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Abstract

It is shown that Lion and Rolin’s preparation theorem for globally subanalytic
functions holds for the collection of definable functions in any expansion of
the real ordered field by a Weierstrass system.
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Chapter 1

Introduction

Any real analytic function f : U → R on an open neighborhood U of [−1, 1]n

defines a corresponding restricted analytic function f̃ : Rn → R as fol-
lows:

f̃(x) =

{
f(x), if x ∈ [−1, 1]n,
0, otherwise.

We consider the structure Ran, the expansion of the real ordered field by all
restricted analytic functions, and denote its language by Lan.

The definable sets of Ran are known in geometry as the globally subana-
lytic sets, and have been extensively studied by both geometers and model
theorists alike. Gabrielov [6] showed that the complement of a (globally)
subanalytic set is (globally) subanalytic, from which it follows that Ran is
model complete. Denef and Van den Dries [4] strengthened this result by us-
ing Weierstrass preparation and a generalization of Tarski’s theorem to show
that 〈Ran, /〉, the expansion of Ran by division, admits quantifier elimination
(to be acurate, only a local version of this was shown in [4], from which this
result follows). Van den Dries, Macintrye and Marker [20] then showed that
if not only division, but also all nth roots are added to the language, to ob-
tain the structure we shall denote by R′an with language L′an, then the theory
is universally axiomatizable. Coupling this with the quantifier elimination
shows by a simple model theoretic argument that all the definable functions
are piecewise given by terms. Lion and Rolin [11] later gave a purely geo-
metric proof of this in their preparation theorem for R′an, which states that
given an L′an-term f(x, y), where x ranges over Rn and y over R, Rn+1 can
be covered by finitely many quantifier-free definable sets of a certain form
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such that on each of these sets,

f(x, y) = a(x)|y − θ(x)|qu(x, y),

for some q ∈ Q and L′an-terms a(x), θ(x) and u(x, y), where u(x, y) is a unit.
When f is written in this form, we say that f is “prepared.” Since a corollary
of the preparation theorem is that all definable functions are piecewise given
by terms, it follows that all globally subanalytic functions can be prepared.
This preparation theorem is our object of study, so we begin by surveying
related results.

The preparation theorem was used in [11] to give geometric proofs of
other theorems as well which were originally discovered by model theoretic
techniques. They considered the structure 〈Ran, exp, log〉, the expansion of
Ran by the exponential and logarithmic functions, and also the structure
RK

an := 〈Ran, x
r〉r∈K , the expansion of Ran by all power functions x 7→ xr

for r in a field K ⊆ R, and showed that the definable functions of both
structures are piecewise given by terms (first proven in [20] and C. Miller [15],
respectively). Later in [12], the preparation theorem was used to show that
volume integrals of subanalytic functions are in fact subanalytic functions
themselves, a surprising result not previously know to model theorists.

Speissegger and Van den Dries [23] used the “valuation property” from
[24] to show that any polynomially bounded o-minimal expansion M of the
real field has a certain kind of preparation theorem, from which they de-
duced a preparation theorem for 〈M, exp, log〉 such as was done in [11] for
〈Ran, exp, log〉.

In the spirit of o-minimality at its purest, all the sets and functions in-
volved in the preparation theorem of [23] are simply required to be definable
in M, so the issue of the quantifier complexity of the formulas needed to
define these sets and functions is not addressed. In contrast, quantifier com-
plexity is of central importance in Lion and Rolin’s work, but they always
consider expansions of the structure Ran, so their language is quite large.

There has been some remarkable progress dealing with quantifier com-
plexity issues in reducts of Ran, particularly in expansions of the real field
by restricted Pfaffian functions. A Pfaffian chain is a finite list of ana-
lytic functions f1, . . . , fm : U → R on some open set U ⊆ Rn such that for
i = 1, . . . , m and j = 1, . . . , n there are polynomials pij ∈ R[y1, . . . , yi] such
that

∂fi

∂xj

(x) = pij(f1(x), . . . , fi(x))
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on U . Take note of the triangular nature of this system of differential
equations. If we relax the definition and simply require that each pij ∈
R[y1, . . . , ym], then f1, . . . , fm is called a Noetherian chain.

Wilkie [25] showed that when [−1, 1]n ⊆ U , one obtains a model complete
structure by expanding the real field by the set of restricted analytic functions
{f̃1, . . . , f̃m} corresponding to a Pfaffian chain f1, . . . , fm : U → R, along with
the set {c1, . . . , ck} of coefficients occuring in the polynomials pij. Later,
Gabrielov [7] showed that the expansion of the real field by any subalgebra
of restricted analytic functions closed under differentiation is model com-

plete. Since each of the derivatives ∂|α|fi

∂xα of the functions from a Noetherian
chain f1, . . . , fm are given by integral polynomials in {f1, . . . , fm, c1, . . . , ck},
this generalizes Wilkie’s result by showing that given a Noetherian chain
f1, . . . , fm, the expansion of the real field by {f̃1, . . . , f̃m, c1, . . . , ck} is model
complete.

One of the reasons behind the effort to achieve bounds on quantifier
complexity in retracts of Ran is an interest in effectivity questions. Wilkie
[25] went on to show that the real exponential field is o-minimal and model
complete, and then Wilkie and Macintrye [13] used this work to show that
if Schanuel’s conjecture is true, then the real exponential field is decidable.
Gabrielov and Vorobjov [8] showed that in the case of Pfaffian functions, the
cylindrical decomposition theorem from [7] is given by an algorithm for a real
number machine which uses an oracle for deciding whether a Pfaffian system
of equalities and inequalities has a solution.

All of these effectivity results deal with model complete o-minimal ex-
pansions of the real field. Other than for the real ordered field itself [18], I
am not currently aware of any progress on effectivity and decidability issues
for retracts of R′an which have quantifier elimination. But Lion and Rolin’s
proof of the preparation theorem for R′an is a rather explicit geometric con-
struction, and so there arises a natural question: Is there an effective version
of their preparation theorem? A positive answer to this question would give
an effective quantifier elimination procedure and may shed some new light
on determining whether or not the theory of the real field with restricted
exponentiation ex

∣∣
[−1,1]

is decidable, which would imply that the theory of

the real exponential field is decidable [13].
But an effective preparation theorem could not possibly be about the

structure R′an itself, since the language L′an is clearly not computable. This
theorem would have to be about some reduct of R′an, which we shall call R′R
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with language L′R, obtained by expanding the real ordered field by division,
all nth roots and the functions from R, where R is a collection of restricted
analytic functions in which we have some effective way of representing both
the functions inR and all the geometric operations on these functions needed
in the proof of the preparation theorem. To be able to represent the functions
in R they need to be uniquely determined by some finite amount of infor-
mation. For instance, maybe they could be represented by some polynomial
algebraic equations or some polynomial differential equations, along with ini-
tial conditions, to which they are the unique solutions. Also, R clearly has
to be countable if we are to have a uniform way of effectively representing
all the functions of R.

With this motivation in mind, we consider a Weierstrass system R, of
which the system of algebraic restricted analytic functions and the system of
differentially algebraic restricted analytic functions are examples.

Main Theorem. If R is a Weierstrass system, then every L′R-term is pre-
pared.

We shall complete the statement of the Main Theorem in Chapter 2 by
precisely defining the structure R′R and its language L′R, defining what it
means for a function to be prepared, and defining the notion of a Weierstrass
system. Chapter 2 also shows how the preparation theorem implies that
definable functions are piecewise given by terms, and how one can obtain
countable examples of Weierstrass systems of algebraic and differentially al-
gebraic restricted analytic functions. Chapters 3 and 4 constitute the proof
of the Main Theorem. We postpone outlining these chapters until the end of
Chapter 2 after all the relevant terminology has been introduced.

We conclude the introduction with a problem of Gabrielov’s. When R is
a chain of restricted Pfaffian functions, the definable sets of RR are called
“sub-Pfaffian” [7]. Gabrielov has asked whether the sub-Pfaffian sets have
any kind of preparation theorem in the sense of Lion and Rolin. The Main
Theorem provides a partial positive answer to this: sub-Pfaffian functions can
be prepared within the larger system of differentially algebraic functions. If
the sub-Pfaffian functions have a Weierstrass preparation theorem, the Main
Theorem would show that the preparation can be done within the system
sub-Pfaffian functions, but I am not aware of this being known.
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Chapter 2

Preparation and Weierstrass
Systems

This chapter defines the terminology used in the statement of the Main The-
orem and demonstrates how this theorem can be applied. To motivate this
terminology, we begin with an example.

2.1 Example: preparing the general quadratic

Consider the general quadratic,

f(x, y) := x2y
2 + x1y + x0,

where x = (x0, x1, x2), and fix the language {<, +,−, ·, /,√ , 0, 1}, where we
interpret y/0 := 0 and

√
y := 0 if y < 0.

Claim. We can cover R4 with quantifier free definable sets C1, . . . , C9 such
that for each C ∈ {C1, . . . , C9},

f(x, y) = a(x)(y − θ(x))du(x, y) (2.1)

on C for some d ∈ {0, 1, 2} and terms a(x), θ(x) and u(x, y), where ε <
u(x, y) < M on C for some 0 < ε < M .

Even though both division and the square root operation have been ex-
tended by 0 off their natural domains, this is simply a convention to make
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them total functions and is of no consequence. We shall neither divide by 0
nor take the square root of a negative number in our calculations.

Let C1 := {(x, y) : x2 = x1 = 0}. Then on C1,

f(x, y) = x0.

Let C2 := {(x, y) : x2 = 0, x1 6= 0}. Then on C2,

f(x, y) = x1

(
y +

x0

x1

)
.

Let C̃3 := {(x, y) : x2 6= 0, x2
1 − 4x0x2 < 0}. Completing the square gives

f(x, y) = x2

((
y +

x1

2x2

)2

+
4x0x2 − x2

1

4x2
2

)
,

so f(x, y) 6= 0 on C̃3. Consider the two factorizations:

f(x, y) = x2

(
y +

x1

2x2

)2 (
1 +

(4x0x2 − x2
1)/(4x

2
2)

(y + x1/(2x2))2

)
, (2.2)

f(x, y) =

(
4x0x2 − x2

1

4x2

)(
(y + x1/(2x2))

2

(4x0x2 − x2
1)/(4x

2
2)

+ 1

)
, (2.3)

and let

C3 :=

{
(x, y) ∈ C̃3 :

(4x0x2 − x2
1)/(4x

2
2)

(y + x1/(2x2))2
< 2

}
,

C4 :=

{
(x, y) ∈ C̃3 :

(y + x1/(2x2))
2

(4x0x2 − x2
1)/(4x

2
2)

< 2

}
.

Note that C̃3 = C3 ∪ C4 and that (2.2) is of the form (2.1) on C3 and (2.3)
is of the form (2.1) on C4.

Let C5 := {(x, y) : x2 6= 0, x2
1 − 4x0x2 = 0}. Then on C5,

f(x, y) = x2

(
y +

x1

2x2

)2

.

Let C̃6 := {(x, y) : x2 6= 0, x2
1 − 4x0x2 > 0}. Then on C̃6

f(x, y) = x2(y − θ1(x))(y − θ2(x)),
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where θ1(x) :=
−x1+

√
x2
1−4x0x2

2x2
and θ2(x) :=

−x1−
√

x2
1−4x0x2

2x2
. Note that y −

θ1(x) can be written in the following two ways:

y − θ1(x) = (y − θ2(x))

(
1 +

θ2(x)− θ1(x)

y − θ2(x)

)
,

y − θ1(x) = (θ2(x)− θ1(x))

(
1 +

y − θ2(x)

θ2(x)− θ1(x)

)
.

So if we only consider the points (x, y) ∈ C̃6 in which y 6= θ2(x) and θ2(x)−θ1(x)
y−θ2(x)

stays bounded away from −1 and also is bounded in absolute value, then

f(x, y) = x2(y − θ2(x))2

(
1 +

θ2(x)− θ1(x)

y − θ2(x)

)

is of the form (2.1). Similarly, if we only consider the points (x, y) ∈ C̃6 in

which y−θ2(x)
θ2(x)−θ1(x)

stays bounded away from −1 and also is bounded in absolute
value, then

f(x, y) = x2(θ2(x)− θ1(x)) · (y − θ2(x)) ·
(

1 +
y − θ2(x)

θ2(x)− θ1(x)

)

is also of the form (2.1). A similar technique can be applied to y − θ2(x) as
was done with y−θ1(x), so all we need to do is show that these various cases

cover C̃6. A simple calculation shows that the following sets cover C̃6

C6 :=

{
(x, y) ∈ C̃6 :

∣∣∣∣
y − θ1(x)

θ1(x)− θ2(x)

∣∣∣∣ <
3

4

}
,

C7 :=

{
(x, y) ∈ C̃6 :

∣∣∣∣
y − θ2(x)

θ1(x)− θ2(x)

∣∣∣∣ <
3

4

}
,

C8 :=

{
(x, y) ∈ C̃6 :

y − θ2(x)

θ1(x)− θ2(x)
>

3

2

}
,

C9 :=

{
(x, y) ∈ C̃6 :

y − θ1(x)

θ1(x)− θ2(x)
< −3

2

}
,

and that f is of the following forms on C6, . . . , C9, respectively, each of which
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are as in (2.1):

f(x, y) = x2(θ1(x)− θ2(x)) · (y − θ1(x)) ·
(

1 +
y − θ1(x)

θ1(x)− θ2(x)

)
,

f(x, y) = x2(θ2(x)− θ1(x)) · (y − θ2(x)) ·
(

1 +
y − θ2(x)

θ2(x)− θ1(x)

)
,

f(x, y) = x2 · (y − θ2(x))2 ·
(

1 +
θ2(x)− θ1(x)

y − θ2(x)

)
,

f(x, y) = x2 · (y − θ1(x))2 ·
(

1 +
θ1(x)− θ2(x)

y − θ1(x)

)
.

In the next section we shall see that each of the sets Ci are a finite union
of sets called “cylinders,” and sometimes we will informally use the phrase
“subcylindering” to refer to the technique of proof-by-cases employed here
in which we cover a cylinder C with finitely many cylinders C1, . . . , Ck ⊆ C
so that the function f has more uniform properties on each Ci than it did
on C. In Lemma 3.29 we shall see again the subcylindering techniques used
in this example.

2.2 Preparation and Quantifier Elimination

Throughout this paper we fix a sequence of variables x := (x1, x2, x3, . . .). If
n ∈ N is given we write x := (x1, . . . , xn) and y := xn+1, and let Π : Cn+1 →
Cn denote the projection map (x, y) 7→ x.

For r := (r1, . . . , rn) ∈ (0,∞)n let

Br := {x ∈ Cn : |xi| ≤ ri for i = 1, . . . , n}

and Br := Br ∩ Rn. For a ∈ Cn let Br(a) := a + Br, and for a ∈ Rn let
Br(a) := a + Br. For K ⊆ R let K+ := K ∩ (0,∞).

Partially order Rn as follows: for r = (r1, . . . , rn) and s = (s1, . . . , sn) in
Rn,

r ≤ s iff r1 ≤ s1, . . . , rn ≤ sn.

Also, write r < s iff r1 < s1, . . . , rn < sn.
For a function f : Cn → Cm which is C∞ at the origin, f̂ is the Taylor

series of f at the origin.
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Definition 2.1. Let K ⊆ R be a field. Suppose that for each n ∈ N and
r ∈ Kn

+ we have a collection Rn,r of functions f : Br → C. Let Rn :=⋃
r∈Kn

+
Rn,r and R :=

⋃
n∈NRn, and suppose that K = R0. We call R an

analytic system of functions over K if for each n ∈ N and r ∈ Kn
+,

(i) each f ∈ Rn,r is holomorphic on int(Br) and f(Br) ⊆ R;

(ii) Rn,r contains the coordinate projection functions xi : Br → C, x 7→ xi,
for i = 1, . . . , n;

(iii) Rn,r is a K-algebra, and f̂(x) ∈ K[[x]] for each f ∈ Rn,r;

(iv) for each f ∈ Rn,r there is an s ∈ Kn
+ and a g ∈ Rn,s such that s > r

and f = g
∣∣
Br

;

(v) for each f ∈ Rn,r and s ∈ Kn
+ such that s ≤ r, f

∣∣
Bs
∈ Rn,s;

If in the above definition we replace each instance of Br with Br and replace
(i) with

(i′) Rn,r is a collection of functions f : Br → R which are C∞ on int(Br)
and such that the Taylor map at the origin ̂ : Rn,r → R[[x]] is injective
(quasianalyticity),

then R is called a quasianalytic system of functions. Since many of
our results apply to both analytic and quasianalytic systems of functions, we
shall use the phrase system of functions as an abbreviation for either such
system.

For f ∈ Rn let r(f) ∈ Kn
+ denote the polyradius such that f ∈ Rn,r(f).

For n ∈ N and ε > 0 we shall write Rn,ε := Rn,(ε,...,ε).
A function f : Rn → R is a restricted R-function if there is a g ∈ Rn,1

such that f = g on [−1, 1]n and f = 0 on Rn\[−1, 1]n. The structure RR
is the expansion of the real ordered field by all restricted R-functions, and
R′R is the further expansion by division and n

√
for n = 2, 3, 4, . . ., where

a/0 := 0 for all a ∈ R and n
√

a := 0 for all a < 0. The languages of RR and
R′R are LR and L′R, respectively.

Given a language L and some fixed L-structure M under consideration,
we shall slightly abuse model theoretic terminology and say that an L-term
is a function obtained by composing functions in the signature of M.
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A function f : Mn → M is piecewise given by L-terms if there are
finitely many L-terms t1(x), . . . , tm(x) such that for all a ∈ Mn, f(a) = ti(a)
for some i = 1, . . . , m. Note that if f is definable then each of the sets
{a ∈ Mn : f(a) = ti(a)} are definable, so f can be expressed by terms via a
definition by cases over definable sets.

Let L be a language extending the language of the real ordered field. A
set C ⊆ Rn+1 is an L-cylinder if B := Π(C) is a quantifier free L-definable
set, called the base of C, and C = {(x, y) ∈ B × R : ψ(x, y)} where ψ(x, y)
is either of the form

y = t(x), (2.4)

or of one of the forms

y < s(x), s(x) < y < t(x), or t(x) < y, (2.5)

where s(x) and t(x) are L-terms. We say that C is thin if ψ(x, y) is as in
(2.4) and that C is fat if ψ(x, y) is as in (2.5).

By induction on n ∈ N, we say that an L-cylinder C ⊆ Rn+1 is an L-
term-cell if Π(C) is an L-term-cell.

Example 2.2. Let L := {<, +,−, ·, /,√ , 0, 1} and x := (x0, x1, x2). Each
of the sets C1, . . . , C9 from the Section 2.1 are finite unions of L-cylinders.
For example, if we let B := {x ∈ R3 : x2 6= 0, x2

1 − 4x0x2 < 0}, then

C3 =

{
(x, y) ∈ B × R : − x1

2x2

+

√
4x0x2 − x2

1

8x2
2

< y

}

⋃ {
(x, y) ∈ B × R : y < − x1

2x2

−
√

4x0x2 − x2
1

8x2
2

}
.

For the rest of this section, fix a system of functions R over some subfield
K of R.

We shall frequently use the following easily verifiable fact: for each n ∈ N,
the collection of all subsets of Rn which are finite unions of L′R-cylinders is
a boolean algebra.
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Definition 2.3. A function f : Rn → R is R-analytic at a ∈ Rn if there is
a b ∈ Kn and an r ∈ Kn

+ such that f(x + b)
∣∣
Br
∈ Rn,r and a ∈ int(Br(b)); f

is R-analytic on A ⊆ Rn if f is R-analytic at each a ∈ A. If f has constant
positive or negative sign on A, we call f a unit on A. Note that if A is
compact and f is R-analytic on A, the graph of f on A is piecewise given by
LR-terms.

For A ⊆ Rn+1, a function u : Rn+1 → R is an R-unit on A if A ∩ (Rn ×
{0}) = ∅ and u = v ◦ ϕ, where for some N ∈ N, ϕ : Rn+1 → RN is given by

ϕ(x, y) =

(
a1(x), . . . , aN−2(x), aN−1(x)y,

aN(x)

y

)

for some L′R-terms a1(x), . . . , aN(x), ϕ(A) is bounded, and v : RN → R is an
R-analytic unit on ϕ(A). If v is positively valued on ϕ(A), u is a positive
R-unit on A.

A function f : Rn+1 → R is prepared on A if there are finitely many L′R-
cylinders C1, . . . , Ck ⊆ Rn+1 covering A such that for each C ∈ {C1, . . . , Ck}
either

(i) C is thin, say C = {(x, y) ∈ B × R : y = t(x)} for some L′R-term t(x),
and there is an L′R-term s(x) such that f(x, t(x)) = s(x) for all x ∈ B,
or

(ii) C is fat and

f(x, y) = a(x)|y − θ(x)|qu(x, |y − θ(x)|1/p) (2.6)

on C, where a(x) and θ(x) are L′R-terms, p ∈ N+, q ∈ Q, and u(x, y)
is a positive R-unit on {(x, |y − θ(x)|1/p) : (x, y) ∈ C}. (Note that
y 6= θ(x) on C in this case.)

If A = Rn+1 we say that f is prepared.

Remark 2.4. Let us explain some aspects of the above definition which were
made for the sake of convenience, not necessity.

(i) In the above definition, when C ⊆ Rn+1 is fat we require that y 6=
θ(x) on C since we may need to divide by y − θ(x) in the expression
|y− θ(x)|q or in u(x, |y− θ(x)|1/p). This presents no problem since the
set {(x, y) ∈ C : y = θ(x)} is a finite union of thin cylinders and so
always may be considered separately.
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(ii) Consider a thin cylinder C ⊆ Rn+1. If f(x, y) is a term, then condition
(i) in Definition 2.3 is automatically satisfied. But we shall also be
interested in preparaing all definable functions, so we have incorporated
this condition into the definition.

Proposition 2.5. Suppose that every L′R-term is prepared. Then

(i) R′R admits quantifier elimination;

(ii) for any L′R-definable sets A1, . . . , Am ⊆ Rn, Rn may be partitioned
into L′R-term-cells C1, . . . , Ck such that for each i = 1, . . . ,m and j =
1, . . . , k, either Cj ∩Ai = ∅ or Cj ⊆ Ai (we say that the Cj’s partition
the Ai’s);

(iii) all L′R-definable functions are piecewise given by L′R-terms and are
prepared.

Proof. Let ϕ(x, y) be a quantifier-free L′R-formula. To prove (i), it suffices
to show that {x ∈ Rn : ∃yϕ(x, y)} is quantifier-free definable. By writing ϕ
in a disjunctive normal form and then distributing the existential quantifier
across the disjunction, we may assume that ϕ is of the form

ϕ(x, y) :=
l∧

i=1

fi(x, y) = 0 ∧
m∧

j=1

gj(x, y) > 0, (2.7)

for L′R-terms fi and gj. For notational simplicity, let us suppress the sub-
scripts of the f ’s and g’s. By preparing all the f ’s and g’s and using the fact
that the collection of subsets of Rn+1 which are finite unions of L′R-cylinders
is a boolean algebra, there are quantifier-free definable sets B1, . . . , Bk par-
titioning Rn and a finite collection C =

⋃k
i=1 Ci of L′R-cylinders partitioning

Rn+1 such that for each i = 1, . . . , k and C ∈ Ci, Π(C) = Bi and each f and
g is of a prepared form on C. Since on a thin cylinder C ∈ C the graphs of
the f ’s and g’s are given by terms in x, then on C the statements f = 0 and
g > 0 are quantifier free in x. Similarly, if

f(x, y) = a(x)|y − θ(x)|qu(x, |y − θ(x)|1/p)

on a fat cylinder C ∈ C, then the sign of f on C is solely determined by the
sign of a(x). This is true on C for all the f ’s and g’s, so on C the statements
f = 0 and g > 0 are also quantifier free in x. Therefore, after possibly
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further partitioning the Bi’s we may assume that the signs of all the f ’s and
g’s are constant on each of the cylinders of C. It follows that {(x, y) ∈ Rn+1 :
ϕ(x, y)} = ∪C ′ for some C ′ ⊆ C, so {x ∈ Rn : ∃yϕ(x, y)} =

⋃
i∈I Bi for some

I ⊆ {1, . . . , k}, proving (i).
We prove (ii) by inductively assuming the result for n and proving it

for n + 1. Let A1, . . . , Am ⊆ Rn+1 be L′R-definable, and hence quantifier
free definable by part (i). By partitioning the Ai’s and the Rn+1\Ai’s into
conjunctive components, it suffices to show that for any A ⊆ Rn+1 defined by
a formula ϕ(x, y) of the form given in (2.7), A is a finite union of L′R-term-
cells. From the above analysis, A = ∪C ′ for some C ′ ⊆ C. By the induction
hypothesis each Bi is a finite union of L′R-term-cells. But then each C ∈ C ′
is a finite union of L′R-term-cells, proving (ii).

