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Abstract

Wheeler conjectured in [16] that if a theory has a model companion, then its universal

Horn fragment has a model companion. This conjecture was made on several positive

examples, see [6] and [8]. In these examples, models of the universal Horn fragments

contain definable Boolean algebras. Wheeler’s conjecture is shown to be false in [5] with

an example that does not contain a Boolean algebra. We focus on finding a positive

alternative to Wheeler’s conjecture. This is discussed more fully in chapter 1.

In chapter 2, we construct a language LBA which permits an approximation of a

model having an underlying Boolean algebra. This is closely related to work done by

Weispfenning in [15]. We provide a seemingly trivial translation of an L-theory Γ to

a LBA-theory ΓBA2 such that the classes of models of these theories are essentially the

same.

In chapter 3, we examine products of models of ΓBA2. This requires a more general

translation of L-sentences to LBA-sentences. We provide two translations of L-sentences

to this context: one associated with Kripke forcing, and a second translation which is

essentially Boolean forcing, which we call ΓBA.

In chapter 4, we show that the Boolean translation associates with each L-sentence

an ideal on the Boolean algebra. We then construct L-models out of models of ΓBA

that preserve the Π0
2 subset of Γ. Using this, we show that ΓBA is the universal Horn

fragment of ΓBA2.

In chapter 5, we extend ΓBA to a theory ΓABA by requiring the underlying Boolean

algebra to be atomless. We show that if a Π0
2 theory Γ is model complete, then its
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translated theory ΓABA is model complete.

In chapter 6, we show that models of ΓBA embed into models of ΓABA. With the

results of the previous chapters, this gives us a positive alternative to Wheeler’s conjec-

ture.

In chapter 7, we investigate the internal logic of the structures obtained. We show

that the deductive power of the Boolean translation is strictly stronger than intuitionistic

logic, but not as strong as classical logic.
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Chapter 1

Introduction

A common pursuit in model theory is the construction of model complete theories. Model

complete theories are often very useful. For example, David Marker says in [10, page

111], “Model-completeness and quantifier-elimination have many applications in real

algebraic geometry.” In support of this idea, Annalisa Marcja and Carlo Toffalori state

in [9, page 86] that “In fact, Algebra inspires the notion of model completeness . . . ”, and

“. . . some developments in Model Theory do produce a significant progress in Algebra;

indeed some alternative elegant proofs of the celebrated Hilbert Nullstellensatz, or of the

Hilbert Seventeenth Problem, and, more notably, the solution of Artin’s Conjecture on

p-adic fields witness these fruitful contributions.” Often these model complete theories

are the model companions of well-known theories or theories that are easy to describe.

One well-known model theory result of interest to us is the following.

Proposition 1.1 Let Γ be a theory such that Γ has a model companion. Then the

universal fragment Γ∀ of Γ has the same model companion.

So the model companion of a theory is determined by the universal fragment of the

theory, and different model complete theories must have different universal fragments.

Recall that a sentence ϕ is equivalent to a universal Horn sentence if and only if

it is preserved under submodels of products of models satisfying ϕ. In 1978, William

Wheeler made the following conjecture in [16].
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Conjecture 1.2 (Wheeler’s Conjecture) Let Γ be a theory such that Γ has a model

companion Γ∗. Then the universal Horn fragment ΓUH of Γ has a model companion.

This conjecture was made on a number of known examples. For instance, the theory

of commutative rings without nilpotent elements is the universal Horn fragment of the

theory of commutative integral domains. The latter has as its model companion the

theory of algebraically closed fields. The former was shown to have a model companion

by Lipschitz and Saracino. The method used in [6] was then employed by MacIntyre

for the case of linearly ordered integral domains; see [8]. To make his proof work,

MacIntyre had to alter the language of ordered rings: in place of the order predicate ≤,

he introduced two binary functions for the maximum and minimum of pairs of elements.

This change is trivial in the case of linearly ordered rings. However, the universal Horn

fragment of linearly ordered integral domains, over this language, changes to a theory of

commutative rings with a distributive lattice ordering. The importance of this language

change is discussed more below.

Wheeler’s conjecture is false. In [5], Glass and Pierce proved the following result.

Theorem 1.3 The theory of linearly ordered abelian groups has a model companion,

but the universal Horn fragment of this theory does not have a model companion. If

we replace the order predicate with maximum and minimum, then the theory of linearly

ordered abelian groups still has a model companion and the universal Horn fragment still

has no model companion.

There is a significant difference between the examples of Lipschitz and Saracino and

MacIntyre on the one hand, and the example of Glass and Pierce on the other. Recall

that for a theory Γ, models of the universal Horn fragment ΓUH correspond to submodels
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of products of models of Γ. In products of integral domains and products of ordered

integral domains, the set of idempotents form a Boolean algebra. Hence, these product

models have a Boolean algebra contained within them. This is not the case with ordered

abelian groups.

With this in mind, our work is motivated by trying to find a uniform first-order

approximation of the methods used in the examples of integral domains and ordered

integral domains. We begin by making a trivial change to the original language L of the

companionable theory Γ. The new language LBA is obtained by replacing predicates in

L with function symbols in LBA that map to the two-element Boolean algebra.

Definition 1.4 We let 2 be the nondegenerate Boolean algebra consisting of two ele-

ments, 0 and 1.

Our companionable theory Γ is replaced with a theory ΓBA2 over LBA such that

models of Γ trivially correspond to models of ΓBA2.

Proposition 1.5 Let Γ be an L-theory. Then Γ is companionable if and only if ΓBA2 is

companionable and Γ admits quantifier-elimination if and only if ΓBA2 admits quantifier-

elimination.

In our context, the domains of models over LBA contain three disjoint parts. The

first is the underlying Boolean algebra. The second part is the structure. The structure

of a model over LBA corresponds to a model over L. The final part is the chaff, which

consists of all elements that are neither Boolean nor structural. In general, chaff has

little importance other than the fact that it exists.

The following result is our positive solution to an alternative to Wheeler’s conjecture.



4

Theorem 1.6 Let Γ be a companionable L-theory. Then the universal Horn fragment

of ΓBA2 has a model companion.

Theorem 1.6 is a variation of a major result of Weispfenning’s, see [15]. Weispfenning

uses a two-sorted language over which he develops theories with many similarities to our

theories ΓBA2 and the theory ΓABA mentioned below. His work is a generalization of

the model companion result found in [6]. Weispfenning’s major result is different from

MacIntyre’s generalization in [8]. MacIntyre uses aspects of Boolean sheaves, while

Weispfenning codes these sheaves in first order logic.

Theorem 1.6 is proved in several steps. In defining the axioms ΓBA2, we also introduce

the subtheory ΓBA, where the major difference between these axiom sets is that ΓBA

allows for the underlying Boolean algebra to be any Boolean algebra, not just the two-

element Boolean algebra. The first major step in proving the above theorem is the

following result.

Theorem 1.7 Let Γ be a universal L-theory. Then the universal Horn fragment of ΓBA2

is ΓBA.

Again, this is similar to a result of Weispfenning. However, our results are carried

out in a more general fashion. One major difference is that Weispfenning works only

with structural elements which exist over the entire Boolean algebra. We include partial

structural elements; that is, structural elements which exist over Boolean elements that

are not 0 or 1. Another difference with the work of Weispfenning is our translation. If

all structural elements exist over the whole Boolean algebra, then our axiomatizations

of ΓBA are the same. However, the presence of partial structural elements requires a
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more general axiomatization of ΓBA. In our context, we associate with an L-sentence an

ideal on the Boolean algebra.

By Theorem 1.7, it is sufficient for our main result to find a model companion for

ΓBA. We introduce an extension ΓABA of ΓBA. We axiomatize ΓABA by adding to ΓBA

the following three axioms:

• The underlying Boolean algebra is atomless.

• There are infinitely many chaff elements.

• There exists an element of full extent.

With this, we show the following.

Theorem 1.8 Let Γ be a model complete L-theory. Then ΓABA is model-complete.

With this result, we get new model complete theories which are distinct from the

original theory.

Our main work is completed with the following result.

Theorem 1.9 Let Γ be a Π0
2-theory. Then every model of ΓBA embeds into a model of

ΓABA. So if Γ is a universal theory that has a model companion Γ∗, then the universal

Horn fragment of ΓBA2 has (Γ∗)ABA model companion.

This Theorem shows that by internalizing a Boolean algebra we give the language

enough power to axiomatize the theory of the existentially closed models.

We conclude by demonstrating the deductive power of models over LBA. Using

the intuitionistic sequent calculus, we show that intuitionistic derivability transfers to



6

Boolean indexed models. We also demonstrate that we are not able to get full classical

derivability in our context. We do this by describing models of ∅BA and L-sentences over

this model such that the ideal these sentences generate are not principal. We also give

two sufficient conditions for a model to have all of its L-sentences to generate principal

ideals.

1.1 Notation

The following identifies the notation we use. If A is a model, then A denotes the domain

of A. It will be important to distinguish between intuitionistic proof and classical proof.

We use `i to represent intuitionistic derivation and `c to denote classical derivation.



7



8

Chapter 2

Language and Axioms

2.1 Introduction

We begin with an arbitrary language L of predicate logic, and define a new language

LBA. Over LBA, we introduce a theory ∅BA2 so that for each model A over L, there is an

associated model ABA2 over LBA such that A and ABA2 are essentially the same model.

Here, ABA2 is in essence a two-sorted model, with one sort being elements from A and

the other sort being elements of the two element Boolean algebra 2. We replace every

n-ary relation over A by its characteristic function on (ABA2)n. We leave functions on

A unchanged. For each L-sentence ϕ there is a straightforward translation to an LBA-

sentence ϕBA2 such that A |= ϕ if and only if ABA2 |= ϕBA2. Every set of L-sentences

Γ has a corresponding set of LBA-sentences ΓBA2 extending ∅BA2 such that Γ and ΓBA2

axiomatize essentially the same theories.

2.2 Creating an appropriate language

Our choice of predicate logic language is based on [13]. In this paper, Scott enriches

the usual predicate logic language with an existence predicate E and a unique-identity

operator I. We avoid the use of I, but the predicate E plays a significant role. Since
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we use predicate logic in both intuitionistic and classical situations, all of our languages

include {>,⊥,∧,∨,→, ∃, ∀,=,E}, besides the usual predicates and function symbols,

including constant symbols. In particular, the translated languages LBA also contain

the predicate E. We discuss the presence of E in more detail below.

In all theories, we allow functions to be partial. The predicate E is a unary existence

predicate, that is, `i E(x) ↔ x = x. So the predicate E essentially stands for the sort

of all existing elements. This is useful in the context of partial functions. All predicates

and functions are strict, i.e., all theories include axioms of the form E(f(x)) → E(x)

and P (x) → E(x). Because functions may be partial, the reverse implication E(x) →

E(f(x)) need not hold.

Definition 2.1 Given a language L, we form the associated language LBA, a new

language with symbols for a Boolean algebra:

• Introduce a unary predicate BA(x) into LBA.

• For every predicate P (x) ∈ L, introduce a new function symbol JP (x)K. This

includes the predicates x = y and E(x). Note that the symbols JK do not have any

meaning by themselves, but only in the context of JP (x)K.

• We include all function symbols from L.

• We introduce two binary function symbols: x�y, and x⊕ y, and a constant symbol

$, which will be a “structural” element.

• We introduce function symbols xt y, xu y, and −x as well as constant symbols 0

and 1 for the Boolean algebra.
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Having introduced LBA, we now provide some explanation on the intended meaning

of its function and constant symbols. In our context, the domain of an LBA-model has

two essential parts: an underlying Boolean algebra and a structure which lives above

this Boolean algebra. The structure is a generalization of a model over L, and the

Boolean algebra generalizes the two element Boolean algebra of true and false. These

two parts are disjoint, but interact through the functions JP (x)K and x � y. In general,

models over LBA will have a third part, which we call chaff. While the presence of chaff

is unavoidable, it has no properties except existence.

We now discuss the functions JP (x)K. This is read as “the extent of P”, that is, the

Boolean elements where P holds for each x. These functions map elements from the

structure to Boolean elements. At this point we discuss = and E. There are two places

where = and E are present in LBA. The first place they appear is in the functions Jx = yK

and JE(x)K, which are special cases of JP (x)K. These are functions from the structure of

a model to the Boolean algebra. Every structural element will have a unique Boolean

element over which it lives, which we call the extent of that element. The function

JE(x)K takes as input a structural element and outputs its extent. There are certain

contexts where structural elements do not exist over the full Boolean algebra, that is,

there is a structural element where the extent of that element is neither 0 nor 1. For

two distinct Boolean elements y and z, the inverse image of y and z are disjoint. Thus,

the Boolean elements partition the structure under this inverse mapping. The function

Jx = yK takes as input two structural elements and outputs the Boolean element over

which the two structural elements are equal.

The second place where = and E occur in LBA is as the usual predicates, that is x = y

and E(x) assign true or false to elements from the domain of a model. As predicates, =
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and E have as input all elements, whether structural, Boolean, or chaff. The functions

Jx = yK and JE(x)K are different from but analogous to the predicates x = y and E(x).

These functions act only on structural elements, and if the structure of an LBA-model

is a generalization of an L-model, then Jx = yK and JE(x)K are generalizations of the

L-predicates = and E.

We briefly discuss the constant symbol $. This symbol will represent a structural

element which only exists above 0. We show below that this is the unique element

that exists over 0. In some sense, this element corresponds to being “undefined”. For

example, suppose that in a model over L, a particular function is undefined on some set

of elements. Then, in the translation of this model to a model over LBA, this function,

when acting on this set of elements, maps to $.

Our language LBA is similar to one used by Weispfenning in [15]. Here our sort BA

corresponds to his B-sort, and our functions JP (x)K correspond to his functions vR. He

also refers to structural elements as L-terms. Like in our context, his functions vR map

L-terms to the B-sort. He also includes functions from L as functions from L-terms to

L-terms.

2.2.1 Axiomatizations for the basic theories

We list axiomatizations for ∅BA and ∅BA2. Unless otherwise noted, all variables are

understood to be universally quantified. We begin with axioms for the sort BA:

Ba1 BA(0) ∧ BA(1)

Ba2 BA(x) ∧ BA(y)→ BA(x u y)

Ba3 E(x u y)→ BA(x) ∧ BA(y)
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Ba4 BA(x) ∧ BA(y)→ BA(x t y)

Ba5 E(x t y)→ BA(x) ∧ BA(y)

Ba6 BA(x)→ BA(−x)

Ba7 E(−x)→ BA(x)

These axioms imply that xu y and xt y, and −x are total functions on BA, the first

two from BA×BA to BA, and the last from BA to BA. Next, we include the Boolean

algebra axioms:

Ba8 BA(x)→ (x u x = x) ∧ (x t x = x)

Ba9 BA(x) ∧ BA(y)→ x u y = y u x

Ba10 BA(x) ∧ BA(y)→ x t y = y t x

Ba11 BA(x) ∧ BA(y) ∧ BA(z)→ (x u y) u z = x u (y u z)

Ba12 BA(x) ∧ BA(y) ∧ BA(z)→ (x t y) t z = x t (y t z)

Ba13 BA(x)→ (x u 1 = x) ∧ (x t 0 = x)

Ba14 BA(x) ∧ BA(y)→ (x t (x u y) = x) ∧ (x u (x t y) = x)

Ba15 BA(x) ∧ BA(y) ∧ BA(z) → ((x u (y t z)) = (x u y) t (x u z)) ∧ ((x t (y u z)) =

(x t y) u (x u z))

Ba16 BA(x)→ (x t −x = 1) ∧ (x u −x = 0)

Ba17 1 = 0→ ⊥
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Thus, the model will contain a nondegenerate Boolean algebra. We provide the

following definitions related to the Boolean algebra:

Definition 2.2 1. We introduce a relation x E y on the Boolean algebra that holds

precisely when x t y = y. Equivalently, x E y holds if x u y = x;

2. If we have a Boolean algebra A, and B ⊆ A, we let 〈B〉 be the Boolean algebra

generated by the elements from B.

3. For a model A, we define BA(A) to be the set {a ∈ A : A |= BA(a)}.

Next, we introduce structural elements which are disjoint from the Boolean algebra:

So1 BA(x) ∧ E(JE(x)K)→ ⊥

Again, JE(x)K is a function which only takes structural elements as its input. Thus,

E(JE(x)K) holds only for structural elements.

Definition 2.3 For a model A, we define the structure, denoted ST(A), to be the set

{a ∈ A : A |= E(JE(a)K)}. For convenience, we use ST(x) as shorthand for E(JE(x)K).

Thus, So1 implies that the Boolean algebra BA is disjoint from the structural ele-

ments ST. Below, we axiomatize that the structural elements exist above the Boolean

algebra.

We now list the axioms for the functions JP (x)K for each P (x0, . . . , xn−1) in L of

arity n.

Pr1 E(JP (x)K)→
∧
i<n ST(xi)

Pr2 (
∧
i<n ST(xi))→ BA(JP (x)K)
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These two axioms state that the functions JP (x)K are from STn to BA. In particular,

this implies that the function JE(x)K is a map from ST to BA, and Jx = yK is from

ST× ST to BA.

Definition 2.4 1. For a model A and a ∈ ST(A), we define the extent of a to be

the Boolean element JE(a)K.

2. For a model A and an element p ∈ BA(A), we define Ap to be the set {a ∈ A :

A |= JE(a)K = p}, that is, Ap is the set of structural elements with extent p.

Pr3 E(JP (x)K)→ (JP (x)K E
d
i<nJE(xi)K)

Recall that a function is strict if E(f(x)) → E(x), and a predicate is strict if

P (x)→ E(x). The previous axiom gives us that the strictness axioms for predicates are

internalized within the new theory.

We now list the axioms for function symbols f from L:

Fn1 E(f(x))→ (
∧
i<n ST(xi))

Fn2 (
∧
i<n ST(xi))→ ST(f(x))

These axioms state that f is a map from STn to ST.

Fn3 E(f(x))→ (JE(f(x))K E
d
i<nJE(xi)K)

This axiom states the strictness of f is internalized in the new theory.

We now produce the axioms for the restriction function x � y. We use x � y as

shorthand for x0 �y, x1 �y, . . . , xn−1 �y:

Rs1 E(x�y)→ ST(x) ∧ BA(y)
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Rs2 ST(x) ∧ BA(y)→ ST(x�y)

These two axioms state that x�y is a function from ST×BA to ST.

