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Abstract

In this presentation we concern ourselves with a problem in measure theory,
which we consider from the set-theoretical point of view. The question asks if
all compact spaces supporting a non-separable Radon measure can map onto the
product of uncountably many copies of the unit interval.

In the Chapter I, we give some motivation and formulate the problem. We also
give basic definitions and results that are going to be used in the work to follow.

In Chapter II, we give all positive results that we are aware of.

In Chapter ITI, we construct two counter-examples. The first construction uses
¢ and produces an S-space. The second construction uses CH and produces a non-
trivial HS+HL space. We also give some discussion of another counter-example,
the L-space of Kunen.

In the last chapter, we show that a counter-example can exist independently of
the size of the continuum. We also show how our <) construction from Chapter ITI
can be done using forcing. At the end, we show a forcing construction of another
well-known topological space, the S-space of Ostaszewski. The construction can be

done in an extension by just one Cohen real.
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Chapter I

Introduction

In this Chapter we formulate the problem we shall be working on for the rest
of this presentation and we give some easy observations about the problem. The
uncredited results in this Chapter are either a part of the general knowledge, or

trivial, or both. None of the non-trivial results are due to the author.

61.1. The Problem. All spaces we shall consider are Hausdorff. A mapping
is a continuous function.

It is easy to see that every compact space with no isolated points maps onto
[0,1]%. Then the next question to ask is what kind of compact spaces maps onto
[0,1]“1. The situation here is surprisingly difficult, and this question was a long
term open question in general topology. Finally, a characterization was given by
Shapirovskii in [22]. He showed that a compact space maps onto [0,1]” for an
infinite cardinal 7 iff there is a closed subspace of the given space in which every
point has uncountable relative w-character. However, even though the notion of
the m-character is rather natural (see Juhdsz[10]), it is often not easy to check
relative m-characters of the points of a given space. Therefore, one asks if an
easier characterization can be given for spaces which have some additional structure

connected with their topology.



A very natural structure to look at is a measure, since there is a strong rep-
resentation theorem of Maharam ([16]) linking arbitrary finite measures to the
product measure on products of the set 2 = {0, 1}.

Roughly speaking then, the question is to charazterize those compact spaces
which support a measure and which can map onto [0, 1]1. Before giving a better
formulation of this question, we need to discuss the above mentioned theorem and

some other general properties of measures.

A measure is a non-negative countably additive function on a o-algebra. El-
ements of that o-algebra are said to be measurable. A measure is uniquely deter-
mined by the values it assigns to a set of generators of the o-algebra. That is, any
non-negative countably additive function on a set of generators of a o-algebra, can
be uniquely extended to a measure on the generated o-algebra. We shall make no
difference between such a function and the measure that is obtained by extending
that function to the generated o-algebra.

Note that we have excluded from our definition all infinite measures. Not the
least important reason for this is that all the measures we shall be talking about
will be finite anyway! Restricting ourselves in this manner allows us to take some
things for granted, like that all measure algebras are ccc. See §2.3, for example.

A measure algebra is a Boolean algebra with a measure on it.

An example of a measure is a measure defined on a Boolean algebra of subsets
of a given topological space. If X is a topological space and p a measure on a

family of subsets of X, we say that X, u is a measure space.
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A measure on a Boolean algebra is said to be complete if for all a in the algebra,
if the measure of a is 0 and b < a, then the measure of b is defined and equal to
0. For such measures we define the measure algebra to be the Boolean algebra of
measurable elements modulo the elements of measure 0. Since we are restricting
ourselves to complete measures, every measure algebra is also a Boolean algebra.

If X, is a measure space and p is a complete measure on X, then in the
above described manner, 1 induces a measure algebra on X. This is the only kind
of a measure algebra that we shall be working with. Actually, it is true that every
measure algebra can be represented as a measure algebra of the measurable sets in
a topological space (see [7]).

Suppose X, i is a measure space. Then for every subset A of X, one can define
the outer measure p*(A) as the infimum of all y(E), where F is a p-measurable
set containing A. We can use this to define a new measure on X, as follows.

If A is a subset of X for which there is a y-measurable E such that u(EAA) =
0, we define fi(A) = p(F). Then we extend [ to the o-algebra generated by sets A
of the above form. It is easily seen that the so defined fi is a complete measure on
X and that all y-measurable sets are fi-measurable with the same measure. The
so defined [ is a minimal complete measure extending p and it is easy to see that
1 is, up to an isomorphism, the unique measure with this property. The measure
it is called the completion of p and p is complete if it is its own completion. We
say that two measures are equivalent if they have the same completition. We make

no difference between equivalent measures.
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Suppose that for some index set I, X; for ¢ in I, are topological spaces. The
product topology on the Cartesian product X = II,; -y X; is the topology whose basis
consists of the sets of the form O = 11, yO;, where all O; are open and for only
finitely many ¢ in I, O; # X;. Any time we speak of products of spaces, we shall
have in mind such a product topology on the Cartesian product of the underlying
sets. Suppose in addition, that for each ¢ in I, p,; is a probability measure on X.
The product measure on X is the completition of the measure generated by the sets
of the form E = I, rE;, where all E; are measurable and for only finitely many
i, E; is not equal to X;. To such a set E, the product measure assigns the value
;e pii (Ej)-

The product IL;-7S; in which all factors S; are actually the same set S, is
denoted by ST, The only products of this form that we shall deal with, will have
either S =1[0,1] or S = 2.

Set {0,1} can be assigned a probability measure by assigning the measure 1/2
to both {0} and {1}. This induces a product measure on the product 2l If we
ol

speak of the space as of a measure space, that is this product measure that we

mearn.

Now we state the representation theorem of Maharam:

Maharam’s Theorem. If ;4 is a finite measure on the space X, then X is a

countable union of measurable subspaces on which the measure algebras induced
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by u are either finite or measure algebra isomorphic to the measure algebra of 2%

for some infinite cardinal x.%

The theorem actually applies to all o-finite measures, which is an easy con-
sequence of the theorem as we stated it. It also has been generalized to other
measures, see [5]. We shall only need the Theorem in the form we stated it. The
proof of this theorem is not relevant to our further discussion, so we do not present

it here. The original proof is in [16], and a longer version of it can be found in [5].

If X is a measure space, we refer to a decomposition of X = U;c F; as
in the Maharam’s theorem, as a Maharam’s decomposition of X. Every such a
decomposition induces a countable sequence of cardinals (x; : ¢ € w) such that

for every i € w, the measure algebra of E;,u [ E; is isomorphic to the measure

1
algebra of 2i | if k; is infinite, and otherwise x; = 0 and the measure algebra of
E; is finite. Note that 21 and 27 are isomorphic as measure algebras, if and only
if the cardinalities of I and J are the same. Therefore, the set {x; : i € w} does
not depend on the choice of E;(i € w). We refer to this set as to the cardinal
representation of the measure algebra of X, u. The supremum of the cardinal
representation of a measure algebra is called its Maharam’s dimension. If it is
uncountable, we say that the measure is non-separable, or that the measure algebra
of X, p is non-separable.

We say that a measure p on the space X is outer reqular for sets from S if S

is a subfamily of the family of p-measurable subsets of X, and if the measure of
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every measurable set F in X is the infimum of the measures of those elements of
S which are supersets of F.

We can in an analogous way define what it means for a measure to be inner
regular for a family S. For finite measures, inner regularity for a family S is exactly
the same as the outer regularity for the family of the complements of the sets in
S, and we shall be working with finite measures only.

If a measure 1 on a compact space X is outer regular for open sets and the
points have finite measures, then the measure must be finite and we can apply
Maharam’s Theorem. If we then know that the measure algebra of X, u is non-

separable, can we claim that X maps onto [0,1]“1? To be more precise, we define:

A complete finite measure g on a space X is said to be Radon if it is defined
on the Borel sets and has the property that the measure of each Borel set is the

supremum of the measures of its compact subsets.

and then ask:

Suppose X is compact and supports a Radon probability mea-
sure p such that the measure algebra of X, i is not separable;

does this imply that X can be mapped onto [0, 1]“1?

From now on we shall refer to this question as the Question H. In particular,
Haydon in 1980 asked whether such an implication might follow from something

like MA+ -CH, see Fremlin [4].
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§1.2. Basic Stuff. We first note that we can restrict ourselves to consid-
ering a more speciffic class of measure spaces, the ones in which the measure is
homogeneous.

The measure i on a space X is said to be homogeneous if for every measurable
subset Y of X for which p(Y) > 0, the measure algebra of Y, [ Y is isomorphic
to the measure algebra of X, .

Note that for infinite %, the product measure on 2% is homogeneous. Therefore,
any Maharam’s decomposition of a finite measure space X, u, consists of sets on
which the restricted measure p is homogeneous.

If p is a Radon probability measure on a compact space X and the measure
algebra of X, i is non-separable, let us consider a subset F of X which has a positive
measure and on which the restricted measure algebra is isomorphic to the one of
2% for some k > w. The existence of such a set, recall, follows from Maharam’s
Theorem. Since the measure p is Radon, there will be a closed in X subset C
of E which has a positive measure. By the homogenouity of the measure algebra
of E,u | E, the measure algebra of p restricted to C' will be measure algebra
isomorphic to the measure algebra of 2.

Now, if C' can map onto [0, 1]“1, the map can be extended to X. To see that,

simply apply Tietze Extension Theorem, to each coordinate o in wq:

Tietze’s Extension Theorem. A continuoous map from a closed subspace

of a normal space onto [0, 1], can be extended to the entire space.%



The proof of this theorem can be found in any topology textbook, like [2].

To conclude, we see that if there is a counter-example to Question H, then
there is one which supports a non-separable Radon probability measure with the
measure algebra isomorphic to the one of 2%, for some x > w. Actually, more is

true:

Let ¢, be predicates applicable to topological spaces. We say that ¢ is
hereditary to the subspaces which satisfy 1 if, for any topological space X which

satisfies ¢, every subspace of X which satisfies v, also satisfies ¢.

Lemma 1.2.1. Let ¢ be a property of topological spaces hereditary to closed
subspaces. In the class of the spaces which satisfy ¢, Question H is equivalent to
its restriction to the compact Radon probability measure spaces whose measure
algebras are measure algebra isomorphic to the measure algebra of 2%, for some
K> w.

Proof. It is enough to show that in the class of spaces which satisfy ¢, if there
is a counter-example to the Question H, then there is one whose measure algebra
is isomorphic to the one of 2, for an uncountable x.

Given a counter-example X,y which satisfies ¢, there is a closed subspace F
of X such that the measure algebra of F,u | F is isomorphic to the one of 27, for
some K > w. As in the above discussion, F' cannot map onto [0, 1]“1, by Tietze
Extension Theorem. Also, F' satisfies ¢, since that property is hereditary to closed

subspaces. Therefore, F'is a counter-example itself. %
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15t countable

Many properties we shall have a chance to consider, like being
or hereditary Lindelof, are hereditary to the closed subspaces. We shall frequently
make use of Lemma 1.2.1 in Chapter II. It is an advantage to work with homoge-
neous measures, since it allows us to take some things for granted —like that points

have measure 0, or that we can go back and forth from the given measure space to

2/ where x is Maharam’s dimension of the space.

Next we give a characterization of mappings onto [0, 1]% in terms of the exis-

tence of certain sequences of pairs of closed sets:

A family {(Kg, Kcly) t o € Kk} is said to be a dyadical system if each Kg and
Kcly are disjoint closed sets and for every {o), ...,y _1} in £ and a function ¢ in

_ g0

i<n ; is non-empty.

2" the intersection N

The usual notion of a dyadical system is more general than the one we just
gave, by not requiring that all pairs generating the system are formed of closed

sets. For our purposes the above definition is enough.
We also recall the well known
Urysohn’s Lemma. For any two disjoint closed subsets C' and K of a normal

space X, there is a mapping f from X into [0, 1], such that f(C) =0 and f(K) =

1%

Lemma 1.2.2 A compact space X maps onto [0,1]" iff there is in X, a

dyadical system of cardinality x 4+ w.
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Proof. For « finite, note that [0, 1] maps onto [0, 1]¥.
Now assume k is infinite, so kK + w = k.
If f maps X onto [0,1]7, for every a in x and i € 2, let Ké be the set
I~y € 10,197 1 y(a) = i}).
In the other direction, suppose {(Kg, Ké) : v € Kk} is a dyadical system in X.

Urysohn’s Lemma implies for each «, the existence of a mapping fn from X onto

[0, 1] such that fa(KgY) =iforie2 Forze X, let f(z) = (fa(r) :a € k). Kk

In compact spaces with no isolated points, one can construct a countable
dyadical system by a simple induction. The argument only breaks down at the

first limit stage.

A closer look at the representation we get from Maharam’s Theorem, makes
one think that one could easily pull a dyadical system out of the generating sequence

of measurable sets:

Let X, 4 be a measure space such that the measure algebra is isomorphic to the
measure algebra of 2% for some infinite . For any isomorphism f from the measure
algebra of X to the measure algebra of 27, consider a sequence (Hy, : o < k) such
that the equivalence class of Hy, maps onto {f € 2" : f(a) = 0}. We refer to every
such sequence as to a generating sequence of the measure space. Note that any
generating sequence generates the measure algebra.

Suppose that X, pu and (Hq, : a < k) are as above. If A is any subset of X, let

us denote A by A? and the complement X\ A of Aby AL, Then (Hy @ a < k) are
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probabilistically independent, which means that for any {a),...,,_1} in &, and

(4)

for any ¢ in 2", the p measure of ﬂi<anq¥Si is 1/2". In particular, every such
intersection is non-empty.