To prove (iii), let f : Rn → R be L′R-definable. From (ii) the graph of f
is a finite union of L′R-term-cells. Since f is a function, each of these cells
must be thin, so f is piecewise given by terms. Since by assumption each of
these terms are prepared, then so is f .

2.3 Weierstrass systems

We shall need a detailed form of the Weierstrass preparation theorem. Con-
sider a holomorphic function f : U → C, where U ⊆ Cn+1 is a neighborhood
of the origin. If f(0, y) 6= 0 we say that f is regular in y; in this case

f(0) = ∂f
∂y

(0) = · · · = ∂d−1f
∂yd−1 (0) = 0 and ∂df

∂yd (0) 6= 0 for some d ∈ N, called the

order of f . For (r, s) ∈ Rn
+ × R+ let WPT(f, d, r, s) be shorthand for the

following statement:

f is regular in y of order d, and for all (a, b) ∈ B(r,s), f(a, b) 6= 0
if |b| = s, and f(a, y) has exactly d zeros in int(Bs) counting
multiplicities.

Suppose that f : U → C is regular in y of order d. Then f(0, y) has a zero
of mulitplicity d at the origin. Let

s(f) := sup{s > 0 : {0} × Bs ⊆ U and f(0, b) 6= 0 for all b ∈ Bs\{0}},

and note that s(f) > 0. By continuity of roots, s ∈ (0, s(f)) iff there is an
r ∈ (0,∞)n such that WPT(f, d, r, s).
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Weierstrass Preparation Theorem. Let f : U → C be a holomorphic
function, where U ⊆ Cn+1 is a neighborhood of the origin, and suppose
WPT(f, d, r, s). Then there are unique holomorphic functions w0, . . . , wd−1 :
int(Br) → C and u : int(B(r,s)) → C such that w0(0) = · · · = wd−1(0) = 0, u
is a unit on int(B(r,s)), and

f(x, y) = (yd + wd−1(x)yd−1 + · · ·+ w0(x))u(x, y)

on int(B(r,s)). We call w(x, y) := yd+wd−1(x)yd−1+· · ·+w0(x) a Weierstrass
polynomial in y.

Proof. This is a more detailed form of the Weierstrass preparation theorem
than is usually stated, but it follows from a well known proof. For instance,
see Griffiths and Harris [9, Chapter 0] or Gunning [10, Chapter A, Theorem
4].

If WPT(f, d, r, s) then there is some (r′, s′) > (r, s) such that WPT(f, d, r′, s′).
To see this, note that {(x, y) ∈ B(r,s) : f(x, y) = 0} is a compact sub-
set of Br × int(Bs), so by continuity of roots there is an r′ > r such that
WPT(f, d, r′, s); but then WPT(f, d, r′, s′) for any s′ > s sufficiently close
to s. Therefore, if WPT(f, d, r, s) and f = wu, where w is the Weierstrass
polynomial and u is the unit given by Weierstrass preparation on int(B(r,s)),
then w and u extend uniquely to B(r,s), u is a unit on B(r,s) and for each
a ∈ Br, {b ∈ C : w(a, b) = 0} ⊆ int(Bs).

Definition 2.6. An analytic system of functions R =
⋃

n,rRn,r over K is
called a Weierstrass system if R is closed under differentiation, composi-
tion and Weierstrass preparation, as defined below:

(i) differentiation: for all n ∈ N, r ∈ Kn
+ and i = 1, . . . , n, if f ∈ Rn,r then

∂f
∂xi

∈ Rn,r (note that by properties (i) and (iv) of Definition 2.1, ∂f
∂xi

is
indeed well-defined on the boundary of Br);

(ii) composition: for all m ∈ N+, s ∈ Km
+ , n ∈ N and r ∈ Kn

+, if f ∈ Rm,s

and g ∈ Rm
n,r are such that g(Br) ⊆ Bs, then f ◦ g ∈ Rn,r;

(iii) Weierstrass preparation: for all n, d ∈ N, (r, s) ∈ Kn
+ × K+ and f ∈

Rn+1,(r,s) such that WPT(f, d, r, s), if f = wu, where w and u are the
Weierstrass polynomial and unit given by Weierstrass preparation on
B(r,s), then w, u ∈ Rn+1,(r,s).
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Definition 2.6 completes the introduction of all the terminology used in
the statement of the Main Theorem. We now discuss how to find count-
able examples of Weierstrass systems which are subsystems of two naturally
occurring Weierstrass systems over R.

Examples 2.7. Let On,r be the collection of all functions f : Br → C such
that f(Br) ⊆ R and f extends to a holomorphic function on a neighbor-
hood of Br. Then O :=

⋃
n,rOn,r is the largest Weierstrass system, and by

definition RO = Ran. Here are two more examples.

1. A := {f ∈ O : f is algebraic over R[x]} is the smallest Weierstrass
system over R (see Bochnak, Coste and Roy [3, Section 8.2] and Van
den Dries [19]);

2. D := {f ∈ O : f is differentially algebraic} is a Weierstrass system over
R [19] such that A ⊂ D ⊂ O, where ⊂ denotes proper inclusion. This
was the motivating example for proving the Main Theorem. Appendix
A contains a brief overview of some basic definitions and facts about
differentially algebraic power series.

Definition 2.8. Let S be a system of functions over a subfield L of R. We
say that S is closed under local composition if for all m ∈ N+, s ∈ Lm

+ ,
n ∈ N and r ∈ Ln

+, if f ∈ Sm,s and g ∈ Sm
n,r are such that g(0) = 0 and

g(Br) ⊆ Bs when S is analytic (and g(Br) ⊆ Bs when S is quasianalytic),
then f ◦ g ∈ Sn,r.

We say that S is closed under translation if for all n ∈ N, r ∈ Ln
+ and

f ∈ Rn,r, if a ∈ int(Br) ∩ Ln and s ∈ Ln
+ are such that Bs(a) ⊆ Br, then

f(x + a)
∣∣
Bs
∈ Rn,s.

Note that a system of functions is closed under composition iff it is closed
under local composition and translation.

If in the definition of a Weierstrass system, closure under composition
is replaced by closure under local composition, then we call the system of
functions a local Weierstrass system.

Examples 2.9. Let L be any subfield of R.

1. A(L) := {f ∈ O : f̂ ∈ L[[x]] and f is algebraic over L[x]} is a local
Weierstrass system over L.

2. D(L) := {f ∈ D : f̂ ∈ L[[x]]} is a local Weierstrass system over L.
More generally, if R is any Weierstrass system over a subfield K of R
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and L ⊆ K, then {f ∈ R : f̂ ∈ L[[x]]} is a local Weierstrass system
over L.

Lemma 2.10. For any field L ⊆ R, |A(L)| = |D(L)| = |L|.
Proof. Since L ⊆ A(L) ⊆ D(L) then |L| ≤ |A(L)| ≤ |D(L)|, so it suffices to
show that |D(L)| ≤ |L|.

We first show that |D1(L)| ≤ |L|. For each f ∈ D1(L) there is a polyno-
mial p(y0, . . . , yd) ∈ Q[y0, . . . , yd] such that p(f(t), f ′(t), . . . , f (d)(t)) = 0 and
∂p
∂yd

(f(t), f ′(t), . . . , f (d)(t)) 6= 0. Also, there is a k ∈ N such that f(t) is the
unique solution to the initial value problem

p(y, y′, . . . , y(n)) = 0, (2.8)

y(0) = f(0), . . . , y(k)(0) = f (k)(0)

(see, for instance, the proof of Lemma 2.3 in Denef and Lipshitz [5]). Since
there are only countably many polynomials over Q and each of these initial
conditions are in L, it follows that there are |L| many initial value problems
of the form (2.8), so |D1(L)| ≤ |L|.

Now fix n ∈ N; we show thatDn(L) ≤ |L|. We may assume that |L| < |R|,
else the result is trivial. But then we may choose a λ = (λ1, . . . , λn) ∈ Rn

which is algebraically independent over L. For any f ∈ R[[x]] and z =

(z1, . . . , zn), define ∆[f ](z) := {∂|α|f
∂xα (z) : α ∈ Nn} and fλ(t) := f(λt), where

λt := (λ1t, . . . , λnt). Let f ∈ Dn(L). By definition, the transcendence degree
of Q(∆[f ](x)) over Q is finite; we shall write tdQQ(∆[f ](x)) < ∞ to say
this. Therefore tdQQ(∆[f ](x), λ) < ∞, so tdQQ(∆[f ](λt), λ) < ∞. Since
∆[fλ](t) ⊆ Q(∆[f ](λt), λ), we have tdQQ(∆[fλ](t)) < ∞, so by definition
fλ(t) ∈ D1(L(λ)).

Therefore f 7→ fλ mapsDn(L) intoD1(L(λ)). Since |D1(L(λ))| ≤ |L(λ)| =
|L|, it suffices to show that the map L[[x]] → L(λ)[[t]] given by f 7→ fλ is in-
jective. Since this map is a ring homomorphism, it suffices to show that its
kernel is {0}. So compute

fλ(t) =
∑

α∈Nn

1

α!

∂|α|f
∂xα

(0)λαt|α| =
∑

i∈N
pi(λ)ti,

where

pi(x) :=
∑

α∈Nn,|α|=i

1

α!

∂|α|f
∂xα

(0)xα.
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If f ∈ L[[x]] is such that fλ = 0, then pi(λ) = 0 for all i ∈ N. Since each
pi(x) ∈ L[x] and λ was chosen to be algebraically independent over L, it
follows that pi(x) = 0, so f(x) = 0.

Proposition 2.11. Suppose that S is a local Weierstrass system over a
subfield L of R. Let R0 := K := {f(1) : f ∈ S1,1}, and for each n ∈ N+ and
r ∈ Kn

+ let

Rn,r := {f(x, 1)
∣∣
Br

: f ∈ Sn+1,(s,1) for some s ∈ Ln
+ such that s ≥ r}.

Then R :=
⋃

n∈N
⋃

r∈Kn
+
Rn,r is the smallest Weierstrass system containing

S.

Proof. Clearly R contains S, and since Weierstrass systems are closed under
composition,R is contained in any Weierstrass system containing S. To show
that R is a Weierstrass system, the only nontrivial properties that need to
be verified is that K is a field and that R is closed under composition and
Weierstrass preparation.

We shall need the following notation: for n, d ∈ N, (r, s) ∈ Ln
+ × L+ and

f ∈ Sn+1,(r,s) let

Id[f ](x) :=
d∑

i=0

1

d!

∂if

∂yi
(x, 0);

Td[f ](x, y) :=
∞∑

i=d+1

1

d!

∂if

∂yi
(x, 0)yi;

|Td|[f ](x, y) :=
∞∑

i=d+1

1

d!

∣∣∣∣
∂if

∂yi
(x, 0)yi

∣∣∣∣ ;

fd(x, y) := Id[f ](x) + Td[f ](x, y).

Note that Id[f ] ∈ Sn,r and Td[f ], |Td|[f ], fd ∈ Sn+1,(r,s). The following obser-
vations will be used:

(i) if s ≥ 1 then f(x, 1) = fd(x, 1);

(ii) |Td[f ](x, y)| ≤ |Td|[f ](x, y);

(iii) by property (iv) of Definition 2.1, limd→∞ |Td|[f ](x, y) = 0 uniformly on
B(r,s); when s ≥ 1 it follows that limd→∞ Id[f ](x) = f(x, 1) uniformly
on Br.
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Since K is clearly a ring, to show that K is a field it suffices to verify
that K is closed under multiplicative inverses. So let a ∈ K be nonzero,
and let f ∈ S1,1 be such that a = f(1). Fix d ∈ N such that Id[f ] 6=
0 and |Td|[f ](1) < |Id[f ]|. For any y ∈ B1, since |Td[f ](y)| ≤ |Td|[f ](1),
fd(y) = Id[f ] + Td[f ](y) 6= 0. So by closure under Weierstrass preparation
in S, and hence also under multiplicative inverses, 1/fd ∈ S1,1. Therefore
1/a = 1/fd(1) ∈ K.

To show that R is closed under composition, let f ∈ Rm,s and g =
(g1, . . . , gn) ∈ Rm

n,r be such that g(Br) ⊆ Bs, where s ∈ Km
+ and r ∈ Kn

+.
We must show that f ◦ g ∈ Rn,r. By properties (iv) and (v) of Defini-
tion 2.1, we may slighlty enlarge r and s to assume that r ∈ Ln

+ and
s ∈ L+. By definition of R and property (iv) of Definition 2.1, there are
s′ ∈ Lm

+ , F ∈ Sm+1,(s′,1) and G = (G1, . . . , Gm) ∈ Sm
n+1,(r,1) such that s′ > s,

f(x1, . . . , xm) = F (x1, . . . , xm, 1) on Bs and g(x) = G(x, 1) on Br. Since
limd→∞ |Td|[Gi](x, 1) = 0 uniformly on Br, we may fix d ∈ N sufficiently
large so that for i = 1, . . . , n,

|gi(x)−Gi,d(x, y)| = |(Id[Gi](x) + Td[Gi](x, 1))− (Id[Gi](x) + Td[Gi](x, y))|,
≤ 2|Td|[Gi](x, 1),

< s′i − si,

for all (x, y) ∈ B(r,1). Hence for all (x, y) ∈ B(r,1), Gd(x, y) ∈ Bs′ , so
also yGd(x, y) ∈ Bs′ . Therefore by closure under local composition in S,
H(x, y) := F (yGd(x, y), y) is in Sn+1,(r,1). Since g(x) = G(x, 1) = yGd(x, y)

∣∣
y=1

,

f ◦ g(x) = H(x, 1) ∈ Rn,r.
To show that R is closed under Weierstrass preparation, let f ∈ Rn+1,(r,s)

be such that WPT(f, d, r, s), where (r, s) ∈ Kn
+×K+ and d ∈ N. Let f = wu

on B(r,s), where w and u are the Weierstrass polynomial and unit given by
Weierstrass preparation on B(r,s). We must show that w, u ∈ Rn+1,(r,s). By
slightly enlarging (r, s), we may assume (r, s) ∈ Ln

+×L+. Fix F ∈ Sn+2,(r,s,1)

such that f(x, y) = F (x, y, 1).

Since F (0, 0, 1) = · · · = ∂d−1F
∂yd−1 (0, 0, 1) = 0, by replacing F (x, y, z) with

F (x, y, z)−∑d−1
i=0

1
i!

∂iF
∂yi (0, 0, z)yi we retain the property that f(x, y) = F (x, y, 1)

on B(r,s) and gain the property that ∂iF
∂yi (0, 0, z) = 0 for i = 0, . . . , d− 1. By

writing ∂iF
∂yi (x, y, z) =

∑∞
j=0

1
j!

∂i+jF
∂yi∂zj (x, y, 0)zj we see that ∂i+jF

∂yi∂zj (0, 0, 0) = 0
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for all j ∈ N and i = 0, . . . , d− 1. Since

∂iFk

∂yi
(x, y, z) =

k∑
j=0

1

j!

∂i+jF

∂yi∂zj
(x, y, 0) +

∞∑

j=k+1

1

j!

∂i+jF

∂yi∂zj
(x, y, 0)zj,

it follows that for all k ∈ N, Fk also satisfies Fk(x, y, 1) = f(x, y) and
∂iFk

∂yi (0, 0, z) = 0 for i = 0, . . . , d − 1; in particular, ∂iFk

∂yi (0, 0, 0) = 0 for

all k ∈ N and i = 0. . . . , d− 1. Since for all i ∈ N and all (x, y, z) ∈ B(r,s,1),

∣∣∣∣
∂iFk

∂yi
(x, y, z)− ∂if

∂yi
(x, y)

∣∣∣∣ =

∣∣∣∣∣∣

(
∂iIk[F ]

∂yi (x, y) + ∂iTk[F ]
∂yi (x, y, z)

)

−
(

∂iIk[F ]
∂yi (x, y) + ∂iTk[F ]

∂yi (x, y, 1)
)

∣∣∣∣∣∣
,

≤ 2
∂i|Tk|[F ]

∂yi
(x, y, 1),

→ 0,

uniformly as k → ∞, by continuity of roots WPT(Fk, d, (r, 1), s) holds for
all sufficiently large k ∈ N; fix such a k. By closure under Weierstrass
preparation in S we have W,U ∈ Sn+2,(r,s,1), where W and U are the Weier-
strass polynomial and unit given by Weierstrass preparing Fk in y on B(r,s,1).
Therefore w(x, y) = W (x, y, 1) and u(x, y) = U(x, y, 1) are in Rn+1,(r,s).

Corollary 2.12. If we let S be either A(Q) or D(Q) and let R be the
smallest Weierstrass system containing S, then R is countable. In the case
that S = A(Q), K := R0 is the field of algebraic reals.

Proof. Note that for any S andR as in Proposition 2.11, |R| = |S|. Therefore
by letting S be either A(Q) or D(Q), Lemma 2.10 shows that S is a countable
local Weierstrass system, so R is a countable Weierstrass system.

Now consider the case that S = A(Q). Let a ∈ K, and fix f ∈ S1

such that a = f(1). There is a p(x, y) ∈ Q[x, y] such that p(x, f(x)) = 0,
so p(1, a) = 0, showing that a is algebraic over Q. In Lemma 4.4 we shall
see that K is real closed, so K must in fact be the entire field of algebraic
reals.

The following proposition is used in Section 4.4 to prove the Main Theo-
rem for general Weierstrass systems.
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Proposition 2.13. Let R be a Weierstrass system over K, and let E be a
field such that K ⊆ E ⊆ R. Define

S0 := L :=
⋃

m∈N

⋃
s∈Km

+

{f(a) : f ∈ Rm,s, a ∈ Em ∩Bs},

and for n ∈ N+ and r ∈ Ln
+ define

Sn,r :=
⋃

m∈N

⋃

(r′,s)∈Kn+m
+

r′≥r

{f(x, a)
∣∣
Br

: f ∈ Rn+m,(r′,s), a ∈ Em ∩Bs}.

Then S :=
⋃

n∈N,r∈Ln
+
Sn,r is the smallest Weierstrass system containing E ∪

R.

Proof. Clearly S contains R, and since Weierstrass systems are closed under
composition, S is contained in any Weierstrass system containing E ∪R. To
show that S is a Weierstrass system, the only nontrivial properties that need
to be checked are that L is a field and S is closed under composition and
Weierstrass preparation.

Claim. Let f ∈ Sn,r, where r ∈ Ln
+, and let ε > 0. Let I ⊆ Nn be a fi-

nite set such that ∂|α|f
∂xα (0) = 0 for all α ∈ I. There is an F ∈ Rn+k,(r′,s),

where (r′, s) ∈ Kn
+ × Kk

+ and r′ > r, and also an a ∈ Ek ∩ Bs such that
f(x) = F (x, a)

∣∣
Br

, |F (x, a) − F (x, z))| < ε for all (x, z) ∈ B(r′,s), and
∂|α|F
∂xα (0, z) = 0 for all α ∈ I.

To show the claim, fix F ∈ Rm
n+k,(r′,s) such that r′ ≥ r and f(x) =

F (x, a) for some a ∈ Em ∩ Bs. By property (iv) of Definition 2.1 we
may assume that r′ > r and that a ∈ int(Bs). By replacing F (x, z) with

F (x, z) − ∑
α∈I

1
α!

∂|α|F
∂xα (0, z)xα, we retain the property that f(x) = F (x, a)

on Br and gain the property that ∂|α|F
∂xα (0, z) = 0 for all α ∈ I. Since Br′ is

compact, we may choose b ∈ Km ∩ Bs and t ∈ Km
+ such that a ∈ Bt(b) ⊆ Bs

and |F (x, z)−F (x, a)| < ε on B(r′,t)(0, b). Then G(x, z) := F (x, z+b)
∣∣
B(r′,t)

∈
Rn+m,(r′,t), a − b ∈ Em ∩ Bt, f(x) = G(x, a − b), |G(x, z) − G(x, a − b)| < ε

on B(r′,t), and ∂|α|G
∂xα (0, z) = 0 for all α ∈ I, proving the claim.

Since L is clearly a ring, to show that L is a field we fix a nonzero a ∈ L
and show that 1/a ∈ L. Since a 6= 0, by the claim we may fix f ∈ Rn,r and
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b ∈ En ∩ Br be such that a = f(b) and f(x) 6= 0 on Br. Then by closure
under Weierstrass preparation in R, so also under mulitplicative inverses,
1/f(x) ∈ Rn,r, so 1/a = 1/f(b) ∈ L.

To show that S is closed under composition, let f ∈ Sm,s and g ∈ Sm
n,r

be such that g(Br) ⊆ Bs, where s ∈ Lm
+ and r ∈ Ln

+. By adding dummy
variables (just to simplify notation), by the claim we may fix s′ ∈ Km

+ ,
r′ ∈ Kn

+, t ∈ Kk
+, F ∈ Rm+k,(s′,t), G ∈ Rm

n+k,(r′,t) and a ∈ Ek ∩ Bt such that

s′ > s, r′ ≥ r, f(x1, . . . , xm) = F (x1, . . . , xm, a)
∣∣
Bs

, g(x) = G(x, a)
∣∣
Br

and

G(B(r,t)) ⊆ int(Bs′). By possibly shrinking r′ ≥ r (if r′ 6= r), we may obtain
G(B(r′,t)) ⊆ Bs′ . Then H(x, z) := F (G(x, z), z) ∈ Rn+k,(r′,t), so f ◦ g(x) =
H(x, a)

∣∣
Br
∈ Sn,r.

Finally, to show that S is closed under Weierstrass preparation let f ∈
Sn+1,(r,s), where (r, s) ∈ Ln

+ ×L+, and assume WPT(f, d, r, s). Let f(x, y) =
w(x, y)u(x, y), where w and u are the Weierstrass polynomial and unit given
by Weierstrass preparation in y on B(r,s). By the claim, for any ε > 0 we may
fix F ∈ Rn+1+m,(r′,s′,t), where (r′, s′, t) ∈ Kn

+×K+×Km
+ and (r′, s′) ≥ (r, s),

and also a ∈ E ∩ Bt such that f(x, y) = F (x, y, a) on B(r,s), |F (x, y, z) −
F (x, y, a)| < ε on B(r′,s′,t) and ∂iF

∂yi (0, 0, z) = 0 for i = 0, . . . , d − 1. So by

continuity of roots we may assume WPT(F, d, (r′, t), s′). Let F (x, y, z) =
W (x, y, z)U(x, y, z), where W and U are the Weierstrass polynomial and
unit given by Weierstrass preparation in y on B(r′,s′,t). By closure under
Weierstrass preparation in R, W,U ∈ Rn+1+m, so w(x, y) = W (x, y, a)

∣∣
B(r,s)

and u(x, y) = U(x, y, a)
∣∣
B(r,s)

are in Sn+1,(r,s).