Rs3 ST(x)→ x�JE(x)K = x

Rs4 ST(x) ∧ BA(y) ∧ BA(z)→ ((x�y)�z) = x�(y u z)

Rs5 E(JP (x)K) ∧ BA(y)→ JP (x�y)K = JP (x)K u y

Rs6 E(f(x)) ∧ BA(y)→ f(x�y) = f(x)�y

Rs7 E(Jx = yK)→ (x�Jx = yK) = (y �Jx = yK)

By Rs5, for a model A, if a ∈ Ap and q ∈ BA(A), then a�q ∈ Apuq.

We next include the axioms for the piecing together function x⊕ y. To explain this

function, we take a model A and elements a ∈ Ap and b ∈ Aq such that a� (p u q) = b�

(p u q). Then a ⊕ b is the element in Aptq such that (a ⊕ b) �p = a and (a ⊕ b) � q = b.

We show below that this element is unique. We axiomatize this as follows:

Pt1 E(x⊕ y)→ ST(x) ∧ ST(y)

Thus, only structural elements can be pieced together.

Pt2 E(x⊕ y)→ x�JE(y)K = y �JE(x)K

Thus, the only elements which can be pieced together are those which are equal

on their shared extent.

Pt3 E(x⊕ y)→ JE(x⊕ y)K = JE(x)K t JE(y)K

Thus, the piecing element has extent equal to the join of the extents of the indi-

vidual elements.
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Pt4 E(x⊕ y)→ ((x⊕ y)�JE(x)K = x) ∧ ((x⊕ y)�JE(y)K = y)

Thus, the piecing element restricted to the extent of an individual element is equal

to that individual element.

Pt5 y �JE(x)K = x�JE(y)K→ E(x⊕ y)

Thus, x⊕ y exists for elements that are equal over their shared extent.

We conclude the axiomatization of ∅BA with some axioms on particular extents.

Ex1 J>K = 1

Ex2 J⊥K = 0

Ex3 ST(x)→ Jx = xK = JE(x)K

Ex4 JE($)K = 0

This concludes the axioms ∅BA. Note that this axiom set has many similarities to the

two-sorted system of [15]. Our Fn axioms correspond with Weispfenning’s description

that L-functions have only L-terms as their domains, and these functions themselves are

L-terms. Our Pr axioms are equivalent to his statement that vR have L-terms as their

domain, and themselves are B-terms. There are some marked differences, however. In

[15], all structural elements are only allowed to have full extent. In our case, we include

elements that can have as extent any Boolean element. As such, we require Rs axioms

to provide us with the needed structure. Also, Weispfenning does not include piecing

together in his base theory, but instead includes it in extensions of his base theory. We

include it for technical reasons, which we discuss later.
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We label the theory axiomatized by ∅BA as Th(∅BA). We first note that each of the

axioms of ∅BA has a well-known form:

Definition 2.5 A sentence is universal Horn if it is equivalent to a conjunction of

sentences of the form ∀x(α1(x) ∧ . . . αn(x)→ α0(x)), where αi(x) is atomic for each i.

For a set of sentences Γ, we label (Γ)UH as the set of universal Horn sentences derivable

from Γ.

As ⊥ is an atom in our language, universal Horn sentences include the negation of

conjunctions of atoms. Note that each axiom of ∅BA is universal Horn.

Definition 2.6 We call models of ∅BA Boolean indexed models.

We are now ready to define the axiom set ∅BA2.

The following axiom states that BA equals 2:

Ba18 BA(x)→ x = 0 ∨ x = 1

The following axioms states that all elements are either Boolean or structural ele-

ments:

So2 E(x)→ BA(x) ∨ ST(x)

Definition 2.7 1. We define the axiom set ∅BA2 to be the set of sentences ∅BA ∪

{Ba18, So2}.

2. We call models of ∅BA2 simple Boolean indexed models.
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We now discuss our inclusion of ⊕ as a function symbol. We demonstrate below that

∅BA is the universal Horn fragment of ∅BA2. If x ⊕ y is not a function symbol in LBA,

then we would need to define it as an abbreviation for

Iz.((z �JE(x)K = x) ∧ (z �JE(y)K = y) ∧ (JE(z)K = JE(x)K t JE(y)K))

where Iz. is the existence operator used in [13]. With this term, we can no longer

axiomatize piecing together by universal Horn axioms. We include x ⊕ y as a function

symbol in the language and as a consequence, piecing together becomes part of the

universal Horn fragment of ∅BA2.

2.3 Simple Boolean indexed models

We now show that simple Boolean indexed models are essentially models over L. We

begin by translating L-formulas to LBA-formulas:

Definition 2.8 1. For an L-formula ϕ, we define the translated LBA-formula ϕBA2

inductively as follows:

If ϕ is atomic, of the form P (t), then ϕBA2 is JP (t)K = 1. In particular,

(E(x))BA2 is JE(x)K = 1 and (x = y)BA2 is Jx = yK = 1.

If ϕ is ψ ∧ θ, then ϕBA2 is ψBA2 ∧ θBA2.

If ϕ is ψ ∨ θ, then ϕBA2 is ψBA2 ∨ θBA2.

If ϕ is ψ → θ, then ϕBA2 is ψBA2 → θBA2.

If ϕ is ∀xψ, then ϕBA2 is ∀x(JE(x)K = 1→ ψ(x)BA2).

If ϕ is ∃xψ, then ϕBA2 is ∃x(JE(x)K = 1 ∧ ψ(x)BA2).



19

2. For a set Γ of L-sentences, we define ΓBA2 to be the set {γBA2 : γ ∈ Γ} ∪ ∅BA2.

We thus have a new translation of sentences Γ over L into a set of sentences ΓBA2

over LBA. Specifically, if Γ is empty, we get ∅BA2. Note that > translates to J>K = 1,

which, by Ex1, is equivalent to >. Similarly, ⊥ translates to J⊥K = 1, which, by Ex2

and Ba17, is equivalent to ⊥.

We first show that the translation of a quantifier-free formula has the following

general form:

Lemma 2.9 Suppose ϕ is an L-formula. Let ϕ′ be the LBA formula gotten by replacing

each atom δ that appears in ϕ with (JδK = 1). Then ϕ′ is equivalent to ϕBA2.

Proof. This holds a straightforward induction on the complexity of ϕ, along with the

fact that for an L-formula ψ, ∀xψ is equivalent to ∀x(E(x)→ ψ), and ∃xψ is equivalent

to ∃x(E(x) ∧ ψ). a

We now show how to translate a model A over L into a model ABA2 over LBA. This

translation has the property that, for any set Γ of L-sentences, A |= Γ if and only if

ABA2 |= ΓBA2:

Definition 2.10 Let A be a L-model. We define the translated model ABA2 as follows:

• We set BA(ABA2) = 2, with the functions t, u, and − defined as usual in the two

element Boolean algebra.

• For each a ∈ A, we introduce a new element â into ABA2, and set JE(â)K equal to

1. We let Â be the set {â : a ∈ A}. Then ST(ABA2) is Â ∪ {$}. As we explain

below, $ will take the place of a function being undefined. We also set JE($)K

equal to 0.
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• For each n-ary predicate P ∈ L and a ∈ (Â)n, we set JP (â)K equal to 1 if and

only if A |= P (a). If $ ∈ b, we set JP (b)K equal to 0. We only define JP (x)K for

tuples from ST(ABA2).

• For each function f ∈ L and â, b̂ ∈ (Â), we set f(â) equal to b̂ if and only if

A |= f(a) = b. If f(a) is undefined, then we set f(â) equal to $. If $ ∈ b, we set

f(b) equal to $. We only define f(x) for elements in ST(ABA2).

• We define x�y only if x ∈ ST(ABA2), and y ∈ BA(ABA2). We set x�1 equal to x

and x�0 equal to $.

• We define x ⊕ y if and only if either x is $ and y ∈ ST(ABA2), if y is $ and

x ∈ ST(ABA2), or x = y and x ∈ ST(ABA2). In the first two cases, we set x ⊕$

and $ ⊕ x equal to x, and in the last case, we set x⊕ y equal to x.

• Finally, we set J>K equal to 1, and J⊥K equal to 0.

We now have that this translated model satisfies the axioms in ∅BA2:

Lemma 2.11 Suppose A is a L-model. Then ABA2 |= ∅BA2.

Proof. This is a simple exercise on the axioms listed. a

Clearly, for an L-model A, the translated model ABA2 is very similar to A. To make

this statement more concrete, we first define (ϕ(a))BA2 to be ϕBA2(â). With this, we

get the following:

Lemma 2.12 Suppose A is a L-model, and let ϕ(a) be a L(A)-sentence. Then A |= ϕ(a)

if and only if ABA2 |= ϕBA2(â).
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Proof. We prove this by induction on ϕ. If ϕ is atomic, then by the translation

above, the result is obvious. We now suppose the result holds for ψ and θ.

Suppose ϕ is ψ ∧ θ. Then A |= ϕ if and only if A |= ψ and A |= θ. By induction,

this holds if and only if ABA2 |= ψBA2 and ABA2 |= θBA2. This holds if and only if

ABA2 |= ϕBA2.

Suppose ϕ is ψ ∨ θ. Then A |= ϕ if and only if A |= ψ or A |= θ. By induction,

this holds if and only if ABA2 |= ψBA2 or ABA2 |= θBA2. This holds if and only if

ABA2 |= ϕBA2.

Suppose ϕ is ψ → θ. Then A |= ϕ if and only if A |= ψ implies A |= θ. By induction,

this holds if and only if ABA2 |= ψBA2 implies ABA2 |= θBA2. This holds if and only if

ABA2 |= ϕBA2.

Suppose ϕ is ∀xψ. Then A |= ϕ if and only if, for every a ∈ A, A |= ψ(a). By

induction, this holds if and only if, for every â ∈ ABA2 such that if A |= JE(â)K = 1,

ABA2 |= ψ(â)BA2. This holds if and only if ABA2 |= ϕBA2.

Finally, suppose ϕ is ∃xψ. Then A |= ϕ if and only if there exists an a ∈ A with A |=

ψ(a). By induction, this holds if and only if there exists â ∈ Â with ABA2 |= JE(â)K = 1

and ABA2 |= ψ(â)BA2. This holds if and only if ABA2 |= ϕBA2. a

With this, we get that ABA2 satisfies all of ΓBA2:

Corollary 2.13 Suppose A is an L-model and Γ is a set of L(A) sentences with A |= Γ.

Then ABA2 |= ΓBA2.

Proof. This follows from Lemma 2.11 and Lemma 2.12. a

We now show how to get matching L-structures from models of ∅BA2:
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Definition 2.14 If B |= ∅BA2, then we define B1 as the following L-model:

The domain B1 is {b ∈ B : B |= JE(b)K = 1}.

For predicates P , B1 |= P (b) if and only if B |= 1 E JP (b)K.

For functions symbols f , B1 |= f(a) = b if and only if B |= f(a) = b.

Note that the map sending B to B1 is essentially a projection operator. We now

explicitly show the connection between the original model A and the model ABA2:

Lemma 2.15 Let A be a L-model and let ABA2 be its translation. Then (ABA2)1
∼= A.

Proof. Recall that for each element a ∈ A, there is a corresponding element â ∈ ABA2

with ABA2 |= JE(â)K = 1. Thus, we let F : A → (ABA2)1 by a 7→ â. This is clearly

one-to-one and onto. Now, suppose A |= P (a). Then ABA2 |= 1 E JP (â)K, so that

ABA2
1 |= P (â). Now if A 6|= P (a), then ABA2 6|= 1 E JP (â)K, so that ABA2

1 6|= P (â).

Finally, suppose A |= f(a) = b. Then ABA2 |= f(â) = b̂, so that ABA2
1 |= f(â) = b̂. a

Thus, we can think of ABA2 as the model A, but instead of sentences being true or

false, we say that sentences have extent 1 or extent 0, respectively.

Next, we show that Lemma 2.15 has a corresponding result for models of ΓBA2:

Lemma 2.16 Let B |= ∅BA2. Then (B1)BA2 ∼= B.

Proof. Each element b ∈ B1 has a corresponding element b̂ ∈ BBA2. Thus, we set

F : B → (B1)BA2 with F ($) = $, F (b) = b̂ for b ∈ B1, F (0) = 0, and F (1) = 1.

Clearly this map is one-to-one and onto. Clearly this map preserves predicates E and

BA. Also, F (x ⊕ y) = F (x) ⊕ F (y), and F (x � y) = F (x) � F (y). Next, suppose

B |= f(a) = b for f ∈ L. Then B1 |= f(a) = b, so that (B1)BA2 |= f(â) = b̂. Now,



23

suppose B |= JP (b)K = 1. Then B1 |= P (b), so that (B1)BA2 |= JP (b̂)K = 1. A similar

proof holds if B |= JP (b)K = 0. Thus, for all functions, F (f(b)) = f(F (b)). a

Corollary 2.17 Let Γ be a set of L-sentences and suppose B |= ΓBA2. Then B1 |= Γ.

Proof. By Lemma 2.16, (B1)BA2 ∼= B, so that (B1)BA2 |= ΓBA2. By Lemma 2.12,

B1 |= Γ. a

Thus, there is a one-to-one correspondence between models of Γ and ΓBA2.

We now show that if Γ and ∆ are classically equivalent sets of sentences, then ΓBA2

and ∆BA2 are classically equivalent.

Lemma 2.18 Let Γ ∪ {γ} be a set of L-sentences. Then Γ `c γ if and only if ΓBA2 `c

γBA2.

Proof. Suppose Γ `c γ, and let B be an arbitrary model of ΓBA2. By Corollary

2.17, B1 |= Γ. Thus, B1 |= γ. Since B ∼= (B1)BA2, we get that B |= γBA2. As B was

arbitrary, we get ΓBA2 |= γBA2. Conversely, suppose ΓBA2 `c γBA2, and let A |= Γ. Then

ABA2 |= ΓBA2, so ABA2 |= γBA2. Hence (ABA2)1 |= γ. As A ∼= (ABA2)1, we are done. a

Thus, models of Γ and models of ΓBA2 are essentially the same. The following is now

obvious:

Proposition 2.19 Let Γ be a set of L-sentences. Then Γ has a model companion if

and only if ΓBA2 has a model companion. If Γ is model complete, then ΓBA2 is model

complete. Finally, Γ admits quantifier-elimination if and only if ΓBA2 admits quantifier-

elimination.
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Proof. The first two claims are straight-forward. The last claim follows from the

observation that if ϕ(x) is an LBA-formula, then ∃xϕ(x) is equivalent to ∃x(ST(x) ∧

ϕ(x)) ∨ ϕ(0) ∨ ϕ(1). a
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Chapter 3

Boolean Indexed Models and

Intuitionistic Logic

3.1 Introduction

In defining ∅BA2, we also defined the subset ∅BA. We begin by describing models of ∅BA

which have elements that are neither Boolean nor structural. We then produce some

basic properties satisfied by ∅BA. We then show that each model of ∅BA has an associated

Kripke model, where the underlying poset corresponds to the Boolean algebra. Similarly

to the case for ∅BA2, we introduce two new translations of each L-sentence ϕ to an LBA-

sentence. The first translation we name ϕBA. In the presence of ∅BA2, the sentences ϕBA2

and ϕBA are equivalent. The second translation we name ϕBA
K . This second translation

is closely related to intuitionistic forcing.

3.2 Clean and non-clean models

The set ∅BA does not contain the axiom So2. Thus, if A |= ∅BA, there may be elements

in A that are neither Boolean nor structural.

Definition 3.1 Let A be a model of ∅BA.
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1. We call A clean if it satisfies So2. If A does not satisfy So2, we say it is non-

clean.

2. We call an element a such that A |= ¬(ST(a) ∨ BA(a)) chaff. We let CH(A)

represent the chaff of A.

We begin by showing that in working with models of ∅BA, we may ignore the presence

of chaff.

Proposition 3.2 Suppose A |= ∅BA. Then A is the disjoint union of ST(A), BA(A),

and CH(A).

Proof. Clearly these sets union to A. By So1, and the fact that a ∈ CH(A) if and

only if A |= ¬BA(a) ∧ ¬ ST(a), these sets are disjoint. a

With this, we give the following definition:

Definition 3.3 Let A |= ∅BA.

1. We set BA(A) to be the model over language {u,t,−, 0, 1} with domain BA(A),

that is, BA(A) is the model consisting just of the underlying Boolean algebra.

2. As all LBA-functions are only defined on ST(A)∪BA(A), we let A◦ be the submodel

of A with domain ST(A) ∪ BA(A).

Proposition 3.4 Let A |= ∅BA. Then A◦ is the largest clean submodel of A, and A◦ |=

∅BA.
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Proof. Clearly A◦ is clean. Further, if A′ ⊆ A is another clean submodel, then for

all a ∈ A′,A |= BA(a) ∨ ST(a). Thus A′ ⊆ A. As ∅BA contains only universal axioms,

the last claim follows. a

For a given model A |= ∅BA and an LBA-sentence ϕ, we let ϕ◦ to be the usual

relativization of ϕ to the submodel A◦. For convenience, we reproduce the definition

below:

Definition 3.5 Define ϕ◦ as follows:

• If ϕ is atomic, then ϕ◦ is simply ϕ.

• If ϕ is ψ ∧ θ, then ϕ◦ is ψ◦ ∧ θ◦.

• If ϕ is ψ ∨ θ, then ϕ◦ is ψ◦ ∨ θ◦.

• If ϕ is ψ → θ, then ϕ◦ is ψ◦ → θ◦.

• If ϕ is ∃xψ, then ϕ◦ is ∃x((ST(x) ∨ BA(x)) ∧ ψ◦).

• If ϕ is ∀xψ, then ϕ◦ is ∀x((ST(x) ∨ BA(x))→ ψ◦).

The following result is obvious from this translation:

Lemma 3.6 For an LBA-sentence ϕ, we have So2 `i ϕ↔ ϕ◦ and `i ϕ◦ ↔ (ϕ◦)◦.

With this, we show how ϕ is related to ϕ◦.

Lemma 3.7 Let A |= ∅BA, and ϕ be an LBA(A◦) sentence. Then the following are

equivalent:

1. A |= ϕ◦;
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2. A◦ |= ϕ◦;

3. A◦ |= ϕ.

Proof. 1 and 2 are equivalent by the usual properties of relativization. 2 and 3 are

equivalent by Lemma 3.6. a

We now show that for our purposes, the submodel relation between models of ∅BA is

essentially the same as the submodel relation between models of ∅BA ∪ {So2}.