So, if it, for example, would happen that a space X has a generating sequence
(Hy : o < k) consisting of clopen sets, then the sequence <(H8,H01[) ra < K)
would be a dyadical system, so the space would map onto [0,1]". An example of
such a space is 2F. Excluding simple-minded generalizations, we do not know if
there are other examples of this phenomenon. It certainly is more restrictive than
we would like it to be. The strong requirement that Hq are always clopen, can be
weakened by requiring that for each «, there is a pair of disjoint closed sets K, 8
and K Cly such that the symmetric difference between H(ix and K a has measure 0,
for each 7 € 2. However, this cannnot happen, for example, in any connected space
in which non-empty open sets have positive measure, like [0, 1]7.

What we can hope for then, is that for wy of the oo < k, there are pairs of
disjoint closed sets Kg,Kcly which are close enough to Hy and its complement,
that the independence of the Hq, will assure that the {(Kg, Ké) ra < wy} form a
dyadical system. For Radon measures, this approach indeed works if x is greater
that the cardinality of the continuum, as we shall explain in the next Chapter. But,
in ZFC, this cannot resolve the question for xk < 2%, as there are counter-examples

known.

Note the following fact:
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Lemma 1.2.3. For a compact X, the measure g in X is Radon iff every
measurable subset of X has an Fy subset of the same measure.
Proof. If the measure is Radon:
Given a measurable set F, let Cp, be a closed subset of E such that the measure
of E'\ Cp, is less than 1/n. Then Upe,Chp is an Fiy subset of E with the same
measure as F.

For the other direction, just reverse the argument.

Of course, Fg sets are not necessarily closed, and, in fact, the only compact

spaces in which every Fy set is closed are finite ones!

§1.3. More Basic Stuff. The first look at the Question H leaves one won-
dering if the class of compact spaces which fulfill the hypotheses of the question
is empty. After all, the only natural examples that we have of compact spaces
which support a non-separable probability measure, are uncountably many copies
of [0, 1], or uncountably many copies of the two point set 2 = {0, 1} with their usual
product measures. While it is obvious that the corresponding measure algebras are

non-separable, one needs to check if all open sets get measurable.

If f is a finite partial function from s to 2, then [f] denotes the set of all
functions g : K — 2 which contain f as a subset. The product topology on 2" is
generated by all sets of the form [f] for a finite partial function f from & to 2, as

its clopen basis. If the domain of f has size n, we say [f] is of dimension n. The
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product measure on 27 is the completition of the measure which assigns 1/2" to

each [f] of dimension n.

Lemma 1.3.1. The product measure on 2% or [0, 1]" is Borel.

Proof. Let us just deal with 2% a similar argument can be applied to [0, 1]%.

An open set O in 27 is the union of countably many open sets Op(n € w),
each of which is the union of basic clopen sets of a fixed dimension, n. It is enough
to show that each Op, is measurable. We shall do so by induction on n. Case n =0
is trivial.

Suppose Op, = Ua<wy [sa], where for each «, so has a domain of size n > 1.
Let pq stand for the minimum of the domain of s¢.

In the case that puq are unbounded, the inner measure of Oy, is 1, so it is
measurable (the measure is complete!).

If poy are bounded, then they take on only countably many values. So we can
split Oy, into a countable union of sets, each of which is the union of a family of
sets [sq] for which pq is constant. Therefore it is enough for us to work with the
case that all uqn are the same ordinal, f3.

For o < wq, let tn, denote the restriction of sq on its domain without 3. We
may as well assume that all so assign the same value to (3, say value 0. Then
Ua<wy [sa] = [(B,0)] N Ua<wy [tq]. But the last union is measurable, by the

induction hypothesis.%
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Note that this proof works not just for products of [0, 1] or 2, but for products

21’1d

of any countable space.

How complicated must a space be in order to support a non-separable Radon

2Ild

measure? For one thing, it cannot be countable:

If X, p is a measure space, then the measure algebra of X, ;4 supports a metric,
given by d(E, F) = u(EAF), for E and F in the measure algebra. A family F of
measurable sets in X, p is said to be dense in the measure algebra, if it is dense in
the metric d of the measure algebra. That is, F has the property that for every
e > 0 and every measurable E subset of X, there is an element D of F such that

p(EAF) < e.

So, for example, closed sets form a dense family in a Radon probability space.
In the light of this new structure on a measure space, the metric, Maharam’s

Theorem can be stated in a stronger version:

Maharam’s Theorem Revisited. If 4 is a finite measure on the space X,
then the measure algebra of X, i is either finite, or isometric to the measure algebra

of 2/, for some infinite cardinal x.%

The Theorem so stated does not need any new proof, as the measure algebra
isomorphism established in the proof of the original version, happens also to be an

isometry.
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Note that the measure algebra of 27 does not have any dense subfamilies of
size less than k: if (Hy @ @ < k) is a generating sequence, then for a # 3, no
measurable set F can be less than 1/8 far from both Hg, and Hﬁ'

Then, the above version of Maharam’s theorem implies that Maharam’s di-
mension of a homogeneous measure algebra is the same as the density degree of
that algebra as a metric space. So, for example, no measure algebra which is
non-separable in the sense of Maharam’s dimension, can be separable as a metric
space.

We use that fact to prove the following:

Lemma 1.3.2. No 214 countable compact space X supports a non-separable
Radon measure.

Proof. Fix a countable basis B = {Bp, : n € w} of X such that B is closed
under finite unions. We show that B is dense in the measure:

Given an n in w and a measurable E subset of X, fix an open O containing F
and a closed C' contained in E such that u(OAC) < 1/n. For every x in C, fix a set
By from B such that € B;; C O. Then there are finitely many {z),..,2,,_1} in

C' such that C'is contained in U = U; -, By,. Then U € B and u(EAB) < 1/n.%

Examples are known, under CH, of 15t countable spaces which support non-
separable compact spaces (see [13] and Chapter IIT). For all we know, it might be

that there is a 150 countable example like that which is constructible just from
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ZFC'. In the next Chapter we present a result which says that such an example
must have a large weight.

The 15¢ countable examples from [13] and Chapter IIT have a stronger prop-
erty: they are hereditarily Lindeléf (HL). In other words, every open family in
either of these spaces has a countable subfamily with the same union. A result of
Kunen that we present in Chapter II, shows that under M A restricted to measure

algebras and not CH, no HL space can support a non-separable Radon measure.

The counter-examples to Question H that we know, are all subsets of 2¥1. How
large are these subsets? The following Lemma shows that any counter-example

must be in some sense ”small” compared to 2¥1:

If A is a subset of a product space II;- X, then for every ¢ € I and for each
r € X;, one defines the z-th section of Ay = {y € Hi;éjEI : (x,y) € A}. If I only
has two elements, so the product space is of the form X x Y, it is usual to denote
sections with respect to x € X by Eyz, and the sections with respect to y € Y, by
EY.

By the i-th projection m;(A) of A we mean the set of all z in X, for which
there is an a € A whose i-th coordinate is x. Equivalently, the i-th projection of A
is the set of all z in X for which Az is non-empty.

A major result on the relation of the measures on a product space with the
measures on the factors of the product, is given by the Fubini’s Theorem. The

proof of this theorem can be found in any measure theory textbook, like [8].
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Fubini’s Theorem. If 4 is a finite measure on a space X and v is a finite

measure on a space Y, then for every p x v mesurable subset E of X x Y,

(n x v)(E) = /Y W(EY)dy = /X (B .k

The only instance of this theorem that we shall need is the one concerning
products of the form 2%. We give below a brief discussion of this.

For a subset A of k, let y 4 denote the product measure on 24 Note that
there is a close connection between the projection on A and the measure y 4: for a
measurable subset E of 2A, the inverse projection (7TA)_1 (E) of E' is a measurable
subset of 27, and /,L[{,((WA)_l(E)) = py(FE).

Now, if F is a measurable subset of 2% and A, B are disjoint subsets of

such that AU B = r, then Fubini’s Theorem implies that pu(E) = py (74 (E)) %

np(rp(E)).

Lemma 1.3.3. If a closed subset X of 2“1 does not admit a continuous map
onto 2¥1, then the product measure of X is 0 and X is nowhere dense in 2“1,

Proof. Any basic clopen set in 2%1 is easily seen to contain a copy of 2¥1.

If X is a closed set of positive measure in 2¥1, then Fubini’s Theorem implies

that co-countably many projections of X must have measure 1. %

This then says that one cannot construct a counter-example by simply taking a
convenient positive measure set in 2%1, getting the non-separability of the measure

simply by the homogeneouity of the product measure on 2“1,
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§1.4. What is known? We would like here to summarize what is known
about the Question H.

The Question H is open in ZF(C. Kunen showed that, under C'H, there is
a counter-example which is, in addition, a compact L-space (hereditarily Lindelof
(HL) but not hereditarily separable (HS)); see [13,9]. Even at the risk of losing
completness, we choose to refer the reader to [13] for the proof of this result, rather
than attempting a presentation here which would necessarily be weaker in style
than the original one is. We do give a brief discussion of the result from [13] at the
end of Chapter III.

In Chapter III, we show that, assuming <>, there is another counter-example
which is an S-space (HS, but not HL). Then, assuming just CH, we construct a
third counter-example which is both HS and HL. In Chapter IV, we show that the
HS-+HL counter-example constructed in Chapter III, is indestructible by Cohen
reals. Therefore, we know that a counter-example is consistent with any size of the
continuum. In the same Chapter we show that the S-space from Chapter III can
be constructed just by wq Cohen reals and C'H, so the ¢ is not really needed.

Neither of the above mentioned examples could be constructed in ZFC,
since under M A + —~CH, there are neither compact L-spaces (Juhdsz) nor com-
pact S-spaces (Szentmikléssy) (see [19,25]). Furthermore, Fremlin in [4] shows
that under M A + -CH, the measure algebra of a compact HL (equivalently,
HS) Radon measure space is separable . A stronger assertion is true: under
M A(

measure algebras) + —~CH the measure algebra of any Radon measure on a
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compact HL space is separable. This is an unpublished result of Kunen, and we
include the proof here, in Chapter II.

We also show that, just in ZFC, there cannot be any counter-examples with
Maharam’s dimension greater than the continuum. This result is presented in
Chapter II. This result has been independently proved by Haydon ([9]), but it also
follows from a result of Shapirovskii ([21,22]). In our process of rediscovering the
wheel, we came up with the proof we show in the next Chapter.

It would be interesting to know if ther can be an HS counter-example in a

model of MA( ) + -CH, as this weaker version of M A does not

measure algebras

imply that compact HS and HL are equivalent.

Another interesting question is if PF'A has anything to do with Question H.
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Chapter II

Positive Results

In this Chapter, we present some results which give sufficient conditions for the
answer to the Question H to be positive. Or, the other way around, these results tell
us how NOT to look for the counter-examples to the Question H. The first result is
a result of Haydon, which also follows from results of Shapirovskii, and which says
that every compact space which supports a Radon measure of Maharam dimension
greater than the size of the continuum, maps onto [0, 1]1. Next, we give a result of

Kunen, which shows that under M A( +-CH, no hereditarily

measure algebras) (w1)
Lindelof compact space supports a non-separable Radon measure. A consequence
of this is an earlier result of Fremlin, that under M A 4+ -C'H, no hereditarily
separable or hereditarily Lindelof compact space, supports a non-separable Radon

measure.

Finally, we give a result that shows that, under MA(measure algebras) (A +
-C'H, for a 15t countable compact space to support a non-separable Radon mea-

sure, it has to have a weight larger than either wy, or A.

§2.1. No Counter-examples of large Maharam Dimension. The result
that we present here tells us that if a compact space happens to support a Radon

measure algebra of large Maharam dimension, then the space must be able to map
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onto [0,1]“1. This is a result of Haydon in [9], but we give here a proof which
slightly differs from the original argument. A similar result was also shown by
Shapirovskii in [21,22].

A major ingredient of the proof is an application of Maharam’s Theorem. We

shall need some conventions regarding measure algebra isomorphisms:

Suppose M7 and My are the measure algebras of measure spaces X1, 1 and
X9, po respectively. If f: My — Mo is a measure algebra isomorphism, and Hy
is a positive measure subset of Xy, while H9 is a positive measure subset of Xy,
then by f(H;) = H9, we mean that f maps the equivalence class of H to the
equivalence class of Hy. Similarly, we define what we mean by f _1(H2) = Hj.

Suppose that K is a family of pairs (Kg,Ké)(a < A) of disjoint sets in X7.
A finite Boolean combination of the sets from K, is any set F' of the form F =
ﬂi<nK2(i), where ¢ € 2™ and K,...,K,,_1 € K. If K is actualy a family of
pairs of sets of positive 11 measure, and F'is a finite Boolean combination as above,
we may refer to the corresponding Boolean combination in Mg, which is the set
f(F) = ﬂl<nf(Kz¢(l)) Note that every Boolean combination of the sets from
M has the same pq-measure as the pj-measure of the corresponding Boolean

combination of the sets from May.

We also need a couple of facts about products of the form of , for an index set



22

Recall from Chapter I, that, if .J is a subset of I, then the projection 7T§ :

21 5 97 is the function which to every f in 2! assigns its restriction to J. Note
that this is a continuous function, and, by compactness, it is also closed. For a
given A, a subset of 21, and an x in 2J, Az denotes the set of all elements of A,
whose restriction on J is .

Also recall that, for a finite function ¢ from a cardinal A to 2, [g] denotes the
set of all functions in 2 which extend g. If f is a measure algebra isomorphism
from a measure algebra M onto the measure algebra of 22 and sets Ho(a < A)

are such that f(Hqy) = [(a,0)], then the sequence (Hy : o < A) is said to be a

generating sequence of the measure in M.