2.4 Outline of the proof

In Chapter 3 we prove the Main Theorem for the special case that R is a
Weierstrass system over R. Most of the work involves proving certain sin-
gularity resolution theorems which we refer to as “normalization theorems.”
Such theorems have the following general form: given a certain function
f(x) on a certain set A ⊆ Rn (the assumptions upon f and A depend on
the particular theorem), there are finitely many coordinate transformations
µ1, . . . , µm ∈ Rn

n of a certain form such that A ⊆ ⋃m
i=1 µi(Br(µi)) and f ◦µi(x)

is “normal” on Br(µi), meaning that f ◦ µi(x) = xαiui(x) for some αi ∈ Nn

and unit ui on Br(µi). These µi will be formed by composing very special co-
ordinate transformations which we shall call “admissible transformations.”
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The general technique we employ to prepare a function f is to first normalize
f in a careful manner and then unwind the coordinate transformations µi to
show that f is prepared in the original coordinates.

In Chapter 3 the assumption that K = R is needed solely because these
normalization theorems are local geometric constructions, and so a function
f ∈ Rn,r must be allowed to be translated by arbitray points of int(Br) and
still remain in R, which is only true when K = R. So one way to prove the
Main Theorem for a general Weierstrass system R over K would be to prove
these normalization theorems in a slightly more global fashion so as to show
that the translations can always be taken to be by points of Kn ∩ int(Br),
so that we never leave the system R. This can be done, but the only proofs
I found seems excessively complicated, so we shall adopt a simpler strategy
involving a little bit of model theory.

In Chapter 4 we prove a normalization theorem, Theorem 4.2, for func-
tions from a system R over K, but only by cheating; namely, we will have
to expand our notion of what is considered to be an “admissible trans-
formation” by also including linear coordinate transformations of the form
(x, y) 7→ (x + λy, y) for λ ∈ Kn. An unfortunate consequence of this will
be that unwinding the coordinate transformations given by Theorem 4.2 will
not prepare the normalized function back in the original coordinates. But
this will not matter because we will be able to use Theorem 4.2 to show
that KR and RR have the same theory, where KR is the submodel of RR
with universe K. Coupling this fact with Proposition 2.13 will enable us to
give a very simple model theoretic proof of the Main Theorem for general
Weierstrass systems.

It should be pointed out that in Sections 3.1 and 4.2 it is assumed that the
reader is familiar with both the proofs and the results of Rolin, Speissegger
and Wilkie [17].



23

Chapter 3

Proof of the preparation
theorem for Weierstrass
systems over the reals

This Chapter proves the Main Theorem for Weierstrass systems over R. It
is organized as follows.

Section 3.1 proves a version of the formal normalization theorem from [17,
Section 2]. It differs from [17] only in that it does not use linear coordinate
transformations of the form (x, y) 7→ (x + λy, y), λ ∈ Rn, to make functions
f(x, y) regular in y.

Section 3.2 shows how the formal normalization theorem of Section 3.1
can be interpreted as a local normalization theorem for functions from certain
quasianalytic classes, and then shows in Proposition 3.18 that this gives a
preparation theorem for such functions. The axiomatic setting of Section 3.2
is much weaker than that of a Weierstrass system.

Section 3.3 is the heart of the chapter, where we show in Proposition
3.27 how to prepare functions of the form f(x, g(x)/y, y) if f and g are from
a Weierstrass system. This is a consequence of our main technical result,
Proposition 3.24, where we show how to normalize such functions. Lion and
Rolin [11] originally proved Proposition 3.27 via a “splitting argument.” Here
we use Weierstrass preparation instead, and our argument is modeled after
Parusiński’s proof of [16, Theorem 7.5].

Finally, Section 3.4 uses Proposition 3.27 to complete the proof of the
Main Theorem for Weierstrass systems over R. Its proof uses Weierstrass
preparation only in that it relies on this proposition. The ideas of this section
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come directly from Lion and Rolin’s original argument [11], as articulated by
Rolin in a series of lectures he gave at the University of Wisconsin-Madison
in the fall of 2000.

3.1 A Formal Normalization Theorem

Note that for α, β ∈ Nn, α ≤ β iff xα divides xβ.

Definition 3.1. A series f(x) ∈ R[[x]] is normal if f(x) = xαu(x) for some
α ∈ Nn and unit u(x) ∈ R[[x]]. A set of series {f1(x), . . . , fm(x)} ⊆ R[[x]] is
normal if each fi(x) is normal, say fi(x) = xαiui(x) with αi ∈ Nn and ui(x)
a unit, and if {α1, . . . , αm} is linearly ordered. (Note: Having αi = αj for
i 6= j is permissible.)

Lemma 3.2. Let f1, . . . , fm ∈ R[[x]]\{0}.
(i) f1 · · · fm is normal iff fi is normal for all i = 1, . . . , m.

(ii) If fi and fi − fj are normal for all i, j = 1, . . . , m such that fi 6= fj,
then the set {f1, . . . , fm} is normal.

Proof. See Bierstone and Milman [2, Lemma 4.7].

Let R[[x]] :=
⋃

n∈NR[[x1, . . . , xn]], the ring of formal power series in x with
real coefficients. For F ⊆ R[[x]] and n ∈ N, let Fn := F ∩ R[[x1, . . . , xn]].

For the rest of this section fix a ring F such that R[x] ⊆ F ⊆ R[[x]] and
which is closed under the following operations:

(i) differentiation: if f ∈ F , then ∂f
∂xi

∈ F for all i ∈ N+;

(ii) formal composition: for all m ∈ N+ and n ∈ N, if f ∈ Fm, and g ∈ Fm
n

is such that g(0) = 0, then f ◦ g ∈ Fn;

(iii) monomial factorization: for all n ∈ N, if f ∈ Fn+1 is such that f(x, y) =
y g(x, y) for some g(x, y) ∈ R[[x, y]], then g ∈ Fn+1;

(iv) implicit functions: for all n ∈ N, if f ∈ Fn+1 is such that f(0) = 0 and
∂f
∂y

(0) 6= 0, there is a g ∈ Fn such that g(0) = 0 and f(x, g(x)) = 0.
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Given a series f(x) ∈ Fn, we shall construct a certain set T of homomor-
phisms of Fn such that for each µ ∈ T , µf(x) is normal. In Sections 3.2 and
3.3 Fn will play the role of the collection of Taylor series about the origin
of a system of functions under consideration, and the homomorphisms of T
will correspond to charts of a sequence of coordinate transformations.

Definition 3.3. By induction on n ∈ N, define a formal admissible trans-
formation in (x, y) to be either a formal admissible transformation in x,
considered to be a homomorphism from Fn+1 into Fn+1, or one of the fol-
lowing three types of homomorphisms from Fn+1 into Fn+1:

(i) functional translation: for θ ∈ Fn such that θ(0) = 0,

tθ(x, y) := (x, y + θ(x));

(ii) power substitution: for m ∈ N+, 1 ≤ i ≤ n and σ ∈ {1,−1},

pm
i,σ(x, y) := (x1, . . . , σ(σxi)

m, . . . , xn, y);

(iii) blow-up substitution: for λ ∈ R ∪ {∞} and 1 ≤ i ≤ n,

bi,n+1
λ (x, y) :=

{
(x1, . . . , xn, xi(y + λ)), if λ ∈ R,
(x1, . . . , xiy, . . . , xn, y), if λ = ∞.

Given a formal admissible transformation µ, define the family of µ as the
set {tθ} if µ = tθ, the set {pm

i,1, p
m
i,−1} if µ = pm

i,σ for some σ ∈ {1,−1}, and the

set {bi,n+1
λ : λ ∈ R ∪ {∞}} if µ = bi,n+1

λ for some λ ∈ R ∪ {∞}. In Sections
3.2 and 3.3 a family of admissible transformations will correspond to a single
geometric operation whose charts are given by the individual members of the
family.

We call µ = 〈µ1, . . . , µm〉 a formal transformation sequence in x if
each µi is a formal admissible transformation in x. For f ∈ Fn define µf :=
µm · · ·µ1f , and note that the closure properties of F imply that µf ∈ Fn.

Given a set T of transformation sequences, define the height of T by
ht(T ) := sup{m ∈ N : 〈µ1, . . . , µm〉 ∈ T} ∈ N ∪ {∞}. We will be interested
in sets T of transformation sequences in x such that ht(T ) < ∞ and for each
µ = 〈µ1, . . . , µm〉 ∈ T and i = 1, . . . , m,

(i) 〈µ1, . . . , µi−1〉 /∈ T ;
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(ii) {νi : 〈µ1, . . . , µi−1〉 ⊆ ν ∈ T} is exactly the family of µi.

Note that T ′ := {ν : ν ⊆ µ for some µ ∈ T} is a tree under the inclusion
ordering, and that T ′ always branches according to transformation families.
T is the set of maximal members of T ′ and can be identified with the set of
branches of T ′. Since T and T ′ uniquely determine one another, we abuse
terminology and call T a formal transformation tree in x. Letting id
denote the identity homomorphism, by convention T := {id} is the unique
formal transformation tree of height 0.

Given a set S of formal transformation sequences in (x, y), an admis-
sible transformation ν is an interior member of S if ν = µi for some
〈µ1, . . . , µm〉 ∈ S and 1 ≤ i < m; S respects y if no blowup substitution
bi,n+1
∞ , 1 ≤ i ≤ n, is an interior member of S.

Theorem 3.4. For every n ∈ N and nonzero f ∈ Fn+1, there is a formal
transformation tree T in (x, y) such that µf is normal for all µ ∈ T . (We say
T normalizes f .) Moreover, T respects y and for each µ = 〈µ1, . . . , µm〉 ∈ T ,
if µm = bi,n+1

∞ and µf(x, y) = xαydu(x, y) with α = (α1, . . . , αn) ∈ Nn, d ∈ N
and u(x, y) a unit, then d ≥ αi.

Proof. The proof is by induction on n ∈ N. If n = 0, then f(y) is normal. So
fix n > 0 and assume the normalization theorem holds for all power series in
Fn. The following lemma is needed for both the current proof and for later
use.

Lemma 3.5. Let x := (x1, . . . , xn) and z := (xn+1, . . . , xn+m), and let f ∈
Fn+m. There is a formal transformation tree T in x such that for each µ ∈ T
there is an α ∈ Nn and a g ∈ Fn+m such that µf(x, z) = xαg(x, z) and
g(0, z) 6= 0.

Proof (Speissegger). Write f(x, z) =
∑

β∈Nm fβ(x)zβ and note that fβ(x) ∈
Fn for each β. From the Noetherianity of R[[x, z]], there is a finite B ⊆ Nm

such that
f(x, z) =

∑

β∈B

fβ(x)zβuβ(x, z),

where for each β ∈ B, fβ(x) 6= 0 and uβ(x, z) ∈ R[[x, z]] is a unit . Let

F (x) :=
∏

β∈B

fβ(x) ·
∏

{fβ(x)− fγ(x) : β, γ ∈ B, β <lex γ, fβ 6= fγ} ,



27

where <lex is the lexicographical ordering on Nm. By the induction hypoth-
esis in the proof of Theorem 3.4, there is a formal transformation tree T in
x normalizing F (x). Fix µ ∈ T . By Lemma 3.2, the set {µfβ : β ∈ B} is
normal. So for each β ∈ B, µfβ(x) = xαβvβ(x) for some αβ ∈ Nn and unit
vβ(x), and α := min{αβ : β ∈ B} is well defined. Let

g(x, z) :=
∑

β∈B

xαβ−αzβvβ(x)uβ(x, z),

and observe that µf(x, z) = xαg(x, z), g(x, y) ∈ R[[x, z]] and g(0, z) 6= 0.
Finally, g(x, z) ∈ F since µf(x, z) ∈ F and F is closed under monomial
factorization.

To prove Theorem 3.4 apply Lemma 3.5 to f(x, y) to get a formal trans-
formation tree S in x such that for each µ ∈ S, µf(x, y) = xαg(x, y) for
some α ∈ Nn and g(x, y) ∈ F such that g(0, y) 6= 0. Now just proceed as in
the proof of [17, Theorem 2.5] to construct a tree Sµ normalizing µf . Then
T := {〈µ, ν〉 : µ ∈ S, ν ∈ Sµ} normalizes f , where 〈µ, ν〉 denotes the con-
catenation of the sequences µ and ν. Since substitutions of the form bi,n+1

∞
are only used in the proof of [17, Lemma 2.11], T respects y, and using the
notation of the “moreover” clause of the theorem we are proving, d ≥ αi in
this case.

3.2 Preparing functions from q.a. IF-systems

over R
For a C∞ function f : U → R, where U ⊆ Rn+1 is an open neighborhood of
the origin, and for (r, s) ∈ Rn

+ × R+ such that B(r,s) ⊆ U , let IFT(f, r, s) be
shorthand for the following statement:

f(0) = 0 and for all (a, b) ∈ B(r,s),
∂f
∂y

(a, b) 6= 0 and f(a, b) 6= 0 if

|b| = s.

Implicit Function Theorem. Let f : U → R be C∞, where U ⊆ Rn+1

is an open neighborhood of the origin. First, if f(0) = 0 and ∂f
∂y

(0) 6= 0,

there is an (r, s) ∈ Rn
+ × R+ such that IFT(f, r, s). Second, if IFT(f, r, s)

then {(x, y) ∈ int(B(r,s)) : f(x, y) = 0} is the graph of a C∞ function g :
int(Br) → int(Bs).
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Proof. By the local version of the implicit function theorem, there is a unique
C∞ function g defined on a neighborhood V ⊆ Rn of the origin such that
f(x, g(x)) = 0 and g(0) = 0. Simply choose (r, s) so that B(r,s) ⊆ V , ∂f

∂y
6= 0

on B(r,s), and g(Br) ⊆ int(Bs). For any a ∈ int(Br), since ∂f
∂y

(a, y) 6= 0

on int(Bs), then {y ∈ int(Bs) : f(a, y) = 0} = g(a) by Rolle’s theorem.
Therefore f(a, b) 6= 0 for all (a, b) 6= B(r,s) such that |b| = s, so IFT(f, r, s)
holds.

Now suppose that (r, s) is any tuple for which IFT(f, r, s) holds. Let g be
the C∞ function implicitly defined by f in a neighorhood of the origin. Since
the local implicit function theorem can be applied to any point p ∈ int(B(r,s))
for which f(p) = 0, the graph of the function g extends all the way to the
boundary of int(B(r,s)). But since f(a, b) 6= 0 for all (a, b) ∈ B(r,s) such that
|b| = s, we must have that that domain of g extends to all of int(Br) and
g(int(Br)) ⊆ int(Bs). To conclude, note that by Rolle’s theorem, {(x, y) ∈
int(B(r,s)) : f(x, y) = 0} = graph(g

∣∣
int(Br)

).

If IFT(f, r, s), there is an (r′, s′) > (r, s) such that IFT(f, r′, s′), so g
extends uniquely to Br; note that g(Br) ⊆ int(Bs).

Definition 3.6. A quasianalytic system of functions R =
⋃

n,rRn,r over
K is called a quasianalytic implicit function system (or a q.a. IF-
system for short) if R is closed under differentiation and composition (both
as defined in Definition 2.6 but replacing Br with Br), and also

(i) monomial factorization: for all n ∈ N and r ∈ Kn+1
+ , if f ∈ Rn+1,r is

such that f̂(x, y) = y G(x, y) for some G(x, y) ∈ R[[x, y]], then f(x, y) =
y g(x, y) for some g ∈ Rn+1,r;

(ii) implicit functions: for all n ∈ N, (r, s) ∈ Kn
+ ×K+ and f ∈ Rn+1,(r,s)

such that IFT(f, r, s), if g : Br → R is the C∞ function implicitly
defined by f(x, g(x)) = 0 and g(0) = 0, then g ∈ Rn,r.

Examples 3.7. 1. Given any Weierstrass system S =
⋃

n,r Sn,r, define

R :=
⋃

n,rRn,r by Rn,r := {f
∣∣
Br

: f ∈ Sn,r}. Then R is a q.a. IF-
system.

2. Given a sequence of real numbers M = (M0,M1, M2, . . .) such that 1 ≤
M0 ≤ M1 ≤ M2 ≤ · · · , ∑∞

i=0 Mi/Mi+1 = ∞, and the sequence Mi/i!
is log-convex, define R :=

⋃
n,rRn,r by letting Rn,r be the collection of
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all functions f : Br → R which extend to a C∞ function f : U → R for
some neighborhood U of Br in which there is an A > 0 such that

∣∣∣∣
∂|α|f
∂xα

(x)

∣∣∣∣ ≤ A|α|+1M|α| for all x ∈ U and α ∈ Nn.

ThenR is q.a. IF-system over R and is called the Denjoy-Carlemann
class defined by M . (See [17] for more details.)

3. Given a polynomially bounded o-minimal expansionM of the real field,
let K be the field of definable constants of M, and for n ∈ N and
r ∈ Kn

+ let Rn,r be the collection of all functions f : Br → R which
extend to a C∞ function f : U → R for some neighborhood U of Br in
which the graph of f : U → R is definable in M without parameters.
Then R :=

⋃
n,rRn,r is a q.a. IF-system over K. (This follows from C.

Miller [14].)

For the rest of this section, fix a q.a. IF-system R over R.

The objective of this section is to show that for each n ∈ N and r ∈ Kn+1
+ ,

if f ∈ Rn+1,r then f is prepared on a Br.

Note that R̂, the image of R under the the Taylor map at the origin
̂ : R → R[[x]], is a ring of power series such as considered in Section 3.1.
The notions of “formal admissible transformation”, “formal transformation
tree”, etc. are defined relative to R̂.

Definition 3.8. A function µ ∈ Rn
n is an admissible transformation

in x if µ̂ is a formal admissible transformation in x. A finite sequence
µ = 〈µ1, . . . , µm〉 of admissible transformations in x is a transformation
sequence in x, and we also write µ for the function µ1 ◦ · · · ◦ µm.

A set T of transformation sequences in x is a full transformation tree
in x if T̂ := {µ̂ = 〈µ̂1, . . . , µ̂m〉 : µ = 〈µ1, . . . , µm〉 ∈ T} is a formal trans-
formation tree in x. For a set S of transformation sequences in (x, y), S

respects y if Ŝ does.
If there is any ambiguity about which q.a. IF-system is being considered,

we shall clarify the above terminology by saying “R-admissible transforma-
tion,” “R-transformation sequence,” and “full R-transformation tree.”
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For each i ≥ 1 and m ≥ i let Πi : Rm → R denote the ith coordi-
nate projection function (x1, . . . , xm) 7→ xi. When working with a function
f(x1, . . . , xm) for some m ≥ n, we shall identify an admissible transfor-
mation µ ∈ Rn

n in x with the function in Rm
m given by (x1, . . . , xm) 7→

(Π1 ◦ µ(x), . . . , Πn ◦ µ(x), xn+1, . . . , xm). Thus we may speak of transfor-
mation sequences and trees in x even if the dimension of the ambient space
m is greater than n.

Definition 3.9. Consider a sequence of functions µ = 〈µ1, . . . , µm〉 where for
i = 1, . . . , m, Ui ⊆ Xi and µi : Ui → Xi−1 for some sets X0, X1, . . . , Xm. A
set A ⊆ Xm is µ-admissible if µi+1◦· · ·◦µm(A) ⊆ Ui for all i = 1, . . . , m. We
not only use angle brackets to denote a sequence of functions, but we also use
them to denote concatenation of such sequences; that is, if ν = 〈ν1, . . . , νl〉
is a sequence of functions, where for i = 1, . . . , l, Vi ⊆ Yi and νi : Vi → Yi−1

for some sets Xm = Y0, Y1, . . . , Yl, let 〈µ, ν〉 := 〈µ1, . . . , µm, ν1, . . . , νl〉.
Definition 3.10. Let s ∈ Rn

+ and f ∈ Rn,s. We say that f is normal on
Br, where r ≤ s, if f(x) = xαu(x) on Br for some u ∈ Rn,r which is a unit
on Br.

We now state the geometric form of Theorem 3.4.

Lemma 3.11. For any n ∈ N and nonzero f ∈ Rn+1, there is a full trans-
formation tree T in (x, y) and a map ε : T → Rn+1

+ such that for each
µ ∈ T , Bε(µ) is 〈f, µ〉-admissible and f ◦ µ is normal on Bε(µ). More-
over, T respects y and for each µ = 〈µ1, . . . , µm〉 ∈ T , if µm = bi,n+1

∞ and
f ◦ µ(x, y) = xαydu(x, y) with α = (α1, . . . , αn) ∈ Nn, d ∈ N and u(x, y) a
unit, then d ≥ αi.

Proof. By Theorem 3.4 there is a formal transformation tree S normalizing
f̂(x, y) which respects y. Fix a full transformation tree T such that T̂ = S.
Let µ = 〈µ1, . . . , µm〉 ∈ T . We write µ̂ for the corresponding homomorphism

of R̂. Since f and each µi are all defined on neighborhoods of the origin and
each µi is a continuous map such that µi(0) = 0, there is an ε(µ) ∈ Rn+1

+

such that Bε(µ) is 〈f, µ〉-admissible. Since µ̂f̂(x, y) = xαydû(x, y) for some

α ∈ Nn, d ∈ N and û ∈ R̂n+1 such that û(0) 6= 0, the Taylor series of some
u ∈ Rn+1, we have that f ◦ µ(x, y) = xαydu(x, y) and u(0) 6= 0. By possibly
shrinking ε(µ) we may make u a unit on Bε(µ).
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Lemma 3.12. Let T be a full transformation tree in x and ε : T → Rn
+ be

such that Bε(µ) is µ-admissible for each µ ∈ T . There is a finite S ⊆ T such
that

⋃
µ∈S µ(Bε(µ)) is a neighborhood of the origin.

Proof. By induction on ht(T ). If ht(T ) = 0 there is nothing to do, so suppose
ht(T ) = 1. Then T is a transformation family, so there are three cases. If
T = {tθ}, then tθ(Bε(tθ)) is a neighborhood of the origin since tθ is a local
homeomorphism. If T = {pm

i,σ : σ ∈ {1,−1}}, then pm
i,σ(Bε(pm

i,σ)) ∩ {x ∈
Rn : σxi ≥ 0} is a neighborhood of origin in the closed half-space {x ∈
Rn : σxi ≥ 0}, so

⋃
σ∈{1,−1} pm

i,σ(Bε(pm
i,σ)) is a neighborhood of the origin. If

T = {bi,j
λ : λ ∈ R∪{∞}} for some 1 ≤ i < j ≤ n, then the compactness of the

real projective line supplies a finite Λ ⊆ R∪{∞} such that
⋃

λ∈Λ bi,j
λ (Bε(bi,j

λ ))

is a neighborhood of the origin.
So assume ht(T ) > 1. Let T1 := {µ1 : (µ1, . . . , µm) ∈ T}, a trans-

formation tree of height 1. For each ν ∈ T1 let T [ν] := {(µ2, . . . , µm) :
(ν, µ2, . . . , µm) ∈ T}, a transformation tree of height less than ht(T ). By the
induction hypothesis, for each ν ∈ T1 there is a finite S[ν] ⊆ T [ν] such that
Uν :=

⋃
µ∈S[ν] µ(Bε(ν◦µ)) is a neighborhood of the origin. Let δ(ν) ∈ Rn

+ be
ν-admissible and such that Bδ(ν) ⊆ Uν . Again by the induction hypothesis,
there is a finite S1 ⊆ T1 such that

⋃
ν∈S1

ν(Bδ(ν)) is a neighborhood of the
origin, so S := {ν ◦ µ : ν ∈ S1, µ ∈ S[ν]} is as desired.

Any subset of a full transformation tree is called a transformation tree.

Corollary 3.13. For any n ∈ N and nonzero f ∈ Rn+1 there is a fi-
nite transformation tree T in (x, y) and a map ε : T → Rn+1

+ such that⋃
µ∈T µ(Bε(µ)) is a neighborhood of the origin, and for each µ ∈ T , Bε(µ) is

〈f, µ〉-admissible and f ◦ µ is normal on Bε(µ). Moreover, T respects y, and
if µ = 〈µ1, . . . , µm〉 ∈ T is such that µm = bi,n+1

∞ for some 1 ≤ i ≤ n and
f ◦ µ(x, y) = xαydu(x, y) for some α ∈ Nn, d ∈ N and unit u ∈ Rn+1, then
d ≥ αi.

Proof. Simply apply Lemma 3.11 and then Lemma 3.12.