Proposition 3.8 Let A and B be models of ∅BA.

1. If A embeds into B, then A◦ embeds into B◦.

2. Suppose A◦ embeds into B◦. Let C be the model extending B◦ with C◦ = B◦ and

CH(C) = CH(A). Then A embeds into C, and C |= ∅BA.

Proof. Part 1 is obvious. For 2, A clearly embeds in C. The last claim follows from

the fact that B |= ∅BA. a

Thus, for models A and B of ∅BA, up to a minor change in the chaff of B, A embeds

into B if and only if A◦ embeds into B◦. In proofs that a model A embeds into a model

of a particular theory, it suffices to show that A◦ embeds into a model of that particular

theory. This will prove useful in finding the universal Horn fragments of certain theories

extending ∅BA.

3.3 Basic properties of Boolean indexed models

We now show some basic properties which are derivable from ∅BA. For tuples x and y

of the same length, we let Jx = yK stand for Jx0 = y0K u . . . u Jxn−1 = yn−1K.
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Lemma 3.9 The following are consequences of ∅BA.

1. (E(JP (x, y1, z)K)∧E(JP (x, y2, z)K))→ (Jy1 = y2Ku JP (x, y1, z)K E JP (x, y2, z)K).

2. (E(f(x, y1, z))∧BA(Jy1 = y2K))→ f(x, y1 �Jy1 = y2K, z) = f(x, y2 �Jy1 = y2K, z).

3. ST(x�y)→ (JE(x�y)K = JE(x)K u y).

4. (ST(x) ∧ BA(y))→ x�y = (x�(JE(x)K u y)).

5. JE(x)K E y → x�y = x.

6. (E(f(x0, . . . , xn−1)) ∧ BA(y))→ f(x0, . . . , xi �y, . . . , xn−1) = f(x)�y.

7. (E(f(x0, . . . , xn−1)) ∧
∧
i<n BA(yi))→ f(x0 �y0, . . . , xn−1 �yn−1) = f(x)�

d
i<n yi.

8. (ST(x) ∧ BA(y))→ JP (x0, . . . , xi �y, . . . , xn−1)K = JP (x)K u y.

9. ((JE(x1)K = y1t y2)∧ (JE(x2)K = y1t y2)∧ (x1 �y1 = x2 �y1)∧ (x1 �y2 = x2 �y2))→

x1 = x2.

10. ((x1 �y1 = x2 �y1) ∧ (x1 �y2 = x2 �y2))→ x1 �(y1 t y2) = x2 �(y1 t y2).

11. E(x⊕ y)→ f(x⊕ y) = f(x)⊕ f(y).

12. E(f(x)�(y t z))→ (f(x)�(y t z)) = (f(x)�y)⊕ (f(x)�z).

13. E(x⊕ y)→ JP (x⊕ y)K = JP (x)K t JP (y)K.

14. JE(x)K = 0→ x = $.

15. ST(x)→ x⊕ x = x.

16. E(x⊕ y)→ x⊕ y = y ⊕ x.
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17. (E(x⊕ y) ∧ E(y ⊕ z) ∧ E(x⊕ z))→ (x⊕ y)⊕ z = x⊕ (y ⊕ z).

Proof. For 1, by axiom Rs7, y1 �Jy1 = y2K = y2 �Jy1 = y2K. Thus

JP ((x, y1, z)�Jy1 = y2K)K = JP ((x, y2, z)�Jy1 = y2K)K.

By axiom Rs5, this is equal to JP (x, y2, z)K u Jy1 = y2K E JP (x, y2, z)K.

2 follows from axiom Rs7 and Fn2.

3 is a special case of Rs5.

For 4, by Rs3 and Rs4, x�(JE(x)K u y) = (x�JE(x)K)�y = x�y.

For 5, x = x�JE(x)K = x�(JE(x)K u y) = x�y.

For 6, by axiom Fn3, JE(f(x0, . . . , xi �y, . . . , xn−1))K E y. Thus,

f(x0, . . . , xi �y, . . . , xn−1) = (f(x0, . . . , xi �y, . . . , xn−1))�y = f(x�y) = f(x)�y

where the first equality follows from part 5, and the last two equalities hold by Rs6.

7 follows immediately from 6.

For 8, with Pr3 we have JP (x0, . . . , xi �y, . . . , xn−1)K E y, so that

JP (x0, . . . , xi �y, . . . , xn−1)K = JP (x0, . . . , xi �y, . . . , xn−1)K u y

Using Rs5,

JP (x0, . . . , xi �y, . . . , xn−1)K u y = JP (x0 �y, . . . , xi �y, . . . , xn−1 �y)K

. Again, by Rs5, this is equal to JP (x)K u y.

For 9, we have that Jx1 = x2K u y1 = Jx1 �y1 = x2 �y1K by Rs5. Similarly,

Jx1 = x2K u y2 = Jx1 �y2 = x2 �y2K. Thus, (Jx1 = x2K u y1) t (Jx1 = x2K u y2) =

Jx1 = x2K u (y1 t y2) = Jx1 �(y1 t y2) = x2 �(y1 t y2)K. But since x1 � y1 = x2 � y1,
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Jx1 = x2K u y1 is JE(x1)K u y1. Similarly, Jx1 = x2K u y2 = JE(x1)K u y2. Thus,

Jx1 = x2K u (y1 t y2) = (Jx1 = x2K u y1) t (Jx1 = x2K u y2) = (JE(x1)K u y1) t

(JE(x1)K u y2) = JE(x1)K u (y1 t y2) = JE(x1)K, where the first and third equality hold

by Ba15. A similar argument gives us that Jx1 = x2K u (y1 t y2) = JE(x2)K. Thus

x1 = x1 �JE(x1)K = x1 �Jx1 = x2K = x2 �Jx1 = x2K = x2.

10 follows with part 9 applied to the elements x1 � ((JE(x2)K u y1) t (JE(x2)K u y2))

and x2 �((JE(x1)K u y1) t (JE(x1)K u y2)).

11 follows with parts 2 and 6.

12 follows with 10.

13 follows with parts 1 and 8.

For 14, suppose we have JE(x)K = 0. Now, 0 = Jx = $K u 0, since Jx = $K is a

Boolean element. By axiom Rs5, Jx = $K u 0 = Jx�0 = $ �0K. But, by axiom Rs3

and Ex4, x � 0 = x and $ � 0 = $. As a result, Jx�0 = $ �0K = Jx = $K, so that

0 = Jx = $K. Thus, x = x�0 = x�Jx = $K = $ �Jx = $K = $ �0 = $.

For 15, note that E(JE(x)K) implies E(x ⊕ x), and JE(x⊕ x)K = JE(x)K. The result

then follows by part 9.

16 and 17 both follow with part 9. a

By Lemma 3.9, we have the following definition:

Definition 3.10 Let A |= ∅BA.

1. If a and b are such that A |= E(a⊕ b), we say a and b are pieceable.

2. By parts 15, 16m and 17, if {ai : i < n} is a set of pairwise pieceable elements, we

write ⊕i<nai for a0 ⊕ a1 ⊕ . . . an−1.
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3. For tuples a and b of the same length such that ai and bi are pieceable for all i,

we write a⊕ b for the tuple a0 ⊕ b0, . . . , an−1 ⊕ bn−1.

3.4 The associated Kripke model of a Boolean in-

dexed model

We show that for each Boolean indexed model there is an associated Kripke model.

Definition 3.11 Let A be a Boolean indexed model.

1. For p ∈ BA(A), recall that Ap is the set {a ∈ ST(A) : p = JE(a)K}, that is, the

set of elements that have extent p.

2. For p ∈ BA(A), we set Ap to be the L-structure on domain Ap as follows:

• For every nullary predicate P , set Ap |= P if and only if A |= p E JP K.

• For every atom of positive arity P (t0(x), . . . , tn−1(x)) in L and a ∈ Ap, Ap |=

P (t0(a), . . . , tn−1(a)) if and only if A |= JP (t0(a), . . . , tn−1(a))K = p. Again,

note this includes the functions Jx = yK and JE(x)K.

• For every function f(x) in L and elements a, a′ in Ap, set Ap |= f(a) = a′ if

and only if A |= f(a) = a′.

We call this structure the node structures at p.

3. Given p, q ∈ BA(A) with q E p, we define a map πpq : Ap → Aq by πpq (a) = a�q.
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We defined Ap to be set of elements that have extent exactly equal to p so that if

q E p, then the map πpq sends elements a ∈ Ap to a unique image in Aq. We now prove

that these maps act as functors.

Lemma 3.12 Let A |= ∅BA. For every p ∈ BA(A), πpp is the identity map, and if

r E q E p, then πqr ◦ πpq = πpr . Further, each πpq is a morphism.

Proof. The first two claims follow from Rs3 and Rs4. Suppose Ap |= P (a), where

a ∈ Ap. Then A |= JP (a)K = p. By Rs5, A |= JP (a�q)K = q. Thus, Aq |= P (πpq (a)).

Further, if Ap |= f(a) = a′, then A |= f(a) = a′. By Rs6, A |= f(a � q) = a′ � q. Thus,

f(πpq (a)) = πpq (f(a)). a

Before describing the associated Kripke model, we include one last result on the

morphisms πpq .

Lemma 3.13 Let A |= ∅BA, and let p ∈ BA(A), and suppose A |= q t r = p. Then the

map 〈πpq , πpr〉 : Ap → Aq × Ar is an embedding. Additionally, if q u r = 0, then 〈πpq , πpr〉

is an isomorphism.

Proof. By Lemma 3.12, it suffices to prove that for a set of elements a ∈ Ap, if

Aq × Ar |= P (〈πpq , πpr〉(a)), then Ap |= P (a). Thus, suppose Aq × Ar |= P (〈πpq , πpr〉(a)).

Then Aq |= P (a �q) and Ar |= P (a �r). Thus, A |= JP (a�q)K = q and A |= JP (a�r)K =

r. With Rs5, A |= q E JP (a)K and A |= r E JP (a)K. As JE(a)K is a Boolean element,

we have that p = q t r E JP (a)K. Since JE(a)K = p, we have that A |= JP (a)K = p.

Thus Ap |= P (a). A similar argument applies to atoms of the form f(a) = b. Finally, if

q u r = 0, then the embedding is clearly onto, so it is an isomorphism. a
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We are now ready to define the associated Kripke model K(A)− for a Boolean

indexed model A. For a definition of Kripke models, see [14, pages 77–80]. The un-

derlying poset of K(A)− is BA(A) \ {0}, with p ≤ q if and only if A |= q E p. Above

each Boolean element p is the structure Ap. For all p ≤ q we have the morphism πpq .

We note that the poset ordering ≤ has the reverse ordering of E, so that there is a

morphism which sends us from Ap to Aq. As a consequence, for an atomic sentence δ

over L(Ap), we have p ‖−δ if and only if Ap |= δ. Note that in our formulation, rather

than equality being a congruence relation, it is true equality. This is different from the

common intuitionistic use of equality just as a congruence relation. This is a standard

variation on the definitions of [14, pages 77–80].

For technical reasons, we expand this Kripke model as follows: expand the underlying

poset to all Boolean elements, including 0. Above 0, we put the structure A0, which has

domain {$}, and 0 ‖−δ for all atoms δ, including ⊥. We name this expansion K(A).

This expansion is minimal by the following:

Proposition 3.14 Let A |= ∅BA, and let p ∈ BA(A) with p 6= 0. Let ϕ be an L(Ap)-

sentence. Then (K(A)−, p) ‖−ϕ if and only if (K(A), p) ‖−ϕ.

Proof. We proceed by induction on the complexity of ϕ. The only non-trivial cases

are for implication and universal quantification. For implication, let ϕ be ψ → θ, where

the result holds for ψ and θ. Suppose (K(A), p) ‖−ϕ. Then for any q ≥ p where

(K(A), q) ‖−ψ, (K(A), q) ‖−θ. Then for any q 6= 0 with p ≤ q, if (K(A)−, q) ‖−ψ, then

(K(A)−, q) ‖−θ. Thus (K(A)−, p) ‖−ϕ. For the other direction, suppose (K(A)−, p) ‖−ϕ,

and let p ≤ q. If q 6= 0 and (K(A), q) ‖−ψ, then by induction we get (K(A), q) ‖−θ. If

q = 0, then (K(A), 0) ‖−⊥. So (K(A), 0) ‖−ϕ. The case for universal quantification is
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also straightforward. a

3.5 Translations to the associated language

For an L-formula ϕ, we have already introduced a translation of ϕ to an LBA-formula

ϕBA2. In that context, a true sentence is associated with the Boolean element 1, and a

false sentence is associated with 0. However, in a model with a larger Boolean algebra,

there may be many different Boolean elements. Further, we can have structural elements

which have an extent properly between 0 and 1. In the context of ∅BA, the translation

ϕBA2 is no longer sufficient, as we can have sentences which do not have a truth value of

1, but also do not have a truth value of 0. We must generalize the translation ϕBA2 to

a translation that will take into account that there are many different Boolean values.

We associate with a given sentence the set of Boolean elements which in some sense

live below that sentence. We accomplish this with two new translations. One is ϕBA,

which is obtained as follows: we introduce a translation of the form y E JϕK, where y

is thought of as a Boolean element below ϕ. The translation ϕBA then is defined as

1 E JϕK. The other translation, ϕBA
K , is related to the Kripke models of the last section.

3.5.1 The Boolean translation

We first introduce the notation y E JϕK, where y is a Boolean element and ϕ is an

L-formula. In the next chapter, we shall show that the elements y that satisfy y E JϕK

form an ideal. We then introduce the translation ϕBA based on this notation. This

translation is a generalization of ϕBA2.
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Definition 3.15 Let ϕ be an L-formula.

1. We define y E0 JϕK for all L-formulas ϕ inductively as follows:

• For an atomic sentence ϕ, which is of the form P (t), define y E0 JP (t)K as

y u JP (t)K = y. Again, this includes the functions Jx = yK and JE(x)K.

• For conjunction: y E0 Jϕ ∧ ψK is defined as y E0 JϕK ∧ y E0 JψK.

• For disjunction: y E0 Jϕ ∨ ψK is defined as ∃y1, y2((y1ty2 = y)∧y1 E0 JϕK∧

y2 E0 JψK).

• For implication: y E0 Jϕ→ ψK is defined as ∀z((z E y ∧ z E0 JϕK) →

z E0 JψK) (note that z E y is already defined for Boolean elements as

z u y = z).

• For the existential case: y E0 J∃xϕ(x)K is defined as ∃x(JE(x)K = y ∧

y E0 Jϕ(x)K).

• For the universal case: y E0 J∀xϕ(x)K is defined as ∀x((JE(x)K E y) →

JE(x)K E0 Jϕ(x)K) (note that JE(x)K E y is defined as JE(x)K u y = JE(x)K,

as JE(x)K is a Boolean element).

2. We define y E Jϕ(x)K as y E0 Jϕ(x)K ∧ BA(y) ∧
∧
i<n ST(xi).

We include the last two conjuncts in the definition of E so that a sentence cannot be

made vacuously true by putting elements of the incorrect sort into the various predicates

and functions. This definition might seem unnecessarily cumbersome. For example, it

appears as if we could have defined y E0 Jϕ→ ψK as y u JϕK E0 JψK. However, we do

not know that, for arbitrary L-formulas ϕ, that JϕK is a Boolean element. In section 7.3,
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we show there are models of ∅BA and formulas ϕ such that JϕK is indeed not a Boolean

element. In the next chapter we describe in more detail formulas where JϕK is a Boolean

element. We also show in section 7.4 such contexts where JϕK is a Boolean element for

every L-formula ϕ.

We can now define our translation ϕBA.

Definition 3.16 1. For an L-formula ϕ, we define ϕBA to be the LBA-formula

1 E JϕK.

2. For a set of L-sentences Γ, we define ΓBA to be the set {γBA : γ ∈ Γ} ∪ ∅BA.

The use of E is sometimes cumbersome, as it requires us to verify that all elements

are of the correct type. That is, in order to show that A |= p E Jϕ(x)K, we have to

verify that p is a Boolean element and x are all structural elements. With this in mind,

we introduce a translation E1 which is similar to E. We show below that E1 and E

are equivalent, but E1 is easier to verify than E. In the next chapter there are many

results which, given various assumptions, have as a conclusion y E JϕK. In such cases it

is easier to prove y E1 JϕK than y E JϕK.

Definition 3.17 We inductively define y E1 JϕK as follows:

• For the atomic, conjunction, disjunction, and existential case, we define y E1 JϕK

the same way as y E0 JϕK.

• For implication: y E1 Jϕ→ ψK is defined as BA(y) ∧
∧
i<n ST(xi) ∧ ∀z((z E y ∧

z E1 JϕK)→ z E1 JψK).

• For the universal case: y E1 J∀xϕ(x)K is defined as BA(y) ∧ ∀x((JE(x)K E y) →

JE(x)K E1 Jϕ(x)K).
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We now show that the translations y E JϕK and y E1 JϕK are equivalent.

Lemma 3.18 Let ϕ be an L-formula. Then ∅BA `i y E JϕK↔ y E1 JϕK.

Proof. It is straightforward to show that ∅BA `i y E JϕK → y E1 JϕK. Thus, it

suffices to show ∅BA `i y E1 JϕK → y E JϕK. Now, as y E JϕK is defined y E0

JϕK ∧ BA(y) ∧
∧
i<n ST(xi), we must show that y E1 JϕK implies BA(y) ∧

∧
i<n ST(xi).

Thus, suppose y E1 JϕK. We proceed by induction on the complexity of ϕ.

Suppose ϕ is atomic. Then ϕ is of the form P (t). Then y E1 JϕK is y u JϕK = y. By

axiom Ba3, that means that BA(y) ∧ BA(JϕK). By Pr1, we get
∧
i<n ST(xi).

We now suppose the result holds for ψ and γ.

Suppose ϕ is ψ ∧ γ. Then y E1 JϕK is interpreted as y E1 JψK ∧ y E1 JγK. By

induction, we get BA(y) ∧
∧
i<n ST(xi).