Theorem 2.1.1. (Haydon) If a compact space X supports a Radon measure
pt of Maharam’s dimension greater than ¢, then X maps onto [0, 1]*“1.

Proof. By Lemma 1.2.1, we can assume that the measure algebra of X, i
is isomorphic to that of 2)‘, for some A > ¢. In X, we shall construct a dyadical
system of length ot Then, by Lemma 1.2.2, not only that there is a mapping of
X onto [0,1]%1, but there is one onto [0, 1]‘+ as well.

First, fix a generating sequence of measurable sets (Hy : @ < A) in X and
denote by f the measure algebra isomorphism that gives rise to this generating
sequence. For each a < A, fix a closed subset K, 8 of Hn and a closed subset K, Cly of

X \ Hg, such that both M(Ha\Kg) and pu((X\ Ha) \Ké), are less than 1/8. Note
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that for a # 8 < A, and for any 4,5 € 2, the intersection Ké N Ké has positive
measure.

The dyadical system that we need is going to be a subset of K = {(Kg, Ké) :
a < A}. We shall actually get more than we need: not only that all the relevant
finite Boolean combinations are going to be non-empty, but they are going to have
positive measure.

For ao < A, denote by C’g and C’é the sets f_l(Kg) and f_l(Ké), respec-
tively.

Note that, for any o < A, there is a countable subset S of A, such that both
C’g and C’é are in the o-algebra generated by {[(/3,0)] : 8 € Sq/}, modulo a set of
measure 0. In other words, C’g and C’é are simply the inverse projections of their
projections on 950 By Lemma 1.2.3, we can assume that all sets C’g, C’é are Fg.
We shall only need to know that they are Borel.

As ) is greater than the cardinality of the continuum, we can conclude that
there is a subset I of A, such that I has cardinality c+, and that the sets Sq for
a € I, form a Delta-system. Denote by R the root of the Delta-system.

Let us use the letter v to denote the product measure on 9A. For a subset A
of A, let v 4 denote the product measure on 94,

If the root R is empty, then for any finitely many distinct o, ..., 1 in

900)

and a ¢ in 2", the v-measure of the intersection Nj<nCa 18 simply the product

(4)

of all VSai C’gi , which is positive.
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If R is non-empty, note that for each o € I, the projection of C’g on 21 is a

Borel subset of 2%, Since R is countable, there are only ¢ many Borel subsets of

2 S0 we may as well assume that I is thin enough, so that all C’g, for a € I,

have the same projection on 21t Tet By denote that common projection. In the

same manner, we assume that for all « € I, the projection of C’é to 210 is a fixed
set B7.

Now note that By and By must intersect in a set of a positive measure:

Take a # [ in I, then:
0 <v(CanCp) <v(rgp)” Hrp(CaNCE)) = vR(rR(CanCp)) <

< vR(rR(CA) NTR(C)) = vR(ByN By).

Then, an application of Fubini’s Theorem gives that for any oy # ... #
(1)

a,,_1, the measure of the intersection ﬂi<nCaZ. is not less than vp (Fpy N Fy) x

M < Sa;\R) (W(Asai \ R)ijl(z) ), which is positive. %

This argument can be generalized to a result about mappings onto cubes of

higher dimensions, see §2.4 for a remark on this.

§2.2. No HL Counter-examples under M A+—CH. In this section we give

an unpublished result of Kunen, which shows that, if M A( wy)+

measure algebras) (

—=C'H is true, no hereditarily Lindelof compact space can support a non-separable

Radon measure. As a corollary, we get an earlier result of Fremlin: under
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MA 4+ —~CH, no compact space which is either hereditarily Lindelof, or heredi-

tarily separable, can support a non-separable Radon measure.

An easy way to know that a given compact space does not map onto [0, 1]¥1,

is to see that the space is either hereditarily separable, or hereditarily Lindelof:

A space is said to be separable if it has a countable dense subset. A space is
said to be hereditarily separable (HS) if every subspace of the space is separable.

A space is Lindelof if every of its open covers has a countable subcover. A
space is hereditarily Lindelof (HL) if all of its subspaces are Lindel6f. Equivalently,

all open families of subsets of X, have a countable subfamily with the same union.

Both HS and HL are preserved under continuous mappings:

Lemma 2.2.1. Suppose X maps onto Y. If X is hereditarily separable
(hereditarily Lindel6f), then so is Y.

Proof. Suppose that f maps X onto Y.

Let C denote an arbitrary subset of Y. If D is a dense subset of f~1 (C), then
f(D) is dense in C.

Let {O; : i € I'} an open family in Y. For any subset .J of I, if UiEJf_l(Oi) =

Uie1(0f), then Uje 7O; = Ui 10} %
The cube [0, 1]“1 is neither HS nor HL:

Lemma 2.2.2. [0,1]“1 is neither HS nor HL.
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Proof. The set of all functions f in [0,1]“1 for which there is exactly one
coordinate a < wy such that f(a) > 1/2, has no countable dense subset.

Similarly, the open family consisting of all sets Oq = {f € [0,1]¥1 : f(a) <

1/2}, for @ < wq, has no countable subfamily with the same union.%

A note to clarify these notions is that, being compact, [0,1]“1 is certainly

Lindelof. It is actually also separable. It is the "hereditary” part that fails.

Anyway, we conclude:

Lemma 2.2.3. No space which is either hereditarily Lindelof or hereditarily

separable, can map onto [0, 1]“1.%

Actually, all counter-examples that we know to the Question H, that is, com-
pact spaces which support a non-separable Radon measure, but still don’t map
onto [0,1]“1, are either HS or HL (or both). The result that we are about to

present implies that none of these examples can survive M A+ -~CH.
Let us, then, pass on to the presentation of the result:
Theorem 2.2.4. (Kunen) Assuming the M A(wy) for measure algebras

and ~C'H, the measure algebra of any Radon probability measure on a compact

hereditarily Lindelof space is separable.

The theorem is proved by refuting the HL in an arbitrary compact space which

supports a non-separable Radon probability measure. It is enough to construct an
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uncountable strictly decreasing sequence of closed sets. This is an easy observation

of Sierpinski in [24]:

Lemma 2.2.5. (Sierpinski) A compact space X is HL iff there is no un-
countable strictly increasing sequence of open sets in X. Equivalently, there is no
uncountable strictly decreasing sequence of closed sets in X.

Proof. In the direction from left to right, if Uy for a < wy were strictly
increasing and open, then U = Ua<wy Uq would have an open cover {Uy : @ < wq}
with no countable subcover.

In the other direction, if Z is a subset which is not Lindelof, fix an open
cover {Vo, : a < k} of Z which does not have a countable subcover. Then & is
uncountable. For a < wy, fix an open set On in X with Oq N Z = V. Set
Ua = U{VB : B < a} for @ < wy. Then (Uy : @ < wy) is a strictly increasing
sequence of open sets.

The last assertion of the Lemma is clear, by taking complements. %

For the proof of Theorem 2.2.4, one actually only needs the left to right im-

plication of this Lemma.

Let X be any topological space. If A is a family of subsets of X, then ¥(H)
denotes the o-algebra generated by H. A sequence (Kq : a < wy) is said to
be pseudo-independent (PI) iff for all & < wy and all non-empty sets B in the

E({Kﬁ : B < a}), B is not a proper subset of K.
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The main ingredient of the proof of the Theorem is the fact that in a compact
space which supports a non-separable Radon probability measure, there is a PI
sequence in which all elements are closed G positive measure sets. To prove it

one only uses the axioms of ZFC. The MA( +-CH is used

measure algebras) (w1)
to construct the desired decreasing sequence of closed sets, using the PI sequence

just mentioned.

We proceed by presenting several lemmas that are going to be used to find
the PI sequence as above. From now on, let X stand for a compact space with a
Radon probability measure p defined on X.

The first of the lemmas to follow is a well known fact about Z-sets.

A subset K of X is said to be a Z-set, if there is a map f from X into [0, 1]

with K = f~1({o}).

Lemma 2.2.6. A subset of a compact space is a Z-set iff it is a closed G
set.

Proof. If f is a map from a compact space X into [0,1] and K = f_l({()}),
then K is closed by continuity. But also, K = mnEw\{O}f_l([O’ 1/n]), so K is a
G set.

In the other direction, suppose K = Ny cwyUn, where each Up, is open and K
closed. By Urysohn Lemma, choose for each n a map fp, from X into [0, 2_”_1]

such that fr(K) = {0} and for all z in Up \ K, fn(z) = 2771 Let f be the
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sum of all fy,, that is the function that assigns to every x in X the sum of the

convergent series Yy c fn(z). Then f(x) =0iff z € K.

Note that Urysohn’s Lemma implies that for any closed subset C' of a compact
space X, there is mapping f of X into [0, 1] such that f(A) = 0. But this is not

quite saying that every such A is a Z-set.

The PI sequence desired will be constructed by induction on countable ordi-
nals. Lemma 2.2.6 has a corollary which will be used to do the first w steps of the

induction:

Corollary. If (K : n € w) are closed G5 sets in X, then there is a map
f from X into [0,1]% such that for every set B in the o-algebra H = Z({Kp, :
n € w}) generated by the sets Ky (n € w), there is a subset A of [0, 1] for which
B=f"14).

Proof. For each n choose a map fn : X — [0, 1] such that Ky = fn_l({()}).
Let f be the "product” of all fy, that is the function from X to [0,1]% which
assigns (fn(x) : n € w) to every xz € X. This f is easily seen to be continuous.

The collection {f_l(A) : A C[0,1]%} is a o-algebra and contains all Ky (n €

w). So it contains H.%
The infinite stages of the induction require a more subtle argument:

Lemma 2.2.7. If X, is a Radon measure space, then the closed G sets

form a dense family in the measure algebra.
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Proof. Given a measurable E subset of X and an € > 0. Find a closed F' C
such that u(E \ F') < e. Now, by induction on n € w, find a sequence (Op, : n € w)
of open supersets of F', so that for each n, Op contains the closure of O, 1 and
the measure y(Op \ F') < 1/(n+1). The set K = Npey is a closed G5 which is

less than € far from F.%

Lemma 2.2.8. If f is a map from X to [0,1]%, then there are disjoint closed
G 5,0f positive measure, subsets H and K of X, such that f(H) = f(K).

Proof. For Borel subsets A of [0,1]%, define A\(A4) = ,u(f_l(A)). It is easily
seen that A extends to a Radon probability measure on [0, 1]%. Note that [0,1]% is
ond countable, so that Lemma 1.3.2 implies that the measure algebra of [0,1]%, A
is separable.

Fix a sequence (Ep, : n € w) which is dense in the measure space of A. Since
{ is non-separable, (f_l(En) : 1 € w) is not dense in the measure space of u. Fix
a Borel set R in X and a positive ¢ such that for all n € w, the p-distance between
R and f_l(En) is at least 2¢. Therefore, for all Borel subsets A of [0,1]“, the
distance between f _1(A) and R is not less than 2c.

By Lemma 2.2.7, there is a closed G 5 set M in X, whose distance from R is less
than c. For that M, M is a proper subset of f 1 (f(M)). Actually, their difference
must have measure at least ¢. Define H to be the difference, f_l(f(M)) \ M.

By compactness of M, f(M) is closed in [0, 1]¥. Since [0, 1]¢ is 229 countable,

f(M) is a Gg in [0,1]%. Therefore H is a closed G5 set in X.
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To find K, consider B = f(H). Set K = f~1(B) N M, therefore K is disjoint
from H. Note that f(H) = f(K) = B. If A= f(M)\ B, then K = M \ f—1(A),
so the measure of K is at least c.

The only problem now is that K might not be G5. To fix that, we change both
H and K a little bit, using a so called cushion argument. By Lemma 2.2.6, we can
find a function ¢ from X to the unit interval, such that M is ¢>_1({0}). Note then
that H is f~L(f(M)) N ¢~ 1((0,1]). If we define Hyy as f~L(f(M)) no~1([n, 1),
for positive n, then H is an increasing union of closed G 5 sets Hy. Therefore, there
is an € for which H¢ has positive measure.

Now, Ky = f_l(f(Hn)) N M is a closed G set and f(Ky) = f(Hp). Since
K is an increasing union of Ky for n > 0, we can assume that the € we chose is
such that both K¢ and H¢ are of positive measure.

Now reset K to K¢ and H to He. %

We are now ready for the main Lemma before the proof of the Theorem, the

choice of the PI sequence of closed G 5 positive measure sets:

Lemma 2.2.9. Assume that the measure algebra of X, u is non-separable.
Then there is a pseudo-independent sequence of closed G5 sets of positive measure
in X.

Proof. We construct a PI sequence (Ko : a < wy) of closed G5 positive

measure sets, by induction on a < wy.
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For finite n, just choose any continuous function fp from X to [0,1] and set
Kn to be fr, L({0}).

Given (K5 :6 < a), set T = X({Kg:0 < a}). By the Corrolary to Lemma
2.2.6, fix a map f : X — [0,1]% such that for all B in Z, there is a subset A of
[0,1]% for which B = f_l(A). Apply Lemma 2.2.8 to this f to find two disjoint
closed G5 sets K and H, of positive measure and such that f(K) = f(H). Then

any non-empty B € 7 meets H iff it meets K, so we can set Koo = K. %

The only other ingredient that we need is a well known consequence of M A +

~CH: that all ccc partial orders have precaliber wy.

A partial order P is said to be ccc if all antichains in P are countable. A subset,
of P is said to have the finite intersection property if its every finite subset has a
common extension in P. P is said to be of precaliber wy if all wy sequences in P

have an wy subsequence which has the finite intersection property.