Our next task is to interpret Corollary 3.13 as a preparation theorem. We
will need some easy facts about the images and preimages of L′R-cylinders
under admissible transformations.
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Remark 3.14. (i) If µ ∈ Rn+1
n+1 is an admissible transformation not of the

form µ = bi,n+1
∞ , and C ⊆ Rn+1 is an L′R-cylinder, then both µ(C) and

µ−1(C) are finite unions of L′R-cylinders.

(ii) For all r ∈ Rn+1
+ and 1 ≤ i ≤ n, bi,n+1

∞ (Br) and (bi,n+1
∞ )−1(Br) are finite

unions of L′R-cylinders.

(iii) Let C ⊆ Rn+1 be an L′R-cylinder, let s1(x), . . . , sn(x), t1(x) and t2(x)
be L′R-terms, and let L(x, y) := (s1(x), . . . , sn(x), t1(x)y+ t2(x)). Then
L−1(C) is a finite union of L′R-cylinders.

Definition 3.15. Define the exceptional set E(µ) of an admissible trans-
formation µ ∈ Rn+1

n+1 by induction on n ∈ N: if µ(x, y) = (ν(x), y) for an
admissible transformation ν ∈ Rn

n, then E(µ) := E(ν)× R. Otherwise,

(i) E(tθ) := ∅;
(ii) E(pm

i,σ) := {(x, y) ∈ Rn+1 : xi = 0};

(iii) E(bi,n+1
λ ) := {(x, y) ∈ Rn+1 : xi = 0 or y = 0}.

If T is a transformation tree of height 1, then for all µ, ν ∈ T , E(µ) = E(ν);
define E(T ) to be this common set.

Definition 3.16. Consider a function f : Rn+1 → R and a set A ⊆ Rn+1.
In the definition of “f is prepared on A” found in Definition 2.3, if instead
of (2.6) we have

f(x, y) = a(x)(y − θ(x))du(x, y − θ(x))

on C, where a(x), θ(x) and u(x, y) are L′R-terms, d ∈ N, and u(x, y) is a
positive R-unit on {(x, y− θ(x)) : (x, y) ∈ C}, then f is N-prepared on A.
If we allow d ∈ Z, f is Z-prepared on A.

Lemma 3.17. Let n ∈ N and consider a function f : U → R, where U ⊆
Rn+1, and also an A ⊆ U which is a finite union of L′R-cylinders. Let T be
a finite transformation tree of height 1, and for each µ ∈ T let Cµ ⊆ Rn+1

be a finite union of L′R-cylinders which is 〈f, µ〉-admissible. Suppose that
A ⊆ ⋃

µ∈T µ(Cµ).

Suppose that for each µ ∈ T , f ◦ µ is Z-prepared on µ−1(A) ∩ Cµ, and
if µ = bi,n+1

∞ for some 1 ≤ i ≤ n then Cµ = Br for some r ∈ Rn+1
+ and
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f ◦ µ
∣∣
µ−1(A)∩Br

extends to an fµ ∈ Rn+1,r which is normal on Br, say of the

form fµ = xαydu(x, y). Then f is Z-prepared on A\E(T ).
If we further suppose that for each µ ∈ T , f ◦µ is N-prepared on µ−1(A)∩

Cµ, and in the case that µ = bi,n+1
∞ we have d ≥ αi, then f is N-prepared on

A\E(T ).

Proof. Using Remark 3.14, the fact that E(T ) is a finite union of L′R-cylinders,
and the fact that the collection of finite unions of L′R-cylinders is a boolean
algebra, we may reduce to the case that T = {µ} for a single admissible
transformation µ, that A = µ(C) for a single L′R-cylinder C on which f ◦µ is
of a single Z-prepared form, and that A ∩ E(µ) = ∅. Furthermore, if µ is an
admissible transformation in x, it is not hard to see that then f is Z-prepared
on A, so we may assume that µ properly involves y. The proof now breaks
down into cases.

Consider the case that µ = bi,n+1
∞ and f ◦ µ

∣∣
µ−1(A)∩Br

extends to an

fµ ∈ Rn+1,r which is normal on Br, say of the form fµ = xαydu(x, y). Then
f(x, y) = xαyd−αiu(x1, . . . , xi/y, . . . , xn, y) on A, which is Z-prepared. Fur-
thermore, if d ≥ αi then f(x, y) is N-prepared on this set.

So now assume that µ is not of the form bi,n+1
∞ . There are two cases, either

C is thin or fat. First suppose that C is thin, say C = {(x, s(x)) : x ∈ B} for
some quantifier free definable set B ⊆ Rn and term s(x), and let t(x) be the
term such that for all x ∈ B, f ◦ µ(x, s(x)) = t(x). If µ(x, y) = (x, ν(x, y))
for some ν ∈ Rn+1 (such as when µ = bi,n+1

λ for some λ ∈ R or µ = tθ for
some θ ∈ Rn), then A = µ(C) = {(x, ν(x, s(x)) : x ∈ B}. So B is the base
of A and for all x ∈ B, f(x, ν(x, s(x))) = f ◦ µ(x, s(x)) = t(x). On the other
hand, if µ(x, y) = (ν(x), y) for some ν ∈ Rn

n such that ν−1(x) is a tuple of L′R-
terms (such as when µ = pm

i,σ, since (pm
i,σ)−1(x) = (x1, . . . , σ m

√
σxi, . . . , xn)),

then A = µ(C) = {(ν(x), s(x)) : x ∈ B} = {(x, s ◦ ν−1(x)) : x ∈ ν(B)}.
So the quantifier free definable set ν(B) = {x : ν−1(x) ∈ B} is the base of
A and for all x ∈ ν(B), f(x, s ◦ ν−1(x)) = t ◦ ν−1(x). Hence if C is thin,
{(x, f(x, y)) : (x, y) ∈ A} agrees with the graph of a term, so f is prepared
on A.

So now suppose that C is fat, say C = {(x, y) ∈ B×R : s(x) < y < t(x)}
for some terms s(x) and t(x) (the other forms are handled similarly), and
that

f ◦ µ(x, y) = a(x)(y − θ(x))du(x, y − θ(x)),
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on C, where d ∈ Z. If µ = tψ then on A,

f(x, y) = a(x)(y − (ψ(x) + θ(x)))du(x, t− (ψ(x) + θ(x))).

If µ = bi,n+1
λ then on A,

f(x, y) := a(x)

(
y

xi

− λ− θ(x)

)d

u

(
x,

y

xi

− λ− θ(x)

)
,

:=
a(x)

xd
i

(y − xi(λ + θ(x)))du

(
x,

y − xi(λ + θ(x))

xi

)
.

If µ = pm
i,σ then on A,

f(x, y) = a ◦ (pm
i,σ)−1(x)(y− θ ◦ (pm

i,σ)−1(x))du((pm
i,σ)−1(x), y− θ ◦ (pm

i,σ)−1(x)).

In each case f is Z-prepared. If d ∈ N, f is N-prepared.

Proposition 3.18. Let f ∈ Rn+1,r for some n ∈ N and r ∈ Rn+1
+ . Then f

is N-prepared on Br.

Proof. The proof is by induction on n ∈ N. Let f ∈ Rn+1,r and let F ∈
Rn+1,s be such that s > r and f = F

∣∣
Br

. It suffices to show that F is
N-prepared on a neighborhood of Br. To prove the result for a particular
value of n it suffices to show that each f ∈ Rn+1 is N-prepared on some
neighborhood of the origin, since we may simply apply this to F (x+a, y + b)
for each (a, b) in Br and then invoke the compactness of Br to obtain the
finitely many cylinders required for a preparation.

The result for n = 0 is trivial, since then f ∈ R1, so f is normal about
the origin, so in particular f is N-prepared. So let n > 0 and assume the
lemma holds for all functions in Rn. By Corollary 3.13 there is a finite
transformation tree T respecting y and an ε : T → Rn+1

+ such that for
each µ ∈ T , Bε(µ) is 〈f, µ〉-admissible, f ◦ µ is normal on Bε(µ), say f ◦
µ(x, y) = xαydu(x, y), and U :=

⋃
µ∈T µ(Bε(µ)) is a neighborhood of the

origin. Moreover, if µ = 〈µ1, . . . , µm〉 with µm = bi,n+1
∞ then d ≥ αi. We show

by induction on ht(T ) that f is N-prepared on U .
If ht(T ) = 0, f is normal on U , so suppose ht(T ) > 0. Let T1 :=

{µ1 : 〈µ1, . . . , µm〉 ∈ T} and for each µ ∈ T1 let T [µ] := {ν : µ ◦ ν ∈ T}.
Since ht(T [µ]) < ht(T ) for each µ ∈ T1, by the induction hypothesis f ◦ µ
is N-prepared on U [µ] :=

⋃
ν∈T [µ] ν(Bε(µ◦ν)). Since T is with respect to y,
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f and T1 satisfies the hypothesis of Lemma 3.17 (for N-preparation), so f
in N-prepared on U\E(T1). So it suffices to show that f is N-prepared on
U ∩ E(T1).

Note that each E(T1) is the union of sets of the form Ei := {(x, y) ∈
Rn+1 : xi = 0} for some 1 ≤ i ≤ n + 1, that f is prepared on U ∩ En+1

since then f is a function in x only, and that by the induction hypothesis,
f is N-prepared on the compact set U ∩ Ei for any i = 1, . . . , n. Hence f is
N-prepared on U ∩ E(T1).

3.3 Preparing certain fractional analytic func-

tions

For this section, fix a Weierstrass system R over R.

We shall show how to Z-prepare functions of the form f(x, g(x)/y, y),
where f ∈ Rn+2 and g ∈ Rn.

Definition 3.19. Consider an open neighorhood U ⊆ Cn of the origin in Cn

and a holomorphic function f : U → C. Let r ∈ Rn
+, and let B be either Br

or int(Br). Assume that B ⊆ U .
We say that f is a unit on B if f(x) 6= 0 for all x ∈ B. We say that f

is normal on B if f(x) = xαu(x) on some open neighborhood V ⊆ U of B,
where α ∈ Nn and u : V → C is a holomorphic unit on B.

Consider another holomorphic function g : U → C. If there is a neighbor-
hood V ⊆ U of B and a holomorphic h : V → C such that f(x) = g(x)h(x)
on V , then g divides f on B.

For a set A ⊆ U , let ZA(f) denote the germ of the sets {x ∈ V : f(x) = 0}
for all neighborhoods V ⊆ U of A. If A is open, we simply consider ZA(f)
to be the set {x ∈ A : f(x) = 0}.
Lemma 3.20. Let B := int(Br) for some r ∈ Rn

+, let f, g, h : B → C be
holomorphic, and let E := {x ∈ B : h(x) = 0}. If ZB\E(f) ⊆ ZB\E(g), and
g and h are both normal on B, then f is normal on B.

Proof. If a ∈ B is such that f(a) = 0, then either g(a) = 0 or h(a) = 0, so
ZB(f) ⊆ ZB(g)∪ZB(h) = ZB(gh). Now, gh is normal on B, say g(x)h(x) =
xαu(x) for some α ∈ Nn and unit u on B. We may choose β ∈ {0, 1}n so
that β ≤ α, ZB(f) ⊆ ZB(xβ), and ZB(f) * ZB(xγ) for all γ ≤ β not equal



36

to β. Let I := {i ∈ {1, . . . , n} : βi 6= 0}. If I = ∅, then f is a unit on B and
we are done, so we may assume that I 6= ∅.

We claim that ZB(f) = ZB(xβ). Consider i ∈ I. By the minimality
of β there is an a ∈ B such that ai 6= 0 and f(a) = 0. Since the regu-
lar points of ZB(f) are dense in ZB(f), there is a regular b ∈ ZB(f) such
that bi 6= 0. So for some open neighborhood V of b, ZV (f) is an (n − 1)-
dimensional complex manifold which is a subset of ZV (xi). Since ZV (xi) is
also an (n−1)-dimensional complex manifold, it follows that ZV (f) = ZV (xi),
so f(x)

∣∣
xi=0

= 0 on V . But then f(x)
∣∣
xi=0

= 0 on B. Since i ∈ I was arbi-

trary, ZB(f) = ZB(xβ), proving the claim.
Note that f(x)

∣∣
xi=0

= 0 on B iff xi divides f on B. By applying this obser-

vation and the above claim repeatedly to f(x), then f(x)/xi, then f(x)/x2
i ,

etc., for all i ∈ I, we obtain a γ ∈ Nn such that γi > 0 iff i ∈ I and
f(x) = xγu(x) for some holomorphic unit u on B, as desired.

In Lemmas 3.22 and 3.23 and Proposition 3.24 we shall be interested
in the following situation: we have a full transformation tree T in (x, y), a
g ∈ Rn, and a map ε : T → Rn+2

+ . For i = 1, . . . , n + 2 let εi := Πi ◦ ε and
ε′ := (ε1, . . . , εn+1). For each µ ∈ T and i = 1, . . . , n + 1 let µi := Πi ◦ µ and
µ′ := (µ1, . . . , µn). If for each µ ∈ T , Bε′(µ) is µ-admissible and µ′(Bε′(µ)) ⊆
Br(g), then we define the complex wedge

W(ε, µ) :=

{
(x, y) ∈ Bε′(µ) :

∣∣∣∣
g ◦ µ′(x, y)

µn+1(x, y)

∣∣∣∣ < εn+2(µ), µn+1(x, y) 6= 0

}
,

(3.1)
and also the real wedge W (ε, µ) := W(ε, µ) ∩ Rn+1.

Remark 3.21. Lemma 3.11 is the geometric interpretation of Theorem 3.4
for q.a. IF-systems. Theorem 3.4 can also be interpreted for Weierstrass
systems: namely, in Lemma 3.11 simply replace Br with Br.

Similarly, Lemma 3.5 also has an obvious geometric interpretation for the
Weierstrass systemR, which we do not state but use in the proofs of Lemmas
3.22 and 3.23 below.

Lemma 3.22. Let λ ∈ R, f ∈ Rn+1 and g ∈ Rn. Define

ϕ(x, y) := (x, g(x)/y − λy)

on its natural domain {(x, y) ∈ Br(g)×C : y 6= 0}, and let F := f ◦ϕ. There
is a full transformation tree T in x and an ε : T → Rn+2

+ such that for each
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µ ∈ T , W(ε, µ) is 〈f, ϕ, µ〉-admissible and there is a Φµ ∈ Rn+1 such that
W(ε, µ) ⊆ Br(Φµ) and

ZW(ε,µ)(F ◦ µ) ⊆ ZW(ε,µ)(Φµ).

Proof. As described in Remark 3.21, use Lemma 3.5 to obtain a full trans-
formation tree T in x and an ε′ = (ε1, . . . , εn+1) : T → Rn+1

+ such that for
each µ ∈ T , Bε′(µ) is 〈f, µ〉-admissible and

f ◦ µ(x, y) = xαh(x, y) (3.2)

on Bε′(µ) for some α ∈ Nn and h ∈ Rn+1 regular in y, say of order d. Fix
µ ∈ T , and so also the corresponding α, h and d. By possibly shrinking ε′(µ),
Weierstrass preparation gives

h(x, y) = w(x, y)u(x, y) (3.3)

on Bε′(µ), where w is a Weierstrass polynomial in y of order d and u is a unit.
Note that w, u ∈ Rn+1.

By possibly shrinking εn+1(µ) further and choosing εn+2(µ) sufficiently
small, we may in fact assume that h, w and u are defined on Bελ(µ), where

ελ(µ) := (ε1(µ), . . . , εn(µ), εn+2(µ) + |λ|εn+1(µ)).

Let ε(µ) := (ε′(µ), εn+2(µ)). So if (a, b) ∈ W(ε, µ) is such that F ◦µ(a, b) = 0,
then by (3.2)

0 = f(µ′(a), g ◦ µ′(a)/b− λb) = aαh(a, g ◦ µ′(a)/b− λb),

so either aα = 0 or w(a, g ◦ µ′(a)/b − λb) = 0 by (3.3). Letting β =
(β1, . . . , βn), where

βi :=

{
1, if αi > 0,
0, if αi = 0,

(just to reduce redundancies) and noting that ydw(x, g ◦ µ′(x)/y − λy) is a
polynomial in y with coefficients in Rn, we see that

Φµ(x, y) := xβydw(x, g ◦ µ′(x)/y − λy)

is a function as desired.
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Lemma 3.23. Let f ∈ Rn+2 and g ∈ Rn. Define

ϕ(x, y) := (x, g(x)/y, y)

on its natural domain {(x, y) ∈ Br(g)×C : y 6= 0}, and let F := f ◦ϕ. There
is a full transformation tree T in x and an ε : T → Rn+2

+ such that for each
µ ∈ T , W(ε, µ) is 〈f, ϕ, µ〉-admissible and there is a Φµ ∈ Rn+1 such that
W(ε, µ) ⊆ Br(Φµ) and

ZW(ε,µ)(F ◦ µ) ⊆ ZW(ε,µ)(Φµ).

Proof. Let z := xn+2. As described in Remark 3.21, use Lemma 3.5 to obtain
a full transformation tree S in x and a ρ = (ρ1, . . . , ρn+2) : S → Rn+2

+ such
that for each ν ∈ S, Bρ(ν) is 〈f, ν〉-admissible and f ◦ ν(x, y, z) = xαh(x, y, z)
on Bρ(ν) for some α ∈ Nn and h ∈ Rn+2 such that h(0, y, z) 6= 0. Instead of
considering each ν ∈ S to be a member ofRn+2

n+2, we consider ν to be a member
ofRn+1

n+1, as we may since S is a transformation tree in x; so ν(x, y) = (ν ′(x), y)
where ν ′ := Π ◦ ν. Fix ν ∈ S, and so also the corresponding α and h,
and let H(x, y) := h(x, g ◦ ν ′(x)/y, y) on its natural domain. Note that
F ◦ ν(x, y) = xαH(x, y).

We now use a method of Parusinski’s to study the complex roots of H, and
so also of F ◦ ν. Fix a λ ∈ R such that h(x, y + λz, z) is regular in z, which
may be done since h(0, y, z) 6= 0. By possibly shrinking ρ(ν), Weierstrass
preparation gives

h(x, y + λz, z) = w(x, y, z) u(x, y, z) (3.4)

on Bρ(ν), where w is a Weierstrass polynomial in z and u is a unit. Let δ(ν) :=
(δ1(ν), . . . , δn+2(ν)), where δi(ν) := ρi(ν) for 1 ≤ i ≤ n and δn+1(ν), δn+2(ν) >
0 are chosen so that δn+2(ν) + |λ|δn+1(ν) ≤ ρn+1(ν) and δn+1(ν) ≤ ρn+2(ν).
Consider (a, b) ∈ W(δ, ν) such that H(a, b) = 0, and let c := g ◦ ν ′(a)/b−λb.
So λb2 + cb− g ◦ ν ′(a) = 0 and h(a, c + λb, b) = 0, so by (3.4) w(a, c, b) = 0.
Since the polynomials in y, λy2 +cy−g ◦ν ′(a) and w(a, c, y), have a common
root b, they have a common factor, so

ψ(a, c) := Resy(w(a, c, y), λy2 + cy − g ◦ ν ′(a)) = 0,

where Resy denotes the resultant with respect to y. Note that ψ ∈ Rn+1.
The above argument shows that

ZW(δ,ν)(H) ⊆ ZW(δ,ν)(Ψ),
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where Ψ(x, y) := ψ(x, g ◦ ν ′(x)/y − λy), and so

ZW(δ,ν)(F ◦ ν) ⊆ ZW(δ,ν)(Φν), (3.5)

where Φν(x, y) := xαΨ(x, y).
By applying Lemma 3.22 to Φν , there is a full transformation tree Sν in x

and a δν : Sν → Rn+2
+ such that for each η ∈ Sν ,W(δν , η) is 〈Φν , ν〉-admissible

and there is a Φν◦η ∈ Rn+1 such that W(δν , η) ⊆ Br(Φν◦η) and

ZW(δν ,η)(Φν ◦ η) ⊆ ZW(δν ,η)(Φν◦η). (3.6)

For each ν ∈ S, by possibly refining δν we may assume that δν is “compat-
ible” with δ in the sense that for each η ∈ Sν , ν(B(δ′ν , η)) ⊆ B(δ′, ν) and
ν(W(δν , η)) ⊆ W(δ, ν). Then (3.5) and (3.6) show that

ZW(δν ,η)(F ◦ ν ◦ η) ⊆ ZW(δν ,η)(Φν◦η). (3.7)

Let T := {ν ◦ η : ν ∈ S, η ∈ Sν}, and let ε : T → Rn+2
+ be given by

ε(ν ◦η) := δν(η) for ν ∈ S and η ∈ Sν . With this new notation (3.7) becomes

ZW(ε,µ)(F ◦ µ) ⊆ ZW(ε,µ)(Φµ)

for each µ ∈ T , as desired.

We now state a main result.

Proposition 3.24. Let n ∈ N, f ∈ Rn+2 and g ∈ Rn. Define

ϕ(x, y) := (x, g(x)/y, y)

on its natural domain {(x, y) ∈ Br(g) × C : y 6= 0}, and let F := f ◦ ϕ. For
r ∈ Rn+1

+ and s > 0 let W(r,s) := {(x, y) ∈ Br : y 6= 0, |g(x)/y| < s}.
There are r ∈ Rn+1

+ , s > 0, a finite transformation tree T ′ in (x, y) and
an ε : T ′ → Rn+2

+ such that

(i) T ′ respects y;

(ii) W(r,s) ⊆
⋃

µ∈T ′ µ(W (ε, µ));

(iii) for each µ ∈ T ′, W (ε, µ) is 〈f, ϕ, µ〉-admissible and F ◦µ
∣∣
W (ε,µ)

extends

to a function Fµ ∈ Rn+1,ε′(µ) which is normal on Bε′(µ).
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Proof. By Lemma 3.23 there is a full transformation tree S in x and a δ :
S → Rn+2

+ such that for each ν ∈ S, W(δ, ν) is 〈f, ϕ, ν〉-admissible and there
is a Φν ∈ Rn+1 such that W(δ, ν) ⊆ Br(Φν) and

ZW(δ,ν)(F ◦ ν) ⊆ ZW(δ,ν)(Φν). (3.8)

Let ν ∈ S, considered to be a function in Rn+1
n+1, and define

Ψν(x, y) := Φν(x, y) · g ◦ ν ′(x) · y · (y − g ◦ ν ′(x)), (3.9)

where ν ′ := Π ◦ ν. By Remark 3.21 there is a full transformation tree Sν

in (x, y) respecting y and a map δ′ν : Sν → Rn+1
+ such that for each η ∈ Sν ,

Bδ′ν(η) is 〈Ψν , η〉-admissible and Ψν ◦ η is normal on Bδ′ν(η). We may assume
that Bδ′ν(η) is 〈f, ϕ, ν, η〉-admissible. Let δν(η) := (δ′ν(η), δn+2(ν)). Let T :=
{ν ◦ η : ν ∈ S, η ∈ Sν}, and let ε : T → Rn+3

+ be given by ε(ν ◦ η) := δν(η) for
ν ∈ S and η ∈ Sν . We claim that by possibly refining ε, some finite T ′ ⊆ T
and some sufficiently small r ∈ Rn+1

+ and s > 0 satisfy the conclusion of the
proposition.

To see this let µ ∈ T , say µ = ν ◦ η with ν ∈ S and η ∈ Sν , and write
µ′ := Π ◦ µ and µn+1 := Πn+1 ◦ µ. By Lemma 3.2 and (3.9), g ◦ µ′(x, y) =
(xy)αu(x, y) and µn+1(x, y) = (xy)βv(x, y) for some units u and v on Bε′(µ)

and α = α(µ), β = β(µ) ∈ Nn+1 such that either α ≥ β or α ≤ β. Note that

F ◦ µ(x, y) = f

(
µ′(x, y),

g ◦ µ′(x, y)

µn+1(x, y)
, µn+1(x, y)

)
,

= f

(
µ′(x, y), (xy)α−β u(x, y)

v(x, y)
, (xy)βv(x, y)

)
. (3.10)

If α ≥ β and α 6= β, then by possibly shrinking ε′(µ) we may assume
that |(xy)α−βu/v| < εn+2(µ) on Bε′(µ), and so W(ε, µ) = {(x, y) ∈ Bε′(µ) :
µn+1(x, y) 6= 0}. By (3.10), F ◦ µ(x, y) extends to an analytic function
Fµ ∈ Rn+1 on Bε′(µ). By (3.8),

ZW(ε,µ)(F ◦ µ) ⊆ ZW(ε,µ)(Φν ◦ η).