Suppose ϕ is ψ∨γ. Then y E1 JϕK is interpreted as ∃y1, y2(y1ty2 = y∧y1 E1 JψK∧

y2 E1 JθK). By axiom Ba4, we get BA(y). By induction, we also get
∧
i<n ST(xi).

Suppose ϕ is ψ → γ. Then y E1 JϕK is interpreted as BA(y) ∧
∧
i<n ST(xi) ∧

∀z((z E y ∧ z E1 JϕK)→ z E1 JψK). Clearly then BA(y) ∧
∧
i<n ST(xi) holds.

Suppose ϕ is ∀xψ. Then y E1 JϕK is interpreted as BA(y) ∧ ∀x((JE(x)K E y) →

JE(x)K E1 Jϕ(x)K). Clearly BA(y) then holds. Now, as ∅BA `i JE($)K = 0 E y, by

supposition, we get that JE($)K = 0 E1 Jϕ($)K. By induction, 0 E JϕK holds. Thus, we

get that ∅BA `i
∧
i<n ST(xi).

Finally, suppose ϕ is ∃xψ. Then y E1 JϕK is interpreted as ∃x(JE(x)K = y ∧

y E1 Jψ(x)K). By axioms Pr1 and Pr2, we have that BA(JE(x)K), hence BA(y) holds.

Since y E1 Jψ(x)K, by induction we get ∅BA `i
∧
i<n ST(xi). a
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Thus, we get that y E JϕK and y E1 JϕK are equivalent. In general, we use the

notation y E JϕK, but prove y E1 JϕK. The usefulness of E1 will become clear in the

next chapter.

Since ¬ϕ is ϕ → ⊥, the formula y E0 J¬ϕK becomes ∀z((z E y ∧ z E0 JϕK) →

z E J⊥K). In the presence of ∅BA, J⊥K = 0, so that ∅BA proves that y E0 J¬ϕK is

equivalent to ∀z((z E y ∧ z E0 JϕK)→ z = 0).

We now show that ϕBA is a generalization of the translation ϕBA2:

Proposition 3.19 Let ϕ be an L-formula. Then ∅BA2 `i ϕBA2 ↔ ϕBA.

Proof. Use that 0 and 1 are the only Boolean elements. a

3.5.2 The Kripke translation

We now introduce the notation y EK JϕK similar to y E JϕK. We then define the

translation ϕBA
K based on this. This translation is essentially identical to intuitionistic

forcing as discussed in 3.4.

Definition 3.20 1. We define y E0
K JϕK for all L-formulas inductively as follows:

• For an atomic sentence ϕ, which is of the form P (t), define y E0
K JP (t)K as

y u JP (t)K = y.

• For conjunction: y E0
K Jϕ ∧ ψK is defined as y E0

K JϕK ∧ y E0
K JψK.

• For disjunctions, we define y E0
K Jϕ ∨ ψK as y E0

K JϕK ∨ y E0
K JψK.

• For implication: y E0
K Jϕ→ ψK is defined as ∀z((z E y ∧ z E0

K JϕK) →

z E0
K JψK).
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• For the existential case: y E0
K J∃xϕ(x)K is defined as ∃x(JE(x)K = y ∧

y E0
K Jϕ(x)K).

• For the universal case: y E0
K J∀xϕ(x)K is defined as ∀x((JE(x)K E y) →

JE(x)K E0
K Jϕ(x)K).

2. We define y EK Jϕ(x)K as y E0
K Jϕ(x)K ∧ BA(y) ∧

∧
i<n ST(xi).

3. For an L-formula ϕ, we define ϕBA to be the LBA-formula 1 EK JϕK.

4. For a set Γ of L-sentences, we define ΓBA
K to be the set {γBA

K : γ ∈ Γ} ∪ ∅BA.

We note that the only difference between E and EK came in the disjunction case.

When defining forcing in a Kripke model, one of the main differences comes in the

universal case. However, we defined y E J∀xϕK to say that if an element lives below

y, the extent of that element is below the extent of ϕ when that element is substituted

in ϕ. Thus, our definition of y E J∀xϕK already matches the definition of forcing. We

demonstrate this below.

With this we get the following result:

Proposition 3.21 1. Let ϕ be an L-sentence in which disjunction does not occur.

Then y EK JϕK and y E JϕK are the same formula.

2. Let Γ be a set of L-sentences such that disjunction does not occur in any γ ∈ Γ.

Then ΓBA
K = ΓBA.

Proof. Part 1 follows from the definitions of EK and E. Part 2 follows from part

1. a

We now show that ϕBA
K is also a generalization of the translation ϕBA2:
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Proposition 3.22 Let ϕ be an L-formula. Then ∅BA2 `i ϕBA2 ↔ ϕBA
K .

Proof. Again, this follows from the fact that 0 and 1 are the only Boolean elements. a

We now explicitly show how EK relates to intuitionistic logic:

Proposition 3.23 Let A |= ∅BA, p ∈ BA(A), and ϕ an L(Ap)-sentence. Then p EK JϕK

if and only if (K(A), p) ‖−ϕ.

Proof. The forcing definition in [14, pages 77–80] and the inductive definition of EK

are essentially the same. The result then follows by a straight-forward induction on the

complexity of ϕ. a

We get an immediate corollary:

Corollary 3.24 Let Γ ∪ {ϕ} be a set of L-sentences, with Γ `i ϕ. Then ΓBA
K `c 1 EK

JϕK.

Proof. First, ΓBA
K `c 1 EK JγK for all γ ∈ Γ. By Proposition 3.23, 1 ‖−γ for each γ.

By Kripke’s completeness theorem, 1 ‖−ϕ. Again, by Proposition 3.23, ΓBA
K `c 1 EK

JϕK. a

Thus, EK preserves intuitionistic derivability. In section 7.2, we will show that E

also preserves intuitionistic derivability. This proof is not as straightforward.
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Chapter 4

Point Models and Universal Horn

Fragments

Let Γ be a set of universal L-sentences. For each γ ∈ Γ, we have that γBA is equivalent

to a universal Horn sentence over ∅BA. If ψ and θ are universal L-sentences, then ψ

and θ are classically equivalent if and only if ψBA and θBA are classically equivalent over

∅BA. Further, we show that ΓBA2 is a universal theory, and the universal Horn fragment

(ΓBA2)UH of ΓBA2 is axiomatized by ΓBA. Also, ΓBA and (ΓUH)BA axiomatize the same

theory. In particular, the universal Horn fragment of ∅BA2 is axiomatized by simply

removing the axioms Ba18 and So2.

We do this by first proving some technical lemmas which show that each L-formula

has a corresponding ideal on the Boolean algebra. We introduce a generalization of the

node structures Ap. With this, we are able to show that if Γ and ∆ are Π0
2 theories

which are classically equivalent, then ΓBA and ∆BA are classically equivalent.

4.1 Local and pointwise truth of L-sentences

For an L-sentence ϕ, we consider two ways in which ϕ can be true in a model A of

∅BA. The first is of the form p E JϕK, which we call local truth over p. The second is



45

of the form Ap |= ϕ, which we call pointwise truth at p. We begin by showing that for

an L-sentence, local truth corresponds with ideals on the underlying Boolean algebra.

Next, we generalize the notion of pointwise truth from elements of the Boolean algebra

to filters on the Boolean algebra. Finally, we connect local truth of Π0
2 formulas with

their pointwise truth.

4.1.1 Local truth of L-sentences

Before showing that L-formulas correspond to ideals on the Boolean algebra, we need

to develop some properties. We first introduce a new notation:

Definition 4.1 1. Let ϕ be an L-formula. Then we write z E Jϕ(x�y)K for the

substitution z E Jϕ(x)K [x/(x�y)].

2. Let ϕ be an L-formula. Then we write z E Jϕ(x⊕ y)K for the substitution z E

Jϕ(x)K [x/(x⊕ y)].

Note that Definition 4.1 may lead to ambiguities if the restriction function symbol

x � y or the piecing together function symbol x ⊕ y already occur in L. In our context,

we will not encounter this problem.

Lemma 4.2 Let ϕ(x) be an L-formula. Then ∅BA `i z E y → (z E Jϕ(x)K ↔ z E

Jϕ(x�y)K).

Proof. We proceed by induction on the complexity of ϕ. If ϕ is atomic, then the

result holds by Rs5 and Rs6.
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Suppose ϕ is ψ ∧ θ. Then z E Jϕ(x)K means that z E Jψ(x) ∧ θ(x)K, or z E Jψ(x)K

and z E Jθ(x)K. By induction, this holds if and only if z E Jψ(x�y)K and z E Jθ(x�y)K,

or z E Jϕ(x�y)K.

Suppose ϕ is ψ ∨ θ. Then z E Jϕ(x)K is interpreted as ∃z1, z2(z1 t z2 = z ∧ z1 E

Jψ(x)K ∧ z2 E Jθ(x)K). Now, z1 E y and by induction, z1 E Jψ(x)K if and only if

z1 E Jψ(x�y)K. Similarly, z2 E Jθ(x)K if and only if z2 E Jθ(x�y)K. Hence, this is

equivalent to ∃z1, z2(z1 t z2 = z ∧ z1 E Jψ(x�y)K ∧ z2 E Jθ(x�y)K). Thus, z E Jϕ(x)K is

equivalent to z E Jϕ(x�y)K.

Suppose ϕ is ψ → θ and z E y. Note that if z E Jϕ(x)K holds, then BA(z) ∧∧
i<n ST(xi) also holds, and z E Jϕ(x�y)K implies the same. Now, z E Jϕ(x)K is

z E Jψ(x)→ θ(x)K, which, by the discussion above, becomes ∀w E z(w E Jψ(x)K →

w E Jθ(x)K). Then w E z implies w E y, so by induction, this holds if and only if ∀w E

z(w E Jψ(x�y)K → w E Jθ(x�y)K). Thus, z E Jϕ(x)K is equivalent to z E Jϕ(x�y)K.

Note, as ¬ψ is defined as ψ → ⊥, this case shows the Lemma holds when ϕ is ¬ψ.

Suppose ϕ is ∀xψ(x) and z E y. Again, note that z E Jϕ(x)K implies BA(z),

as does z E Jϕ(x�y)K. Then, as in the implication case, z E J∀xψ(x, x)K becomes

∀x(JE(x)K E z → JE(x)K E Jψ(x, x)K). Now, JE(x)K E z implies JE(x)K E y, so by

induction, this is equivalent to ∀x(JE(x)K E z → JE(x)K E Jϕ(x�y, x�y)K). Thus,

z E Jϕ(x, x)K is equivalent to z E Jϕ(x�y, x�y)K.

Finally, suppose ϕ is ∃xψ(x). Then z E Jϕ(x, x)K translates to ∃x(JE(x)K = z ∧ z E

Jψ(x, x)K). By induction, this is equivalent to ∃x(JE(x)K = z ∧ z E Jψ(x�y, x�y)K), so

that z E Jϕ(x, x)K is equivalent to z E Jϕ(x�y, x�y)K. a

We get two corollaries from this result:
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Corollary 4.3 ∅BA `i y E Jϕ(x)K↔ y E Jϕ(x�y)K

Proof. Obvious from Lemma 4.2. a

Corollary 4.4 Let A be a model of ∅BA, ϕ(x) an L-formula, and suppose a, b and p

are elements such that A |= b�p = a�p. Then A |= p E Jϕ(b)K↔ p E Jϕ(a)K.

Proof. By the previous corollary, p E Jϕ(a)K if and only if p E Jϕ(a�p)K if and only

if p E Jϕ(b�p)K if and only if p E Jϕ(b)K. a

We now show that E as a Boolean relation and E as a relation between Boolean

elements and extents of formulas are compatible.

Lemma 4.5 Let ϕ be an L-formula. Then ∅BA `i z E y ∧ y E JϕK→ z E JϕK.

Proof. We proceed by an induction on the complexity of ϕ. If ϕ is atomic, then

y E JϕK means that y u JϕK = y. Since z u y = z, we have z u JϕK = (z u y) u JϕK =

z u (y u JϕK) = z u y = z, so that z E JϕK.

Suppose ϕ is ψ ∧ θ. Then y E JϕK is y E Jψ ∧ θK, so y E JψK and y E JθK. By

induction, if z E y, then z E JψK and z E JθK, so z E Jψ ∧ θK.

Suppose ϕ is ψ∨θ. Then y E ϕ is y E Jψ ∨ θK, which translates to there exist y1 and

y2 such that y1 t y2 = y and y1 E JψK and y2 E JθK. Suppose z E y, and let y′1 = y1 u z

and y′2 = y2 u z. Then y′1 E y1 and y′2 E y2, so, by induction, y′1 E JψK and y′2 E JθK.

Further, y′1 t y′2 = z by axiom Ba15. Thus z E Jψ ∨ θK.

Suppose ϕ is ψ → θ. First, note that z E y ∧ y E JϕK implies BA(y) ∧
∧
i<n ST(xi).

So y E JϕK becomes ∀w E y(w E JψK → w E JθK). Suppose that z E y. We need to
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show that z E JϕK, that is, ∀w E z(w E JψK→ w E JθK). Now, if w E z, then certainly

w E y. So if w E JψK, then w E JθK. Thus, z E JϕK.

Suppose ϕ is ∀xψ(x). Again, note that z E y∧y E JϕK implies BA(y). Then y E JϕK

becomes ∀x(JE(x)K E y → JE(x)K E Jψ(x)K). We need to show that ∀x(JE(x)K E z →

JE(x)K E Jψ(x)K). If z E y, and if x is such that JE(x)K E z, then JE(x)K E y. By

supposition, z E Jψ(x)K.

Finally, suppose that ϕ is ∃xψ(x). Then y E JϕK translates to ∃x(JE(x)K = y ∧ y E

Jψ(x)K). If x is such an element, then by induction, z E Jψ(x)K. By Corollary 4.3, this

implies that z E Jψ(x�z)K, and so z E J∃xψ(x)K. a

We now show that, for an L-formula ϕ, the set of Boolean elements that are below

the extent of ϕ is closed under join.

Lemma 4.6 If ϕ is an L-formula, then ∅BA `i y E JϕK ∧ z E JϕK→ y t z E JϕK.

Proof. We again proceed by induction on ϕ. If ϕ is atomic, then JϕK has a Boolean

value, so that the result is obvious.

If ϕ is ψ ∧ θ, and both y E JϕK and z E JϕK, then y E JψK, z E JψK, y E JθK and

z E JθK, so by induction, y t z E JψK and y t z E JθK. Thus y t z E Jψ ∧ θK.

If ϕ is ψ ∨ θ, and y E JϕK, there exist y1, y2 such that y = y1 t y2, y1 E JψK, and

y2 E JθK. Let z1, z2 be similar elements for z. Then, by induction y1 t z1 E JψK and

y2 t z2 E JψK. Then y1 t z1 t y2 t z2 = y t z E Jψ ∨ θK.

If ϕ is ψ → θ, then y E JϕK ∧ z E JϕK implies BA(y) ∧ BA(z) ∧
∧
i<n ST(xi). Now,

suppose y E JϕK and z E JϕK. Let p E y t z, and suppose p E JψK. Then, pu y E p, so,

by Lemma 4.5, pu y E JψK. Since y E JϕK, we have that pu y E JθK. Similarly, we have

that p u z E JψK. Thus, by induction, (p u y) t (p u z) = p E JθK, so y t z E JϕK.
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If ϕ is ∀xψ(x), then, again, y E JϕK ∧ z E JϕK implies that BA(y) ∧ BA(z). Now,

suppose y E JϕK and z E JϕK. Let a be an element such that JE(a)K E y t z. Now, we

have that JE(a�y)K E Jψ(a�y)K and JE(a�z)K E Jψ(a�z)K by Lemma 4.5 and Corollary

4.3. By Corollary 4.3, we have that JE(a)K u y E Jψ(a)K and JE(a)K u z E Jψ(a)K. By

induction, we have that (JE(a)Kuy)t(JE(a)Kuz) = JE(a)K E Jψ(a)K, and so ytz E JϕK.

Finally, suppose ϕ is ∃xψ(x). If both y E JϕK and z E JϕK, then there exists a1

where JE(a1)K = y and y E Jψ(a1)K, and a similar element a2 where JE(a2)K = z and

z E Jψ(a2)K. Let a be the unique element where JE(a)K = y t (z u −y), and a � y = a1

and a�(zu−y) = a2, that is a = (a1 �y)⊕ (a2 �(−yu z)). Then JE(a)Ku y E Jψ(a)K and

JE(a)Ku (z u−y) E Jψ(a)K. By induction, (JE(a)Ku y)t (JE(a)Ku (z u−y)) = JE(a)K E

Jψ(a)K. Thus y t z E JϕK. a

Next we show that, in some sense, we can piece together pieceable formulas.

Corollary 4.7 Let A |= ∅BA, and let a,b ∈ ST(A), p, q ∈ BA(A), and ϕ be an

L(ST(A))-formula. Suppose p E Jϕ(a)K, q E Jϕ(b)K, and a and b can be pieced to-

gether. Then p t q E Jϕ(a⊕ b)K.

Proof. By Corollary 4.3, we have that p E Jϕ(a⊕ b)K and q E Jϕ(a⊕ b)K. By

Lemma 4.6, we have that p t q E Jϕ(a⊕ b)K. a

We now show that for any L-sentence ϕ, we have that 0 is below the extent of ϕ.

Lemma 4.8 Let ϕ(x) be a L-formula. Then ∅BA `i
∧
i<n ST(xi)→ 0 E Jϕ(x)K.

Proof. We suppose
∧
i<n ST(xi). We proceed by induction on the complexity of ϕ.

Now, by Corollary 4.3, 0 E Jϕ(x)K if and only if 0 E Jϕ(x�0)K, so we may assume all

elements appearing in ϕ are copies of $.
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If ϕ is atomic, then JϕK is a Boolean element, so 0 E JϕK.

If ϕ is ψ ∧ θ, where 0 E JψK and 0 E JθK, then 0 E Jψ ∧ θK.

If ϕ is ψ ∨ θ, where 0 E JψK and 0 E JθK, then 0 E Jψ ∨ θK.

If ϕ is ψ → θ, and if y E 0 and y E JψK, then y = 0, so by induction, y E JθK.

If ϕ is ∀xψ(x), then, by induction, 0 E Jψ($)K, so 0 E J∀xψ(x)K.