Note that there is a partial order on every Boolean algebra: an element a of
the Boolean algebra is less than another element b, if ab = a in the Boolean algebra.
With a Boolean algebra B, we associate a partially ordered set, namely B\ 0g.
Two elements are incompatible in this order, if their product is 0. Note that this
partial order is ccc, if and only if B is ccc as a Boolean algebra. Whenever we talk
of a Boolean algebra as a partial order, it is the above partial order that we have

in mind.
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Measure algebras are special kinds of Boolean algebras, so we can think of
them as of partial orders, too. Recall from Chapter I that we are only concerned

with finite measures. In that way, all measure algebras are ccc.

For a cardinal k, M A(k) means that for any ccc partial order P and any family
D of < k dense sets in P, there is a filter in P, which intersects each element of D
in a non-empty set.

If K is a class of ccc partial orders, then by M Ax-(x), we mean that M A(k)
is true restricted to the partial orders from K. If I is a singleton, P, then we write
M Ap rather than MA{P}.

M A means that M A(k) is true for all k < ¢. We similarly define M Ay-.

The above mentioned consequence of M A+—-CH only needs M A(wy)+-CH
and remains true relativized to measure algebras: assuming just the restriction of
M A(wq) to measure algebras and ~C'H, we can conclude that all measure algebras

have precaliber wy. We proceed by giving the proof of this fact.

Lemma 2.2.10. Assume MA( + aCH. Then every

measure algebras) (w)
measure algebra has precaliber w1 .

Proof. Let us consider a sequence (pn : o < wy) in an arbitrary measure
algebra M. For a < wy, let Cq, denote the set of all elements p of M, which are
compatible with p~ for some v > «. Then, obviously, if « is less than 3, then Fy

contains FB' Actually, we claim that there must be an « such that for all 3 greater

than o, Fjg = Fo. (%)
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If it was not so, then for every a < w1y, we could find a gq in Fiy \ Fi 41 Such
a go would have to be compatible with pq, but not with any g for B > a. In
particular, for all & < 8 < wq, qo and 43 would be incompatible. But this cannot
happen, as M is ccc.

So, fix an « which satisfies (x). Now consider another partial order, P, which
consists of all elements of M which extend pn and in which the order is inherited
from M. In other words, P is M restricted to pn. In particular, P is also a measure
algebra.

For countable 8 > «, consider the set

Dg={peP:3y>pBp<py)}

Each of these sets is dense in P: for a p in P, p is < than pq, so p is in Fy. By
(%), p is in FB too. Any g which is a common extension of p and py for a v > f3,
is also an element of DB.

Now use M A( to find a filter G' in P which intersects all

measure algebras) (w)
Dﬁ? for g > «.

Then the set

A={y<wi:3IpeG(p<py)}

is unbounded, and the set {py : v € A} has the finite intersection property,

since G does. %
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Proof of Theorem 2.2.4. (MA( )(wl) +-CH). Let X be a

measure algebras
compact space and p a Radon probability measure on X with the measure algebra
of X, u non-separable.

By Lemma 2.2.9, fix an wq-sequence (Kg : 6 < wq) of pseudo-independent
closed G sets of positive measure. By Lemma 2.2.10, there is an uncountable
subsequence <KO‘§ 1€ < wy) of (Ko + @ < wy) which has the finite intersection
property.

Set Fp = mn<€K0‘n’ for n < wy. Then each Fy is a nonempty closed set.
Since F77+1 = IpnN Ka??’ the pseudo-independence of (Kq : o < wq) implies
that the sequence (Fy) : 1 < wy) is strictly decreasing. By Lemma 2.2.5, X is not

hereditarily Lindelof. v
A consequence of this result, is an earlier result of Fremlin:

Corollary. (Fremlin) If M A 4+ -CH is true, and if X is a compact space
which supports a non-separable Radon measure, then X is neither hereditarily
Lindelof, nor hereditarily separable.

Proof. That X is not hereditarily Lindelof, we conclude directly from The-
orem 2.2.4. On the other hand, under M A + -C'H, every compact hereditarily
separable space is hereditarily Lindelof ([19,25]), so X cannot be hereditarily sep-

arable either.%
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We note that, independently of the size of the continuum, Theorem 2.2.4 is in-
deed stronger than its above Corollary. That is so because full M A is stronger

than its restriction to the measure algebras. Omne of the consequences of full

MA 4+ —-CH that does not follow from MA( + —-CH, is the

measure algebras)

above mentioned equivalence of HL and HS for compact spaces. So, it is still

conceivable that there is an HS counter-example to Question H, consistent with

MA( + -CH.

measure algebras)

§2.3. 15t countable Counter-examples. By Theorem 2.2.4, we know that

if M A( + —CH is true, there cannot be any HL counter-

measure algebras) (w)

examples to Question H. But a weaker condition than HL implies that a compact

space does not map onto [0, 1]“1:

A family F of open sets in a space X is a point-base for a point =z in X, if
every element of F contains x and every open set containing z, is a superset to an

element of F.

_ZSt

A space is countable, if every point in the space has a countable point-base.

1St

It is easy to see that every regular HL space is also countable. In fact,

for compact spaces X, X is HL iff all closed sets in X are Gg. To know that
a compact space does not map onto [0,1]“1, it is enough to check that it is 18t

countable. However, the argument is not as easy as in the case of HL or HS.

While it is obviously true that [0, 1]l is not 15! countable, it is also true that
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18t countability is not necessarily preserved by continuous mappings. The reason
that a 150 countable space cannot map onto [0,1]%1 is a property implied by the
18t countability, countable tightness. This property is preserved under continuous

mappings and is not possessed by [0, 1]¥1:

A point z in a space X has countable tightness if any time that z is in the
closure of a subset S of X, there is a countable subset T" of S, such that x is also
in the closure of T'.

A space has countable tightness if all the points in the space do.

Lemma 2.3.1. Every 15% countable space has countable tightness.
Proof. Let X be a 15t countable space and z € X. Fix a countable point-base
B at x. If x is in the closure of a set S, choose a countable T' C S which intersects

every element of B, so x is in the closure of T.%

Lemma 2.3.2. Countable tightness is preserved by continuous mappings.

Proof. Suppose f maps a countably tight space X onto a Y, and y € Y is
in the closure of a subset S of Y. Choose an = such that f(z) = y. Then z is in
the closure of the preimage of S, f_l(S'). Let T be a countable subset of f_l(S)
whose closure contains . Then f(7T) is a countable subset of S, whose closure

contains y.%

Lemma 2.3.3. [0,1]“1 is not countably tight.
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Proof. The point which has all coordinates 0, is in the closure of the set §
of all points which have only finitely many coordinates equal to 0, but not in the

closure of any countable subset T' of S.%

Corollary. No 15! countable space maps onto 0, 1]“1.%

15t countable counter-

So, the next question to answer is, if there may be a
example to Question H, which survives M A+ —~CH. Subject to a condition on the
weight, a negative answer was given by Fremlin ([4]). We now present that result.
The present approach, due to to Kunen, differs from the original one and makes it

clear that MA( ) 4+ —=CH is all that is needed.

measure algebras

To describe the condition on the weight, we use the following notation, due to

Shelah.

If K, A\, u, v and o are cardinals, then
cov(k, A\, i, v) <o

means that there is a family F of < o subsets of &, each of cardinality < A, such

that every subset of k of cardinality < p is covered by < v elements of F.

The particular instance of this notation that we shall use, is cov(k, wy,wq,2) <
A. This means that there is a family F of countable subsets of x, whose size is < A
and such that every countable subset of « is covered by an element of F.

Note that cov(k,wq,wq,2) < A implies cov(p,wy,wy,2) < A, for every p < k.
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We shall need the following observation:

Lemma 2.3.4. For a partial order P and a cardinal A: if M Ap(A) is true, and
Q is a suborder of P which is dense in P, then M Agp(\) is also true.
Proof. Every dense subset of Q is also dense in PP, and the intersection of a

filter in P with Q, is a filter in Q.5
We can now prove the announced result:

Theorem 2.3.6. Assume MA( A) + —-CH and, also, that

measure algebms)(
cov(k,wq,wy,2) < A. Then no 15t countable compact space whose weight is < &
can support a non-separable Radon measure.

Proof. Let X, u be a compact Radon measure space of weight < x. Let us
fix a basis B of X which has size k. Then, for some o < A, there is a family
{Bq : a < o} in [B]Y, such that every element of [B]* is covered by a Bg.

Suppose that the measure algebra of X, i is non-separable. Note that being a
15t countable space of weight less than k is hereditary to any kind of subsets, so
by Lemma 1.2.1, we can assume that the measure algebra of X, p is homogeneous.

We force with P = {p € X : pclosed A u(p) > 0}. Since the measure
is Radon, P is dense in the measure algebra of X,u. By Lemma 2.3.4 and

MA( A), we conclude that M Ap(A) is true.

measure algebras) (

If G is a P-generic filter, then NG is non-empty. This is so because X is

compact and every filter has the finite intersection property. On the other hand,
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NG cannot have more than one element. The reason is that, for any x # y in X, the
set of all elements of P which either contain exactly one of x,y, or do not contain
any of them, is dense in P. So, there is a point x in X, such that {z} = NG. We
claim that z cannot have countable character.

To see this, we show that for each o < o, the set

Do ={peP:(pNn(NBa) =0))V (Ja # b(a,b € (NBx) Np))}

is dense in P. Once we know that, since M Ap(0), we know that G could have been
chosen to intersect each Dn,. Then, if « is such that x € NBg, the p from Do NG
witnesses that there is another point y # x in the intersection NBy. This could
not happen if By contained a point-base for x. But a By covers every element of
[B]*, so z has no countable point-base.

Let us then show that each D¢ is dense in P. This is where we are going to
use the assumption that the measure p is non-separable.

Take a p in P, and assume that p N (NBg) is not empty, but that it contains
exactly one point. Let {Ep : n € w} enlist all the sets BN p for a B in By. Since
the measure algebra of X, u is non-separable, there is a subset ¢ of p which has
positive measure and which is at a distance > € from each Ej,, for some positive e.

If there is an n such that ¢ \ Ep is of positive measure, then we can find an
r which is a closed subset of ¢ and which is disjoint from FEj. Such an r is an

extension of p which is in Dy.



41
Otherwise, each EpNg has measure greater than e, so the measure of (NBy)Ng
is positive. By the homogeneouity of the measure algebra, this intersection must

contain more than one point. But it contradicts our assumption on p.%

Note that the same proof works to show that there must be in X a point of
uncountable w-character. This is not of much use. Namely, in order to to use
Shapirovskii’s result and conclude that X maps onto [0,1]“1, we would need to

know that there is in X an entire closed subspace of points each of which has

uncountable RELATIVE w-character.

A question to ask, of course, is if there may be any cardinals s for which it
is true that cov(k,wq,wy,2) < ¢, otherwise we have been wasting time in proving
the previous Theorem. Here is a Lemma which shows that all cardinals less than

wy have the right covering property, if they are less than c:

Lemma 2.3.7. For every cardinal & less than wy, cov(k,wy,wy,2) < k.

Proof. We prove this for each wp, by induction on n < w. We construct a
Chp, in [wp]¥, of size wp, so that each element of [wy]% is covered by an element of
Cn.

Trivially, the statement is true for n = 0, by taking Cy = {w}. Given Cp.
For each { < w,,1 1, choose a 1-1 function ff which maps § into wp,. Set Cp 11 =

{ff_l(C) 1{ <wpi] AC €Cntk
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62.5. Remarks. Even though the question of Haydon is only concerned
with mappings onto [0,1]“1, the material in this section calls for a few words
on mappings on cubes of larger dimension. So, for a moment, let us consider
the following situation: X, u is a compact Radon probability measure space of
Maharam dimension A > w, and we want to know for which x > w, X maps onto
[0, 1]%.

Trivially, we are only interested in those x which are less or equal than A. By
the same Delta-system argument of the proof of Theorem 2.0.0, we can see that if
k is regular, < A and such that for all o < &, the cardinality of [0]% is less than &,
then X maps onto [0,1]%. So, for many A, X will map on [0, 1])‘ itself!

We also remark that the arguments of sections 2.3 and 2.4 can be generalized,

1St

using cardinal functions which extend the notions of 1°" countability and hereditary

Lindelofness.

Finally, we would like to mention another class of spaces which at first look
like they would have something to do with the Question H. That is the linearly
ordered spaces, LOTS. There is a result of Mardesi¢ and Papié¢ ([17]) which implies
that every compact LOTS which supports a totally finite measure, is hereditarily
Lindel6f. (In fact, this was generalized in [15] to any LOTS.) Therefore, a natural
way to build a non-M A counter-example to the Question H, would be to construct a
non-separable Radon measure on a compact LOTS. However, the following Lemma

shows that that is not possible:
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Lemma 2.5.1. The measure algebra of any finite Radon measure on a com-
pact LOTS is separable.

Proof. Given a compact LOTS, X and a finite Radon measure p on it. We
can assume that p is a probability.

It is easy to see that X has to have a minimal and a maximal element, by
compactness. So, X = [a, b] for some a,b € X.

For an z € X, define f(x) = p[a, x]. We shall show that f induces a measure-
preserving transformation into the unit interval with a Radon measure. Then, the
measure algebra of X,y must be separable.

So, define a measure in A in [0,1] in the following way:

Given an open set (a,b) in [0,1]. If (a,b) N f(X) is empty, let A((a,b)) = 0.
Otherwise, let ¢ = inf((a,b) N f(X)) and d = sup((a,b) N f(X)). Find a decreasing
sequence (cp)pecw of numbers in (a,b) U f(X) converging to ¢, and an increasing
sequence (dp)pecw in (a,b) N f(X) converging to d. For each n, choose xp,ypn in
X such that f(zn) = ¢n and f(yn) = dn. Define A\((a,b)) = p(Upcw(n,yn)).
Extend the so defined A to a Radon measure in [0,1], in the usual way.