Since Φν ◦ η and µn+1 are both normal on Bε′(µ), then Fµ is normal on Bε′(µ)

by Lemma 3.20.
If α = β, simply shrink εn+2(µ) so that |u/v| > εn+2(µ) on Bε′(µ), so

W(ε, µ) = ∅.
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If α ≤ β and α 6= β, then simply shrink ε′(µ) so that for all (x, y) ∈ Bε′(µ)

such that µn+1(x, y) 6= 0,
∣∣∣∣
g ◦ µ′(x, y)

µn+1(x, y)

∣∣∣∣ =

∣∣∣∣
u(x, y)

(xy)β−αv(x, y)

∣∣∣∣ > εn+2(µ),

so W(ε, µ) = ∅.
Now, by Lemma 3.12 there is a finite T ′′ ⊆ T such that Br ⊆

⋃
µ∈T ′′ µ(Bε′(µ))

for some r ∈ Rn+2
+ , so in particular W(r,s) ⊆

⋃
µ∈T ′ µ(Bε′(µ)) for any s > 0.

Letting s := min{εn+2(µ) : µ ∈ T ′′}, it follows that W(r,s) ⊆
⋃

µ∈T ′′ µ(W (ε, µ)),
so

W(r,s) ⊆
⋃

µ∈T ′
µ(W (ε, µ)),

where T ′ := {µ ∈ T ′′ : α(µ) ≥ β(µ), α(µ) 6= β(µ)}, since W (ε, µ) = ∅ for any
µ ∈ T ′′\T ′. Therefore T ′ is the desired transformation tree.

We now set out on the task of using Proposition 3.24 to Z-prepare func-
tions of the form F (x, y) = f(x, g(x)/y, y). To make the induction go
through, we shall consider a slightly more general form for F .

For Lemma 3.26 and Proposition 3.27 let n ∈ N and consider the following
situation:

(i) r′ = (r1, . . . , rn) ∈ Rn
+ and g, L1, L2 ∈ Rn,r′ ;

(ii) L(x, y) := L1(x)y + L2(x) on Br′ × R;

(iii) ϕ(x, y) := (x, g(x)/L(x, y), L(x, y)) on dom(ϕ) := {(x, y) ∈ Br′ × R :
L(x, y) 6= 0};

(iv) C is an L′R-cylinder such that C ⊆ dom(ϕ), and both C and ϕ(C) are
bounded;

(v) r = (r1, . . . , rn+2) ∈ Rn+2
+ is such that Π(r) = r′, and f ∈ Rn+2,r is

such that ϕ(C) ⊆ int(Br);

(vi) F := f ◦ ϕ, so

F (x, y) = f

(
x,

g(x)

L1(x)y + L2(x)
, L1(x)y + L2(x)

)
. (3.11)

Note that dom(F ) = {(x, y) ∈ Br′ × R : L(x, y) 6= 0, |g(x)/L(x, y)| ≤
rn+1, |L(x, y)| ≤ rn+2}.
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Definition 3.25. For a set A ⊆ Rn and functions f, g : A → R, f is
equivalent to g on A, written f ∼ g on A, if there are 0 < a < b such that
for all x ∈ A,

af(x) ≤ g(x) ≤ bf(x) if f(x) ≥ 0,

bf(x) ≤ g(x) ≤ af(x) if f(x) < 0.

If ε > 0 is such that 1− ε ≤ a and b ≤ 1 + ε, we write f ∼ε g on A.

Lemma 3.26. If L(x, y) ∼ ψ(x) on C for some L′R-term ψ(x), then F is
N-prepared on C.

Proof. Fix 0 < a < b such that on C,

aψ(x) ≤ L(x, y) ≤ bψ(x) if ψ(x) ≥ 0,

bψ(x) ≤ L(x, y) ≤ aψ(x) if ψ(x) < 0.

Since L(x, y) 6= 0 for all (x, y) ∈ C, {(x, y) ∈ C : ψ(x) > 0} and {(x, y) ∈
C : ψ(x) < 0} cover C. By considering each of these sets separately we may
assume that ψ has constant sign on C, and since both cases are handled
similarly, we may assume that ψ > 0 on C.

For each λ ∈ [a, b] let Cλ :=
{
(x, y) ∈ C : 1

2
λψ(x) < L(x, y) < 3

2
λψ(x)

}
.

Letting Λ = {a = λ1 < . . . < λk = b} where the λi are chosen so that
λi+1

λi
< 3 for i = 1, . . . , k − 1, we have C ⊆ ⋃

λ∈Λ Cλ. So by considering each
Cλ separately for each λ ∈ Λ, without loss of generality we may assume that
a = 1/2 and b = 3/2.

Since ϕ(C) is bounded we may fix an M > 0 such that |x1|, . . . , |xn|,
∣∣∣ g(x)
L(x,y)

∣∣∣,
|L(x, y)| ≤ M for all (x, y) ∈ C. Therefore on C,

∣∣∣∣
g(x)

ψ(x)

∣∣∣∣ =

∣∣∣∣
L(x, y)

ψ(x)
· g(x)

L(x, y)

∣∣∣∣ <
3

2
M,

|ψ(x)| ≤ 2|L(x, y)| ≤ 2M,

∣∣∣∣
L(x, y)− ψ(x)

ψ(x)

∣∣∣∣ ≤
1

2
.
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Let s := (3
2
M, M, . . . , M, 2M, 1

2
), a tuple in Rn+3

+ . Consider the maps ϕ1 :
C → Rn+3 and ϕ2 : Rn+2 × (−1, 1) → Rn+2 defined by

ϕ1(x, y) :=

(
g(x)

ψ(x)
, x, ψ(x),

L(x, y)− ψ(x)

ψ(x)

)
,

ϕ2(w, x, y, z) :=

(
x,

w

1 + z
, y(1 + z)

)
.

We see that ϕ1(C) ⊆ Bs, ϕ2

∣∣
Bs
∈ Rn+3,s and ϕ

∣∣
C

= ϕ2◦ϕ1. Since f ◦ϕ2 is R-

analytic on the compact set ϕ1(C), by Proposition 3.18 f ◦ϕ2 is N-prepared
on a neighborhood of ϕ1(C).

Let C ′ ⊆ Rn+3 be a typical cylinder given by this preparation and suppose

f ◦ ϕ2(w, x, y, z) = a(w, x, y)(z − θ(w, x, y))du(w, x, y, z − θ(w, x, y))

on C ′, where d ∈ N. Note that F (x, y) is prepared on {(x, y) ∈ ϕ−1
1 (C ′) :

L1(x) = 0} since it is a term in x. Letting ϕ′1(x) :=
(

g(x)
ψ(x)

, x, ψ(x)
)
, on

{(x, y) ∈ ϕ−1
1 (C ′) : L1(x) 6= 0} we have

F (x, y) = a ◦ ϕ′1(x)

(
L(x, y)− ψ(x)

ψ(x)
− θ ◦ ϕ′1(x)

)d

u

(
ϕ′1(x),

L(x, y)− ψ(x)

ψ(x)
− θ ◦ ϕ′1(x)

)
,

= a ◦ ϕ′1(x)

(
L1(x)

ψ(x)

)d (
y − L2(x) + ψ(x)(1 + θ ◦ ϕ′1(x))

L1(x)

)d

u

(
ϕ′1(x), y − L2(x) + ψ(x)(1 + θ ◦ ϕ′1(x))

L1(x)

)
,

which is N-prepared. To finish note that ϕ−1
1 (C ′) is a finite union of L′R-

cylinders by Remark 3.14.

Proposition 3.27. The function F is Z-prepared on C.

Proof. By induction on n ∈ N. Consider n = 0; so F (y) = f(g/(L1y +
L2), L1y + L2) for some g, L1, L2 ∈ R. If L1 = 0, F is constant. If g = 0,
then F is R-analytic on the compact set C, so we are done by Proposition
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3.18. So suppose g 6= 0 and L1 6= 0. Since ϕ(C) is bounded, there is
an M > 0 such that |g/(L1y + L2)|, |L1y + L2| ≤ M for all y ∈ C, so
0 < |g|/M ≤ |L1y + L2| ≤ M on C. Therefore F is R-analytic on the
compact set C, so we are again done by Proposition 3.18.

So let n > 0. On the set {(x, y) ∈ C : L1(x) = 0}, F is prepared since it
is a term in x alone, so we may assume that L1(x) 6= 0 for all x ∈ Π(C). For
each ε > 0 let

Cε := {(x, y) ∈ C : |L(x, y)|, |g(x)/L(x, y)| < ε},
C ′

ε := {(x, y) ∈ C : |L(x, y)| ≥ ε},
C ′′

ε := {(x, y) ∈ C : |g(x)/L(x, y)| ≥ ε},
and note that C = Cε ∪ C ′

ε ∪ C ′′
ε .

Let ε > 0. First, note that ϕ is R-analytic on C ′
ε, so F = f ◦ ϕ is

R-analytic on the compact set C ′
ε, so by Proposition 3.18 F is N-prepared

on C ′
ε. Next, since ϕ(C) is bounded we may fix an M > 0 such that ε ≤

|g(x)/L(x, y)| ≤ M for all (x, y) ∈ C ′′
ε , so up to subcylindering C ′′

ε to account
for signs, L(x, y) ∼ σg(x) on C ′′

ε for some σ ∈ {−1, 1}. Hence by Lemma
3.26 F in N-prepared on C ′′

ε .
Therefore it suffices to show that F is Z-prepared on Cε for some ε > 0.

For a ∈ Rn let sa(x) := x + a, and if t(x, y) = t1(x)y + t2(x) for some
t1, t2 ∈ Rn,s and s ∈ Rn

+, let

At(x, y) :=

(
x,

y − t2(x)

t1(x)

)

on its domain {(x, y) ∈ Bs × R : t1(x) 6= 0}. Note that F ◦ AL(x, y) =
f(x, g(x)/y, y) on the L′R-cylinder A−1

L (C) = {(x, L(x, y)) : (x, y) ∈ C}.

Claim 1. There is a finite B′ ⊆ Br′ such that for each b ∈ B′ there is a finite
transformation tree T (b) in (x, y) respecting y, a δb : T (b) → Rn+2

+ , and an
(r(b), s(b)) ∈ Rn

+ × R+ such that

(i) {(x, y) ∈ Br(b)×R : y 6= 0, |g(x+b)/y|, |y| < s(b)} ⊆ ⋃
µ∈T (b) µ(W (δb, µ)),

(ii) for each µ ∈ T (b), W (δb, µ) is 〈f, ϕ, AL, s(b,0), µ〉-admissible and F ◦
AL ◦ s(b,0) ◦µ

∣∣
W (δb,µ)

extends to a function in Rn+1,δ′b(µ) which is normal

on Bδ′b(µ);

(iii) Br′ ⊆
⋃

b∈B′ Br(b)(b).



45

Proof. By Proposition 3.24, for each b ∈ Br′ there is a T (b), δb, and (r(b), s(b))
satifying (i) and (ii). The existence of a finite B′ ⊆ B satisfying (iii) follows
from the compactness of Br′ .

We now extend the scope of what is considered to be an “admissible
transformation”: in addition to functional translations, power substitutions
and blowup substitutions, for the rest of the proof of this proposition let us
also consider the affine transformations At to be “admissible”. Let {At} be
the “family” of At, and extend the definition of “transformation tree” ac-
cordingly.

Claim 2. Suppose there is a finite transformation T in (x, y) (in the new
sense of the word) respecting y and a δ : T → Rn+2

+ such that for each
µ ∈ T , W (δ, µ) is 〈f, ϕ, µ〉-admissible and F ◦ µ

∣∣
W (δ,µ)

extends to a function

in Rn+1,δ′(µ) which is normal on Bδ′(µ). Then F is Z-prepared on U :=⋃
µ∈T µ(W (δ, µ)).

Proof. By induction on ht(T ); let us call the induction on n the “outer”
induction and the induction on ht(T ) the “inner” induction. We are done if
ht(T ) = 0, so assume that ht(T ) > 0. Let T1 := {µ1 : 〈µ1, . . . , µm〉 ∈ T},
and for each µ ∈ T1 let T [µ] := {ν : µ ◦ ν ∈ T}.

Fix µ ∈ T1. If µ = bi,n+1
∞ for some i = 1, . . . , n, then since T respects y, we

have µ ∈ T and F ◦µ is normal on Bδ′(µ). In any other case, F ◦µ is of the same
form as F , as given in (3.11) (this is the reason why we consider the slightly
more general form f(x, g(x)/L(x, y), L(x, y)) and not just f(x, g(x)/y, y)).
Since ht(T [µ]) < ht(T ), by the inner induction hypothesis F ◦µ is Z-prepared
on U [µ] :=

⋃
ν∈T [µ] ν(W (δ, µ ◦ ν)), say

F ◦ µ(x, y) = a(x)(y − θ(x))du(x, y − θ(x))

with d ∈ Z. If T1 is a transformation family of a functional translation, power
substitution, or blowup substitution, then by Lemma 3.17 F is Z-prepared on
U\E(T1). Since U ∩E(T1) is a union of sets of the form {(x, y) ∈ U : xi = 0}
for some i = 1, . . . , n+1, and doing such a substitution xi = 0 either makes F
a function in x alone or a function in (x, y) of the same form as given in (3.11)
but in one less variable, we see that F is Z-prepared on {(x, y) ∈ U : xi = 0}
by the outer induction hypothesis. On the other hand, if T1 = {At}, where
t(x, y) = t1(x)y + t2(x) for some t1, t2 ∈ Rn, then for all (x, y) ∈ U , t1(x) 6= 0
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and

F (x, y) = a(x)(t1(x)y + t2(x)− θ(x))du(x, t1(x)y + t2(x)),

=
a(x)

t1(x)d

(
y − θ(x)− t2(x)

t1(x)

)d

u

(
x, y − θ(x)− t2(x)

t1(x)

)
,

which is Z-prepared.

To complete the proof of Proposition 3.27, simply apply Claim 1 and let
ε := min{s(b) : b ∈ B′}. Since Br′ ⊆

⋃
b∈B′ Br(b)(b), Cε ⊆

⋃
b∈B′

⋃
µ∈T (b) AL ◦

s(b,0) ◦ µ(W (δb, µ)). So letting T ′(b) := {AL ◦ s(b,0) ◦ µ : µ ∈ T (b)}, applying
Claim 2 to each F ◦ s(b,0) and T ′(b) shows that F is Z-prepared on Cε.

3.4 Proof of the Main Theorem over R
For this section, fix a Weierstrass system R over R.

Lemma 3.28. Let θ(x) be an L′R-term, A ⊆ Rn+1 be a finite union of L′R-
cylinders and ε > 0. There are L′R-cylinders C1, . . . , Ck covering A such that
for each C ∈ {C1, . . . , Ck} one of the following holds:

1. y ∼ε θ(x) on C;

2. y− θ(x) = a(x) u(x, y) on C, where u(x, y) is an R-unit on C and a(x)
is an L′R-term;

3. y − θ(x) = y u(x, y) on C, where u(x, y) is an R-unit on C.

Proof. By subcylindering we may assume that θ has constant sign on A. If
θ = 0 on C we are in case 3, so assume that θ > 0 on C (the case θ < 0 is
similar). Let 0 < a′ < a < 1 < b < b′ be such that 1− ε ≤ a′ and b′ ≤ 1 + ε,
and let

C1 := {(x, y) ∈ C : a′θ(x) < y < b′θ(x)},
C2 := {(x, y) ∈ C : −b′θ(x) < y < a θ(x)},
C3 := {(x, y) ∈ C : |y| > b θ(x)}.

Note that each of these sets is a finite union of L′R-cylinders and they cover
C. For i = 1, 2, 3 we are in case i on Ci, since y ∼ε θ(x) on C1, on C2

y − θ(x) = θ(x)

(
y

θ(x)
− 1

)
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and

0 < 1− a <

∣∣∣∣
y

θ(x)
− 1

∣∣∣∣ < 1 + b′,

and on C3

y − θ(x) = y

(
1− θ(x)

y

)

and

0 < 1− 1

b
<

∣∣∣∣1−
θ(x)

y

∣∣∣∣ < 1 +
1

b
.

Lemma 3.29. Let θ1(x) and θ2(x) be L′R-terms and A ⊆ Rn+1 be a finite
union of L′R-cylinders. There are L′R-cylinders C1, . . . , Ck covering A such
that for each C ∈ {C1, . . . , Ck} either

1. y − θ2(x) = a(x) u(x, y − θ1(x)) on C, or

2. y − θ1(x) = a(x) u(x, y − θ2(x)) on C, or

3. y − θ2(x) = (y − θ1(x)) u(x, y − θ1(x)) on C, or

4. y − θ1(x) = (y − θ2(x)) u(x, y − θ2(x)) on C,

where a(x) is an L′R-term, u(x, y) is an R-unit on {(x, y−θ1(x)) : (x, y) ∈ C}
in cases 1 and 3, and u(x, y) is an R-unit on {(x, y − θ2(x)) : (x, y) ∈ C} in
cases 2 and 4.

Proof. By subcylindering we may assume that θ1 − θ2 has constant sign on
C. Since we are in case (ii) if θ1 = θ2 on C, and the other two cases are
symmetric, we may assume that θ1 > θ2 on C.

Choose a, b ∈ R such that 1
2

< a < 1 < b < 1 + a and consider the
following sets, each of which is a finite union of L′R-cylinders:

C1 := {(x, y) ∈ C : θ1(x)− a(θ1(x)− θ2(x)) < y < θ1(x) + a(θ1(x)− θ2(x))},
C2 := {(x, y) ∈ C : θ2(x)− a(θ1(x)− θ2(x)) < y < θ2(x) + a(θ1(x)− θ2(x))},
C3 := {(x, y) ∈ C : y < θ1(x)− b(θ1(x)− θ2(x))},
C4 := {(x, y) ∈ C : y > θ2(x) + b(θ1(x)− θ2(x))}.
Note that by the choice of a and b, C =

⋃4
i=1 Ci. We show that for i =

1, . . . , 4, we are case i on Ci.
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On C1,
∣∣∣ y−θ1(x)
θ1(x)−θ2(x)

∣∣∣ < a < 1, so

y − θ2(x) = (θ1(x)− θ2(x))

(
1 +

y − θ1(x)

θ1(x)− θ2(x)

)

is as in case 1. C2 is similar.
On C3, −1 < −1

b
< θ1(x)−θ2(x)

θ1(x)−y
< 0, so

y − θ2(x) = (y − θ1(x))

(
1 +

θ1(x)− θ2(x)

y − θ1(x)

)

is as in case 3. C4 is similar.

Definition 3.30. Let ε > 0 and consider a function f : Rn+1 → R which
is prepared on A ⊆ Rn+1: say there are L′R-cylinders C1, . . . , Ck ⊆ Rn+1

covering A such that for each C ∈ {C1, . . . , Ck}, if C is thin then the graph
of f

∣∣
C

is given by a term in x, and if C is fat then

f(x, y) = a(x)|y − θ(x)|qu(x, |y − θ(x)|1/p)

on C. If for each such θ(x) which is not identically zero on Π(C) we have
that y ∼ε θ(x) on C, then we say that f is ε-prepared on A.

The functions f1, . . . , fm : Rn+1 → R are simultaneously prepared
on A ⊆ Rn+1 if there is a common cylinder covering of A preparing each
f1, . . . , fm and the θ(x)’s given by this preparation are uniform for all i.
More precisely, there are L′R-cylinders C1, . . . , Ck covering A such that for
each C ∈ {C1, . . . , Ck}, if C is thin then the graph of f

∣∣
C

is given by a term
in x, and if C is fat then for i = 1, . . . , m,

fi(x, y) = ai(x)|y − θ(x)|qiui(x, |y − θ(x)|1/pi), (3.12)

on C.
These adjectives can be combined with the various special types of prepa-

rations, such as with “simultaneously ε-Z-prepared” for example.

Remark 3.31. Consider (3.12). We may choose p, p′1, . . . , p
′
m ∈ N+ and

q′1, . . . , q
′
m ∈ Z such that qi = q′i/p and 1/pi = p′i/p for i = 1, . . . ,m. Then

by replacing ui(x, y) with ui(x, yp′i), we may assume that

fi(x, y) = ai(x)|y − θ(x)|q′i/pui(x, |y − θ(x)|1/p)

for all i = 1, . . . , m.
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Corollary 3.32. If ε > 0, A ⊆ Rn+1 is a finite union of L′R-cylinders, and
f1, . . . , fm : Rn+1 → R are prepared on A, then f1, . . . , fm are simultaneously
ε-prepared on A. The same also holds for “N-prepared” and “Z-prepared”
in place of “prepared.”.

Proof. We prove the corollary by induction on m ≥ 1. By Lemma 3.28 there
is a finite collection C of L′R-cylinders covering Rn+1 such that on any fat
cylinder C ∈ C,

f1(x, y) = a1(x)|y − θ1(x)|q1u1(x, |y − θ1(x)|1/p1)

where y ∼ε θ1(x) on C whenever θ1(x) is not identically zero. By the in-
duction hypothesis we may further subcylinder and obtain that for any fat
cylinder C ∈ C,

fi(x, y) = ai(x)|y − θ2(x)|qiui(x, |y − θ2(x)|1/p2), for i = 2, . . . , m,

where y ∼ε θ2(x) on C whenever θ2(x) is not identically equal to zero.
By using the Lemma 3.29 to further subcylinder, we may assume, for

example, that
y − θ1(x) = (y − θ2(x))v(x, y − θ2(x))

and y > θ2(x) on C with v a positive R-unit on {(x, y − θ2(x)) : (x, y) ∈ C}
(the other cases given by Lemma 3.29 and the other possible sign conditions
for y − θ2(x) and v are handled similarly). Then

f1(x, y) = a1(x)|y−θ2(x)|q1v(x, y−θ2(x))q1u1(x, |y−θ2(x)|1/p1v(x, y−θ2(x))1/p1)

on C. Since v(x, y) is an R-unit on {(x, y − θ2(x)) : (x, y) ∈ C}, then
so is v(x, y)q for any q ∈ Q. So by letting p, q′1, p

′
1, p

′
2 ∈ Z (p > 0) be

such that q1 = q′1/p, 1/p1 = p′1/p and 1/p2 = p′2/p, and letting U1(x, y) :=
v(x, yp)u1(x, yp′1v(x, yp′1)1/p1) and Ui(x, y) := ui(x, yp′2) for i = 2, . . . , m, all of
which are R-units on {(x, (y − θ2(x))1/p) : (x, y) ∈ C}, we have

fi(x, y) = ai(x)|y − θ2(x)|q′i/p Ui(x, |y − θ2(x)|1/p)

on C for all i = 1, . . . , m.