Finally, if ϕ is ∃xψ(x), then by induction, 0 E Jψ($)K, so 0 E J∃xψ(x)K. a

Definition 4.9 Recall that in a Boolean algebra A, an ideal is a subset I ⊆ A such

that:

• 0 ∈ I.

• If p ∈ I and q E p, then q ∈ I.

• If p, q ∈ I, then p t q ∈ I.

Combining Lemma 4.5, Lemma 4.6, and Lemma 4.8, we get the following result.

Theorem 4.10 If A |= ∅BA and ϕ an L(ST(A))-sentence, then {p : A |= p E JϕK} is

an ideal.

Thus, L-formulas correspond to ideals on the underlying Boolean algebra. This

allows us to express certain properties involving local truth in terms of ideals.

Definition 4.11 Let A |= ∅BA.

1. Suppose p ∈ BA(A). Then (p] is the principal ideal {q ∈ BA(A) : q E p}.

2. For an L(ST(A))-sentence ϕ, with Lemma 4.10, we denote the ideal of Boolean

elements q such that A |= q E JϕK as (ϕ].
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3. If ϕ and ψ are L(ST(A))-sentences, then we write JϕK E JψK for (ϕ] ⊆ (ψ].

4. If p ∈ BA(A), then we say JϕK = p if (ϕ] = (p]. So A |= JϕK = p exactly when

A |= ∀z(z E JϕK↔ z E p).

As we shall see in section 7.3, (ϕ] need not be a principal ideal. We give a charac-

terization of when an L-formula corresponds with a principal ideal.

Definition 4.12 Let ϕ be an L-formula. We define Jϕ(x)K E y as ∀z(z E Jϕ(x)K →

z E y) ∧
∧
i<n ST(xi).

The following proposition easily follows from the above definitions.

Proposition 4.13 Let A |= ∅BA and ϕ be an L(ST(A))-sentence. Then A |= p = JϕK

is equivalent to A |= p E JϕK ∧ JϕK E p.

We now provide some explicit correspondences between L-formulas and ideals.

Proposition 4.14 Let ϕ and ψ be L(ST(A))-sentences, and p ∈ BA(A).

1. A |= p E JϕK if and only if (p] ⊆ (ϕ] if and only if p ∈ (ϕ].

2. A |= JϕK E p if and only if (ϕ] ⊆ (p].

3. (ϕ] ⊆ (ψ] if and only if A |= Jϕ→ ψK = 1.

Proof. For 1, suppose p E JϕK. By Theorem 4.10, (p] ⊆ (ϕ]. Now suppose (p] ⊆ (ϕ].

By the definition of (ϕ] we have p E JϕK. 2 immediately follows from the definition

of JϕK E p. For 3, suppose (ϕ] ⊆ (ψ]. We need to show that 1 E Jϕ→ ψK. Suppose

q E 1 ∧ q E JϕK. Since (ϕ] ⊆ (ψ], we have that q ∈ (ψ]. By part 1, this implies that
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q E JψK. Conversely, suppose 1 E Jϕ→ ψK. Thus, for all q E 1, if q E JϕK, then

q E JψK. By part 1, this implies that (ϕ] ⊆ (ψ]. a

We now discuss, for a model A |= ∅BA and an L(ST(A))-sentence ϕ, when (ϕ] is a

principal ideal.

Definition 4.15 1. We call an L(ST(A))-sentence ϕ whose ideal is principal over A

a discrete sentence. Equivalently, ϕ is discrete if A |= JϕK = p for some p in

BA(A).

2. For an LBA-formula θ(x) and a discrete sentence ϕ, we define θ(JϕK) to be θ(p),

where (ϕ] = (p].

For discrete sentences, we can interchange JϕK and the Boolean element which gives

the same principal ideal. Below are some illustrations of its use.

Lemma 4.16 Let A be a model of ∅BA. Then the set of L(ST(A))-sentences ϕ that are

discrete is closed under conjunction, disjunction, and implication.

Proof. Suppose ϕ is ψ∧θ, where p = JψK and q = JθK. Then puq = Jψ ∧ θK: certainly

p u q E Jψ ∧ θK. For the other direction, suppose r E Jϕ ∧ ψK. Then r E JϕK = p and

r E JψK = q, so that r E (p u q). Thus Jϕ ∧ ψK E p u q.

Suppose ϕ is ψ ∨ θ, where p = JψK and q = JθK. Then p t q = Jψ ∨ θK: clearly

ptq E Jψ ∨ θK by Lemma 4.5. For the other direction, suppose r E Jψ ∨ θK. Then there

exists r1, r2 such that r1 E JψK = p, r2 E JθK = q, and r1 t r2 = r. Since r1 E p and

r2 E q, then r = r1 t r2 E p t q.

Finally, suppose ϕ is ψ → θ, where p = JψK and q = JθK. We show that (−p) t

q = Jψ → θK. First, (−p) t q E Jψ → θK: if r E (−p) t q and r E JψK, then r E
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((−p) t q) u p = p u q, so that r E JθK by Lemma 4.5. For the other direction, we show

that Jψ → θK E (−p) t q. Suppose r E Jψ → θK. Then ∀s E r(s E p → s E q). Let

s = r u (p u (−q)). Then s E r and s E p. Thus, s E q. But since s E (−q), we have

that s = 0. Thus r u (p u (−q)) = 0, so r E −(p u (−q)) = (−p) t q. a

We get two immediate corollaries from this Lemma.

Corollary 4.17 Let A |= ∅BA and ϕ, ψ be L(ST(A))-sentences. If ϕ and ψ are discrete,

then Jϕ ∧ ψK = JϕK u JψK, Jϕ ∨ ψK = JϕK t JψK, and Jϕ→ ψK = −JϕK t JψK.

Proof. Immediate from the proof of Lemma 4.16. a

The second corollary shows that the set of discrete sentences is nonempty.

Corollary 4.18 Let A |= ∅BA. Then its set of discrete sentences contains all quantifier-

free sentences.

Proof. If ϕ is atomic, then by Pr2 JϕK is a Boolean element. Since quantifier-

free sentences are created from conjunctions, disjunctions, and implications of atomic

sentences, we are done by Lemma 4.16. a

4.1.2 Pointwise truth of L-sentences

In order to discuss pointwise truth, we first review some standard properties of filters

and ultrafilters on Boolean algebras.

Definition 4.19 1. Recall that in a Boolean algebra, a filter is a subset F ⊆ BA(A)

such that:



54

• 1 ∈ F .

• If p ∈ F and p E q, then q ∈ F .

• If p ∈ F and q ∈ F , then p u q ∈ F .

2. A filter is a proper filter if 0 /∈ F . In our context, all filters are proper.

3. An ultrafilter U on BA(A) is a filter such that for all u ∈ BA(A), either u ∈ U

or −u ∈ U .

4. If A |= ∅BA, we let UA be the set of all ultrafilters on BA(A).

5. A prime filter is a filter such that if v t u ∈ U , then v ∈ U or u ∈ U .

6. For an element p ∈ BA(A), we define [p] = {U ∈ UA : p ∈ U}.

In our context, prime filters and ultrafilters are identical, for suppose U is an ultra-

filter, and suppose v t u ∈ U , and v /∈ U . Since U is an ultrafilter, −v ∈ U . Thus

(−v) u (v t u) = (−v) u u ∈ U , so that u ∈ U . Conversely, suppose U is a prime filter.

Then u t −u = 1 ∈ U , so that either u ∈ U or −u ∈ U .

It is a well known result that for each nonzero Boolean element p, there exists an

ultrafilter containing p. For the reader’s convenience, we include the following Lemma:

Lemma 4.20 Let A |= ∅BA, with p, q ∈ BA(A). If p 5 q, then there exists U ∈ UA

such that p ∈ U and q /∈ U .

Proof. If p 5 q, then p u −q 6= 0. So there is U ∈ [p u −q]. Then p ∈ U and q /∈ U .

a

Now, the sets [p] for each p ∈ BA(A) form the basis of a topology on UA. We now

reproduce some fundamental properties of that topology.
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Lemma 4.21 Let A |= ∅BA. Then the topology on UA with basis {[p] : A |= BA(p)} is a

compact, 0-dimensional, Hausdorff space.

Proof. Assume we have elements P ⊆ BA(A) with
⋃
p∈P [p] = [1], but no finite

subset of the pi cover the space. That is, for every subset F ∈ [P ]<ω, we have that

[
⊔
p∈F p] =

⋃
p∈F [p] 6= [1]. Thus,

d
p∈F −p 6= 0, otherwise

⊔
p∈F p = 1. Hence, the

collection {[−p] : p ∈ P} has the finite intersection property, so there is an ultrafilter U

which contains each of −p for p ∈ P . But then U /∈
⋃
p∈P [p] = [1], a contradiction.

Since both [p] and [−p] are basis elements of the topology, it is clearly 0-dimensional.

Finally, let U1, U2 be distinct ultrafilters in UA. So we may suppose there is p ∈ BA(A)

such that p ∈ U1 and p /∈ U2. Since U2 is an ultrafilter, we must have that −p ∈ U2.

Thus U1 ∈ [p] and U2 ∈ [−p]. As [p] and [−p] are disjoint, the space is Hausdorff. a

For a model A |= ∅BA, we now relate filters on BA(A) to structural elements.

Definition 4.22 Let A |= ∅BA, and let F be a filter on BA(A).

1. For elements a, b ∈ ST(A) we define a ∼F b if there exists p ∈ F such that

A |= Ja = bK = p. For tuples a,b of length n, we say a ∼F b if ai ∼F bi for all

i < n.

2. We define ST(A)F to be the set {a ∈ ST(A) : A |= p = JE(a)K for some p ∈ F}.

One easily sees ∼F is an equivalence relation on ST(A)F : it is clearly reflexive and

symmetric. For transitivity, suppose a ∼F b and b ∼F c. Then A |= Ja = bK = p and

A |= Jb = cK = q with p, q ∈ U . Then A |= p u q E Ja = cK. Since F is a filter and

p u q ∈ F , we have that Ja = cK ∈ F , so a ∼F c. This allows us to make the following

definition.



56

Definition 4.23 1. We define AF to be the set of equivalence classes of elements on

ST(A)F modulo ∼F .

2. If a ∈ ST(A)F , we write aF for the equivalence class of a in AF .

Note that an element a ∈ ST(A) is in an equivalence class if and only if a ∈ ST(A)F .

In particular, $ is not in any equivalence class in AF for any filter F .

We are now ready to introduce point models.

Definition 4.24 We define a point model AF as follows:

• The domain of AF is AF .

• For a predicate P (x) and elements aF ∈ (AF ), we define AF |= P (aF ) if there

exists p ∈ F such that A |= JP (a)K = p.

• For a function f , and elements aF , bF , we define AU |= f(aF ) = bF if there exists

p ∈ F such that A |= Jf(a) = bK = p.

Note that for a sentence ϕ over L(ST(A)F ), we have JϕK ∈ F if and only if there exists

p ∈ F such that A |= JϕK = p. We now show that the above definition is consistent:

Lemma 4.25 Let A |= ∅BA, and let F be a filter on BA(A).

1. Suppose a,b ∈ (AF ) with a ∼F b. Then JP (a)K ∈ F if and only if JP (b)K ∈ F .

2. Suppose a, a′ ∈ (AF ) with a ∼F a′, and b, b′ ∈ AF with b ∼F b′. Then Jf(a) = bK ∈

F if and only if Jf(a′) = b′K ∈ F .
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Proof. For part 1, suppose JP (a)K ∈ F . Let p = Ja = bK. Since p ∈ F , pu JP (a)K ∈

F . By Corollary 4.4, we have that pu JP (a)K E JP (b)K. Since F is a filter, we have that

JP (b)K ∈ F . The reverse direction is similar.

For part 2, suppose Jf(a) = bK ∈ F . Let p = Ja = a′K and q = Jb = b′K, with p,

q ∈ F . Then pu qu Jf(a) = bK ∈ F . By Lemma 3.9.2, we have that pu qu Jf(a) = bK E

Jf(a′) = b′K. Thus Jf(a′) = b′K ∈ F . The reverse direction is similar. a

We now show that point models generalize node structures.

Proposition 4.26 Let A |= ∅BA, and let F be a filter on BA(A). If F is a principal

filter with generator p, then AF
∼= Ap.

Proof. One easily shows that the mapping f : AF → Ap defined by f(aF ) = a �p is

well-defined and an isomorphism. a

Let A |= ∅BA, F a filter on BA(A), and ϕ an L(ST(A)F )-sentence. Then ϕ is called

a positive F -sentence if JϕK ∈ F implies AF |= ϕ, and ϕ is called a negative F -

sentence if AF |= ϕ implies JϕK ∈ F . For the remainder of this subsection, we consider

only the case where F is an ultrafilter U .

Definition 4.27 For an ultrafilter U , we call U-sentences those L(ST(A)U)-sentences

ϕ such that AU |= ϕ if and only if JϕK ∈ U , that is, all sentences that are both positive

and negative U-sentences.

We now show that U -sentences are much like discrete sentences.

Lemma 4.28 Let A be a model of ∅BA and U an ultrafilter on BA(A). Then the set of

U-sentences is closed under conjunction, disjunction, and implication.
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Proof. Let ψ and θ be U -sentences. Note that if JψK ∈ U and JθK ∈ U , then ψ

and θ are discrete formulas. By Corollary 4.17, we know that Jψ ∧ θK = JψK u JθK,

Jψ ∨ θK = JψK t JθK, and Jψ ∧ θK = −JψK t JθK. We shall use these facts throughout the

proof.

Suppose ϕ is ψ ∧ θ. Then AU |= ϕ if and only if AU |= ψ and AU |= θ. By induction,

this holds if and only if JψK ∈ U and JθK ∈ U . Since U is an ultrafilter, this holds if and

only if JψK u JθK = Jψ ∧ θK ∈ U .

Suppose ϕ is ψ ∨ θ. Then AU |= ϕ if and only if AU |= ψ or AU |= θ. By induction,

this holds if and only if JψK ∈ U or JθK ∈ U . As U is prime, this holds if and only if

JψK t JθK = Jψ ∨ θK ∈ U .

Suppose ϕ is ψ → θ. Let q = JψK and r = JθK. Now, suppose AU |= ϕ, so that if

AU |= ψ, then AU |= θ. We need to show that Jψ → θK = (−q) t r ∈ U . Now, if q ∈ U ,

then by induction, AU |= ψ, so that AU |= θ. By induction, r ∈ U . Since U is a filter,

we get that A |= (−q) t r ∈ U . If q /∈ U , then, since U is an ultrafilter, we have that

(−q) ∈ U . Thus, (−q) t r ∈ U .

Conversely, suppose JϕK = (−q) t r ∈ U . We need to show that AU |= ψ → θ.

So suppose AU |= ψ. By induction, this means that q ∈ U . Thus, q u ((−q) t r) =

(q u (−q)) t (q u r) = q u r ∈ U . Thus, r ∈ U , so, by induction, AU |= θ. a

We now show that the set U -sentences is nonempty.

Corollary 4.29 Let A |= ∅BA, and U ∈ UA. Then the set of U-sentences contains the

set of quantifier free L(ST(A)U)-sentences.

Proof. If ϕ is atomic, then AU |= ϕ if and only if JϕK ∈ U by the definition of

AU above. Since quantifier-free sentences are constructed using atomic sentences and
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conjunction, disjunction, and implication, the result follows. a

We conclude this subsection by showing that clean models of ∅BA essentially are sub-

direct products of simple Boolean indexed models. Recall that simple Boolean indexed

models are, up to a trivial translation, the same as L-models. Thus, clean models of

∅BA can be thought of as submodels of products of models over L.

Definition 4.30 Let A be a clean model of ∅BA, and let U ∈ UA. We define the map

πU : A→ (AU)BA2 as follows:

πU(x) =



x̂U if A |= ST(x) and JE(x)K ∈ U

$ if A |= ST(x) and JE(x)K /∈ U

1 if A |= BA(x) and x ∈ U

0 if A |= BA(x) and x /∈ U

We now show this map is a morphism.

Lemma 4.31 Let A be a clean model of ∅BA, and let U ∈ UA. Then πU is an onto

morphism.

Proof. If A |= E(x), then (AU)BA2 |= E(πU(x)). Also, if A |= BA(x), then clearly

(AU)BA2 |= BA(πU(x)).

We now discuss functions. By the definition of point model, we have JP (πU(a))K =

πU(JP (a)K). Similarly, f(πU(a)) = πU(f(a)). Further, πU(x � y) = πU(x) � πU(y), and

πU(x⊕ y) = πU(x)⊕ πU(y). The result clearly holds for Boolean functions. Finally, the

map is clearly onto. a

We now show that the morphisms πU , when collected, constitute an embedding.
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Lemma 4.32 Let A be a clean model of ∅BA. Let B be the model ΠU∈UA
(AU)BA2. Then

the map 〈πU〉U∈UA
embeds A into B. Additionally, this map makes A a subdirect product

in B.

Proof. As 〈πU〉 is a product of of morphisms, it itself is a morphism. To see it

is injective, let a, b ∈ A with A |= a 6= b. The result is obvious if a ∈ ST(A) and

b ∈ BA(A), or b ∈ ST(A) and a ∈ BA(A). First, suppose a, b ∈ ST(A). Let p be such

that A |= p = (−Ja = bK). Note that p 6= 0. Now, either JE(a)Kup 6= 0 or JE(b)Kup 6= 0.

Without loss of generality, let JE(a)Kup 6= 0. Let U ∈ [JE(a)Kup]. Now, if puJE(b)K = 0,

then πU(a) 6= $, while πU(b) = $. Thus, 〈πU〉(a) 6= 〈πU〉(b). If p E JE(a)K u JE(b)K,

then aU 6= bU , so again, 〈πU〉(a) 6= 〈πU〉(b). Now, suppose a, b ∈ BA(A). As a 6= b, at

least one of −a u b and a u−b is nonzero. Without loss of generality, suppose −a u b is

nonzero. Let V ∈ [−a u b]. Then πV (a) = 0 and πV (b) = 1. Thus 〈πU〉(a) 6= 〈πU〉(b).

Finally, we show that 〈πU〉 is an embedding. First, B |= E(〈πU〉(a)). Then clearly

A |= E(a). Now, suppose A |= BA(〈πU〉(p)). Then, for each U ∈ UA, AU |= BA(πU(a)).