To show that f is measure preserving, we need to see that every measurable
set F in X is the inverse image of a (measurable) set in [0,1], modulo a set of
p-measure 0. Since the measure is Radon, it is enough to show this for closed sets

in X. In fact, it is just enough to show this for sets F of the form E = [a, x].
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Let s = f(x) and B = f_l([(), s]). Then note that B is a superset of [a, x|

and that B must be an interval. So, B = [a,y] or B = [a,y) for some y > z. But

then u((x,y)) =0, so u(B\ [a,z]) = 0.5%
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Chapter III

Counter-examples

In this chapter, we construct two examples of a compact, 0-dimensional space
which supports a Radon probability measure whose measure algebra is isomorphic
to the measure algebra of 2“1. The first construction uses ¢ to produce an S-
space with no convergent sequences in which every perfect set is a G 5. We show
that space with these properties must be both hereditarily normal and hereditarily
countably paracompact. The second space is constructed under C'H and is both
HS and HL. Also see [1]. The last section of the chapter is a short overview of

another C'H counter-example, which is the L-space of Kunen.

63.0. Introduction. The constructions that we would like to present are
quite long, and we break them into several sections. They can be both described
using the same notation and, the HS+HL space is, actually, a modification of the
S-space. So, we take this section to give an introduction to both of these results.

The first known counter-example to Question H, is an L-space constructed
by Kunen in [13]. Also see [9]. These constructions assume C'H. See §3.5 for a
discussion. In the previous chapter, we gave a result showing that such a counter-

example could not exist under M A+-CH, or even under MA(measure algebras) +
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-C'H. We also know that the full M A 4+ -CH would destroy an HS counter-

example, too. But, we do not know if just the MA( + -CH

measure algebras)
would do so.
We first describe how to get the S-space counter-example.
We also discuss some additional properties of the space, for example, the
property that every perfect set is a G5, whereas no point is a Gy.
Then later, assuming just C'H, we modify the construction to get another
counter-example which is both HS and HL.
As we explained before, neither of the above mentioned examples could be
constructed in ZFC.
The following theorem details the properties of the S-space.
Theorem 3.1.1. If { holds, then there is a compact, 0-dimensional, heredi-
tarily separable space X and a Radon probability measure g on X such that
1. X has weight wy, and every point in X has character wy.
2. There are no convergent sequences in X.
3. Every perfect subset of X is a G set.

4. The measure algebra of X, y1 is isomorphic to the measure algebra of 2%1 with

the usual product measure.

From now till the end of the construction, X stands for the S-space we are

constructing.
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We do not need to state in the Theorem that X cannot be mapped onto
[0,1]%“1, since that follows from hereditary separability. See Lemma 2.2.1. Like-
wise, part (1) of the Theorem implies that X is not hereditarily Lindelof, since
in a hereditarily Lindelof space, every point is a G5. Also, (1) implies that the
cardinality of X is 2%1.

Our proof is patterned after the result, announced by ®enopuyx in [3], that
under <), there is a compact S-space of size 2%1, although we do not follow exactly
the method indicated in [3]. By induction on o < wy, we shall construct a closed
Xo C 2% If a < B, then X will be the projection of XB. The X of the Theorem
will be le. To make sure that the space is hereditarily separable, we shall use
¢ to capture all candidates for an wy left separated sequence. This method will
also capture all w-sequences as well, so that Part (2) of the Theorem 3.1.1 will
essentially come for free. To guarantee Part (3), we use < a second time to control
the perfect sets.

Since X will be compact and 0-dimensional, it will be possible to define the

measure by its values on the clopen sets, as we now explain.

The Baire sets in a topological space are the least o-algebra containing the

clopen sets, and the Borel sets are the least o-algebra containing the open sets.

Suppose that p is a finitely additive probability measure defined on the clopen
subsets of X. Then, in the standard way (see Chapter I), pu defines an outer

measure, from which we define an extension of i to a countably additive probability
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measure i on some o-algebra, §. S certainly contains all Baire sets. It need not
contain all Borel sets, but if it does, then i is automatically a Radon measure.

So, why should all Borel sets be ji-measurable? In an HL space (as in §3.5
or [11] ), this is trivial, since the Borel and Baire sets coincide. In fact, for any
compact X, X is HL iff all closed sets are G 5 sets iff all Borel sets are Baire. Also,
for any compact X, a closed set is Baire iff it is a G5. In our particular space, (1)
says that each point is a non-G'5 and hence non-Baire. However, (4) implies that
the measure algebra is non-atomic, so that points have measure 0; in particular,
they are fi-measurable. Now, suppose K is any closed set, and let I be the set
of isolated points of K. By HS, I is countable, and hence ji-measurable (and of
measure 0). By (2), either [ is finite and K = I or I is infinite and K\I is perfect,
and hence a G g by (3). In either case, K is the union of a measurable set and a
Baire set, and hence measurable. A subtle point: of course, we must verify (4),
or at least that fi gives points measure 0, without needing that every Borel set is
ji-measurable; but we do that in §3.2.

Since the measure is determined by its values on the clopen sets, it is easily
constructed by induction. When we construct X, we also decide what the measure
is of all its clopen subsets. Then when we get to X = le, we will also have p
and hence ji, and as we pointed out above, i will almost automatically be a Radon
measure. We still have to ensure that the resulting measure algebra is isomorphic
to the measure algebra of 2%1. To do that, we shall simply make it everywhere

non-separable; the isomorphism will then follow by Maharam’s Theorem. However,
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doing this requires an additional complication on the construction of the X, which
makes verifying that we can get an S-space somewhat harder. We comment on this
further at the end of §3.4.

We proceed by listing a number of requirements on the X and pg which,
if met, guarantee that the resulting (X, p) satisfies Theorem 3.1.1. In §3.2, we
describe the basic requirements, which guarantee that X will have every point of
character wy and a Baire measure p such that the resulting measure algebra is
isomorphic to the measure algebra of 2“1. In §3.3, we describe some additional
requirements on the construction which will guarantee the rest of the properties
of X. In §3.4, we verify that all the requirements of §§3.2,3 can be simultaneously
fulfilled, thus proving Theorem 3.1.1; we also explain there why a space with the
properties of Theorem 3.1.1 must be hereditarily normal and hereditarily countably
paracompact. In §3.5, we explain how to use CH and modify the construction to
get a space which is both HS and HL.

There is a somewhat simpler class of compact S-spaces [6,12,19] which require
only C'H to construct; but these have points of countable character, so we could

not use them to prove Theorem 3.1.1.

§3.2. The Basic Stuff. For o < 3, define Wg 2B 5 00y Wg(f) =fa.

We shall choose X for a < wq and Aq, By for o < wq so that:

R1.1. X is a closed subset of 2%, and Wg(XB) = Xq whenever a < 8 < wy.
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R1.2. For a < wy, An and Bq are closed in X¢, Aq U Bo = X, and
Xot1 = Aa x {0} U By x {1}. Here, we identify 20+ with 2 x {0,1}.

R1.3. For n < w, Xy, = Ap = By = 2". For a > w, Ay and Bg have no

isolated points.

We remark that this may be viewed as an inductive construction. The choice
of Aq and By determines X, 1 from Xq, and, by R1.1, X+ is determined from
the earlier X at limit v. R1.3 avoids some trivialities; it implies that for a > w,
X has no isolated points; also, X, = 2%.

We also choose pi for o < wq so that:

R1.4. puq is a finitely additive probability measure on the clopen subsets of

Xo, and po = uﬁ(ﬁg)_l whenever o < < wy.

Again, this may be viewed as an inductive construction. For limit v, py is
determined from the earlier p. As described in the Introduction, each pq extends
to a i on some o-algebra, So which contains all the Baire sets. For oo < wq, the
Baire and Borel sets coincide, but this need not hold for @ = wy.

At a successor stage, in the case that fio,(Aq N Bea) > 0, there is some freedom
in defining g4 1, in that the measure on A N B can be distributed arbitrarily
over (Ag N Bg) x {0} and (Ag N Bg) x {1}. For the purpose of this paper, the

equitable distribution will work. That is,

R1.5. For each o < wy, and each Borel D C Aq N Ba, fig41(D x {0}) =

fias1(D x {1}) = (D)
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In terms of the clopen sets, this defines p, 41 from pq. Specifically, every
clopen K C X, 1 can be written uniquely as K = Ky x{0}UK7 x {1}, where K,
is a relatively clopen subset of Ay and K7 is a relatively clopen subset of By. Then
fa1(K) = fia(Kq) + (K1) — $fia(Kg N Ba) — $jia (K1 N Aq). In the special
case that K is the inverse projection of a clopen set L C X, then L = KjUK{ and
KoNBa = K1 Ao = KgnKy. 50 g 11(K) = fia(Kg) + i K1)~ i (KN ) =
fioe(Kg U K1) = pee(L). Thus, ppo4q1 = ua(ﬁg+1)_1. This shows that condition
R1.4 gets preserved at successor stages. It is also easy to verify:
Lemma 3.2.1. Requirements R1.1 - 1.5 imply that
1. For a < w, fiy, is the usual product measure on Xq,.
2. For all a, fi gives each non-empty clopen set positive measure

3. For all a > w, jin gives each point measure 0.

R1.1 - R1.5 do not prevent us from choosing Ay N By, to be of measure 0
(or even a singleton) for all @ > w. In that case, the measure algebra on X = X¢
would be isomorphic to the measure algebra of 2%. To prevent this, we shall

demand
R1.6. For each o < wy and each closed J C X¢, if fi(J) > 0, then there is

a 8 > « such that ﬂﬁ((ﬂg)_l(J) NAgnN BB) > 0.

Lemma 3.2.2. Requirements R1.1 - 1.6 imply that the measure algebra of

X, i is isomorphic to the measure algebra of 2*1 (with the usual product measure).
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Proof. Let B be the measure algebra; so, elements of B are equivalence

classes of ji-measurable subsets of X. For each b € B, let B [ b be the algebra

{a € B:a < b} (so, bis the 1 of B | b). By Maharam’s Theorem, the lemma will
follow if we can show that for all b # 0, B | b is not separable.

For o < wy, let By be the sub-algebra of B generated by all (ng)_l(H), for

H a Borel (= Baire) subset of X¢,. Then B is an ascending union, B = |J, Ba. If

B | b were separable, we may fix o < wy such that b € By, and B [ b = By, | b.

Then, there is a closed J C X such that fin,(J) > 0 and [J] < b; applying R1.6

and R1.5 to this J yields a contradiction. %

The following requirement, implies (actually is equivalent to) that every point

in le has character wq.

R1.7. For each o < wy and each y € X, there is a 8 with o < 8 < wqy and

Agn Bgn (xh) Ly} #0.

Lemma 3.2.4. Requirements R1.1 - 1.7 imply that every point in le has
character wy.
Proof. If = € le had countable character, then there would be a a <
w1

wy such that (mg )_1{35 I a} = {z}. Applying R1.7 to y = x | « yields a

contradiction. %
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Requirements R1.1 - R1.7 are consistent with having A = By = X for all
«, whence X will simply be 2%1 with the usual product measure. We cannot get

an S-space unless An N B, is nowhere dense in X, for all but countably many «.

63.3. How to use ). We begin with some notation on sequences. Suppose
that ?: (yg : £ < ) is a B-sequence of distinct points in some space. Then a
point x is a limit point of ? iff for all neighborhoods U of x, 3§(y§ ceUNzx # yg).
Now, suppose that ?: <Y§ : £ < ) is a B-sequence of disjoint sets. We shall call
x a strong limit point of ? iff for all neighborhoods U of z, Hg(Yg CUANz ¢ Yf)'

This implies that however we choose points Yye € Yf? x will be a limit point of

(ye + € <P).
For ordinals o < 3, if f= <f§ : £ < () is a [-sequence in 25, we shall use
f 1 a for the a-sequence in 2%, <f£ o : & < a). Assuming {, we can fix f¢ for

—\

each a € [w,wq), such that f% is an a-sequence in 2% and such that whenever g

is an wy-sequence in 2¥1, {a : g | @ =f%} is stationary.

For each 8 < wj, we may postulate

R2.1(B). For all a < f: If the fg, for £ < « are all distinct points in

—\

Xa, h € XB, and h | « is a limit point of f%, then h is a strong limit point of

(=) 1) €< .
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The reason that ¢ is relevant to capturing sequences in 2*1 is given by the
following lemma, which states that some basic properties of such sequences reflect

on a club (closed-unbounded set).

—\

Lemma 3.3.1. Suppose that f is an wj-sequence of distinct points in 2w,
Then there is a club C' C wy such that for all v € C,
1. The ff [ v for & <« are all distinct.
2. It n > v, then fp [~ is a limit point of ?[ v.
Proof. Let Fn(vy,2) be the set of finite partial functions from 7 to 2, and, for

s € Fn(v,2), let Zs be the basic clopen subset of 27, {f € 27 : f | dom(s) = s}.

To achieve (1), make sure that whenever v € C,

VE <n<y3s€Fn(y,2)(f¢ € Zs N fn & Zs)

To achieve (2), make sure that whenever v € C and s € Fn(v,2),

Sup{§<’y:f§€Zs}<’y — sup{£<w1:f£€Zs}<’)/

In particular, if p > v, s € Fin(7y,2), and fy € Zs, then sup{¢ < wy : fér € Zs} >,

so there are unboundedly many £ < 7 such that fg €Zs. %

Lemma 3.3.2. Assuming the requirements R1.1-1.6 and R2.1(wqy), X is

hereditarily separable.
Proof. If not, then let f be a left-separated wy-sequence in X. Let C' be as

—\

in Lemma 3.3.1 and fix v € C such that f [~ =f7. Let h = fy. By Lemma 3.3.1,
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h [~y is a limit point of f [+, so h is a strong limit point of <(7ngl)_1(fg) 1€ <),
so h is a limit point of <f£ : &€ < 1), which is impossible if f is left-separated. Y
By a sequence we mean an w-sequence. One could ensure that the space has

no convergent sequences by a similar use of ¢ to capture w-sequences, but it turns

out that this comes for free because of the way we captured wy-sequences.