Lemma 3.33. Let A ⊆ Rn+1 be a finite union of L′R-cylinders, g = (g1, . . . , gm) :
A → Rm be a bounded function such that gi is prepared on A for each
i = 1, . . . , m, and f ∈ Rm be such that g(A) ⊆ Br(f). Then f ◦ g is prepared
on A.
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Proof. By Corollary 3.32, g1, . . . , gm are simultaneously prepared on A. Con-
sider a cylinder C given by this preparation. If C is thin, then each gi

∣∣
C

is

given by a term in x, and hence so is f ◦ g
∣∣
C
. So it suffices to consider the

case that C is fat and for i = 1, . . . , m,

gi(x, y) = ai(x)|y − θ(x)|mi/pui(x, |y − θ(x)|1/p)

on C.
Since on C each gi is bounded and ui(x, |y − θ(x)|1/p) is bounded below

by a positive constant, then ai(x)|y − θ(x)|mi/p is bounded on C. So by

viewing each ai(x)|y − θ(x)|mi/p as |y−θ(x)|mi/p

1/ai(x)
when mi > 0 and ai(x)

|y−θ(x)|−mi/p

for mi ≤ 0, we can write f(x, y) = F ◦ ϕ(x, y) on C, where ϕ is a bounded
function on C given by

ϕ(x, y) =

(
a(x),

|y − θ(x)|1/p

b(x)
,

c(x)

|y − θ(x)|1/p

)

for tuples of L′R-terms a(x) = (a1(x), . . . , ak1(x)), b(x) = (b1(x), . . . , bk2(x))
and c(x) = (c1(x), . . . , ck3(x)), and F : Rk1+k2+k3 → R is R-analytic on

ϕ(C). Here |y−θ(x)|1/p

b(x)
:=

(
|y−θ(x)|1/p

b1(x)
, . . . , |y−θ(x)|1/p

bk2
(x)

)
and c(x)

|y−θ(x)|1/p is defined

similarly. Let k := k1 + k2 + k3.
By further subcylindering, without loss of generality we may assume that

|b1(x)| ≤ · · · ≤ |bk2(x)| and |c1(x)| ≥ · · · ≥ |ck3(x)| on C. Just to re-
duce subscripts, put b(x) := b1(x) and c(x) := c1(x). Note that for each i,
|b(x)/bi(x)| ≤ 1 and |ci(x)/c(x)| ≤ 1 on C. So by writing

|y − θ(x)|1/p

bi(x)
=

b(x)

bi(x)

|y − θ(x)|1/p

b(x)
, and

ci(x)

|y − θ(x)|1/p
=

c(x)

ci(x)

c(x)

|y − θ(x)|1/p
,

then by lengthening the tuple a(x) to include the b(x)/bi(x)’s and the ci(x)/c(x)’s
and by modifying F appropriately we may assume that

ϕ(x, y) =

(
a(x),

|y − θ(x)|1/p

b(x)
,

c(x)

|y − θ(x)|1/p

)
.

By further subcylindering we may assume that |c(x)| ≤ |b(x)| on C (the case
|b(x)| ≥ |c(x)| can be handled similarly).
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By Proposition 3.27 and Corollary 3.32 we may ε-Z-prepare the func-
tion F (x1, . . . , xk−2, xk, xk−1/xk) on τ(C) for any ε ∈ (0, 1) we wish, where

τ(x, y) :=
(
a(x), c(x)

b(x)
, |y−θ(x)|1/p

b(x)

)
. Let C ′ be a cylinder given by this prepara-

tion and suppose

F (x1, . . . , xk−2, xk, xk−1/xk) = A(x′)(xk − ψ(x′))du(x′, xk − ψ(x′)),

on C ′, where x′ := (x1, . . . , xk−1). So on τ−1(C ′) ∩C, which is a finite union
of L′R-cylinders, we have

f ◦ g(x, y) = A ◦ τ ′(x)

( |y − θ(x)|1/p

b(x)
− ψ ◦ τ ′(x)

)d

u

(
τ ′(x),

|y − θ(x)|1/p

b(x)
− ψ ◦ τ ′(x)

)
,

where τ ′(x) := (a(x), c(x)/b(x)).
For simplicity of notation, let us assume C = τ−1(C ′) ∩ C. We are

done if ψ is identically zero on C, so we assume otherwise. For simplicity
we also assume that y > θ(x) on C (the case y < θ(x) is similar). Let
h(x, y) := |y − θ(x)|1/p/b(x). Since we can have h ∼ε ψ on C for any ε > 0
of our choosing, we can have 1 − ε < h/ψ < 1 + ε on C for some ε ∈ (0, 1).
Note that

h− ψ =
hp − ψp

∑p
i=1 hp−iψi−1

=
hp − ψp

hp−1
· 1∑p

i=1(ψ/h)i−1
,

and
∑p

i=1(1− ε)i−1 <
∑p

i=1(ψ/h)i−1 <
∑p

i=1(1 + ε)i−1, so
∑p

i=1(ψ/h)i−1 is a
unit on C. Letting

θ′(x) := θ(x) + (b(x)ψ(x))p

and

v(x, y) :=

(
p∑

i=1

(b(x)ψ(x))i−1/yi−1

)−1

,

we have

f ◦ g(x, y) =
A ◦ τ ′(x)

b(x)d
(y − θ′(x))d(y − θ(x))d(1−p)/pv(x, (y − θ(x))1/p)d

u

(
τ ′(x),

(y − θ′(x))(y − θ(x))(p−1)/p

b(x)
v(x, (y − θ(x))1/p)

)
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on C. Now apply Lemma 3.29 to y − θ(x) and y − θ′(x) to finish preparing
f ◦ g.

Proof of the Main Theorem over R. We show that every L′R-term is
prepared. This follows directly from the following claims.

Claim 1. If f, g : Rn+1 → R are prepared, then f · g, f/g and m
√

f are pre-
pared.

Claim 2. If f1, f2 : Rn+1 → R are prepared, then f1 + f2 is prepared.

Claim 3. If g = (g1, . . . , gm) : Rn+1 → Rm and each gi is prepared, and
f : Rm → R is a restricted R-function, then f ◦ g is prepared.

Claim 1 is obvious by simultaneous preparation, so we prove Claims 2
and 3.

Proof of Claim 2. Simultaneously prepare f1 and f2 to obtain L′R-cylinders
C1, . . . , Ck covering Rn+1 such that on each fat C ∈ {C1, . . . , Ck},

fi(x, y) = ai(x)|y − θ(x)|qiui(x, |y − θ(x)|1/p),

for i = 1, 2. Fix C and let 0 < ε < M be such that ε < ui(x, |y−θ(x)|1/p) < M
on C. Let

Cf1∼f2 :=

{
(x, y) ∈ C :

ε

2M
≤

∣∣∣∣
a1(x)

a2(x)

∣∣∣∣ |y − θ(x)|q1−q2 ≤ 2M

ε

}
,

Cf1Àf2 :=

{
(x, y) ∈ C :

∣∣∣∣
a1(x)

a2(x)

∣∣∣∣ |y − θ(x)|q1−q2 ≥ 2M

ε

}
,

Cf1¿f2 :=

{
(x, y) ∈ C :

∣∣∣∣
a1(x)

a2(x)

∣∣∣∣ |y − θ(x)|q1−q2 ≤ ε

2M

}
.

On Cf1∼f2 , f1 + f2 = f1(1 + f2/f1) and f2/f1 is prepared and bounded. By
applying Lemma 3.33 to compose f2/f1 with the function t 7→ 1+t, 1+f2/f1

is prepared, and so f1(1 + f2/f1) is too.
On Cf1Àf2 , 1 + f2/f1 is a unit so f1 + f2 = f1(1 + f2/f1) is prepared, and

on Cf1¿f2 , f1/f2 + 1 is a unit so f1 + f2 = f2(f1/f2 + 1) is prepared.

Proof of Claim 3. Claim 2 shows that

{(x, y) ∈ Rn+1 : −1 ≤ gi(x) ≤ 1 for i = 1, . . . , m}
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is a finite union of L′R-cylinders since, for instance, we may prepare 1− gi(x)
and so cylinderwise we have

gi(x, y) ≤ 1 iff 0 ≤ 1− gi(x, y) = a(x)|y − θ(x)|qu(x, |y − θ(x)|1/p),

iff a(x) ≥ 0.

Thus we can decompose Rn+1 into finitely many L′R-cylinders such that on
each of these cylinders either f ◦ g(x, y) = 0 or |g1|, . . . , |gm| ≤ 1. In the
latter case simply apply Lemma 3.33.
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Chapter 4

Obtaining the preparation
theorem for general Weierstrass
systems

The primary purpose of this chapter is to prove the Main Theorem for a
Weierstrass system R over a field K, where K need not be all of R. Before
explaining how we will prove this, let us discuss the necessity of the proof.

Fix a Weierstrass system R over a subfield K of R. Let S be the smallest
Weierstrass system over R containing R, as given by Proposition 2.13.

Let f ∈ Rn,r, and suppose we want to normalize f on Br. Fix s > r and
F ∈ Rn,s such that f = F

∣∣
Br

. For each a ∈ Br, Lemma 3.11 supplies a full

S-transformation tree S(a) and a map εa : S(a) → Rn
+ such that for each

µ ∈ S(a), f ◦ µ is normal on Bεa(µ) and Bεa(µ) is 〈F, µ〉-admissible. If needed
we may shrink εa(µ) and so assume that each εa(µ) ∈ Qn

+ (we want εa(µ) to
be in Kn

+ at the very least). Let S := {sa ◦ µ : a ∈ Br, µ ∈ S(a)} and define
ε : S → Qn

+ by ε(sa ◦µ) := εa(µ) for µ ∈ S(a). By Lemma 3.12, each V (a) :=⋃
µ∈S(a) µ(Bεa(µ)) is a neighborhood of the origin, so V :=

⋃
a∈Br

sa(V (a)) is a
neighborhood of Br. By the compactness of the sets involved, it follows that
for some finite S ′ ⊆ S, Br ⊆

⋃
µ∈S′ µ(Bε(µ)). But it is completely unclear

that we may take S ′ to be a set of R-transformation sequences. In fact, if for
each a ∈ Br∩Kn we let T (a) be the set of all R-transformation sequences in
S(a), which is obtained by only including the blowup substitutions bi,n

λ with
λ ∈ K ∪ {∞}, and if we put T := {sa ◦ µ : a ∈ Br ∩Kn, µ ∈ T (a)}, it is not
clear that Br ⊆

⋃
µ∈T µ(Bε(µ)), nor is it even clear that

⋃
µ∈T (a) µ(Bεa(µ)) is a

neighborhood of the origin for a ∈ Br ∩Kn.
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The reason for this lack of clarity is that the tree T (a) is constructed
from its root to its leaves, but the neighborhoods on which the admissible
transformations comprising T (a) are applied are constructed from the leaves
to the root. The next section remedies this problem by simply specifying the
set on which an admissible transformation is applied at the time it is added
to the transformation tree being constructed; each admissible transformation
is the master of its own domain, so to speak, and is not at the mercy of all
future transformations. We do this by normalizing f on Br directly, without
recourse to a local normalization theorem.

The proof of our normalization theorem, Theorem 4.2, follows the proce-
dure given in [17, Theorem 2.5], but the rank upon which they inducted is
defined globally on compact sets, not just at a point. This idea works out
quite easily, but with one major drawback: because of the nonlocal nature
of the proof, I found it necessary to use linear transformations of the form
(x, y) 7→ (x+λy, y), λ ∈ Kn, to make f regular in y, so the coordinate trans-
formations given by Theorem 4.2 can not be unwound to give a preparation
theorem in the original coordinates. Instead, we obtain some useful conse-
quences of Theorem 4.2 in Sections 4.2 and 4.3 which, when coupled with
the special case of this preparation theorem proved in Chapter 3, enables us
to deduce the Main Theorem in 4.4 by a simple model theoretic argument.

4.1 A normalization theorem for q.a. IF-systems

over K

Fix a q.a. IF-system R over a subfield K of R. We shall use the following
definition of an admissible transformation, which is more inclusive than the
definition of Chapter 3.

Definition 4.1. For (r, s) ∈ Kn
+×K+, a function t ∈ Rn+1

n+1,(r,s) is an admissi-

ble transformation in (x, y) if either there is an admissible transformation
s ∈ Rn

n,r in x such that t(x, y) = (s(x), y) on B(r,s) or if t is one of the
following four types of transformations on B(r,s):

(i) linear transformation: for λ ∈ Kn,

lλ(x, y) := (x + λy, y);
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(ii) general translation: for any a ∈ Kn and θ ∈ Rn,r,

t(a,θ)(x, y) := (x + a, y + θ(x));

(iii) power substitution: for m ∈ N+, 1 ≤ i ≤ n and σ ∈ {−1, 1},

pm
i,σ(x, y) := (x1, . . . , σ(σxi)

m, . . . , xn, y);

(iv) blowup substitution: for 1 ≤ i ≤ n,

bi,n+1
0 (x, y) := (x, xiy),

bi,n+1
∞ (x, y) := (x1, . . . , xiy, . . . , xn, y).

It is convenient to distinguish two types of general translations:

(i) point translation: for (a, b) ∈ Kn ×K,

s(a,b)(x, y) := (x + a, y + b);

(ii) functional translation: for θ ∈ Rn,r,

tθ(x, y) := (x, y + θ(x)).

Also, we consider bi,n+1
λ to be the composition of admissible transformations

bi,n+1
0 ◦ sλen+1 , where en+1 is the (n + 1)-rst standard basis vector.

A sequence 〈µ1, . . . , µm〉 of admissible transformations µi is a transfor-
mation sequence and is identified with the map µ1 ◦ · · · ◦ µm.

For a field L ⊆ R, a compact L-box is a set A of the form [a1, b1]×· · ·×
[an, bn] ⊆ Rn, where ai < bi and ai, bi ∈ L for all i = 1, . . . , n. If a ∈ int(A)
then A is about a. If a ∈ Ln and A = Br(a) for some r ∈ Ln

+, then A is
centered about a.

The main task of this section is to prove the following.

Theorem 4.2. For any n ∈ N, compact K-box A ⊆ Rn, open neighborhood
U of A, and f : U → R which is R-analytic on U and not identically zero on
A, we can associate a rank hA(f) ∈ (N ∪ {∞})mn depending on A and f

∣∣
A
,

where mn only depends on n and hA satisfies the following:
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(i) if hA(f) = 0, where 0 denotes the tuple of all zeros, then A is centered
about the origin and f is normal on A;

(ii) if A is not centered about the origin or f is not normal on A, then there
is a finite set T of admissible transformations in x and for each µ ∈ T
there is a finite collection C(µ) of 〈f, µ〉-admissible compact Q-boxes
B ⊆ Rn such that A ⊆ ⋃{µ(B) : µ ∈ T, B ∈ C(µ)} and for each µ ∈ T
and B ∈ C(µ), hB(f ◦µ) < hA(f), where < denotes the lexicographical
ordering on (N ∪ {∞})mn .

Corollary 4.3. Let A and f : U → R be as in the hypothesis of Theorem
4.2. Then there is a finite set T of transformation sequences in x and for each
µ ∈ T there is a finite collection C(µ) of 〈f, µ〉-admissible compact Q-boxes
B ⊆ Rn centered about the origin such that A ⊆ ⋃{µ(B) : µ ∈ T, B ∈ C(µ)}
and for all µ ∈ T and B ∈ C(µ), f ◦ µ is normal on B.

Let C := {C(µ) : µ ∈ T}. We say that (T, C) normalizes f on A.

Proof. This follows immediately from Theorem 4.2 by inducting on hA(f).

To prove the theorem we need some lemmas.

Lemma 4.4. For a nonzero f ∈ R1, {a ∈ Br(f) : f(a) = 0} ⊆ K. In
particular, K is real closed, since K[x1] ⊆ R1 and K ⊆ R.

Proof. Let a ∈ Br(f) be a zero of f . We may assume that a ∈ int(Br(f)).
Since f 6= 0, by quasianalyticity there is an i ∈ N such that f (i)(a) = 0 but
f (i+1)(a) 6= 0, so we may assume that f(a) = 0 and f ′(a) 6= 0. Fix b ∈ K
and r ∈ Kn

+ such that a ∈ Br(b) ⊆ Br(f) and f ′(x + b) 6= 0 for all x ∈ Br.
By closure under composition, f ◦ sb

∣∣
Br

∈ R1, and by Rolle’s Theorem,

{x ∈ Br : f ◦ sb(x) = 0} = {a − b}. By closure under implicit functions,
and hence also inverse functions of one variable, (f ◦ sb)

−1
∣∣
Bs
∈ R1 for some

s > 0. Therefore by closure under composition, a − b = (f ◦ sb)
−1(0) ∈ K,

so a = (a− b) + b ∈ K.

Lemma 4.5. Let f : Rn+1 → R be R-analytic at (a, b) ∈ Rn × R, and
suppose that f(a, b) = 0 and ∂f

∂y
(a, b) 6= 0. Let g be the C∞ function defined

implictly in a neighborhood of a by f(x, g(x)) = 0 and g(a) = b. Then g is
R-analytic at a.



58

Proof. Choose (r, s) ∈ Kn
+ × K+ and (c, d) ∈ Kn × K such that (a, b) ∈

int(B(r,s)(c, d)) and f ◦s(c,d)

∣∣
B(r,s)

∈ Rn+1. Since by closure under composition

f ◦ s(c,d) ◦ s(c′,d′)
∣∣
B(r′,s′)

∈ Rn+1 for all (c′, d′) ∈ B(r,s) ∩Kn+1 and (r′, s′) such

that B(r′,s′)(c
′, d′) ⊆ B(r,s), we may assume that (c, d) is as close to (a, b) as

we wish. So from this and the continuity of g we may assume that

(i) ∂f
∂y

(x, y) 6= 0 for all (x, y) ∈ B(r,s)(c, d);

(ii) there is an (r′, s′) ∈ Kn
+ ×K+ such that (a, b) ∈ int(B(r′,s′)(c, g(c))) ⊆

B(r,s)(c, d) and g(Br′(c)) ⊆ int(Bs′(g(c))).

By (i), g(c)−d = {y ∈ Bs : f(c, y+d) = 0}. Since the function y 7→ f(c, y+d)
is in R1,s, g(c)− d ∈ K by Lemma 4.4, so g(c) ∈ K.

Therefore f◦s(c,g(c))

∣∣
B(r′,s′)

∈ Rn+1. Since f◦s(c,g(c))(0) = 0,
∂f◦s(c,g(c))

∂y
(x, y) 6=

0 for all (x, y) ∈ B(r′,s′), and g(Br′(c)) ⊆ int(Bs′(g(c))), by closure under im-
plicit functions g(x+c)−g(c)

∣∣
Br′

is in Rn, and hence so is g(x+c)
∣∣
Br′

. Since

a ∈ Br′(c), this shows that g is R-analytic at a.

Proof of Theorem 4.2. Let n = 1, so A = [a, b] for some a, b ∈ K with a < b.
We define hA(f) := 0 if A is centered about the origin and f is normal on A;
define hA(f) := 1 otherwise.

Since f 6= 0, f has finitely many zeros c1 < . . . < ck in [a, b], all of which
are in K by Lemma 4.4. So each sci

is an admissible transformation and
f ◦ sci

is normal in a neighborhood of the origin. The result for n = 1 easily
follows.

So let n ≥ 1 and inductively assume that Theorem 4.2 holds for n. We
prove the theorem for f and A with A ⊆ Rn+1.

Define FA(f) to be the set of all (h, g) such that h is a function of x which
is R-analytic on a neighborhood of Π(A), g is a function of (x, y) which is
R-analytic on a neighborhood of A, and f = hg on A. We shall follow the
following convention: whenever we choose an (h, g) ∈ FA(f) we shall assume
that h is R-analytic on Π(U) and g is R-analytic on U , which is permissible
since we may shrink U about A. For (a, b) ∈ A, where a ∈ Rn and b ∈ R,
define

ord(a,b)(f) := inf

{
i ∈ N :

∂if

∂yi
(a, b) 6= 0

}
∈ N ∪ {∞};

ordA(f) := sup{ord(a,b)(f) : (a, b) ∈ A};
OrdA(f) := min{ordA(g) : (h, g) ∈ FA(f)}.
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Let f̂(a,b)(x, y) := ̂f ◦ s(a,b)(x, y).

For j = 1, . . . , 4 we shall define a tuple ijA(f) ∈ (N ∪ {∞})lj and put

hA(f) := (OrdA(f), i1A(f), . . . , i4A(f)).

So the following claim proves the theorem in the case that OrdA(f) = ∞.

Claim 0. There is a finite set T of linear transformations of the form lλ,
where λ ∈ Qn, such that for each µ ∈ T there is an 〈f, µ〉-admissible compact
Q-box Aµ such that OrdAµ(f ◦ µ) < ∞ and A ⊆ ⋃

µ∈T µ(Aµ).

Proof. Let (a, b) ∈ A. Since U is a neighborhood of A and lλ is a homeomor-

phism for any λ ∈ Rn, if we can find a λ ∈ Qn such that ∂df◦lλ
∂yd (l−1

λ (a, b)) 6= 0

for some d ∈ N, then for any sufficiently small Q-box B about l−1
λ (a, b) we

will have that OrdB(f ◦ lλ) ≤ d, B is 〈f, lλ〉-admissible and lλ(B) is a neigh-
borhood of (a, b). Since A is compact, this will suffice to prove the claim.

Now, ∂df◦lλ
∂yd (l−1

λ (a, b)) 6= 0 for some d ∈ N iff ̂(f ◦ lλ)l−1
λ (a,b)(0, y) 6= 0. So

since lλ ◦ sl−1
λ (a,b) = s(a,b) ◦ lλ, it suffices to show that f̂(a,b) ◦ lλ(0, y) 6= 0. Now,

f̂(a,b)(x + λy, y)
∣∣
x=0

=
∑

(α,i)∈Nn+1

1

α!i!
· ∂|α|+if

∂xα∂yi
(a, b)λαy|α|+i,

=
∞∑
i=0

pi(a, b, λ)yi,

where

pi(a, b, λ) :=
∑

α∈Nn,|α|≤i

1

α!(i− |α|!) ·
∂if

∂xα∂yi−|α| (a, b)λα.

By quasianalyticity, f̂(a,b)(x, y) 6= 0, so there is a least d ∈ N such that
pd(a, b, z) is a nonzero polynomial in z. Since Q is dense in R and the zero
set of pd(a, b, z) is closed and nowhere dense in Rn, we may fix a λ ∈ Qn such

that pd(a, b, λ) 6= 0. But then f̂(a,b) ◦ lλ(0, y) 6= 0, as required.

Because of Claim 0, it suffices to show the theorem for f and A such that
OrdA(f) < ∞.

If OrdA(f) = 0 we define i1A(f) = i3A(f) = i4A(f) = 0 and i2A(f) = hΠ(A)(h),
where (h, g) ∈ FA(f) is chosen so that ordA(g) = 0 and hΠ(A)(h) is minimal.
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Since ordA(g) = 0, g is a unit on A, so applying the inductive hypothesis to
h on Π(A) proves the theorem in this case.

So fix a positive integer d, and inductively assume that hA(f) has been
defined for all f and A ⊆ Rn+1 for which OrdA(f) < d. Let P1

A(f) be
shorthand for the following statement:

A is centered about the origin, OrdA(f) = d, and for some (h, g) ∈
FA(f) with ordA(g) = d,

g(x, y) =
d−2∑
i=0

gi(x)yi + ydu(x, y)

on A, where u is a unit on A, and ord(a,b)(g) < d for all (a, b) ∈ A
such that b 6= 0.

Note that unlike the analagous property in [17], we do not require that
g0(0) = · · · = gd−2(0) = 0. Define i1A(f) = 0 if P1

A(f) holds, and i1A(f) = 1
otherwise. The following claim proves the theorem in the case that OrdA(f) =
d and P1

A(f) = 1.

Claim 1. Suppose OrdA(f) = d. There is a finite set T of general trans-
lations t(a,θ), where a ∈ Qn, such that for each µ ∈ T there is a finite
collection C(µ) of 〈f, µ〉-admissible compact Q-boxes about the origin such
that A ⊆ ⋃{µ(B) : µ ∈ T,B ∈ C(µ)} and for each µ ∈ T and B ∈ C(µ),
either OrdB(f ◦ µ) < d or P1

B(f ◦ µ) holds.

Proof. Fix (h, g) ∈ FA(f) such that ordA(g) = d. Let A′ := {(a, b) ∈ A :
ord(a,b)(g) = d}. Note that A′ is compact since (a, b) ∈ A′ iff (a, b) ∈ A and
∂ig
∂yi (a, b) = 0 for all i = 0, . . . , d− 1.

Given any open neighborhood V of A′, U\A′ is a neighborhood of the
compact set A\V , so there is a finite collection C(id) of Q-boxes such that⋃{B : B ∈ C(id)} ⊆ U is a neighborhood of A\V and OrdB(f) < d − 1 for
each B ∈ C(id). So it suffices to construct (T, C) such that

⋃{µ(B) : µ ∈
T, B ∈ C(µ)} is a neighborhood of A′.