Then AU |= BA(a). As E,BA, and = are the only predicates in LBA, we get that

〈πU〉U∈UA
is an embedding. The last claim is obvious. a

4.2 Local versus pointwise truth

In this section we connect local truth of universal formulas with their pointwise truth.

We begin by showing that a universal L-formula ϕ has a straightforward translation

1 E JϕK. Recall that for a tuple x, JE(x)K is shorthand for
d
i<nJE(xi)K:
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Lemma 4.33 Let ϕ be an L-formula of the form ∀xψ(x). Then ∅BA `i 1 E JϕK ↔

∀x(
∧
i<n ST(xi)→ JE(x)K E JψK).

Proof. First, we describe the inductive translation of 1 E0 J∀x0 . . . ∀xn−1ψ(x)K. Ap-

plying the inductive schema, we get ∀x0(JE(x0)K E 1→ JE(x0)K E J∀x1 . . . ∀xn−1ψ(x)K).

Applying the inductive schema again, we get

∀x0(JE(x0)K E 1→ ∀x1(JE(x1)K E JE(x0)K→ JE(x1)K E J∀x2 . . . ∀xn−1ψ(x)K)).

This is equivalent to

∀x0x1((JE(x1)K E JE(x0)K ∧ JE(x0)K E 1)→ JE(x1)K E J∀x0 . . . ∀xn−1ψ(x)K).

Continuing in this manner, we get that 1 E J∀xψK is equivalent to

∀x(JE(xn−1)K E . . . E JE(x0)K E 1→ JE(xn−1)K E Jψ(x)K).

We now have that 1 E JϕK is equivalent to

∀x(JE(xn−1)K E . . . E JE(x0)K E 1→ JE(xn−1)K E Jψ(x)K).

To see that ∀x(
∧
i<n ST(xi) → JE(x)K E Jψ(x)K) implies 1 E Jψ(x)K, let x be such

that JE(xn−1)K E . . . E JE(x0)K E 1. Then JE(x)K = JE(xn−1)K, so that by supposition,

JE(xn−1)K E Jψ(x)K.

For the other direction, we suppose that ∀x(JE(xn−1)K E . . . E JE(x0)K E 1 →

JE(xn−1)K E Jψ(x)K). Now, let x be such that ST(xi) holds for each i. We need to

show that JE(x)K E Jψ(x)K. Now, by Corollary 4.3, this holds if and only if JE(x)K E

Jψ(x�JE(x)K)K. Thus, it suffices to show the result holds for x � JE(x)K. But then,

for each i, JE(xi �JE(x)K)K = JE(x)K, so that JE(xn−1 �JE(x)K)K = JE(x)K. Then by

supposition, JE(xn−1 �JE(x)K)K = JE(x)K E Jψ(x)K. a
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Thus, we have a simpler translation for 1 E JϕK for universal sentences. This will be

useful in demonstrating when 1 E JϕK holds in various models.

Theorem 4.34 Let A be a model of ∅BA, and let ϕ be a Π0
2 sentence over L. Then

A |= 1 E JϕK if and only if AU |= ϕ for every U ∈ UA.

Proof. Let ϕ be ∀x∃yψ(x,y), where ψ is quantifier-free, and suppose A |= 1 E JϕK.

This translates to ∀x∃y(
∧
i<n ST(xi) → JE(y)K = JE(x)K ∧ JE(x)K E Jψ(x,y)K). Let

U ∈ UA. We need to show that AU |= ∀x∃yψ(x,y). To this end, let aU ∈ AU with

a ∈ ST(A)U . Let u = JE(a)K. By our supposition, there exists b ∈ (ST(A)U) such that

A |= u E Jψ(a,b)K and JE(b)K = u. Thus bU ∈ AU . Since u ∈ U , u E Jψ(a,b)K, and ψ

is quantifier-free, AU |= ψ(aU ,bU) by Lemma 4.29.

Conversely, suppose that for each U ∈ U , AU |= ∀x∃yψ(x,y), and let a ∈ ST(A).

We need to find b such that JE(b)K = JE(a)K and JE(a)K E Jψ(a,b)K. Let q = JE(a)K.

If q = 0, then let b be the tuple where bi = $ for each i. Then 0 E Jψ(a,b)K. If q 6= 0,

let U be an ultrafilter with q ∈ U . By our supposition, there exist b ∈ ST(A)U such

that AU |= ψ(aU ,bU). Thus, Jψ(a,b)K ∈ U by Corollary 4.29. Let u = Jψ(a,b)K, and

note that by Corollary 4.3 we can replace b by b � u. Thus, we have shown that for

every ultrafilter U such that q ∈ U , there exists a pair (b, u) such that JE(b)K = u,

u E Jψ(a,b)K and U ∈ [u]. Thus, the set {[u] : (b, u) is such that JE(b)K = u and

u E Jψ(a,b)K} is a cover of [q]. But since [q] is closed, it is compact by Lemma 4.21.

Thus, there exist finitely many elements u0, . . . , un−1 such that [u0] ∪ . . . ∪ [un−1] = [q].

But then u0 t . . . t un−1 = q; otherwise, q u −u0 u . . . u −un−1 would be nonempty,

so there would exist an ultrafilter V with q ∈ V , but ui /∈ V for all i, a contradiction.

Thus, (b0, u0), . . . , (bn−1, un−1) are such that u0 t . . . t un−1 = q. Now, we have that
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ui E J∃xψ(a,x)K for all i. By Lemma 4.6,
⊔
i<n ui = q E J∃xψ(a,x)K. Let b′ be witness

this. Then JE(b′)K = q and q E Jψ(a,b′)K. a

We now show that if Γ and ∆ are classically equivalent Π0
2-sentences, then ΓBA and

∆BA are classically equivalent.

Theorem 4.35 Let γ and δ be Π0
2 L-formulas in prenex normal form. Then the follow-

ing are equivalent:

1. ∅ `c γ → δ.

2. ∅BA `c γBA → δBA.

Proof. For 1 implies 2, let B |= ∅BA. Suppose B |= 1 E JγK. By Theorem 4.34, we

have that BU |= γ for each U ∈ UB. By supposition, we have that BU |= δ for each U .

By Theorem 4.34, we have that B |= 1 E JδK.

For the other direction, let A |= γ. Then ABA2 |= γBA2 by Lemma 2.12. By Proposi-

tion 3.19, ABA2 |= γBA, so that ABA2 |= δBA. Again, by Proposition 3.19, ABA2 |= δBA2,

so A |= δ by Lemma 2.12. a

Thus, given an theory with a set Γ of Π0
2-axioms, ΓBA is independent of the choice

of Γ. Theorem 4.35 is an extension of [15, Lemma 3.1]. With this, we get an immediate

corollary.

Corollary 4.36 Let Γ ∪ γ be prenex Π0
2 sentences. Then Γ `c γ if and only if ΓBA `c

γBA.

Proof. The result follows from Theorem 4.35 and compactness. a
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Before we prove the main result of this chapter, we prove that if ϕ is universal, then

1 E JϕK is universal Horn.

Lemma 4.37 Let γ be a universal L-formula. Then ∅BA proves that γBA is equivalent

to a universal Horn formula.

Proof. By Theorem 4.35, we may assume that γ is a sentence of the form

∀x(
∧
o<p

(
∧
j<m

δoj →
∨
k<l

εok))

where each δj and εk is atomic. By Lemma 4.33, 1 E JγK is equivalent to

∀x((
∧
i<n

ST(xi))→ JE(x)K E J
∧
o<p

(
∧
j<m

δoj →
∨
k<l

εok)K)

Now, as each δoj and εok is atomic,
∧
o<p(

∧
j<m δoj →

∨
k<l εok) is discrete. Further,

by Corollary 4.17, J
∧
o<p(

∧
j<m δoj →

∨
k<l εok)K is equal to

d
o<pJ

∧
j<m δoj →

∨
k<l εokK.

Applying Corollary 4.17 again, this is equal to
d
o<p(

⊔
j<m−JδojK t

⊔
k<lJεokK). Thus,

we have that

∀x((
∧
i<n

ST(xi))→ JE(x)K E J
∧
o<p

(
∧
j<m

δoj →
∨
k<l

εok)K)

is equivalent to

∀x((
∧
i<n

ST(xi))→ JE(x)K E
l

o<p

(
⊔
j<m

−JδojK t
⊔
k<l

JεokK))

As this is universal Horn, we are done. a

We now show the main theorem for this chapter: for a set of universal L-sentences,

ΓBA is the universal Horn fragment of ΓBA2.

Theorem 4.38 Let Γ be a set of universal L-sentences. Then (ΓBA2)UH = ΓBA.
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Proof. All axioms in ∅BA are universal Horn. By Lemma 4.37, we have that for

each axiom γ ∈ Γ, 1 E JγK is universal Horn over ∅BA. Thus, ΓBA ⊆ (ΓBA2)UH. Hence,

we need only show that every model of ΓBA embeds into a product of models of ΓBA2.

Thus, let A |= ΓBA. By Proposition 3.8, we may suppose that A is clean. By Theorem

4.34, AU |= γ for each γ ∈ Γ, so that (AU)BA2 |= γBA2. By Proposition 3.19, (AU)BA2 |=

1 E JγK. Thus, (AU)BA2 |= ΓBA2. Define B to be the model ΠU∈UA
(AU)BA2. Then B is

a product of models of ΓBA2, and A embeds into B by Lemma 4.32 a

When Γ is just the empty set of axioms, we get the following corollary:

Corollary 4.39 The universal Horn fragment of ∅BA2 is ∅BA.

The last two results are variations on results of Weispfenning. For Corollary 4.39 see

[15, page 257].

We conclude by showing that, for a set of universal sentences, ΓBA is the same

(ΓUH)BA.

Theorem 4.40 Let Γ be a set of universal L-sentences. Then ΓBA and (ΓUH)BA axiom-

atize the same theory.

Proof. Clearly (ΓUH)BA ⊆ ΓBA. Let A |= (ΓUH)BA. As ΓBA is universal, it suffices to

show that A embeds into a model ΓBA. By Lemma 4.32, A embeds into ΠU∈UA
(AU)BA2,

where each AU |= ΓUH by Theorem 4.34. Thus, each AU is a submodel of a product

of models of Γ, that is, for each U , there is a set I(U) such that AU ⊆ Πi∈I(U)Bi and

Bi |= Γ. By Corollary 2.13 and Proposition 3.19, each (Bi)
BA2 |= ΓBA. As ΓBA is

universal Horn, we get that ΠU∈UA
Πi∈I(U)(Bi)

BA2 |= ΓBA. Thus A embeds into a model

of ΓBA. a
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Chapter 5

Model Complete Boolean Indexed

Models

In the previous chapter, we showed that, for a set of universal L-sentences Γ, the universal

Horn fragment of ΓBA2 is ΓBA. As ΓBA2 is just a trivial translation of the theory Γ, the

theory ΓBA is similar to the universal Horn fragment of Γ. Thus, if we can find a model

companion for ΓBA, this would be not unlike finding a model companion for ΓUH. In

this chapter, we list the axiom set ∅ABA which extends ∅BA. For a set of L-sentences Γ,

we extend ΓBA to an LBA-theory ΓABA simply by including the new axioms from ∅ABA.

We then show that if a set of Π0
2-sentences Γ axiomatizes a model complete theory over

L, then ΓABA axiomatizes a model complete theory over LBA.

5.1 Atomless Boolean indexed models

Recall that a Boolean algebra is atomless if, for every non-zero Boolean element, there

exists a strictly smaller non-zero Boolean element. This motivates the following defini-

tion.

Definition 5.1 We say a model A |= ∅BA is atomless if BA(A) is atomless.

Equivalently, a model A of ∅BA is atomless if it satisfies the following axiom.
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Ba19 BA(x) ∧ x 6= 0→ ∃y(y E x ∧ y 6= x ∧ y 6= 0)

The following axiom states that there exists an element of full extent.

Ex5 ∃x(JE(x)K = 1)

Definition 5.2 For a model A of ∅BA, if a ∈ ST(A) is such that A |= JE(a)K = 1, then

we say a is a global element. In other words, the set A1 defined in Definition 2.4 is

nonempty.

Thus, a model A has a global element if and only if it satisfies Ex5.

As shorthand, recall that CH(x) is ¬(BA(x) ∨ ST(x)). We also use as shorthand

n < |CH | to be the obvious axiomatization that there are at least n+ 1 chaff elements.

The following is an infinite axiom schema that states that the chaff of a model is infinite.

So3 n < |CH | for all n ∈ N

We are now able to define the axiom set ∅ABA.

Definition 5.3 1. We define ∅ABA to be the set ∅BA ∪ {Ba19,Ex5, So3}.

2. We call a model of ∅ABA an atomless Boolean indexed model.

3. For a set of L-sentences Γ, we define the set ΓABA to be the set ∅ABA ∪ {γBA :

γ ∈ Γ}.

Equivalently, ΓABA is the set ΓBA ∪ {Ba19,Ex5, So3}.

As mentioned in the introduction, we show below that if a set Γ of Π0
2-sentences

axiomatizes a model complete L-theory, then ΓABA axiomatizes a model complete theory.

Recall that for a model A |= ∅BA, A◦ is the largest clean submodel of A. We now show

that in showing a model is existentially closed, it suffices to look at this clean submodel.
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Lemma 5.4 Let A ⊆ A be models of ∅ABA. Then A is existentially closed in B if and

only if A◦ is existentially closed in B◦.

Proof. This immediately follows from the fact that if A |= ∅BA, then A is the disjoint

union of ST(A), BA(A), and CH(A), plus the fact that the theory of the infinite set is

model complete. a

Note that LBA-formulas can become very complicated with iterated functions. With

this in mind, we recall a definition to simplify our formulas.

Definition 5.5 Recall that an L-formula ϕ is called term-reduced if the only atomic

subformulas that appear in ϕ are P (x) and f(x) = y, where P is any predicate symbol

and f is any function symbol.

Note that, in particular, this includes c = y where c is a constant. It is well-known

that every formula is equivalent to a term-reduced formula, for example, see [3, chapter

8, section 1]. We now show that to prove a model is existentially closed, it suffices to

show that the model is existentially closed with respect to term-reduced sentences.

Lemma 5.6 Let Γ be a theory, and suppose that for all models A ⊆ B of Γ and

quantifier-free formulas ϕ(x,y) which are term-reduced, if B |= ϕ(a,b), where a ∈ A

and b ∈ B, then there exists a′ ∈ A with A |= ϕ(a, a′). Then Γ is model complete.

Proof. Let ϕ(x,y) be a quantifier-free formula, and suppose B |= ϕ(a,b). As

in [3, chapter 8, section 1], ϕ is equivalent over ∅ABA to a term-reduced existential

formula, ∃zψ(x,y, z). Hence, for some elements c ∈ B, we have that B |= ψ(a,b, c).

By our supposition, there are tuples a′, a′′ ∈ A<ω such that A |= ψ(a, a′, a′′). Thus,

A |= ∃zψ(a, a′, z), so that A |= ϕ(a, a′). a
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The results we present below require that our formulas be term-reduced. The proofs

can be generalized to allow formulas of any complexity. However, we find that making

use of term-reduced formulas makes the proofs simpler and easier to read.

5.2 Decomposition and Model Completeness

For the rest of the chapter we suppose that Γ is a model complete theory over L. In this

section we prove that ΓABA is model complete. By Lemma 5.4, we restrict ourselves to

the clean submodels of ΓABA.

We prove that ΓABA is model complete by taking a quantifier-free LBA-formula ϕ,

models A ⊆ B of ΓABA, and elements a ∈ ST(A), p ∈ BA(A), b ∈ ST(B), q ∈

BA(B). If ϕ(a,p,b,q) holds in B, we need to find elements b′,q′ in A such that

A |= ϕ(a,p,b′,q′). As is usual in proving a theory is model complete, we show that it

suffices to consider formulas ϕ of a particular form. In our context, we can also replace

the elements a,p,b,q with elements of a particular form. The special forms of the

formula and elements is such that it allows us to consider B as a product of models that

are sufficiently similar to models of ΓBA2 when it comes to properties of ϕ. As Γ is model

complete, ΓBA2 is model complete. We then find elements in these approximations of

simple Boolean indexed models from which we can piece together the required elements

b′,q′.

We first introduce new notation in order to make proofs more accessible.

Definition 5.7 Let L be a first-order language.

1. We define At(x) to be the set of term-reduced atoms from L. We also define

At±(x) to be the set of term-reduced atoms and negations of term-reduced atoms.
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2. For a finite set t ⊆ At±(x), we define πt to be the formula which is the conjunction

of all term-reduced atoms and negated term-reduced atoms that occur in t. We also

call t a type.

3. Given a set t of formulas, we write At±t for the collection t plus the negations of

formulas in t. So if t = At(x), then At±t = At±(x).

The reader may recognize that these definitions are slight variants on definitions

given in [4].

Our first lemma shows the special form of the elements. We provide a brief description

of what this special form is. We begin with models A ⊆ B and elements a ∈ ST(A),

p ∈ BA(A), b ∈ ST(B), and q ∈ BA(B). From this we construct elements c ∈ ST(A),

r ∈ BA(A), d ∈ ST(B), e ∈ ST(B), and s ∈ BA(B). The elements r, and s are

partitions of the Boolean algebra BA(B). Since r is a set of elements from BA(A), the

partition s is a finer partition than r. The elements c are restrictions of elements a to

the elements r. In some sense, the elements c are as fine a partition of a as the model A

can see. The set d is the finest partition of a that the model B can see; since c is a set

of elements from ST(A), the partition d is a finer partition than c. The set of elements

e is a partition of b in B. Finally, these partitions are as fine as the set t can tell, that

is, for any atom in t with elements from c,d and e plugged in and for any element n

from r or s, the extent of the atom is either n or 0. The models over the elements r and

s are the approximations of the simple Boolean indexed models mentioned above. We

now proceed with the lemma.