Lemma 3.3.3. Assuming R1.1-R1.7 and R2.1(wy ), there are no convergent
sequences in X.

Proof. Suppose ? is a discrete sequence in X and y is a limit point of ?
Let 7 be any wqy-sequence of points in X such that fp = xp for n < w and
fE(O) # y(0) for all { > w. Fix an @ < wy such that Wzl (?) :f?Y and note that
y | a is a limit point of J?)‘. Then, every point in (ng)_l(y [ ) is a strong limit
point of <(7Tgl)_1(fg) : & < «), and hence a limit point of <f§ : & < ). Since
we have separated the fér for £ > w away from y at co-ordinate 0, every point in

w1

(e )_1(y [ «) is a limit point of T. By R1.7, (ng)_l(y [ «) will not be a

singleton, so x does not converge to y. %

We shall now replace requirement R2.1 by a somewhat more complicated
requirement on the Ay and By, so that it will be clear that this is something
which may be ensured during the inductive construction. First, note that there is

no problem at limits.
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Lemma 3.3.4. If 7y is a limit and R2.1() holds for all § < v, then R2.1(%)

holds as well. %

However, there is a problem at successors. Suppose R2.1(3) holds and h €
Xﬁ-l-l' Ifh|p¢ AB N BB, then R2.1(8 + 1) will hold at the point h, since at
h, the projection 7r§+1 is locally a homeomorphism. But, if A [ § € AB N BB,
then R2.1(3 + 1) will fail, for example, if for some « < 3, the f&, for £ < a are
all distinct points in X, and each (Wg)_l(fg‘) meets both A g and Bg. To avoid

this, we assume

R2.2. For all & < 8 < wy: If the f&, for £ < « are all distinct points in X,
h € AB N By, and h is a strong limit point of ((ﬂg)_l(f?) 1€ < a), and U is
any neighborhood of h, then 35((#@)_1(]”?) CUNA (Wg)_l(fg‘) nAg=0) and

F((n) L) CU A () L) N By = 0).

Lemma 3.3.5. Assuming the requirements R1.1-1.6 and R2.2, X is hered-
itarily separable and has no convergent sequences.
Proof. By induction on f, verify R2.1(3), and then apply Lemma 3.3.2 and

Lemma 3.3.3. %

We may now regard R2.1 as obsolete, having been replaced by R2.2.
We must still make sure that each perfect set F' becomes a G 5. To do this,
we arrange for F' to become (ng)_l(H) for some a < wy and some perfect H in

Xo-
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A perfect set is a closed set with no isolated points.
We shall need another definition:

If K is a closed subset of a space Z and g : Z — Y, we shall call g irreducible

on K iff g(L) is a proper subset of g(K) for all proper closed subsets L of K.

Note that if F' is a closed subset of Z, then F C g_l(g(F)); and if g is
irreducible on g_l(g(F)), then F = g_l(g(F)).

So, we shall arrange that for every perfect I, there will be an o < wq such that
rel is irreducible on (mal) "L (e (F)). Then F = (rol) "L (rel (F)) will be a
Gs- As in the usual inductive construction of the projective cover, irreducibility

w1

of " can be guaranteed during the inductive construction by a condition on the

Aq and B, which we now explain.

If AC H CY, where Y is any space, A is called reqular closed in H iff
A = clg(intg(A)); here clgg and int iy denote the closure and interior operators
relative to the subspace H. We call A, B C H complementary regular closed sets
in H iff they are each regular closed in H, AUB = H, and AN B is nowhere dense
in H; this implies that AN B is the common boundary of A and B in H, and that

the natural projection from A x {0} U B x {1} onto H is irreducible.

Lemma 3.3.6. Suppose H is closed in X and, for all § > «, Aﬁﬂ(ﬁﬂ)_l(H)
and Bg N (Wg)_l(H) are complementary regular closed subsets of (Wﬁ)_l(H).

Then ng is irreducible on (ng)_l(H).



o8

Proof. By induction on 8 < wy, show that Wg is irreducible on (ﬂ'ﬁ)_l(H).*

Using ¢, we can fix closed sets F in 2%, for @ < wy, such that for every
closed F in 2“1, {«: ng (F') = Fq } is stationary. Once we have constructed X,
where w < a < wy, we shall define Qn, to be Fy, if Fyy is perfect and a subset of
Xq, and set Qq = X otherwise. So, QQq is always a perfect subset of Xq.

We now note that the property of not having isolated points is reflected on a

club:

Lemma 3.3.7. If F is a perfect subset of 2“1, then there is a club C such

that for all a € C, ng (F) is a perfect subset of 2%.%

R2.3. If @ > w then for all 8 > «
By—1 : o By—1
a. AgnNBgn (mey) ™ " (Qe) is nowhere dense in (7)) " (Qa)-
b. Aﬁﬂ(ﬂg)_l (Qu) and Bﬁﬂ(ﬂg)_l (Qc) are complementary regular

closed subsets of (Wg)_l(Qa).

Actually, R2.3a is redundant, given R2.3b, but when we verify in §3.4 that R2.3
can be accomplished, it will be easier to handle R2.3a before considering R2.3b.

It is clear from the preceding lemmas that

Lemma 3.3.8. Assuming R1.1-R1.3 and R2.3, all perfect subsets of X are

Gs. *
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63.4. Putting it Together. We are now done with the proof of Theorem
3.1.1, assuming that the construction can be made to meet all of our requirements.
Examining them, it appears that only R1.6, R1.7, R2.2, and R2.3 are are non-
trivial; the rest just detail how the final X and p are completely determined by
the choice of Aq and By for w < o < wy. Let So = Aq N Ba. Then R1.6 and
R1.7 only involve what happens eventually, and only involve the Sq; they ensure
that every closed set of positive measure gets split (so the measure algebra will be
non-separable) and that every point eventually gets split (so points get uncountable
character). R2.3a must be met at every stage «, but only involves Sy. Finally,
R2.2 and R2.3b must also be met at each stage, and actually involve Ay, and By,
so we consider them last, after fixing S¢.

Partition wy \ w into two disjoint uncountable sets, EVEN and ODD. We
shall handle R1.6 in EVEN and R1.7 in ODD. Applying CH, for § € EVEN,
choose 65 < B and a closed JB C 255 so that for each o < wq and each closed
J C 2%, there is a 8 > « such that 3 € EVEN and 65 = « and JB = J. Again
applying CH, for g € ODD, choose 55 < B and pg € 265 so that for each a < wq
and each p € 2%, there is a 8 > « such that 3 € ODD and 55 = « and pg =P

These choices are made ahead of time, before constructing the X¢. Once X 3
is constructed, let Kg = (F?ﬁ)_l(Jﬁ) if Jg C X(;B, and set K g = X g otherwise.
Use Ny to denote the set {f? (€< al.

Now, determine S B as follows.
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For g € EVEN, choose SB so that

1. If ﬂﬁ(Kﬁ) > 0, then ﬂﬁ(Kﬁ N Sﬁ) > 0.

2. Foralla € (w, f], Sﬁﬂ(ﬂg)_l(Qa) is nowhere dense in (Wg)_l(Qa).

¥3. For all a € (w, ], SgN (Wg)_l(Na) = (.
It is clear that X1 will guarantee requirement R1.6 and 2 will guarantee R2.3a
for § € EVEN. Y3 will make it possible to choose AB and BB later. First,
we must see that such a choice of Sﬁ is possible. For each a € (w, ], choose a
countable Dqy C (Wg)_l(Qa) which is dense in (Wg)_l(Qa). For each o € (w, ],
let E, = Noo N Xq. Let L = KB if ﬂB(Kﬁ) > 0; set L = XB otherwise. Let
M =L\ Uae[w,ﬁ) (Do U (Wg)_l(Ea)). M is a positive measure set minus a
countable union of measure 0 sets (since by Lemma 3.2.1, points have measure 0).
Thus, M has positive measure, and we may choose S 3 to be any closed subset of
M of positive measure.

For B € ODD, choose SB as follows: If pg € X(;B, choose SB to be any

singleton from (ﬂg)_l{pﬁ}. If not, set Sg to be any singleton. It is clear that this

choice will guarantee requirement R1.7. It also guarantees R2.3a for g € ODD,

since (Wg)_l(Qa) has no isolated points.

Proof of Theorem 3.1.1. As noted above, we are done provided we can show
that at each stage 8 we can can satisfy R2.2 and R2.3b. We already have S’B, and
we must find A 3 and B 8- Fix a strictly decreasing sequence of clopen sets in X 3

(Vn :n € w), such that V) = Xﬁ and NpewVn = Sﬁ' If ¢ : w— w is any strictly
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increasing function with ¢(0) = 0, we may set Ag=55U Un, (V¢(2n) \V¢(2n+1))
and Bg = SgU Un(V¢(2n+1)\V¢(2n+2))' With any choice of ¢, AgN By = Sg,
and the “trivial” conditions R1.2 and R1.3 are met. We shall show that if ¢
grows “fast enough”, both R2.2 and R2.3b will be met — essentially by the same
argument.

To handle R2.3b, fix, for each a < (3, a countable dense subset T of S 3N
(ﬂg)_l(Qa). Since Sg N (Wg)_l(Qa) is nowhere dense in (Wg)_l(Qa), there
is for each element ¢ of Ty a sequence 57 of distinct points in (Wg)_l(Qa) \ S5
converging to t. Note that R2.3.b will hold if for all « < 8 and t € Ty, both
Aﬁ \ Bﬁ and BB \ AB contain infinitely many elements of Q

To simplify the notation, we re-index all the ((Wg)_l(fg) €< a)fora<p
which are relevant to R2.2, as well as all the sequences ?t just chosen. We then
have countably many sequences, y? (1 € w). Each Yiis a sequence of disjoint
closed sets (identifying each of the sequences of points 37 with the corresponding
sequence of singletons). Since the notion of strong limit point does not depend

on the order type of the sequence, we may as well assume that each Y? is an w-
sequence, so Yi= (YjZ :j <w). Ifi € wand U is a clopen subset of XB, let R(i,U)
be the assertion that for each point h € Sﬁv if his a strong limit point of Yi, and

U is a neighborhood of h, then there are infinitely many n such that

HJ(YJZ cUnN (V¢(2n)\V¢(2n+1))) A HJ(YJZ cUun (V¢(2n+1)\v¢(2n+2)))
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Then both R2.2 and R2.3b will hold if R(i,U) holds for each i, U. To accomplish

this we shall, for each 4, U, find a wi,U : w — w such that R(i,U) holds whenever

L+ 1) > wi7U(¢(£)) for all but finitely many ¢; this will be sufficient to be able
to define ¢, since there are only countably many ¢ and U.

So, fix ¢+ and U. We must find ¢ = wi,U such that for each point h € S’B, if

h is a strong limit point of Yi, and U is a neighborhood of h, then for each m,

Y(m) > m and

(V] CUN Vin\Vig()))

Now, fix m, and assume that there is some h € UNS 3 such that h is a strong limit

—\

point of Yi, since otherwise our condition is vacuous. Now, fix j with ij’ C(UNVm)
and h ¢ YjZ Note that YJZ ns B = (); this is obvious when Y comes from one of
the Q, (since none of the points in ?t is in Sﬁ) or when 8 € ODD (since then
Sp = {h}). When g € EVEN, it follows from item %3 in our choice of Sp above.

By compactness, there must be an » > m such that YJZ NVy = 0, and we choose

such an r for ¢)(m). %

If we only wanted to construct an S-space, then we could have made all the
S 3 singletons. That would simplify the proof — especially in the above discussion
of R2.2, where the U could always be one of the Vj, and ¢ could be chosen by
a simple diagonal argument. Making all the S 3 singletons would also force the

measure algebra to be separable.
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It is not clear whether one could do the above construction under C'H, without

$. Even without the measure, it is already a well known open question whether
CH alone implies the existence of a compact S-space of size greater than wy.

In answer to a question of Peter Nyikos, we now show that our space is hered-

itarily normal. It is also hereditarily countably paracompact. Furthermore, both

of these properties follow from the properties of the space stated in Theorem 3.1.1.

Theorem 3.4.1. Suppose that X is compact, X has no uncountable discrete
subsets and no convergent sequences, and every perfect subset of X is a G 5. Then

X is hereditarily normal and hereditarily countably paracompact.

The proof of Theorem 3.4.1 seems somewhat simpler if we follow M. E. Rudin

and express our properties in terms of “shrinkings” of countable (or finite) covers.

Lemma 3.4.2. A space Z is normal and countably paracompact iff for all
B < w and all open covers of Z, {Up, : n < B}, there are closed Hy, C Up, such that

{Hp :n < B} covers Z. 5%

For Uy, Hp(n < B) as above, one says that {Hp : n < (B} is a shrinking of

{Un :n < B}.

From Lemma 3.4.2, it is easy to prove the following well-known result.
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Lemma 3.4.3. Suppose that the space Z has a locally finite cover by closed
sets, each of which is normal and countably paracompact in its relative topology.

