Order(y[1]) eq Order(x[3]) and x[3] in y then

include_x:=false;

break y;

end if;

end for;

if include_x then

Include(~X,Orb(x[3],G,B,f));

is_sym:=is_sym and x[3]^-1 in Orb(x[3],G,B,f);

end if;

end for;

return X, is_sym;

end function;

contains_witness:=function(G,r,g,Potential_Witnesses)

H:=sub<G|r,g>;

for x in Potential_Witnesses do

if x in H then

return true;

end if;

end for;

return false;

end function;
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two_words_constructor_chirality:=function(G)

f,B:=PermutationRepresentation(AutomorphismGroup(G));

Orbits:={{(s@@f)(g): s in B}: g in G};

Orbits:=[O:O in Orbits];

Reps:=[Random(O): O in Orbits];

Potential_Witness_Indeces:=[i: i in [1..#Orbits] | not Reps[i]^-1 in Orbits[i]];

Orbit_Witness:=[];

for i in Potential_Witness_Indeces do

if not Orbits[i] in Orbit_Witness then

Append(~Orbit_Witness,Orbits[i]);

for j in Potential_Witness_Indeces do

if Reps[i]^-1 in Orbits[j]

then Append(~Orbit_Witness,Orbits[j]); break j; end if;

end for;

end if;

end for;

Potential_Witnesses:=[];

for i in [1..#Potential_Witness_Indeces] do

for x in Orbits[Potential_Witness_Indeces[i]] do

Append(~Potential_Witnesses,x);

end for;

end for;

Two_Orbits:={{[r,(s@@f)(g)]: s in B| (s@@f)(r) eq r}:
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r in Reps, g in G |(r,g) ne Id(G) and

contains_witness(G,r,g,Potential_Witnesses) eq true};

M:=[Random(X):X in Two_Orbits];

//M:=[[g,h]:g,h in G |(g,h) ne Id(G)];

dum_N:=[];

for i in [1..#M] do

Append(~dum_N,Id(G));

end for;

Node_List:={dum_N};

New_Node_List:={dum_N};

COUNT:=0;

while #New_Node_List gt 0 do

COUNT+:=1;

dum_New_Node_List:={};

for N in New_Node_List do

R:=[];S:=[];

for i in [1..#M] do

Append(~R,N[i]*(M[i][1]));

Append(~S,N[i]*(M[i][2]));

end for;

if not R in Node_List then

Node_List join:= {R};

dum_New_Node_List join:={R};
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end if;

if not S in Node_List then

Node_List join:= {S};

dum_New_Node_List join:={S};

end if;

end for;

New_Node_List:=dum_New_Node_List;

//"************************";

//#Node_List;

//if #Node_List gt 100000 then

// return Node_List;

//%end if;

//"************************";

end while;

Prob:={};

is_weakly_chiral:=false;

is_chiral:=false;

for N in Node_List do

Occurences:=[0:i in [1..#Potential_Witness_Indeces]];

for ii in [1..#N] do

for i in [1..#Potential_Witness_Indeces] do

if N[ii] in Orbit_Witness[i] then Occurences[i]+:=1;

//break i;
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end if;

end for;

end for;

Include(~Prob,Occurences);

end for;

for P in Prob do

for i in [1..#P/2] do

if P[2*i] ne P[2*i-1] then

is_weakly_chiral:=true;

if P[2*i]*P[2*i-1] eq 0 then

is_chiral:=true;

end if;

end if;

end for;

end for;

return Prob,is_weakly_chiral,is_chiral;

end function;

test_powers_derived:=function(i,j)

/*Creates Orbits and checks if the

elements not isomorphic to their inverses are kth powers*/

G:=SmallGroup(i,j);

X,t:=make_orbits(G);
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N:={x[1]: x in X | not x[1]^-1 in x};

if #N eq 0 then

return true; /*"G is automorphically achiral.";*/

end if;

D:=DerivedSubgroup(G);

for d in Divisors(Exponent(G)) do

H:=sub<G|{x^d: x in G},D>;

for n in N do

if n in H and not n in {x^d: x in G} then

return false;

end if;

end for;

end for;

return true;

end function;
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[30] N. L. Gordeev, B. E. Kunyavskĭı, and E. B. Plotkin, Geometry of word

equations in simple algebraic groups over special fields, Uspekhi Mat. Nauk, 73

(2018), pp. 3–52.

[31] D. Gorenstein and J. H. Walter, The characterization of finite groups with

dihedral Sylow 2-subgroups. I, J. Algebra, 2 (1965), pp. 85–151.

[32] , The characterization of finite groups with dihedral Sylow 2-subgroups. II, J.

Algebra, 2 (1965), pp. 218–270.

[33] , The characterization of finite groups with dihedral Sylow 2-subgroups. III, J.

Algebra, 2 (1965), pp. 354–393.

[34] R. M. Guralnick, Expressing group elements as commutators, Rocky Mountain

J. Math., 10 (1980), pp. 651–654.

[35] R. M. Guralnick and W. M. Kantor, Probabilistic generation of finite simple

groups, J. Algebra, 234 (2000), pp. 743–792. Special issue in honor of Helmut

Wielandt.

[36] R. M. Guralnick, M. W. Liebeck, E. A. O’Brien, A. Shalev, and

P. H. Tiep, Surjective word maps and Burnside’s paqb theorem, Invent. Math.,

213 (2018), pp. 589–695.



134

[37] P. Hall, The eulerian functions of a group, The Quarterly Journal of Mathemat-

ics, os-7 (1936), pp. 134–151.

[38] Z. Han and R. Song, Finite groups having exactly 44 elements of maximal order,

Adv. Math. (China), 45 (2016), pp. 61–66.

[39] Z. Han and L. Zhang, Finite groups having exactly 42 elements of maximal

order, Ital. J. Pure Appl. Math., (2017), pp. 351–354.

[40] Z. J. Han and G. Y. Chen, Solvability of finite groups with 2pq elements of

maximal order, Xinan Shifan Daxue Xuebao Ziran Kexue Ban, 29 (2004), pp. 198–

200.

[41] M. Herzog and D. Wright, Characterization of a family of simple groups by

their character table, J. Austral. Math. Soc. Ser. A, 24 (1977), pp. 296–304.

[42] , Characterization of a family of simple groups by their character table. II, J.

Austral. Math. Soc. Ser. A, 30 (1980/81), pp. 168–170.

[43] G. Higman, Construction of simple groups from character tables, (1971), pp. 205–

214.

[44] S. P. Humphries and D. C. Skabelund, Character tables of metacyclic groups,

Glasg. Math. J., 57 (2015), pp. 387–400.
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