Lemma 5.8 Suppose we have A ⊆ B, both models of ΓABA, and elements a,p,b,q,

where a ∈ ST(A),p ∈ BA(A),b ∈ ST(B),q ∈ ST(B). Let t ⊆ At(x) be a finite type
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over L. Then there exist elements c ∈ ST(A); r ∈ BA(A); d, e ∈ ST(B); and s ∈ BA(B)

that satisfy the following properties:

1. r forms a partition of BA(A) and s forms a partition of BA(B);

2. For every r ∈ r there exists sr ⊆ s such that B |= r =
⊔
s∈sr s;

3. For every c ∈ c there exists r ∈ r such that A |= r = JE(c)K;

4. For every e ∈ e there exists s ∈ s such that B |= s = JE(e)K;

5. For every d ∈ d there exists s ∈ s such that B |= s = JE(d)K;

6. For every c ∈ c, there exists dc ⊆ d such that B |= c =
⊕

d∈dc d. We write tc(xd)

for the LBA-term
⊕

d∈dc xd, so B |= c = tc(dc);

7. For every a ∈ a, there exists ca ⊆ c such that A |= a =
⊕

c∈ca c. We write ta(xc)

for the LBA-term
⊕

c∈ca xc, so A |= a = ta(ca);

8. For every b ∈ b, there exists eb ⊆ e such that B |= b =
⊕

e∈eb e. We write tb(xe)

for the LBA-term
⊕

e∈eb xe, so B |= b = tb(eb);

9. For every p ∈ p, there exists rp ⊆ r such that A |= p =
⊔
r∈rp r. We write tp(xr)

for the LBA-term
⊔
r∈rp xr, so A |= p = tp(rp);

10. For every q ∈ q, there exists sq ⊆ s such that B |= q =
⊔
s∈sq s. We write tq(xs)

for the LBA-term
⊔
s∈sq xs, so B |= q = tq(sq);

11. For all r ∈ r and f ′ ⊆ c, we have that A |= (r E Jπt(f ′)K) ∨ (r u Jπt(f ′)K = 0),

where we can replace E with = if πt has positive arity;
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12. For all s ∈ s and f ′ ⊆ (d∪ e), we have that A |= (s E Jπt(f ′)K)∨ (su Jπt(f ′)K = 0),

where we can replace E with = if πt has positive arity;

13. Each of a,p,b,q can be expressed as a term with elements from c, r,d, e, s.

14. Each of c, r,d, e, s can be expressed as a term with elements from a,p,b,q.

Proof. Let A ⊆ B be models of ΓABA, and suppose a ∈ ST(A), p ∈ BA(A),

b ∈ ST(B), and q ∈ BA(B). Note that we may assume that each of these tuples is

nonempty, as we can add $ to either of a,b and 0 to either of p,q.

As both t is finite, there are only finitely many L-predicates P such that P appears

in a formula in t. Similarly, there are only finitely many L-function symbols which occur

in t. With this, we consider the collection of LBA-terms 0,1, x, x u y, x t y, −x, x � y,

JE(x)K, Jx = yK, JP (x)K for every predicate P which occurs in t, f(x) for every function

symbol that occurs in t, and x⊕ y. As a result, the term-reduced atomic formulas these

terms generate are of the form x�y = z, JE(x)K = y, JP (x)K = z for each P that occurs

in t, Jx = yK = z, x = y, x u y = z, x t y = z, −x − y, f(x) = y for every function

symbol f which occurs in t, x⊕ y = z, BA(x), E(x), x = 0, x = 1, and x = $.

We take all the reduced terms listed above, and we replace all the free variables in

those terms with each possible combination of elements from a,b, c,d so that the terms

have no free variables. The result is a finite number of terms with elements from B. We

call this set T . Let S = {w ∈ T : B |= BA(w)}, that is, S is the set of terms of T such

that the term defines a Boolean element in B. Now, as S is finite, recall that 〈S〉 is the

finite Boolean algebra generated by elements from S. Note then that 〈S〉 is contained

in BA(B). Let s = {si : i < n} list the atoms of 〈S〉. Now, for each s ∈ s, there is a

term ti(x,y, z,w) such that B |= si = ti(a,p,b,q). Note that the terms ti in general
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will not be in reduced form. In the same way, let R = {w ∈ T : A |= BA(w)}, that is,

R is the set of elements from T such that the term defines a Boolean element in BA(A).

Again, R is finite, so that 〈R〉 is a finite Boolean algebra contained in BA(A). Let r list

the atoms of 〈R〉. It is clear that the elements r, s satisfy 1, 2, 9, and 10.

Now, for r ∈ r, recall that a � r is the tuple {ai � r}. We set ar to be (a � r) \ {$},

that is, ar is the set of all ai �r such that A |= r E JE(ai)K. Let C =
⋃
r∈r ar. Since a is

finite and r is finite, we have that C is finite. Let c list the elements of C. We similarly

define as for s ∈ s. Let D =
⋃
s∈s as. As a is finite, and s is finite, we again have that D

is finite. Let d list the elements of D. Finally, we define bs as before, and set E equal

to
⋃
s∈s bs. Again, E is finite, so we let e enumerate the elements of E. It is clear that

the elements c, r,d, e, s satisfy 3, 4, 5, 6, 7, and 8.

We now show that 11 and 12 hold. It suffices to prove the result for a single atom

P (x) and a function f(x) = y. We show it holds for a predicate. If P is nullary, the

result is obvious. Let f ′ ⊆ c be of the proper arity, and let r ∈ r. If for some f ′ ∈ f ′, we

have that r 6= JE(f ′)K, then, since r is an atom in 〈R〉, we have that A |= ruJE(f ′)K = 0,

and so by strictness, A |= r u JP (f ′)K = 0. Thus, we may suppose that for all f ′ ∈ f ′,

A |= r = JE(f ′)K. Now suppose A |= r u JP (f ′)K 6= 0. Since JP (f ′)K is in 〈R〉, we

have that r E JP (f ′)K E JE(f ′)K = r. The argument for a function f(x) = y is a slight

modification of this argument, so that 11 holds. A similar proof shows that 12 holds.

Finally, for part 13, each of a,p,b,q can be written as terms over c, r,d, e, s by

parts 7, 8, 9, and 10. For part 14, it is obvious by the construction of r, s given above

that each of r, s can be written as a term with elements from a,p,b,q. For an element

r ∈ r, we write tr(x,y, z,w) for a term such that B |= r = tr(a,p,b,q). Similarly, for

s ∈ s, we define ts(x,y, z,w) to be a term such that B |= s = ts(a,p,b,q). Note that
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each c, there are elements ai, rk such that B |= c = ai � r, so that c is clearly defined

by the term as xi � tr, with a,p,b,q substituted in. Further, for each d, there are aj, s

such that B |= d = aj � s. Thus, we define td(x,y, z,w) to be xj � ts(x,y, z,w), so that

B |= d = td(a,p,b,q). Finally, for each e, there are bi, s such that B |= e = bi � s.

Thus, we define te(x,y, z,w) to be zi � ts(x,y, z,w), so that B |= e = te(a,p,b,q). This

proves part 14. a

Thus, given two models A ⊆ B of ΓABA and elements a,p,b,q, we can form a finite

partition of BA(B) which generates p,q. Further, there are structural elements over

each element of that partition such that the structural elements can be glued together

to form a,b. Finally, each atomic L-formula, with these structural elements substituted

in, has an extent of either 0 or one of the elements of the partition. We formalize this

in a definition.

Definition 5.9 Let A ⊆ B be models of ΓABA with elements a,p,b,q, where a ∈

ST(A),p ∈ BA(A),b ∈ ST(B),q ∈ BA(B), and let ϕ(x,y, z,w) be a term-reduced

quantifier-free LBA-formula.

1. Let t be a finite set of atomic L-formulas. We call the elements c, r, d, e, s from

Lemma 5.8 a t-decomposition of elements a, p, b, q; that is, the elements c,

r, d, e, s are a decomposition of a, p, b, q if they are formed in the manner of

Lemma 5.8.

2. We define the L-part of ϕ to be the set of L-predicates P (x) such that JP (x)K = y

occurs in ϕ together with the set of atomic formulas f(x) = y which occurs in ϕ,

where f(x) is an L-function.
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3. If t is the L-part of a reduced-term LBA-formula ϕ, we also call the t-decomposition

a ϕ-decomposition.

4. For the tuple c, we set xc to be the tuple xc0, . . ., xcn−1. We similarly define xr,

xd, xe, and xs). Let ta(xc), tp(xr), tb(xe), and tq(xs) be the LBA-terms defined in

Lemma 5.8. For the tuple a, we define ta(xc) to be the tuple {tai(xc)} for each ai ∈

a, and similarly define tp(xr), tb(xe), and tq(xs). Now, let ψ(xc,xr,xd,xe,xs) be

the LBA-formula ϕ(ta(xc), tp(xr), tb(xe), tq(xs)). Then ψ is the decomposition

of ϕ. We also say ψ(c, r,d, e, s) is a decomposed sentence.

Let the elements c, r,d, e, s be a ϕ-decomposition. We define the decomposition

description of c, r,d, e, s to be the quantifier-free formula α(xc,xr,xd,xe,xs) which

says these variables are a ϕ-decomposition. This is a conjunction which includes the

following:

• Both xr and xs are a partition of the Boolean algebra.

• If r = JE(c)K, then α contains xr = JE(xc)K.

• If s = JE(d)K, then α contains xs = JE(xd)K.

• If s = JE(e)K, then α contains xs = JE(xe)K.

• If c =
⊕

i∈I di, then α contains xc =
⊕

i∈I(xd)i, that is, the i-th entry in the tuple

xd.

• If r E JP (c)K, then α contains xr E JP (xc)K. If r u JP (c)K = 0, then α contains

xr u JP (xc)K = 0.
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• If r E Jf(c) = c′K, then α contains xr E Jf(xc) = xc′K. If r u Jf(c) = c′K = 0,

then α contains xr u Jf(xc) = xc′K = 0.

This notation makes it easier to describe when we have a decomposition.

We now show that decomposed sentences are sufficient to show a model is existentially

closed.

Lemma 5.10 Suppose A ⊆ B are models of ΓABA, and suppose that A is existen-

tially closed in B for all decomposed sentences; that is, for every decomposed sentence

ψ(c, r,d, e, s), where c ∈ ST(A), r ∈ BA(A), d, e ∈ ST(B), and s ∈ BA(B), with B |=

ψ(c, r,d, e, s), then there exist d′, e′ ∈ ST(A) and s′ ∈ BA(A) with A |= ψ(c, r,d′, e′, s′).

Then A is existentially closed in B.

Proof. Let A ⊆ B be models of ΓABA, and suppose B |= ϕ(a,p,b,q), where ϕ is

a quantifier-free formula, and a ∈ ST(A), p ∈ BA(A), b ∈ ST(B), and q ∈ BA(B).

We need to find elements b′ ∈ ST(A) and q′ ∈ BA(A) such that A |= ϕ(a,p,b′,q′).

Let ψ be the decomposition of ϕ. Then B |= ψ(c, r,d, e, s), and ψ(c, r,d, e, s) is a

quantifier-free sentence. By our assumption, we have that there exists d′, e′, s′ ∈ A so

that A |= ψ(c, r,d′, e′, s′). Let b′ = tb(e′), and let q′ = tq(s′). Then A |= ϕ(a,p,b′,q′),

so that A is existentially closed. a

Thus, it suffices to prove that models of ΓABA are existentially closed with respect

to decomposed sentences in order to prove that ΓABA is model complete. In some sense,

decomposed sentences are the most basic of sentences, as they break down the structural

elements and Boolean elements into their most basic components. In order to show that

ΓABA is model complete, we need to find the form that decomposed sentences take. To

this end, we prove the following Lemma:
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Lemma 5.11 Suppose A ⊆ B are models of ΓABA, and let t be a finite subset of

At(x,y, z) over L. Let c, r,d, e, s be the t-decomposition of a,p,b,q. If ϕ(x,y, z) is a

quantifier-free L-formula built from elements of t, then, for any elements c′ ⊆ c, d′ ⊆ d,

e′ ⊆ e of the proper arity, there exists a set I ⊆ s such that B |= Jϕ(c′,d′, e′)K =
⊔
I.

Proof. We prove this by induction on the complexity of ϕ, and recall that if I is the

empty set, then
⊔
I = 0. The case where ϕ is atomic or a negated atomic is by Lemma

5.8 part 12. We now suppose this holds for δ and γ. Now, as ϕ, δ and γ are quantifier-

free, they are discrete. Thus, each of Jϕ(c′,d′, e′)K, Jδ(c′,d′, e′)K and Jγ(c′,d′, e′)K have

Boolean values. We let sϕ, sδ, and sγ be these values, respectively.

Let ϕ is δ ∧ γ. By induction, we have that B |=
⊔
I = sδ and B |=

⊔
J = sγ. Let

K be I ∩ J . Then by the translation schema, B |=
⊔
K = sϕ.

Suppose ϕ is δ ∨ γ. By induction, we have that B |=
⊔
I = sδ and B |=

⊔
J = sγ.

Let K := I ∪ J . Then by the translation schema, B |=
⊔
K = sϕ.

Finally, suppose ϕ is δ → γ. Now sϕ = −sδ t sγ. By induction, we have that

B |=
⊔
I = sδ and B |=

⊔
J = sγ. Now, as s is a partition of BA(B), let I ′ list s \ I.

Then B |= −sδ =
⊔
I ′. Let K = I ′ ∪ J . Then B |= sϕ =

⊔
K.

As quantifier-free formulas are formed from atoms, negated atoms, conjunction, dis-

junction, and implication, we are done. a

Thus, we get that the partition s is fine enough so that for any term-reduced

quantifier-free sentence ϕ over the proper sublanguage of L, we get that JϕK is a fi-

nite join of elements of s. We now show a similar result for the smaller model A:

Corollary 5.12 Suppose A ⊆ B are models of ΓABA, and let t be a finite subset of
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At(x,y, z) over L. Let c, r,d, e, s be the decomposition of a,p,b,q. If ϕ(x) is a term-

reduced quantifier-free formula, then, for any elements r ∈ r and c′ ⊆ c, there exists a

finite set I ⊆ r such that A |=
⊔
I = Jϕ(c′)K.

Proof. The proof is similar to that of Lemma 5.11. a

Now, in trying to prove that ΓABA is model complete, we need to find a general form

for quantifier-free formulas over LBA. This includes formulas of the form s E JϕK, where

ϕ is a quantifier-free formula over L. We now show that we can replace these formulas

ϕ with a conjunction.

Lemma 5.13 Suppose A ⊆ B are models of ΓABA, let ϕ be a term-reduced quantifier-

free L-formula, let t be all the atoms which occur in ϕ, and let c, r,d, e, s be the t-

decomposition of a,p,b,q. Suppose that for some s ∈ s, B |= s E Jϕ(c,d, e)K. Then

there exists a largest finite term-reduced type u ⊆ At±t over L such that `i πu → ϕ and

B |= s E Jπu(c,d, e)K.

Proof. Suppose B |= s E Jϕ(c,d, e)K. By Corollary 4.3, we have that B |=

s E Jϕ(c�s,d�s, e�s)K. Note that c � s ⊆ d, so we may suppose that the elements

c appear in d, that is, ϕ(c,d, e) is of the form ϕ(d, e). By Lemma 5.8, we have that

for each term reduced atom δ in t, either B |= s E Jδ(d, e)K or B |= s u Jδ(d, e)K = 0.

We let u be the collection of all δ in t such that the former holds, together with the set

of all ¬δ such that the latter holds. Obviously B |= s E Jπu(d, e)K, and u is largest.

To show `i πu → ϕ, we may suppose ϕ in disjunctive normal form
∨
i<n ϕi. Now,

both ϕ and
∨
i<n ϕi are discrete sentences, so they have the same Boolean extent. Thus,

s E J
∨
i<n ϕi(d, e)K, so by Lemma 5.11 there exist {si}i<n ⊆ s such that B |=

⊔
i<n si = s
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and si E Jϕi(d, e)K for each i. But as s is a decomposed Boolean element itself, we have

that s = si for some i. Thus, every predicate and negated predicate which occurs in ϕi

must occur in u. Thus `i πu → ϕi, so `i πu → ϕ. a

We now show that these decomposed sentences may be taken to have a particular

form.

Lemma 5.14 Suppose A ⊆ B are models of ΓABA, and let ψ(c, r,d, e, s) be a de-

composed sentence, and let α be the decomposition description. Then there exists a

quantifier-free formula θ(x,y, z,v,w) such that:

1. ∅BA `i α(x,y, z,v,w)→ (ψ(x,y, z,v,w)↔ θ(x,y, z,v,w))

2. θ is a disjunction of conjunctions of formulas and negations of formulas of the

form xi � wj = zk, xi =
⊕
{zj : j ∈ J}, yi =

⊔
{wj : j ∈ J}, yi E Jπu(x)K and

wi E Jπv(z,v)K, where u ∈ At±t is a finite term-reduced type over L, and v ∈ At±t

is finite term-reduced type over L.

Proof. As ψ is decomposed, it is quantifier-free. We may assume that ψ is in

disjunctive normal form. Thus, we may suppose that ψ is a conjunction. Now, the

formulas xi �wj = zk, xi =
⊕
{zj : j ∈ J}, and yi =

⊔
{sj : j ∈ J} all simply reflect

the fact that ψ is decomposed. For all c ∈ c, r ∈ r, we get that c � r = c or c � r = $.

Thus, any instance of xi �yj can be replaced with either xi or $ over α. The same holds

for any instance of zi �wj or vi �wj. Further, since for each ci, sj, there exists dk such

that ci �sj = dk, so that we can replace xi �wj with zk over α. Thus, in ψ, the variables

x, z,w can only occur in functions of the form Jγ(x′, z′,v′)K, where x′ ⊆ x, z′ ⊆ z, and

v′ ⊆ v. If, the variables z′ and v′ are empty for a given function Jγ(x′, z′,v′)K, then we
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simply call the function Jγ(x′)K. Further, by Corollary 5.12, over α we can replace any

instance of wi E Jγ(x′)K with yj E Jγ(x′)K for some j. Now, if B |= s E Jγ(c′,d′, e′)K,

then B |= s E Jγ(c′ �s,d′, e′)K by Corollary 4.3. But for each i, there exists a j such

that c′i �s is equal to dj. Thus, any function Jγ(x′, z′,v′)K can be replaced by a function

of the form Jγ(z′,v′)K over α.

With this, our problem reduces to classifying all functions with forms like

JP (ta(xc), tb(xe))K = tp(xr) or f(ta(xc), tb(xe)) = tb(xe). Repeatedly apply Lemma

3.9, parts 11, 12, and 13 and that the sets r and s are atoms of the finite Boolean

algebras 〈R〉 and 〈S〉, respectively. That is, we break the extents of the predicates and

the functions into its smallest components. After these applications, we are left with a

conjunction of formulas of the form y E JP (x)K, wi E Jπv(z,v)K, f(x) = x′, f(z,v) = z′,

and f(z,v) = v′. Obviously formulas of the form y E JP (x)K are of the required form.