Then Z is normal and countably paracompact. %

Now, note, as we did in §1, that the hypotheses on X in Theorem 3.4.1 imply
that every infinite closed subset of X is the union of a perfect set, which we denote
now by ker(X), and a countable set of isolated points. If X is finite, let ker(X) = 0.

Then ker(X) is always a G 5.

Lemma 3.4.4. If X is as in Theorem 3.4.1 and p € X, then X\{p} is normal
and countably paracompact.

Proof. Applying Lemma 3.4.2, let 5 < w and let {Up : n < B} be an open
cover of X\{p}. If p € ker(X\Up) for each n, then {p} would be the intersection
of countably many G5 sets and hence a G5, which is impossible, since p would then
be the limit of a convergent sequence. So, fix ¢ such that p is isolated in X\Uj.
Let UZ{ = U; U {p}, and let U, = Uy, for n # i. Then the U}, form an open cover
of X, which is compact, so we may shrink the U;,} to closed H{l in X and then let

Hp = Hp N X\{p}. %

Since normality and countable paracompactness are hereditary to closed sub-
sets, we now know that whenever K is closed in X, K\ {p} is normal and countably
paracompact. Actually, the proof of 3.4.4 shows that K\{p} it is countably com-

pact, although we do not need that fact here.
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Proof of Theorem 3.4.1. It is enough to prove that X\H is normal and
countably paracompact whenever H is closed. Since ker(H) is a G5, we may find
a countable locally finite (in X\ H) cover of X\ H by closed (in X\ H) sets, where
each set in the cover is of the form K or K\{p}, with K closed in X. Thus, by

Lemma 3.4.3, X\ H is normal and countably paracompact. %

Actually, X\ H is countably compact iff ker(H) is clopen.

63.5. Getting the HS+HL Space. To make the space HL also, we simply
make every closed set a G5 — not just the perfect sets. This time, we only need

CH.

Theorem 3.5.1. If C'H holds, then there is a compact 0-dimensional, heredi-
tarily separable and hereditarily Lindelof space X and a Radon probability measure
(4 on X such that the measure algebra of X, i is isomorphic to the measure alge-
bra of 2“1 with the usual product measure. X, ;v also have the property that all

measure 0 sets are second countable in their relative topology.

To prove this theorem, we modify the construction from the previous proof.
HS+HL is guaranteed by a similar use of irreducible maps, as explained by the

next lemma.

Lemma 3.5.2. Assume just R1.1 (X is closed in 2“1 and X is its projection

on 2%). Then
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a. X is HL iff for all closed H C X, there is an o < wqy for which H =
(mor 1)~ (o L (H)).
b. X is HL+HS iff for all closed H C X, there is an o < wy for which ng is
irreducible on (Wzl)_l(wzl (H)).
Proof. Part (a) follows from the fact that HL is equivalent to all closed
sets being G5 sets (for compact X).

For the < of Part (b), irreducibility implies that H = (o 1)~ (rol

(H)),
so X is HL by Part (a). Since the irreducible preimage of a separable space is
separable, all closed subsets of X are separable, which implies that X is HS, since
X is first countable.

For the = of Part (b), assume X is HS+HL. Let H be closed in X, and
let £ be a countable dense subset of H. Applying Part (a), we may fix a < wy
such that H = (ral) " H(ral (H)) and {e} = (mal)"L(ral(e)) for all e € E. If
F is any closed subset of H such that 731 (F) = 731 (H), then for each e € FE,
ng (e) € ng (F),so e € F; hence E C F,so F' = H. Thus, 751 is irreducible on
H = (r51)~ (wg (H)). *

Now, to prove Theorem 3.5.1, we delete R1.7 (which gave points uncount-
able character), and replace it by R4.1 below, which will have just the opposite
effect. We also delete R2.1-R2.2, which relied on . Requirement R2.3, which

guaranteed irreducibility of maps, remains the same as it was, but the Q¢ will have

a different meaning.
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Using C'H, choose, for all countable o > w, an ordinal do < « and a Borel
set, Jo C 250‘, so that for all v < wy and each Borel set J C 27 there is an o > v
such that 0oy =y and Jo = J.
Once we have defined X, where w < o < wqy, we define the following
subsets of Xq:
Co = (ﬂg“a)_l(Ja), if Jo C Xso Co = 0 otherwise.
Kq = Cq if Cq is closed; Ko = X otherwise.
Qo =Ko\ U{O: 0 isopen A pa(KqNO) =0}
No = (Kq \ Qa) U Cq, if pa(Co) = 0; Nop = (K \ Qo) otherwise.

Then we require

R4.1. For any 8 > o > w, AgN Bg N (Wg)_l(Na) =0.

Lemma 3.5.3. Assume the requirements R1.1-R1.6, R2.3, and R4.1. Let

1

H be a closed subset of X. Then there is an o < wq such that ﬁg is irreducible

(H)).
wy

Proof. For each v < wy, let Hy = my~(H). Then the py(Hy) form a

on (mal) "L (rgl

non-increasing sequence of real numbers, so we may fix a v < wq such that for all
a >, pa(Ha) = py(Hy). Now fix an o > v such that do = v and Jo = Hy.
Then Ko = Cq = (W%)_l(Hf}/). Then Hey is a closed subset of Ko with the
same measure, so Qo C Hoy C K. Now, ng is irreducible on (ng)_l(Qa) (by
R2.3b and Lemma 3.3.6), and ng is 1-1 on (ﬂgl)_l(Ha\Qa) (by R4.1). Thus,

ng must be irreducible on (ng)_l(Ha) as well. Y
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Including the Cq in Ng ensures that all measure 0 sets will be second

countable.

Proof of Theorem 3.5.1. By Lemmas 3.5.2 and 3.5.3, we are done, pro-
vided all the requirements can be met. But the proof of this is exactly as for

Theorem 3.1.1, except that now ODD = () and EVEN = wy \w. %

§3.6. Remarks on [13] As we mentioned before, there is also a counter-
example to Question H which is an L-space, see [13]. Note that the space in [13]
also needed only C'H and satisfied everything in Theorem 3.5.1 except being HS.

The original construction of Kunen in [13] can also be described using the
notation we had for the constructions in this Chapter. So, if X is the L-space of
Kunen, we can think of X = le in the inductive construction which for each
w < a <wy gives a closed subset X of 2% As in §3.2, we can define Ay and By.

The construction in [13] did not use irreducibility, but rather established
HL by making the measure 0 ideal and the first category ideal coincide; this was
accomplished by taking A g = X ;i for all 8. The requirement of separability forces

there to be a first category set of measure 1:

Lemma 3.6.1. In a separable Radon probability space in which points have
measure 0, there is a first category set of measure 1.

Proof. Let X,u be such a space and D a countable dense subset of X.
Then u(D) = 0. So, for every n € w, we can find an open Op, containing D such

that u(Op) < 1/2™. Then Upey, (X \ Op) is a nowhere dense set of measure 1.9
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Chapter IV

More Counter-examples

In this chapter we show that a counter-example to Question H can exist
independently of the size of the continuum. Also, we show that the construction
we had in the previous chapter of a compact S-space with a non-separable Radon
probability measure on it, can actually be carried without . The assumptions
we use this time are C’H and wy Cohen reals. These assumptions do not imply
¢. Using just one Cohen real, we construct another example of an S-space, the
Ostaszewski space. This space, however, cannot help building a counter-example

to the Question H - we explain that at the end of §4.3.

§4.1. The Size of the Continuum does not matter. The counter-
examples to the question H that we presented so far all depended on C'H or {». So,
we always had ¢ = wj. Now we show that a counter-example can exist no matter
what the size of ¢ is.

The way we do this is to start with a model of set theory which satisfies
CH, do the construction of X, u from §3.5 in it, and then add Cohen reals. The
fact that X is a compact space and p is a non-separable Baire probability measure
on X, supported by closed sets, will not change. The other properties: HS, HL. and

the fact that all open sets are py-measurable, might be destroyed, as we are adding



70
more open sets. We shall see that the properties of being HS and HL are preserved.
As we explained in the previous Chapter, every Baire measure on a compact HL

space is Borel, so we do not need to check the Radon property separately.

For any set J, F'n(J,2) denotes the set of all finite partial functions from
J to 2, ordered by reverse inclusion. If J = A is an infinite cardinal, by adding
A Cohen reals we mean forcing with Fn(A,2), or, equivalently, Fn(A x w,2). (If
A = w, we more often say that a Cohen real is added).

Sometimes it is more convenient to think of F'n(A,w) then of Fn(A,2) - the
two forcing notions are easily seen to be equivalent.

Note that the partial order used to add A Cohen reals has precaliber wq, for

any A.

If M C N are models of set theory, and X is a 0-dimensional compact space
in M, then by X in N we mean the space in N whose clopen algebra is isomorphic
to the clopen algebra of X in M. A property of X in M is preserved by N, if X in

N has that same property.

Lemma 4.1.1. The property of being a compact 0-dim HS space is pre-
served by extensions by forcings of precaliber wy.

Proof. Suppose M is model of set theory, P a forcing of precaliber wy in
M and X is a compact 0-dim HS space in M. We can then assume that X is a
closed subspace of 2)‘, for some A. It is then easily seen that X remains a compact

0-dimensional space in any extension by P.
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Suppose that p € P forces that By for o < wq is a sequence of basic clopen
sets in X such that no By is covered by the union of all B 3 for § > a. For each
a we can fix a po extending p, such that po decides that Be, is [fq] for some fq
in Fn(A,2). Since P has precaliber wy, there is in M an uncountable subset A of
wy such that {pq : @ € A} has the finite intersection property.

Fix an a in A and suppose that F' is a finite subset of A\ a. Any ¢ € P
which extends pn, and all pg for p in F, will force that [fq] is not covered by the
union of [fﬁ] for fin F. So, in M, [fq] is not covered by the union of [fﬁ] for g
in F'.

By compactness, we conclude that ([fa]),c 4 refutes HS of X in M. %
An analogous argument shows also

Lemma 4.1.2. The property of being a compact 0-dimensional HL space

is preserved by extensions by forcings of precaliber wy. %

Theorem 4.1.3. If ) is a cardinal such that it is consistent that ¢ = A,
then it is consistent that ¢ = A and that there is a compact HS and HL space which
supports a non-separable Radon probability measure.

Proof. Start with a model M which satisfies CH and do the construction
from §3.5 in M. This yields a compact 0-dimensional Radon probability measure

space X, . which is both HS and HL. and whose measure algebra is non-separable.



72
Now add A Cohen reals, thus the forcing extension will have ¢ = A. By
Lemmas 4.1.1 and 4.1.2, X u will be both HS and HL in the extension, and the rest

of its properties are easily seen to be preserved, as explained before. %

Starting with Kunen’s L-space and using a a similar argument, we see the

following

Theorem 4.1.3. If A is like in Theorem 4.1.2, then it is consistent that
¢ = X and that there is a compact HL but not HS space which supports a non-

separable Radon probability measure.%

§4.2. The S-space Counter-example revisited. The S-space construc-
tion that we had in the previous chapter needed <{»>. Actually, the same result can
be obtained in a model obtained by adding wy Cohen reals to a model which only
satisfies CH and not <. The following lemma shows that a {)-sequence cannot

exist in the generic extension, either.

¢ is the statement: There are sets Aq in P(a) for o < wy, such that each

Agq is countable and for each A C wy,

{a<wi:ANnace Ag}

is stationary.
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Although seemingly weaker than <{», &~ is actually equivalent to <». For the

proof see [14, I17.14].

Lemma 4.2.1. Forcing with a ccc partial order does not add a {-sequence.
Proof. Let M[G] be a ccc forcing extension of a model M of set theory. If
Aq(a < wy) is a { sequence in M|[G], there is in M a function f : w; — [wy]?,

such that for every o € wy, Aq € f(a). So {~ holds in M. %

Corollary. There is a model of ZFC in which there are wy Cohen reals
and in which GCH holds but { does not.
Proof. Start with a model in which GCH holds but ¢ does not, and add

w1 Cohen reals. %

Now we show how to modify the construction of the S-space that we had in

Chapter 111, working only with C'H and wy Cohen reals.

Theorem 4.2.2. It is relatively consistent with GCH without <, that
there is a compact, O-dimensional, hereditarily separable space X and a Radon

probability measure g on X, such that 1-4 of Theorem 3.1.1 are satisfied.

To prove this Theorem, we repeat the construction which proved Theorem
3.1.1, but this time using just CH and wy Cohen reals.

For v € wy, we use ry to denote the y-th Cohen real, that is, for n in w,
ry(n) = UG(y,n). Also, My = M[{rﬁ : B < v}]. Note that r is Cohen generic

over M,y.
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We start with a model M of GCH, and add wy Cohen reals. Let G' be a
generic filter. The space X, u from Theorem 4.2.1 will be constructed in M|[G].
Note, of course, that M|[G] satisfies GCH.
We construct X, g in M[G]. Like in Chapter III, the construction will satisfy
requirements R1.1-R1.7, as well as modified versions of R2.2 and R2.3, R2.ZI
and R2.3l.

—\

Rather than using < to choose f&, as we did in §3.3, this time we use CH.

For every « in [w,wq), we enumerate all a-sequences in 2% as fg,( < wy. We

enumerate each fg as <fg§ (€< a).

We then postulate

/
R2.2 . For all @« < 8 < wy and for all ¢ < f: If fgé, for all £ < « are all

distinct points in X, and if fg is in MB’ then the conclusion of R2.2 holds with
fg replaced by fgf'

—\

We need to require that fg is an element of M 3 in order to be able to assure
this requirement later.

To see that this requirement does what we would like it to do:

/
Lemma 4.2.3. Assuming the requirements R1.1-R1.6 and R2.2 | X is
hereditarily separable and has no convergent sequences.