Fix (a, b) ∈ A′. Since A′ is compact, it suffices to construct (T, C) such
that

⋃{µ(B) : µ ∈ T, B ∈ C(µ)} is a neighborhood of (a, b).
By Lemma 4.5, the C∞ function ϕ(x) defined implicitly in a neighborhood

of a by ∂d−1g
∂yd−1 (x, ϕ(x)) = 0 and ϕ(a) = b is R-analytic at a. So there is an
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a′ ∈ Kn such that θ(x) := ϕ(x + a′) ∈ Rn and a ∈ int(Br(θ)(a
′)). Let

b′ := ϕ(a′). By closure under composition, we may assume that a′ ∈ Qn

and that a′ is as close to a as we wish, so b′ is also as close to b as we wish.
Hence there is an (r, s) ∈ Qn

+ × Q+ such that (a, b) ∈ int(tϕ(B(r,s)(a
′, b′)))

and tϕ(B(r,s)(a
′, b′)) ⊆ U . Since (a, b) and (a′, b′) are both on the graph of

ϕ, for any ε > 0, (a, b) ∈ int(tϕ(B(r,ε)(a
′, b′))) = int(t(a′,θ)(B(r,ε))). So we may

shrink s > 0 as needed. Note that

g ◦ t(a′,θ)(x, y) = g(x + a′, y + θ(x)),

=
d−2∑
i=0

1

i!

∂ig

∂yi
(x + a′, θ(x))yi + ydu(x, y)

for some u which is R-analytic on B(r,s). Since u(x, 0) = 1
d!

∂dg
∂yd (x+a′, θ(x)) 6=

0 for all x in the compact set Br, by possibly shrinking s, u is a unit on B(r,s).
To finish, note that for all (a′′, b′′) ∈ B(r,s) such that b′′ 6= 0, t(a′,θ)(a

′′, b′′) /∈ A′,
so ord(a′′,b′′)(g ◦ t(a′,θ)) < d.

Let P2
A(f) be shorthand for the following statement:

P1
A(f) holds, and there is an (h, g) ∈ FA(f) such that h is normal

on Π(B) and

g(x, y) =
∑
i∈I

xαiyivi(x) + ydu(x, y)

for some I ⊆ {0, . . . , d− 2}, where each vi is a unit on Π(B) and
u is a unit on B, and {d!αi/(d − i) : i ∈ I} is a linearly ordered
subset of Nn\{0}.

If P1
A(f) does not hold, then define i2A(f) := ∞. So suppose P1

A(f) holds,
witnessed by (h, g) ∈ FA(f). Let I := {i ≤ d− 2 : gi(x) 6= 0}, J := {(i, j) ∈
I2 : i < j, gi(x)d!/(d−i) 6= gj(x)d!/(d−j)} and

Φ(x) := h(x) ·
∏
i∈I

gi(x) ·
∏

(i,j)∈J

(
gj(x)d!/(d−j) − gi(x)d!/(d−i)

)
.

Note that the definition of Φ does not depend on the choice of (h, g) ∈ FA(f)
witnessing P1

A(f), so we may define i2A(f) := hΠ(A)(Φ).
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Claim 2. Suppose that P1
A(f) holds and that Φ is not normal on Π(A).

Then there is a finite set T of admissible transformations in x and for each
µ ∈ T there is a finite collection C(µ) of 〈f, µ〉-admissible compact Q-boxes
B ⊆ Rn such that A ⊆ ⋃{µ(B) : µ ∈ T,B ∈ C(µ)} and for each µ ∈ T and
B ∈ C(µ), either OrdB(f ◦ µ) < d or i2B(f ◦ µ) < i2A(f).

Proof. By the induction hypothesis in n there is a finite set T of admissible
transformations in x and for each µ ∈ T there is a finite collection C ′(µ) of
〈Φ, µ〉-admissible compact Q-boxes B′ ⊆ Rn such that Π(A) ⊆ ⋃{µ(B′) :
µ ∈ T, B′ ∈ C ′(µ)} and hB′(Φ ◦µ) < hΠ(A)(Φ) for each µ ∈ T and B′ ∈ C ′(µ).
Let C(µ) := {B′ × Πn+1(A) : B′ ∈ C ′(µ)}.

We now consider each µ ∈ T to be a function on B′×R which acts trivially
in the last coordinate. Let µ ∈ T and B ∈ C(µ). Either OrdB(f ◦ µ) < d or
OrdB(f ◦µ) = d. If the latter case, P1

B(f ◦µ) holds and i2B(f ◦µ) < i2A(f).

Claim. If P1
A(f) holds and Φ is normal on A, then P2

A(f) holds.

To prove the claim, suppose P1
A(f) holds and Φ is normal on A. By

Lemma 3.2, there is an (h, g) ∈ FA(f) such that h is normal on Π(A) and

g(x, y) =
∑
i∈I

xαiyivi(x) + ydu(x, y)

for some I ⊆ {0, . . . , d− 2}, where each vi is a unit on Π(B) and u is a unit
on B, and {d!αi/(d− i) : i ∈ I} is a linearly ordered subset of Nn. If αi 6= 0
for each i ∈ I, then P2

A(f) holds.
So suppose for a contradiction that αi = 0 for some i ∈ I; let k ∈ I

be least such that αk = 0. Then for some sufficiently small s ∈ Q+,∑
i∈I,i≥k xαiyi−kvi(x)+yd−ku(x, y) is a unit on Π(A)×Bs, so ordΠ(A)×Bs(g) =

k < d. But letting A′ := A\Π(A) × int(Bs), since P1
A(f) holds, we have

ordA′(g) < d. Hence OrdA(f) ≤ ordA(g) < d. But this contradicts our
assumption that P1

A(f) holds, which in particular states that OrdA(f) = d.
This proves the claim.

So by Claims 0, 1 and 2 we have reduced the proof of the theorem to the
case that P2

A(f) holds. Define P3
A(f) to be the following statement:

P2
A(f) holds and αi/(d− i) ∈ Nn for each i ∈ I.



63

If OrdA(f) = d but P2
A(f) does not hold, define i3A(f) := ∞. If P2

A(f) holds,
let i3A(f) be the cardinality of the set

{j ∈ {1, . . . , n} : d− i does not divide αij for some i ∈ I}.

So if i3A(f) = 0, then P3
A(f) holds.

Claim 3. Suppose P2
A(f) holds but P3

A(f) does not. Then there is a j ∈
{1, . . . , n} and an m ∈ N+ such that for each σ ∈ {−1, 1} there is an 〈f, pm

j,σ〉-
admissible compact Q-box Aσ such that A ⊆ ⋃{pm

j,σ(Aσ) : σ ∈ {−1, 1}} and
i3Aσ

(f ◦ pm
j,σ) < i3A(f).

Proof. Let j ∈ {1, . . . , n} be such that that d− i does not divide αij for some
i ∈ I. Then for σ ∈ {−1, 1}, pd!

j,σ and Aσ := {(x, y) : pd!
j,σ(x, y) ∈ A} do the

job.

If OrdA(f) = d but P3
A(f) does not hold, define i4A(f) := ∞. If P3

A(f)
holds, witnessed by (h, g) ∈ FA(f), then using the notation introduced in
the definition of P2

A(f), we define i4A(f) :=
∑

i∈I |αi|. This is well-defined
since for each (h, g) ∈ FA(f) witnessing P3

A(f), g is uniquely determined up
to multiplication by a unit in x.

Claim 4. Suppose that P3
A(f) holds and that f is not normal on A. Then

there is a j ∈ {1, . . . , n} such that by letting T := {bj,n+1
0 , bj,n+1

∞ }, for each
µ ∈ T there is a finite collection C(µ) of 〈f, µ〉-admissible compact Q-boxes
B ⊆ Rn+1 centered about the origin such that A ⊆ {µ(B) : µ ∈ T, B ∈ C(µ)}
and for each µ ∈ T and B ∈ C(µ), either

(i) f ◦ µ is normal on B, or

(ii) OrdB(f ◦ µ) < d, or

(iii) i4B(f ◦ µ) < i4A(f).

Proof. We shall prove a slightly weaker form of the claim. For each µ ∈ T we
will construct a finite set C ′(µ) of compact sets A′ ⊆ Rn+1 with the following
property:

(∗) if a = (a1, . . . , an+1) ∈ A′ and δ = (|a1|, . . . , |an+1|), then Bδ ⊆ A′.
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It will be be clear from the construction of A′ that OrdA′(f ◦µ) and i4A′(f ◦µ)
can be defined even though A′ is not necessarily a box. The collection C =⋃{C ′(µ) : µ ∈ T} will satisfy all the conclusions of the claim except that
each A′ ∈ C is not necessarily a Q-box.

This will suffice to prove the claim, since for each µ ∈ T , A′ ∈ C ′(µ)
and a ∈ A′, we have Bδ ⊆ A′, where δ := (|a1|, . . . , |an+1|). Since µ(Bδ) ⊆
µ(A′) ⊆ U , there is an ε ∈ Qn+1

+ such that ε > δ and µ(Bε) ⊆ U . By choosing
ε sufficiently close to δ, we can ensure that for each of the three properties
(i), (ii) and (iii) listed in the conclusion of the claim, if f ◦µ and A′ have that
property then so do f ◦ µ and Bε. Since a ∈ A′ was arbitrary, a ∈ int(Bε)
and A′ is compact, this will show that A′ can be covered by finitely many of
such boxes Bε, proving the claim.

Write h(x) = xβv(x) and g(x, y) =
∑

i∈I xαiyivi(x)+ ydu(x, y). Let k ∈ I
be least such that αk/(d− k) ≤ αi/(d− i) for all i ∈ I, and let I ′ := {i ∈ I :
αi/(d− i) = αk/(d− k)}. Fix j ∈ {1, . . . , n} such that αkj > 0. We consider
the blowup substitutions bj,n+1

λ for λ ∈ {0,∞}.
First consider bj,n+1

∞ . On the set (bj,n+1
∞ )−1(A) we have h ◦ bj,n+1

∞ (x) =
xβyβjv ◦ bj,n+1

∞ (x, y) and g ◦ bj,n+1
∞ (x, y) = ydg∞(x, y), where

g∞(x, y) :=
∑
i∈I

xαiyαij+i−dvi ◦ bj,n+1
∞ (x, y) + u ◦ bj,n+1

∞ (x, y).

For all i ∈ I, αij/(d−i) ≥ αkj/(d−k) ≥ 1, so αij +i−d ≥ 0. From this we see
that g∞ is R-analytic on (bj,n+1

∞ )−1(A) and that αij > 0, so there is an ε∞ > 0
such that g∞(x, y) 6= 0 for all (x, y) ∈ (bj,n+1

∞ )−1(A) with |xi| ≤ ε∞. Therefore
f ◦ bj,n+1

∞ is normal on the compact set A∞ := {(x, y) ∈ (bj,n+1
∞ )−1(A) : |xi| ≤

ε∞}. Note for later that bj,n+1
∞ (A∞) = {(x, y) ∈ A : |y| ≥ |xj|/ε∞}.

Now consider bj,n+1
0 . For each i ∈ I let βi := αi + (i − d)ej, where ej is

the jth standard unit basis vector, and note that the linear ordering of the
αi/(d − i)’s are preserved by the βi/(d − i)’s. Note that h ◦ bj,n+1

0 = h and
that g ◦ bj,n+1

0 (x, y) = xd
jg0(x, y), where

g0(x, y) :=
∑
i∈I

xβiyivi(x) + ydu(x, xjy).

Case 1. βi 6= 0 for all i ∈ I.
Then i4

(bj,n+1
0 )−1(A)

(f ◦ bj,n+1
0 ) =

∑
i∈I |βi| <

∑
i∈I |αi| = i4A(f). But the set

(bj,n+1
0 )−1(A) is not compact, since it is unbounded in y. This is not a prob-

lem, though, since we may simply truncate the set: define A0 := {(x, y) ∈
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(bj,n+1
0 )−1(A) : |y| ≤ 2/ε∞}. Then bj,n+1

0 (A0) = {(x, y) ∈ A : |y| ≤ 2|xj|/ε∞},
so A ⊆ bj,n+1

∞ (A∞))∪ bj,n+1
0 (A0), as desired. Using the fact that A is centered

about the origin, it is easy to see that A0 and A∞ have property (∗) (draw a
picture).

Case 2. βi = 0 for some i ∈ I.
Then βi = 0 for all i ∈ I ′ and βi 6= 0 for all i ∈ I\I ′. Therefore βi 6= 0 for

all i ∈ I such that i < k; so

g0(x, y) =
∑

i∈I,i<k

xβiyivi(x) + yku0(x, y),

where
u0(x, y) :=

∑

i∈I,i≥k

xβiyi−kvi(x) + yd−ku(x, xjy).

Since βk = 0 there is an ε0 > 0 such that u0(x, y) 6= 0 for all (x, y) ∈
(bj,n+1

0 )−1(A) with |y| ≤ ε0. Define A0 := {(x, y) ∈ (bj,n+1
0 )−1(A) : |y| ≤ ε0},

and note that OrdA0(f ◦ bj,n+1
0 ) = k < d and that bj,n+1

0 (A0) = {(x, y) ∈
A : |y| ≤ ε0|xj|}. To finish, we must fill in the gap between bj,n+1

0 (A0) and
bj,n+1
∞ (A∞).

For any nonzero λ ∈ R,

g0(x, y + λ) = (yd + dλyd−1)u(x, xj(y + λ)) +
d−2∑
i=0

hi(x)yi,

for some hi which are R-analytic on Π({(x, y) : (x, xj(y + λ)) ∈ A}). There-

fore ∂d−1g0

∂yd−1 (x, λ) = ∂d−1g0

∂yd−1 (x, y + λ)
∣∣
y=0

= d!λu(x, xjλ) 6= 0. So letting

A(0,∞) := {(x, y) ∈ (bj,n+1
0 )−1(A) : ε0/2 ≤ |y| ≤ 2/ε∞}, we have OrdA(0,∞)

(f ◦
bj,n+1
0 ) < d and bj,n+1

0 (A(0,∞)) = {(x, y) ∈ A : ε0|xj|/2 ≤ |y| ≤ 2|xj|/ε∞}.
Clearly A ⊆ bj,n+1

0 (A0) ∪ bj,n+1
0 (A(0,∞)) ∪ bj,n+1

∞ (A∞). It is also easy to see
that A0, A(0,∞) and A∞ have property (∗).

This completes the proof of Theorem 4.2.
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4.2 Some consequences of the normalization

theorem

Definition 4.6. Let A ⊆ Rn and F be a collection of functions f : Uf →
R such that A ⊆ Uf ⊆ Rn for all f ∈ F . Then VA(F) := {a ∈ A :
f(a) = 0 for all f ∈ F}, the variety of F on A. We write VA(f1, . . . , fm)
for VA({f1, . . . , fm}). If Uf = A for all f ∈ F we simply write V (F) for
VA(F).

Lemma 4.7. Let R be a q.a. IF-system over K, and let f ∈ Rn,r. Then
V (f) ∩Kn is dense in V (f).

Proof. Let a ∈ V (f). By property (iv) of Definition 2.1, we may assume that
a ∈ int(Br). Let A ⊆ Br be a compact K-box about a. We must show that
A ∩ V (f) ∩Kn 6= ∅. Let (T, C) normalize f on A, as given by Corollary 4.3.
Since A ⊆ ⋃{B : µ ∈ T, B ∈ C(µ)}, we may fix µ ∈ T and B ∈ C(µ) such
that a = µ(b) for some b ∈ B. Since f ◦µ(b) = 0 and since f ◦µ(x) = xαu(x)
for some α ∈ Nn and unit u on B, αi 6= 0 and bi = 0 for some i = 1, . . . , n.
Since K is dense in R and µ is continuous, there is a b′ ∈ B ∩Kn such that
b′i = 0 and µ(b′) ∈ A. Hence f ◦ µ(b′) = 0, and by closure under composition
µ(b′) ∈ Kn, so µ(b′) ∈ A ∩ V (f) ∩Kn.

Lemma 4.8. Let R be a q.a. IF-system over K, and let F ⊆ Rn,r. Then
V (F) = V (F ′) for some finite F ′ ⊆ F .

Proof. We may assume that F contains a function which is not identically
zero, else the result is trivial. The proof now proceeds by induction on n ≥ 1.

For n = 1 choose a nonzero f ∈ F . Since V (F) ⊆ V (f) and the latter is
a finite set, the result is trivial. So consider n > 1, and again pick a nonzero
f ∈ F . Let (T, C) normalize f on Br, as given by Corollary 4.3. Since V (F) =⋃{µ(Vµ−1(Br)∩B(F ◦ µ)) : µ ∈ T, B ∈ C(µ)}, where F ◦ µ := {g ◦ µ : g ∈ F},
it suffices to prove the result for each VB(F ◦µ). So we may assume that f is
normal on Br. But then since f is normal, V (F) ⊆ V (f) ⊆ {x ∈ Br : xi = 0}
for some i = 1, . . . , n, and we are done by the induction hypothesis.

Remark 4.9. If we letR and F be as in Lemma 4.8, and let F ′ = {f1, . . . , fm},
then V (F) = V (f1, . . . , fm) = V (f 2

1 + · · ·+f 2
m), so by Lemma 4.7, V (F)∩Kn

is dense in V (F).
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Lemma 4.10. Let R be a q.a. IF-system over K, and let E be a field such
that K ⊆ E ⊆ R. Define

S0 := L :=
⋃

m∈N

⋃
s∈Km

+

{f(a) : f ∈ Rm,s, a ∈ Em ∩Bs},

and for n ∈ N+ and r ∈ Ln
+ define

Sn,r :=
⋃

m∈N

⋃

(r′,s)∈Kn+m
+

r′≥r

{f(x, a)
∣∣
Br

: f ∈ Rn+m,(r′,s), a ∈ Em ∩Bs}.

Then S :=
⋃

n∈N,r∈Ln
+
Sn,r is the smallest q.a. IF-system containing E ∪R.

Proof. The facts that S contains R and that S is contained in any q.a. IF-
system containing E ∪R are clear, and verifying that S is a q.a. IF-system
is done just as in Proposition 2.13, with the verfication of closure under
implicit functions being similar the verification of closure under Weierstrass
preparation, except we must now also show the following two things: S is
quasianalytic and S is closed under monomial factorization.

Claim. If r ∈ Kn
+ and f ∈ Sn,r is such that f̂ ∈ R̂n, then f ∈ Rn,r.

To show the claim, fix F ∈ Rn+m,(r,s) such that f(x) = F (x, a) for some
a ∈ Bs ∩ En. It suffices to show that f(x) = F (x, b) for some b ∈ Bs ∩Km.

Write z := (xn+1, . . . , xn+m). Since f̂(x) =
∑

α∈Nn
1
α!

∂|α|f
∂xα (0, a)xα ∈ R̂n ⊆

K[[x]], F := {∂αF
∂xα (0, z)− ∂|α|f

∂xα (0, a) : α ∈ Nn} ⊆ Rm,s. By applying Remark
4.9 to F , there is a sequence ai ∈ Bs ∩Km, i ∈ N, converging to a such that
F̂ (x, ai) = F̂ (x, a) for all i ∈ N. Note that F (x, ai) ∈ Rn,r for each i. Since

R is quasianalytic and F̂ (x, ai) = F̂ (x, aj) for all i, j ∈ N, F (x, ai) = F (x, aj)
for all i, j ∈ N. But for any b ∈ Br, F (b, a) = limi→∞ F (b, ai). So in fact,
F (x, a) = F (x, ai) for each i ∈ N, proving the claim.

To show that S is quasianalytic, let f ∈ Sn,r be such that f̂ = 0. By

enlarging r we may assume that r ∈ Kn
+. Since f̂ ∈ R̂n, by the claim

f ∈ Rn,r. Since R is quasianalytic, f = 0 as desired.
To show that S is closed under monomial factorization, let f ∈ Sn+1,r

be such that y divides f̂ in R[[x, y]]. We may assume that r ∈ Kn+1
+ . Fix

F ∈ Rn+1+m,(r,s) and an a ∈ Bs ∩ Em such that f(x, y) = F (x, y, a). Since
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y divides f̂ , F (x, 0, a) = f(x, 0) = 0. So by replacing F with F (x, y, z) −
F (x, 0, z), we may assume that both f(x, y) = F (x, y, a) and F (x, 0, z) = 0.

Therefore y divides F̂ (x, y, z), so by closure under monomial factorization
in R, there is a G ∈ Rn+1+m,(r,s) such that F (x, y, z) = yG(x, y, z). So
g(x, y) := G(x, y, a) ∈ Sn+1,r, and f(x, y) = y g(x, y), as desired.

Corollary 4.11. If R is a q.a. IF-system, then RR is a polynomially
bounded o-minimal structure having Q as its field of definable exponents.

We recall for the reader the meaning of the terminology in this corollary.
LetM be an expansion of the real field. M is polynomially bounded if for
every function f : R→ R definable in M with parameters there is an n ∈ N
and an a > 0 such that |f(t)| ≤ tn for all t > a. M is o-minimal if every
set A ⊆ R definable in M with parameters is a finite union of points {a} and
intervals (a, b), where a, b ∈ M . The field of definable exponents of M is
the set of all λ ∈ R such that t 7→ tλ is definable in M with parameters. If R
is a a q.a. IF-system, and S is the smallest q.a IF-system over R containing
R, Lemma 4.10 shows that the set of LR(R)-formulas is exactly the set of
LS-formulas. So the corollary is really a statement about S.

Proof of Corollary 4.11. Let S be the smallest q.a. IF-system over R con-
tainingR. By [17], RS is a polynomially bounded o-minimal structure having
Q as its field of definable exponents. Since RR is a reduct of RS , so is RR.

Let R and S be as in the proof of the corollary. The proof in [17] also
shows that RS is model complete. In the next section we trace through the
construction in [17] to show that with the help of Theorem 4.2, it shows that
RR is model complete.

4.3 Model completeness of RR
Fix a q.a. IF-system R over a subfield K of R, and let S be the smallest q.a.
IF-system over R containing R.

In [17] they show that if Λ(S) := (Λn(S) : n ∈ N), where Λ(S) :=
{A ⊆ [−1, 1]n : A is S-semianalytic}, then every Λ(S)-set has the Gabrielov
property (see Van den Dries and Speissegger [22]). [22, Corollary 2.9] shows
that RS is therefore o-minimal and model complete; here they need S to be
over R to get o-minimality, but the proof of [22, Corollary 2.9] does not need
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S to be over R to get model completeness. Thus showing that Λ(R) has the
Gabrielov property will show that RR is model complete.

A careful reading of the argument in [17] shows that the only place they
need the fact that S is over R is to prove [17, Corollary 4.4], which we now
restate for reference:

Let A ⊆ Rn be bounded and S-semianalytic. Then there are ni ≥
n and trivial S-semianalytic manifolds Ni ⊆ Rni for i = 1, . . . , k,
each ∆-definable from A, such that

A = Π(N1) ∪ · · · ∪ Π(Nk),

and for each i, the set Π(Ni) is a manifold and Π : Ni → Π(Ni)
is a diffeomorphism. In particular, A has dimension.

In [17] this is proved by showing a local version of the same fact, [17, Propo-
sition 3.8], which is proved by their local normalization theorem over R, [17,
Theorem 2.5]. When working over a general K, one may simply prove [17,
Corollary 4.4] for R directly, without recourse to a local result, by using the
proof of [17, Proposition 3.8] but using Theorem 4.2 of this thesis in place of
[17, Theorem 2.5]. It is tempting to leave this modification of the proof of
[17, Corollary 4.4] as an exercise for the reader since it is extremely straight-
forward. But the model completeness result it proves is essential to our proof
of the preparation theorem for R′R when R is a general Weierstrass system,
so we shall walk through some of the details of the modification. We shall
not concern ourselves with the notion of ∆-definability.