Proof. We simply follow the proof of Lemma 3.3.5, using a modified version

of R2.1. Reformulate R2.1(f), for 8 < wy, into the following
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/
R2.1 (). For all @ < 8 and for all ¢ < g: If fgf are all distinct points in

—\

Xq, then R2.1(3) holds with f¢ replaced by fCO‘.

—\

Given an wy-sequence f of distinct points in 2“1, note that the club C
from Lemma 3.3.1 can be chosen to satisfy an additional requirement:

3. ?[ v is in M.

Also, the counterpart of Lemma 3.3.2 is true: assuming R1.1-R1.6 and

/
R2.1 (wy), X is hereditarily separable. The reason is that, for an wy-sequence f

of distinct points in X, we can find a § < = in C, where C' is a club like above,

—\
—\ —\

such that f [ :fg for some ¢ < v.Then the first v elements of f form a dense
subset of ?

Now we prove that R2.2l implies R2.1/ (w1), just like in the proof of Lemma
3.3.5.

The statement about convergent sequences is verified in a similar fashion. %

To handle perfect sets, we again use C'H, and we fix for all & < wy an

enumeration F, g (€ < wy) of closed subsets of 2¢.

/
R2.3 . Suppose that a > w, 8 > «, £ < [ and Fg is in MB and is a perfect
subset of X. Then

a. AgN BgN (ﬂg)_l(Fg) is nowhere dense in (Wg)_l(Fg).

b. Agn (Wg)_l(Fg) and By N (WB)_l(Fg‘) are complementary regular

closed subsets of (WB)_l(Fg‘).
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/ /
As before, R2.3 ais implied by R2.3 b, but stating the requirement in this
way makes it easier to handle. The reason for mentioning M 3 is the same as in
/
R2.2 .

/
To see that requirement R2.3 will assure that all perfect sets are G, we

have the following

Lemma 4.2.4. Assuming R1.1-R1.3 and R2.3l, all perfect subsets of X
are Gs.

Proof. Given a perfect set F'in X. Let C be a club which has properties as
in Lemma 3.3.7, but in addition, for every « in C, (7'('(2:1)(17) is an element of M.
This is possible because (ng)(F) is determined by countably many basic clopen
sets.

Suppose that o < 8 are elements of C' and (ng)(F) = Fg‘ for some & < a.
Then the requirement R2.31, by Lemma 3.3.6, assures that ng is irreducible on
the inverse projection (7%}1)_1 of (Wg)_l(ﬁzl(ﬁ’)).

As C'is a club, we can find an increasing sequence ap(n € w) of elements
of C, such that wﬁ,‘j}l (F) is enumerated as Fgln for some &y < ap. Then the
supremum 3 of ay, is an element of C.

Note then that 7;1 (F) = ﬂnew(ﬂgn)_l(ﬂz}l (F)). By our above observa-
tion and the choice of ap, ng is irreducible on (ng)_l(F).*

To put everything together, we do exactly as we did in §3.4. The meaning

R NI N

of ODD, EVEN, pg: Jg and Kp is as before. For o, < wy, let Ng :fg if fg
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is a sequence of distinct points in Xq,. Otherwise N, g = (). Similarly, for o, < wq
, let Q? = Fg‘ if Fg‘ is a perfect subset of X, and Qg‘ = X otherwise.

For B € ODD, we choose Sﬁ as before. For § € EVEN, rather than
choosing S’B to satisfy X1 — X3 as for Theorem 3.1.1, we still require X1 but we
modify 2 and »3. We replace 2 by Z2I and X3 by E3l.

22, asks that for all «, ¢ € (w, ], ¥2 holds with Q« replaced by Qg‘. 23,
asks that for all o, § € (w, ], 33 holds with Nq replaced by Ng.

To see that such a choice of Sﬁ is possible, we apply exactly the same

argument as for Theorem 3.1.1.

Proof of Theorem 4.2.4 Now we come to choosing AB and BB’ given SB.
We do it generically. Basically, the function ¢ from the Proof of Theorem 3.1.1
is going to be rg- However, it is easier to express this if we think of T3 as of a
function from w to 2. With the choice of Vj(n € w) as in the Proof to Theorem

3.1.1, we define

Ag = Sg|JUnew V41 \ Va i rg(n) = 0}

and Bpg is the same with "r 3 (n) = 0” replaced by ” g (n)=1".

As before, we can reindex the relevant sequences as Y; (i € w). Note that

—\

now all sequnces Y are elements of M 3 We only have to show that T3 grows

fast enough to satisfy the equivalent of the requirement R(i,U) from the proof of



78
Theorem 3.1.1., for all « € w and U a clopen subset of X 3 The new requirement
/
is R (i,U), which requires that:

For each h € Sﬁ? iof h is a strong limit point of Yt , and U is a neighborhood

of h, then there are infinitely many n such that
ajak(Yj? CUNUget,(Vpgsa1 \ Virs)) AVs < k(rg(n+s) = 0)

and the same with ”rﬁ(n + s5) = 0” replaced by rﬁ(n +s)=1".
Let P denote Cohen forcing over M B Then r A is P generic. We show that

/
all relevant R (i, U) are met, by exhibiting convenient dense subsets of P.%

§4.3. Ostaszewski Space. In this, last, section, we show how another well
known consequence of ¢ can be constructed using wy Cohen reals. The space we
have in mind is the S-space of Ostaszewski, as constructed in [18]. It is also known
(see e.g. [20]), that this space can be constructed using wy Cohen reals. We show
that, in fact, one Cohen real is enough.

The original construction of Ostaszewski uses a weaker version od <, so
called . By a result of Shelah in [23], this version of ¢} does not imply CH, and

actually, ¢ is equivalent to & + CH.

A topological space is said to be locally compact if every point in the space
has a neighboorhood whose closure is compact.

A space is perfectly normal if every closed subset of the space is a G.
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So, for example, the space we had in §3.5 is perfectly normal. There was no

reason to state that as a separate property of the space in §3.5, since for compact
spaces, perfect normality is equivalent with hereditary Lindelofness.

Using &, Ostaszewski proved in [18] the following

Theorem 4.3.1. (Ostaszewski) There is a model of set theory in which
there is a 15 countable, 0-dimensional, locally compact, perfectly normal topology

T on wq, such that, in 7, wy is a HS but not HL space.
To do the construction, we use a weaker version of the & of Ostaszewski.

/
(% ) For each limit ordinal v in wy, there is a cofinal w-sequence 7+ in 7,
and a function f~ : 7y — w, such that for every unbounded subset X of wy, there

is a limit ordinal v with the property that for all n, X N f5 1({n}) is unbounded

in .

We shall now show that this version of & holds in any extension by a Cohen
/
real. Actually, by a different proof, & holds in the extension by any number of
Cohen reals.

We first need this fact:

Lemma 4.3.2. Suppose that M is a model of set theory, M[G] is an
extension of M by a Cohen real and X is an unbounded subset of wy in MI[G].

Then there is an unbounded subset Y of X, which is in M.
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Proof. The partial order used to add a Cohen real is countable. Therefore,

G is countable as well. Note that
o
X={acw :(FpeGplF’acX”}.
o
Therefore there will be a p € G such that Y = {a: p IF 7a €X "} is uncountable. %
Then we have:

Lemma 4.3.3. If M is a model of set theory and M[G] is a generic extension
of M by a Cohen real, then .?.l is true in M[G].

Proof. Given a limit ordinal v in wy, note that Py = F'n(w,y) x Fn(w,w)
is countable, so forcing with it is equivalent with the Cohen forcing. Therefore,
there is in M[G] a pair (r~,t~) of functions, where r~ : w — v and ty : w — w,
which is Py-generic over M. The r~ we are looking for, is the first coordinate of
that pair.

We define f~ by saying that for every n, fry(r~(n)) = ty(n).

Then, given an uncountable subset X of wy in M[G], there is a Y in M
which is an uncountable subset of X. For that Y, there is a club C' in M such that
for each v in C:

1. v is a limit ordinal and

2. Y N~ is unbounded in +.
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Take a v in C'. Set A=Y N+, and let n € w and § € v. We want to show

that there is an o > ( which is in AN ffy_l({n}) Such an a will certainly be in
XN 5 ({n}) as well

It is enough to note that the set
D = {{(p,q) : (3k € dom(p) Ndom(q))(Fa > B)a € AAp(k) =nAq(n)=a}

is a dense subset of P and, at the same time, an element of M .¥%

Before proving Theorem 4.3.1, let us state two relevant definitions:

A subset A of a space is discrete if for every point of A, there is an open
neighboorhood of that point which does not contain any other points of A.
A disjoint family of open sets separates points from A, if for every point in

A, there is an element of the family which intersects A exactly in that point.

Proof of Theorem 4.3.1. Let M be a model of set theory and M[G] an
extension of M by a Cohen real. Then M[G] satisfies &l.

In M[G], we construct a 0-dimensional, 15¢ countable topology 7 on wq, in
which wq is a locally compact, perfectly normal S-space. First, we fix an increasing
enumeration (yq : o < wy) of limit ordinals in wq. For each o < wq, let 7, and
Jyo be a sequence and a function as guaranteed by o?.l.

Now, by induction on « € wy, we construct a sequence (¢, : @ < wy) where

for each o < B < wq, 7T is a subset of 3 Each 7 is a 0-dimensional, locally
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compact and metrizable topology. At the end, to get 7, we simply take the union
of all 7, for o < wy. It is obvious that 7 is a locally countable, 15t countable
topology on wy. Now we explain how to choose 7 so that 7 becomes 0-dimensional

and w1y, 7 becomes a perfectly normal an S-space.

For o = 0, 7¢ is simply the discrete topology on w = .

If « is a limit ordinal, then o = sup B<a 1B and we let 7o be the union
of all 3 for 8 < a. It is then obvious that 7¢ is a 0-dimensional, metrizable and
locally compact topology on vgq.

Otherwise, « = 8+ 1 for some . We enumerate vq \ Vg as {zn :n € w},
and we consider the function f = ffyﬁ and the sequence r = ™g- Let {ry : k € w}
be an enumeration of . Note that r is a closed discrete subspace of (757 TB). Then,
in the 0-dimensional locally compact space YB3, T can be separated by a disjoint
family {uy, : k € w} of clopen compact sets, such that for each k € w, r. € uy..

We define the point base at each zy, to be the family of all sets OF, of the

form
O, = {zn} | JUluy, : frp) =n Ak >m},

where n,m € w.
The above, and the requirement that 3 C 7o, uniquely determine 7¢. It
is easy to see that so defined 7 is locally compact and metrizable. Let us check

that it is 0-dimensional as well.
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First note that we can fix a clopen basis B for B such that each element

of B intersects only finitely many of the sets {u;. : k € w}. Now define C to be B

together with all the sets of the form B N Ol,, where B is either in B or is equal
to Yo, and n,m € w.

Now, we easily verify that every element of C is clopen and that C covers

vo- To see that C is a clopen basis for 7y, it is enough to check that for all z € 6

and C' € C which does not contain x, there is a neighborhood of x which avoids C.

There are several cases to consider, and the only non-trivial one is when

T € and C is of the form BN O, , for some B € B and n,m € w. That case is

taken care of by requiring that B can only intersect finitely many of the uz., so we

can pick a neighborhood of z and subtract all the relevant u..

In the so constructed topology, wy is not HL or even Lindelof: the countable
limit ordinals are an open cover without a countable subcover. To prove that wy
is HS is harder, and that is where the &l comes in.

Given an uncountable X in wy, we shall not only prove that it is separable,
but, moreover, that for some v < wy, the closure of X N+ is the entire wy \ 7.

So, fix such an X, and, by &l, find a limit v such that for al n € w, f,}Tl{n}
is unbounded in X N~y. We claim that the closure of X N+ contains all ordinals &
which are > ~.

To prove this claim, let a be such that v = v4. Do an induction on § > +.

Assume that for all 8 € [, ), 8 is in the closure of X.
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Let n such that vy < 4§ < T+1- If n = «, then § = xy, for some n € w. If U
is a basic open neighborhood of zp, then U = {xn} JU{uy : k > m A f(r}.) = n},
for some m € w. The xp and uy are as defined at the stage o of the construction.

By the choice of f and because r.(k € w) N X is cofinal in X N, there is a
k > m such that f(ry) =n and 7. € X. So, § is in the closure of X.

If n > «a, we can by a similar argument show that ¢ is in the closure of the
set Sy = vn \ Y. But, by the induction hypothesis, every element of Sy is in the
closure of X, so ¢ is as well.

This finishes the proof of the claim. The perfect normality of the space also
follows from this claim, as the claim implies that every closed set in wy, 7 is either

countable or co-countable. ¥

We note that, exactly as in the original proof of Ostaszewski, with the
additional assumption of C'H, the construction can be modified so that w; becomes
countably compact.

The space of Ostaszewski cannot help us build a counter-example of Ques-
tion H. That is, suppose that K is a compactification of the Ostaszewski space X
and g a non-separable Radon probability on it. Being locally compact, X embeds
in every of it compactifications as an open, so Radon measurable, subspace. Then,
since X is scattered, the measure algebra of v restricted to X must be separable.

So, just knowing what p looks like on X, would not be enough to rebuild p on K.
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Under C'H, more is true: no compactification of the Ostaszewski space can
suport a non-separable Radon probability measure. If C'H is true, the Ostaszewski
space is countably compact and all its compactifications are equivalent to its one-
point compactification.
To construct an Ostaszewski space just from CH, is a well known open
question.
As pointed out to us by J. Roitman, o?ol alone is not enough to construct
a countably compact Ostaszewski space. The reason is that adding a Cohen real
does not change p > wy, while no thin-tall locally compact scattered regular space

is countably compact if p > wq is true.
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