Lemma 4.12. Let A ⊆ Rn and f : U → R be as in the hypothesis of Theo-
rem 4.2. Suppose that A is not centered about the origin or f is not normal
on A, and let (T, C) be the finite collection of R-admissible transformations
and collection of Q-boxes given by Theorem 4.2. Fix µ ∈ T , B ∈ C(µ) and
q ∈ N.

(i) If µ = pm
i,σ, then hB((xq

i f) ◦ µ) < hA(f).

(ii) If µ = bi,j
0 or µ = bi,j

∞ , then hB((xq
i f) ◦ µ) < hA(f) and hB((xq

jf) ◦ µ) <
hA(f).

Proof. This is a restatement of [17, Lemma 2.13] to our context. It is proved
in the same way.
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Definition 4.13. A set A ⊆ Rn is a basic R-set if there is an r ∈ Kn
+ and

f, g1, . . . , gk ∈ Rn,r such that

A = {x ∈ Br : f(x) = 0, g1(x) > 0, . . . , gk(x) > 0}.

A finite union of basic R-sets is an R-set.
A set A ⊆ Rn is R-semianalytic at a ∈ Rn if there is a b ∈ Kn and an

r ∈ Kn
+ such that a ∈ int(Br(b)) and (A− b) ∩ Br is an R-set. The set A is

R-semianalytic if it is R-semianalytic at a for all a ∈ Rn. If in addition A
is a manifold, then A is an R-semianalytic manifold.

For f = (f1, . . . , fk) ∈ Rk
n,r, A ⊆ Br and a sign condition σ ∈ {−1, 0, 1}k,

define BA(f, σ) := {x ∈ A : sign fi(x) = σi for i = 1, . . . , k}.
For a map λ : {1, . . . ,m} → {1, . . . , n}, let Πλ : Rn → Rm be the

projection Πλ(x) := (xλ(1), . . . , xλ(m)).
Let r ∈ Kn

+. A set M ⊆ Br is R-trival, if one of the following holds:

(i) M = BBr((x1, . . . , xn), σ) for some sign condition σ ∈ {−1, 0, 1}n, or

(ii) there is a permutation λ of {1, . . . , n}, an R-trivial N ⊆ Bs and a g ∈
Rn−1,s, where s = (rλ(1), . . . , rλ(n−1)), such that g(Bs) ⊆ (−rλ(n), rλ(n))
and Πλ(M) = graph(g

∣∣
N

).

An R-semianalytic manifold M ⊆ Rn is called trivial if M = N +a for some
R-trivial N ⊆ Rn and a ∈ Kn.

Proposition 4.14. Let A ⊆ Rn be bounded and R-semianalytic. Then
there are ni ≥ n and trivial R-semianalytic manifolds Ni ⊆ Rni for i =
1, . . . , k such that

A = Π(N1) ∪ · · · ∪ Π(Nk),

and for each i, the set Π(Ni) is a manifold and Π
∣∣
Ni

: Ni → Π(Ni) is a
diffeomorphism.

Proof. By the definition of R-semianalytic and the fact that A is bounded, A
is the union of finitely many K-translates of R-sets. Since R-sets are unions
of basic R-sets, we may assume that A = BBr(f, σ) for some r ∈ Kn

+, f =
(f1, . . . , fk) ∈ Rk

n,r and sign condition σ ∈ {−1, 0, 1}k. Note that by property
(iv) of Definition 2.1 we may assume that f is defined on some neighborhood
U of Br. But then by adding in all the functions ri − xi and ri + xi to the
tuple f , and considering each of the the different cases |xi| < ri, xi = ri
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and xi = −ri separately, we may assume that A = BU(f, σ). Let F (x) :=∏k
i=1 fi(x). We induct on the pair (n, hBr(F )), ordered lexicographically.
If n = 1, then A is a finite union of points and intervals and the result is

trivial. So assume n > 1. If F is normal on Br, then each fi is normal on Br

and the result is also trivial. So we may assume that F is not normal on Br;
so hBr(F ) > 0. Fix the (T, C) given by Theorem 4.2. So Br ⊆

⋃{µ(B) : µ ∈
T, B ∈ C(µ)} and hB(F ◦ µ) < hBr(F ) for each µ ∈ T and µ ∈ C(µ). By the
induction hypothesis, BB(f ◦µ, σ) = Π(M1)∪· · ·∪Π(Mk) for some trivial R-
semianalytic manifolds Mi ⊆ Rni , for ni ≥ n, where each Π

∣∣
Mi

: Mi → Π(Mi)
is a diffeomorphism of manifolds.

The proof now breaks down into four cases, depending on what type of
admissible transformations comprise T : general translations, linear transfor-
mations, power substitutions or blowup substitutions. The only difference
between the situation in [17, Proposition 3.8] and the current situation is
that the first case is no longer local and the induction hypotheses we can
invoke in the proofs of Cases 3 and 4 are no longer local. As an example
we shall verify the first case, but we refer the reader to [17] for the other cases.

Case 1 : T is a collection of general translations.
Fix µ ∈ T , say µ = t(a,θ) for some a ∈ Km−1 and θ ∈ Rm−1, where

1 ≤ m ≤ n, and let B ∈ C(µ) (note: B ⊆ Rn). We may suppose that µ is
defined on some neighborhood V of B. For i = 1, . . . , k define

Ni = Ni(µ,B) := {(a + z<m, zm + θ(z<m), z>m, zm) : z ∈ Mi},

where z = (z1, . . . , zni
), z<m := (z1, . . . , zm−1) and z>m := (zm+1, . . . , zni

).
Clearly each Ni is a trivial R-semianalytic manifold, and since µ : V ×
Rni−n → Rni is a diffeomorphism, then Π(Ni) = µ(Mi) is a manifold and
Π

∣∣
Ni

: Ni → Π(Ni) is a diffeomorphism. Since

Bµ(B)(f, σ) = µ(BB(f ◦ µ, σ)),

= µ(Π(M1) ∪ · · · ∪ Π(Mk)),

= µ(Π(Mi)) ∪ · · · ∪ µ(Π(Mk)),

= Π(N1) ∪ · · · ∪ Π(Nk),

and A ⊆ Br ⊆
⋃{µ(B) : µ ∈ T, B ∈ C(µ)}, then A =

⋃{Π(Ni(µ,B)) : µ ∈
T, B ∈ C(µ)}.
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Case 2 : T is a collection of linear translations.
This is done similarly to Case 1.

Cases 3 and 4 : T is a pair of power substitutions, or a pair of blowup
substitutions.

See the proof of [17, Proposition 3.8].

Proposition 4.14 and the proof in Sections 4 and 5 of [17] give the follow-
ing.

Proposition 4.15. If R is a q.a. IF-system, RR is model complete.

4.4 Completing the proof of the main theo-

rem for general Weierstrass systems

Given a q.a. IF-system R over K, let KR denote the substructure of RR with
universe K; this is indeed a structure since R is closed under composition.
We want to show that KR is the prime model of Th(RR). To do so we need
the following simple fact.

Lemma 4.16. Let L be a first order language and M⊆ N be L-structures.
If N is model complete, and M and N have the same existential L(M)-
theory, then M 4 N .

Proof. Since the negation of a universal L(M)-sentence is equivalent to an
existential L(M)-sentence, and since M and N have the same existential
theory, they must also have the same universal L(M)-theory. Now, since N
is model complete, for any existential L(M)-formula ϕ(x) there is a universal
L(M)-formula ψ(x) such that N |= ∀x(ϕ(x) ↔ ψ(x)). In particular, N |=
ϕ(a) ↔ ψ(a) for all a ∈ Mn. Since ϕ(a) is an existential L(M)-sentence
and ψ(a) is a universal L(M)-sentence, M |= ϕ(a) ↔ ψ(a). Hence, M |=
∀x(ϕ(x) ↔ ψ(x)).

To prove the lemma, let ϕ be an arbitrary L(M)-sentence. By writing ϕ
in a prenex normal form, we can then iterate the above observation to find
an existential L(M)-sentence ψ such that M and N both model ϕ ↔ ψ.
Since M |= ψ iff N |= ψ, M |= ϕ iff N |= ϕ.
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Proposition 4.17. If R is a q.a. IF-system over K, then KR is the prime
model of the theory of RR. It follows that K ′

R is the prime model of the
theory of R′R.

Proof. Let M |= Th(RR). Since K is included in the language LR, KR
embeds into M. So we may assume that KR ⊆ M. We must show that
KR 4 M. Since any LR(K)-formula is an LR-formula, this means we must
show that Th(KR) = Th(M). But Th(M) = Th(RR), so by Proposition
4.15 and Lemma 4.16 it suffices to show that KR and RR have the same
existential theory.

Any LR-term t(x) can be uniquely written as follows:

(i) t(x) = xi for some i, or t(x) = a for some a ∈ K, or

(ii) t(x) = f(t1(x), . . . , tm(x)), where t1(x), . . . , tm(x) are LR-terms and f
is either a restricted R-function or is one of the arithmetic operations
+, · or −.

Inductively define lgt(t), the composition length of t, by lgt(t) := 0 if t is as
in (i), and lgt(t) := 1 + max{lgt(ti) : 1 ≤ i ≤ m} if t is as in (ii).

Let ϕ(x) be a quantifier free LR-formula. We want to show that RR |=
∃xϕ(x) iff KR |= ∃xϕ(x). To do this we go through a series of syntactic
reductions that are true of both Th(RR) and Th(KR).

By writing ϕ(x) in its disjunctive normal form and distributing the exis-
tential quantifiers across the disjunction, we may assume that ϕ(x) is of the
form ϕ(x) :=

∧k
i=1 ti(x) = 0 ∧∧l

j=1 sj(x) > 0 for some LR-terms ti and sj.

By replacing each sj(x) > 0 with ∃y(y2sj(x) − 1 = 0), and by lengthening

the tuple x and increasing k, we may assume that ϕ(x) :=
∧k

i=1 ti(x) = 0
for LR-terms t1, . . . , tk. In particular, ϕ(x) is of the following slightly more
general form:

ϕ(x, y) :=
k∧

i=1

yi = ti(x), (4.1)

where the yi’s are either variables or 0. For any ϕ as in (4.1) define lgt(ϕ) :=
max{lgt(ti) : i = 1, . . . , k}. For each i = 1, . . . , k, if lgt(ti) > 1 write ti(x) =
f(ti1(x), . . . , tim(x)) as in (ii). By replacing yi = ti(x) with ∃z1, . . . , zm(yi =
f(z1, . . . , zl) ∧

∧l
j=1 zj = ti,j(x)), and by lengthening the tuple of variables

(x, y), ϕ(x, y) may be replaced by another formula of the form given in (4.1)
but of lower composition length. Continuing as such we may therefore assume
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that each ti(x) is either a restricted R-function, an aritmetical operation +,
· or −, a variable, or a member of K.

Let si(x, yi) := yi − ti(x) and let I := {i : ti is a restricted R-function}.
Fix M ∈ K+ such that for each i ∈ I, the range of ti(x) is bounded by
M > 0. For each i ∈ I replace each instance of yi in

∧k
i=1 si(x, yi) = 0 with

Myi. Therefore if ti(x) is a restricted R-function, we may consider si(x, yi)
to be a restricted R-function, and if ti(x) is a polynomial, then so is si(x, yi).
So by taking sums of squares we arrive at our final form: we may assume
that

ϕ(x) := f(x) = 0 ∧ p(x) = 0, (4.2)

where f is a restricted R-function and p(x) ∈ K[x].
By Lemma 4.7, {x ∈ Kn : KR |= ϕ(x)} is dense in {x ∈ Rn : RR |= ϕ(x)}.

It follows that RR |= ∃xϕ(x) iff KR |= ∃xϕ(x), showing that RR and KR
have the same existential theory.

We may now accomplish our goal.

Proof of the Main Theorem. Let R be a Weierstrass system over a field K,
and let f(x, y) be an L′R-term. We want to prepare f(x, y).

Let S be the smallest Weierstrass system over R containingR, as given by
Proposition 2.13. By Chapter 3 we may prepare f as an L′S-term. Namely,
there is a finite collection C of L′S-cylinders covering Rn+1 such that for each
fat cylinder C ∈ C,

f(x, y) = a(x)|y − θ(x)|qu(x, |y − θ(x)|1/p)

on C, where a(x) and θ(x) are L′S-terms, p ∈ N+, q ∈ Q, and u(x, y) in
a positive S-unit on {(x, |y − θ(x)|1/p) : (x, y) ∈ C}. Fix positive rational
numbers ε1 and ε2 such that ε1 < u(x, |y − θ(x)|1/p) < ε2 on C, and let ϕC

be the L′S-sentence

∀x∀y (
“(x, y) ∈ C ” → (f(x, y) = a(x)|y − θ(x)|qu(x, |y − θ(x)|1/p)

∧ ε1 < u(x, |y − θ(x)|1/p) < ε2)
)
.

Let ϕ be the L′S-sentence

∀x∀y
(∨

C∈C
“(x, y) ∈ C ”

)
∧

∧
C∈C
C fat

ϕC .
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Note that R′R |= ϕ and this expresses the fact that f is prepared as an L′S-
term. (We do not need to worry about the form of f on the thin cylinders
C, since f

∣∣
C

= t
∣∣
C

for some L′S-term t simply by the definition of a thin
cylinder and the fact that f is an L′S-term.)

By Proposition 2.13, to each restricted S-function g : Rn → R we can
associate a restricted R-function g : Rn+m → R, called a “parameterized
form of g”, and also an ag ∈ [−1, 1]m such that g(x) = g(x, ag). Note that
for any b ∈ (K ∩ [−1, 1])m, g(x, b) is a restricted R-function. Each L′S-
sentence ψ has a parameterized form also, which is the L′R-formula ψ(z)
obtained by replacing every restricted S-function g(x) occuring in ψ with its
parameterized form g(x, z) and adding on the the conjunction “z ∈ [−1, 1]m”.

So ϕ = ϕ(a) for some a ∈ [−1, 1]m. Note that if R′R |= ϕ(b) for some
b ∈ ([−1, 1] ∩K)m, then f would be prepared as an L′R-term, since each of
the functions occuring in ϕ(b) would be L′R-terms. But this easily follows
from the elementary equivalence of R′R and K ′

R:

R′R |= ϕ(a) so R′R |= ∃zϕ(z),

so K ′
R |= ∃zϕ(z),

so KR |= ϕ(b) for some b ∈ Km,

so R′R |= ϕ(b).

4.5 Some concluding remarks

To conclude, I briefly discuss some issues for future investigation. They are
only intended to be a collection of hints and have not been fully thought out
(hence the phrase “future investigation”). I shall use the first person, since
many of the remarks here are as much about the author’s lack of knowledge
as they are about his knowledge.

Let R be a q.a. IF-system over a field K. The elementary equivalence of
KR and RR and the close relationship between R and its smallest expansion
S over R provide a general tool which enables us to work locally without
keeping track of parameters but still obtain more robust results which do
keep track of the parameters. For instance, if R is a Weierstrass system
over K (as defined in [19] with closure under Weierstrass division, not just
Weierstrass preparation), it follows from [19] that 〈RR, /〉 admits quantifier-
elimination.
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But, proving the Main Theorem by using the elementary equivalence of
KR and RR does go against the spirit motivating this work, namely, an
interest in effectivity questions. So a more explicit geometric proof may be
more favorable. It appears that this can be done by proving what I call
a “parameterized normalization theorem,” which associates a function f ∈
Rn,r with its parameterized form f(x; z) := f(x + z), a function defined on
a neighborhood of {0}×Br (by Definition 2.1, property (iv)), and then goes
through a detailed analysis of how the normalization procedure performed
in the proof of Theorem 3.4 normalizes f(x; a) for the various a ∈ Br and
the various λ ∈ R associated to the blowup substitutions bi,n

λ to show that
it suffices to only consider a ∈ Kn ∩ Br and blowup substitutions bi,n

λ with
λ ∈ K ∪ {∞}. This is much more complicated than the method employed
here, though, so I decided against it. The main reason for this is that the
normalization procedure of Chapter 4 seems more suitable for dealing with
effectivity questions than the preparation theorem itself, so this harder proof
seems unwarranted.

I am primarily interested in decidability questions, so I am not partic-
ularly interested in the preparation theorem for the algebraic restricted an-
alytic functions, since they are all definable over the real field which, as is
well known, has a decidable theory. So the collection R should contain at
least one transcendental function, which brings us to consider differentially
algebraic functions. But I do not know of an effective proof of the fact that
the differentially algebraic power series are closed under Weierstrass prepa-
ration, so at the moment Weierstrass preparation seems to be too strong a
closure assumption.

In contrast, it is very easy to show in an effective manner that the Noethe-
rian functions are closed under addition, multiplication, differentiation, com-
position and implicit functions. But they are not closed under monomial
factorization; in fact, Bergeron and Reutenauer [1] showed that (ex − 1)/x
is not Noetherian (but they used the name “constructible differentially alge-
braic”), while of course ex−1 is. Nevertheless, studying some small expansion
of the Noetherian functions which is an IF-system may enable one to get an
effective version of the model completeness proof of Chapter 4. But of course
this is far from being clear, and because it is a model completeness result
and not a quantifier elimination result, it is quite similar in spirit to what
has been done in [13] and [8] and will most likely encounter similar difficulties.

Acknowledgement. I am grateful to Patrick Speissegger for his continual
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Appendix A

Differentially algebraic power
series

Let K be a field of characteristic 0. Given a field extension L ⊇ K we
write tdK L for the transcendence degree of L over K. For f ∈ K[[x]] and

z = (z1, . . . , zn) let ∆[f ](z) := {∂|α|f
∂xα (z) : α ∈ Nn} and ∆[f ] := ∆[f ](x). By

definition, f ∈ K[[x]] is differentially algebraic over K if tdK K(∆[f ]) <
∞. Let K[[x]]da denote the set of f ∈ K[[x]] which are differentially algebraic
over K.

Lemma A.1. K[[x]]da is a ring closed under differentiation and formal com-
position, which is the formal analogue of local composition (see Section 3.1).

Proof. If f, g ∈ K[[x]]da then ∆[f +g] ⊆ Q(∆[f ], ∆[g]), so tdK K(∆[f +g]) ≤
tdK K(∆[f ], ∆[g]) < ∞. Similarly, Leibniz’ rule gives ∆[fg] ⊆ Q(∆[f ], ∆[g])
so tdK K(∆[fg]) < ∞. Also, ∆[ ∂f

∂xi
] ⊆ ∆[f ] for any i ≥ 1, so tdK K(∆[ ∂f

∂xi
]) <

∞. So K[[x]]da is a ring closed under differentiation.
Let f ∈ K[[x1, . . . , xm]]da and g ∈ (K[[x]]da)m be such that g(0) = 0. The

chain rule gives ∆[f◦g](x) ⊆ Q(∆[f ](g(x)), ∆[g](x)). Since tdK K(∆[f ](x)) <
∞, tdK K(∆[f ](g(x))) < ∞, so

tdK K(∆[f ◦ g](x)) ≤ tdK K(∆[f ](g(x)), ∆(g)(x)) < ∞.

By a proof too long to be included here, it is shown in [19] that K[[x]]da

is closed under Weierstrass preparation. Hence K[[x]]da is a “formal” Weier-
strass system, meaning that it is a K-algebra of formal power series over
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K which is closed under differentiation, formal composition and Weierstrass
preparation.

The system D of differentially algebraic analytic functions, as defined in
Examples 2.7, is by definition the collection of all f ∈ O such that f̂ ∈ R[[x]]da

(recall that O is the system of all restricted analytic functions). Consider

f ∈ On. For any a ∈ int(Bn,1) and p ∈ R[Xα : α ∈ Nn], p(∂|α|f
∂xα (x) : α ∈ A) =

0 iff p(∂|α|f
∂xα (x + a) : α ∈ A) = 0. Hence D is also closed under translation, so

D is a Weierstrass system.
The following characterizes K[[x]]da as being the collection of power se-

ries satisfying certain highly determined systems of polynomial differential
equations whose coefficients may always be taken to be in Q.

Lemma A.2. Let f ∈ K[[x]]. The following are equivalent.

(i) f is differentially algebraic over K;

(ii) tdQQ(∆[f ]) < ∞;

(iii) there is an N ∈ N such that for each β ∈ N with |β| = N , there is
a pβ ∈ Q[Xα : α ∈ Nn, |α| < N or α = β] such that pβ(∆[f ]) = 0 and
∂pβ

∂Xβ
(∆[f ]) 6= 0;

(iv) Q(∆[f ]) is finitely generated over Q;

Proof. Let L be a subfield of K and suppose that tdL L(∆[f ]) < ∞. Fix

A ⊆ Nn such that {∂|α|f
∂xα : α ∈ A} is a transcendence basis of L(∆[f ]) over

L, and pick N ∈ Nn such that |α| < N for all α ∈ A. For each β ∈ Nn such
that |β| = N there is a nonzero pβ ∈ L[Xα : α ∈ Nn, |α| < N or α = β] such
that pβ(∆[f ]) = 0. By choosing pβ to have minimum degree in Xβ we can

ensure that
∂pβ

∂Xβ
(∆[f ])) 6= 0.

Since pβ(∆[f ]) = 0, for each i = 1, . . . , n, ∂
∂xi

(pβ(∆[f ])) = 0. Calculating
this derivative gives

∂pβ

∂Xβ

(∆[f ]) · ∂N+1f

∂xβ+ei
+

∑

|α|<N

∂pβ

∂Xα

(∆[f ]) · ∂|α|+1f

∂xα+ei
= 0,

where ei is the ith standard unit basis vector. Since
∂pβ

∂Xβ
(∆[f ]) 6= 0, this

shows that P (∂|α|f
∂xα : |α| ≤ N + 1) ⊆ P (∂|α|f

∂xα : |α| ≤ N), where P ⊆ L is the
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field generated by the coefficients of all the pβ’s. An easy induction shows

that therefore P (∂|α|f
∂xα : |α| ≤ N + i) ⊆ P (∂|α|f

∂xα : |α| ≤ N) for all i ∈ N.
Hence P (∆[f ]) is finitely generated over P . But since P is finitely generated
over Q, then P (∆[f ]) is finitely generated over Q. Since Q(∆[f ]) ⊆ P (∆[f ]),
then Q(∆[f ]) is finitely generated over Q.

If we take L to be K, the preceding argument shows that (i) implies (iv).
Clearly the converse is true, so (i) and (iv) are equivalent.

To finish, note that (iv) implies (ii), and that by taking L to be Q in the
above argument shows that (ii) implies (iii) and that (iii) implies (iv).

By the above lemma, if L ⊇ K is a field extension, then K[[x]]da =
L[[x]]da ∩K[[x]], and there is no ambiguity in just saying “f is differentially
algebraic” without the modifier “over K.”
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[16] A. Parusiński, Lipschitz stratification of subanalytic set, Ann. ENS, 27
(1994), 661-996.

[17] J. P. Rolin, P. Speissegger and A. J. Wilkie, Quasianalytic Denjoy-
Carleman Classes and O-minimality, to appear.

[18] A. Tarski, A Decision Method for Elementary Algebra and Geometry,
2nd ed., University of California Press, Berkeley and Los Angeles, CA,
1951, iii+63 pp.

[19] L. van den Dries, On the elementary theorey of restricted elementary
functions, J. of Symbolic Logic 53, no. 3 (1988), 796-808.

[20] L. van den Dries, A. Macintyre and D. Marker, The elementary theory
of restricted analytic fields with exponentiation, Annals of Math. 140
(1994), 183-205.

[21] L. van den Dries, Tame Topology and O-minimal Structures, Cambridge
University Press (1998).

[22] L. van den Dries and P. Speissegger, The real field with convergent gen-
eralized power series is model complete and o-minimal, Trans. Amer.
Math. Soc., 350 (1998), 4377-4421.



83

[23] L. van den Dries and P. Speissegger, O-minimal preparation theorems,
to appear.

[24] L. van den Dries and P. Speissegger, The field of reals with multi-
summable series and the exponential function, Proc. London Math. Soc.
(3), 81 (2000), 513-565.

[25] A. J. Wilkie, Model completeness results for expansions of the ordered
field of real numbers by restricted Pfaffian functions and the expontial
function, J. Amer. Math. Soc. 9 (1996), 1051-1094.