We can also replace the functions f(x) = x′ with formulas of the form y E Jf(x) = x′K.

To see this, if, for example, f(c) = c′, then by the strictness of the functions f and as r

are atoms of 〈R〉, this is equivalent to r E Jf(c) = c′K. Note that y E Jf(x), = x′K is

of the required form. Let θ be the result of applying the replacements described to ψ.

The result then follows. a

Recall that for a model A |= ∅BA, an L(ST(A))-sentence ϕ is discrete if there is an

element p ∈ BA(A) such that A |= p = JϕK. Our next lemma shows that, for a model

complete L-theory Γ and a model A of the translated theory ΓABA, the set of discrete

sentences contains not only quantifier-free sentences but existential sentences as well.

Lemma 5.15 Let Γ be a Π0
2 axiomatization of a model complete L-theory, and let A |=

ΓABA. Then the set of discrete sentences over ΓABA includes existential sentences.
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Proof. Let ∃xϕ(x, a) be an existential L(ST(A))-sentence, where ϕ is quantifier-

free. It suffices to show the result holds for the L(ST(A))-sentence E(a) ∧ ∃xϕ(x, a).

As Γ is model complete, Γ `c ∀y(∃xϕ(x,y) ↔ ∀x(¬ψ(x,y))) for some quantifier-free

ψ. Thus Γ `c ∀y(∃xϕ(x,y) ∨ ∃xψ(x,y)) and Γ `c ∀yx1x2¬(ϕ(x1,y) ∧ ψ(x2,y)). By

Corollary 4.36, we have that ΓABA `c 1 E J∀y(∃xϕ(x,y) ∨ ∃xψ(x,y))K and ΓABA `c 1 E

J∀yx1x2¬(ϕ(x1,y) ∧ ψ(x2,y))K. The first sentence translates to ∀y(ST(y)→ JE(y)K E

J∃xϕ(x,y) ∨ ∃xψ(x,y)K). Then A |= JE(a)K E J∃xϕ(x, a) ∨ ∃xψ(x, a)K, so there are p,

q ∈ BA(A) such that A |= p t q = JE(a)K and p E J∃xϕ(x, a)K and q E J∃xψ(x, a)K.

We claim that p = JE(a) ∧ ∃xϕ(x, a)K. To see this, let r be such that r E JE(a)K

and r E J∃xϕ(x, a)K. Then there exist elements b such that A |= JE(b)K = r∧ JE(b)K E

Jϕ(b, a)K. Now, r u q E r, so by Lemma 4.5, r u q E Jϕ(b, a)K. Further, as r u q E q

and q E J∃xψ(x, a)K, there exist elements c such that A |= JE(c)K = (r u q) ∧ JE(c)K E

Jψ(c, a)K.

As ΓABA `c 1 E J∀yx1x2¬(ϕ(x1,y) ∧ ψ(x2,y))K, we get that

A |= JE(a)K E J∀x1x2¬(ϕ(x1, a) ∧ ψ(x2, a))K.

An exercise on the translation schema shows that this is equivalent to ∀x1x2((JE(x1)K E

JE(a)K ∧ JE(x2)K E JE(a)K ∧ JE(x1)K E Jϕ(x1, a)K ∧ JE(x2)K E Jψ(x2, a)K) → JE(x1)K u

JE(x2)K = 0). We replace x1 with b and x2 with c. The conclusion then is JE(b)K u

JE(c)K = r u q u r = q u r = 0. Since r E (p t q) and r u q = 0, we have that r E p.

Thus p = JE(a) ∧ ∃xϕ(x, a)K. Since ϕ was arbitrary, we are done. a

We get an immediate corollary from this result.

Corollary 5.16 Let Γ be a Π0
2 axiomatization of a model complete L-theory, and let A |=
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ΓABA. Then if ϕ is an existential L(ST(A))-sentence, then there exists an existential

L(ST(A))-sentence ψ such that (¬ϕ] = (ψ], and both are principal ideals.

Proof. Immediate from the proof of Lemma 5.15. a

In the proof that ΓABA is model complete, this result proves very useful. The impor-

tant fact is that for model complete theories, every existential sentence is equivalent to

a universal sentence. Knowing that existential formulas are discrete is vital for finding

the proper elements in A to replace those from B.

With this, we now prove that ΓABA is model complete.

Theorem 5.17 Let Γ be a Π0
2 axiomatization of a model complete L-theory. Then ΓABA

is model complete.

Proof. Let A ⊆ B be models of ΓABA, and suppose B |= ϕ(a,p,b,q), where ϕ is

quantifier-free, a ∈ ST(A), p ∈ BA(A), b ∈ ST(B), q ∈ BA(B). Now, by Lemma 5.10,

we may replace ϕ(a,p,b,q) with ψ(c, r,d, e, s), the decomposition of ϕ . Thus, we must

find elements d′, e′, s′ ∈ A such that A |= ψ(c, r,d′, e′, s′). Note that the L-part of ϕ is

the same as the L-part of ψ. We let t be this L-part.

For s ∈ s, we let ds be the tuple {d ∈ d : B |= s = JE(d)K}, and similarly for

es. For elements d, e, s, we let u(d, e, s) ⊆ At±t be the largest type such that B |=

s E Jπu(d,e,s)(ds, es)K from Lemma 5.13. We choose an element r from r. Without

loss of generality, we may assume that r is such that B |= s0 t s1 t . . . t sn−1 = r.

Now, for each i < n, we have that B |= si E Jπu(d,e,si)(dsi , esi)K. Thus, for each i,

B |= si E J∃yπu(d,e,si)(dsi ,y)K. Let csi be tuple such that, for each j, (csi)j �si = (dsi)j,

that is, (csi)j is the element of c that, when restricted to si, is the element (dsi)j. By
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Corollary 4.4, for each i, B |= si E J∃yπu(d,e,si)(csi ,y)K. Now, Γ is model complete, so

that by Lemma 5.15, ∃yπu(d,e,si)(csi ,y) is discrete for each i.

Now, by the previous paragraph, we get that B |= ∃z(
∧
i<j<n zi u zj = 0∧

∧
i<n zi 6=

0 ∧
⊔
i<n zi = r ∧

∧
i<n zi E J∃yπu(d,e,si)(csi ,y)K). Note that J∃yπu(d,e,si)(csi ,y)K is a

Boolean element in A. Now, as BA(A) and BA(B) are atomless Boolean algebras, we

have that BA(A) is existentially closed in BA(B). Thus, A |= ∃z(
∧
i<j<n zi u zj =

0 ∧
∧
i<n zi 6= 0 ∧

⊔
i<n zi = r ∧

∧
i<n zi E J∃yπu(d,e,si)(csi ,y)K). Let s′0, . . . , s

′
n−1 witness

this in BA(A). We repeat this process for all other elements in r, and set s′ to be the

collection of elements derived in this manner. Note that (BA(B), r, s) ≡ (BA(A), r, s′),

so that in particular, s′ forms a partition of BA(A) and the elements s′ generate the

elements r in the same way that the elements s generate r. We have thus replaced the

elements s.

Next, for each c ∈ c, there exists dc ⊆ d such that B |= c =
⊕
{d : d ∈ dc}. That is,

for each c ∈ c and si ∈ s with B |= si E JE(c)K, there is a dj such that B |= c�si = dj.

We replace dj with d′j := c�s′i. As a result, for each i, we have that B |= si = JE(dj)K if

and only if A |= s′i = JE(d′j)K and B |= siuJE(dj)K = 0 if and only if A |= s′iuJE(d′j)K = 0.

Let δ(x) be an element of At±t . Now, as si is an atom of 〈S〉, for any tuple d̂ ⊆ dsi ,

we have that B |= (si E Jδ(d̂)K) ∨ (si u Jδ(d̂)K = 0). Now, for a set d̂ ⊆ dsi , we have

a corresponding set d̂′ ⊆ d′si . Suppose we have that B |= si E Jδ(d̂)K. We claim that

A |= s′i E Jδ(d̂′)K.

Note that for our given si, there is a unique r ∈ r such that B |= si E r. Further,

each d̂j is equal to some c � si. Thus, let ĉ be the tuple such that ĉj � si = dj for

each j. By Corollary 4.4, B |= si E Jδ(d̂si)K implies that B |= si E Jδ(ĉ)K. However,

A |= (r E Jδ(ĉ)K) ∨ (r u Jδ(ĉ)K = 0). Since si E r and si is nonzero, we must have that
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A |= r E Jδ(ĉ)K. Now, A |= s′i E r, and note that ĉ � s′i = d̂′. By Lemma 4.5 and

Corollary 4.3, we have that A |= s′i E Jδ(d̂′)K.

Now, for each s ∈ s, there is a largest reduced-term type u(d, s) ⊆ At±t such that

B |= s E Jπu(d,s)(ds)K. Thus, for every type u ⊆ At±t over L, B |= s E Jπu(ds)K if and

only if A |= s′ E Jπu(d′s)K. We have thus replaced the elements d with d′.

Finally, we have to find elements in ST(A) that correspond to the set of elements e.

By Lemma 5.14, we may suppose that the elements e appear only in functions of the form

s E Jπu(ds, es)K. Thus, suppose that, for a given s ∈ s, B |= s E Jπu(ds, es)K. Note that

we have already replaced the elements ds with elements d′s from ST(A). For ds, es, recall

the definition of u(d, e, s) ⊆ At±t . As u ⊆ u(d, e, s), we may suppose that u = u(d, e, s).

Now, since B |= s E Jπu(ds, es)K, we have that B |= s E J∃yπu(ds,y)K. By Lemma 4.2,

B |= s E J∃yπu(cs,y)K. By the above discussion, A |= s′ E J∃yπu(cs,y)K, so again by

Lemma 4.2, A |= s′ E J∃yπu(d′s,y)K. Let e′s witness this, so that A |= s′ E Jπu(d′s′ , e′s′)K.

We have thus replaced es with e′s′ . We continue this process for all s ∈ s, and we get a

set e′ ∈ ST(A). Then A |= ψ(c, r,d′, e′, s′), so that A is existentially-closed. As A and

B are arbitrary, we get that ΓABA is model complete. a

We now provide a brief description of the proof that ΓABA is model complete. We

need to replace the elements d, e, and s with elements in A. Over each s ∈ s there is an

existential formula which describes how the elements es interact with the elements ds.

As Γ is model complete, every existential sentence over L is discrete. We then use the

model completeness of atomless Boolean algebras to find a set of elements s′ in BA(A)

that partitions BA(B). Once we have s′, we construct the elements d′. Above s′ ∈ s

there is an existential sentence with elements d′s′ that matches the existential sentence
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above the element s. We then find elements e′ which satisfy the existential sentences

over each element of s′.
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Chapter 6

An Alternative to Wheeler’s

Conjecture

In chapter 4 we show that the universal Horn fragment of ΓBA2 is ΓBA. In chapter 5

we show that if Γ is a set of Π0
2 axiomatization of a model complete L-theory, then the

extension ΓABA of ΓBA is model complete. In this chapter we show that if a set Γ of

universal L-sentences has a model companion axiomatized by a set Γ′ of Π0
2 sentences,

then (Γ′)ABA axiomatizes the model companion of ΓBA. We begin by describing models

of ∅BA which are obtained by taking a model of ∅BA and a nonzero Boolean element and

restricting all elements to that Boolean element. We apply category theory results to

these restricted models in order to embed a model of ∅BA into a model of ∅ABA. We then

proceed to show that models of ΓBA can be embedded into models of ΓABA. We conclude

by drawing some deeper connections between our results and Wheeler’s conjecture.

6.1 Restricted models

Definition 6.1 For a model A of ∅BA with p ∈ BA(A) and p 6= 0, we define the re-

stricted model A�p to be the model described as follows:

• The domain A�p consists of the structure ST(A�p) which is {a : A |= JE(a)K E p}
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and the Boolean algebra BA(A�p) which is {q : A |= q E p}. Further, any element

which is chaff is included in A�p.

• We label the interpretation of functions f of LBA in A � p as fp. Now, 0p = 0A,

1p = pA, up = uA and tp = tA, while −px = ((−x) u p)A. For elements a ∈

ST(A�p) and q ∈ BA(A�p), define (a� pq) = (a�q)A.

• For an L-predicate P , p ∈ BA(A�p), and elements a ∈ ST(A�p), we set JP (a)Kp =

JP (a)KA.

• For an L-function and elements a ∈ ST(A�p), fp(a) = f(a)A.

Note that we could have also defined the structure as {a � p : a ∈ ST(A)}, and the

Boolean algebra to be {qup : q ∈ BA(A)}. We further note that for any model A |= ∅BA,

A�1 = A. We now show that these restricted models preserve the extent of L-sentences.

Lemma 6.2 Let A |= ∅BA, let A |= p E q with q 6= 0, and let γ be an L-sentence. Then

A |= p E JγK if and only if A�q |= p E JγK.

Proof. This follows from a straightforward induction on the complexity of γ. a

We now show a slight generalization of the previous lemma.

Lemma 6.3 Let A |= ∅BA, A |= p E r, A |= q E −r with r 6= 0, 1, and let γ be an

L-sentence. Then the following are equivalent:

1. A |= p t q E JγK.

2. A�r |= p E JγK and A�(−r) |= q E JγK.
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Proof. This follows from Lemma 6.2. a

We now define a map from a model to a restricted model.

Definition 6.4 For a model A |= ∅BA, and p ∈ BA(A) with p 6= 0, we define the map

πA
p : A → A � p by πA

p (a) = a � p for a ∈ ST(A), πA
p (a) = a u p for a ∈ BA(A), and

πp(a) = a for a ∈ CH(A).

We now show this map is a morphism.

Lemma 6.5 Let A |= ∅BA, and p ∈ BA(A) with p 6= 0. Then πA
p is an onto morphism.

Further, for any function f ∈ LBA, πA
p maps the domain of f in A onto the domain of

f in A�p.

Proof. πA
p is obviously onto with respect to Boolean elements, structural elements,

and chaff. Thus, we need only show this is a morphism. For predicates, if E(x), then

E(πA
p (x)), and if x = y, then πA

p (x) = πA
p (y). For functions, if f is an L-function, then

fp(πA
p (x)) = πA

p (f(x)) by axiom Rs6. For functions of the form JP (x)K, JP (πA
p (x))Kp =

πA
p (JP (x)K) by axiom Rs5. For x � y, we have that πA

p (x) � pπA
p (y) = (x � p) � (y u p).

By axiom Rs4, (x � p) � (y u p) = x � (p u y u p) = x � (y u p). Again, by axiom Rs4,

x � (y u p) = (x �y) �p = πA
p (x �y). For u, πA

p (x) up πA
p (y) = x u p u y u p = x u y u p =

πA
p (x u y). For t, πA

p (x) tp πA
p (y) = (x u p) t (y u p) = (x t y) u p = πA

p (x u y),

where the second equality holds by axiom Ba15. For −, note that since πA
p (x) is an

element of A � p, we have that −pπA
p (x) = (−πA

p (x)) u p. Thus, we get that πA
p (−x) =

(−x)u p = ((−x)u p)t ((−p)u p) = ((−x)t (−p))u p = −(xu p)u p = −pπA
p (x). Next,

πA
p (0) = 0 = 0p while πA

p (1) = p = 1p. Finally, it is obvious that if A |= JP (a)K, then
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A�p |= E(Ja�pK), and if A |= E(f(a)), then A�p |= E(f(a�p)). The same holds for the

predicates BA and =, so the last claim follows. a

We call these maps πA
p restriction morphisms. These morphisms have the extra

property that for any function in LBA, its domain in A maps onto its domain in A � p.

We give this property the following definition:

Definition 6.6 For models A and B of ∅BA and a map π : A → B, we say that π

maps domains onto domains if, for every function g in LABA and a ∈ A, π maps

the domain of g in A onto the domain of g in B.

We note a simple corollary of Lemma 6.5:

Corollary 6.7 Suppose A |= ∅BA, and p is a nonzero element of BA(A). Then A�p |=

∅BA. Further, if A |= ∅ABA and p 6= 0, then A�p |= ∅ABA.

Proof. This result holds because πA
p maps domains onto domains, because A�p ⊆ A,

and because these domains are disjoint by Proposition 3.2. We show that A � p |= Ba2

as an example. Suppose A � p |= BA(q) ∧ BA(r). Then A |= BA(q) ∧ BA(r), so that

A |= BA(q u r). Since πA
p is a morphism, A�p |= BA(q u r). a

We immediately get the following corollary:

Corollary 6.8 Let A |= ∅BA, and p, q ∈ BA(A) with p u q nonzero. Then πA�p
puq is a

morphism which maps domains onto domains.

Proof. First, A �p |= ∅BA by Corollary 6.7. As A � (p u q) = (A �p) � q by Definition

6.1, the result holds by Lemma 6.5. a

We now show that restriction morphisms can be used to decompose models of ∅BA.
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Lemma 6.9 Suppose A |= ∅BA, and let p, q, r ∈ BA(A) such that q 6= 0, r 6= 0, and

p = qtr. Then the map 〈πA�p
puq, π

A�p
pur〉 : A�p→ A�q×A�r is an embedding. Additionally,

if q u r = 0 and A is clean, then 〈πA�p
puq, π

A�p
pur〉 is an isomorphism.

Proof. As each of πA�p
puq, π

A�p
pur are morphisms by Lemma 6.5, we need only show that,

for every atom δ(x) of LABA, if A � q × A � r |= δ(〈πA�p
puq, π

A�p
pur〉(a)) then A � p |= δ(a).

Now, the only predicates of LABA are E, =, and BA. We show the case for equality,

with the cases of E and BA being similar. Suppose A � q × A � r |= 〈πA�p
puq, π

A�p
pur〉(a) =

〈πA�p
puq, π

A�p
pur〉(b). Now, since πA�p

puq and πA�p
pur map domains to domains, then either a and b

are both structural, both Boolean, or both chaff. First, suppose a, b are both structural

elements. Then A � q |= a � q = b � q and A � r |= a � r = b � r. Then A � p |= (a � q =

b � q) ∧ (a � r = b � r). By Lemma 3.9.10, we get A � p |= a � (q t r) = b � (q t r). Since

JE(a)K E p and JE(b)K E p, we have A |= a = a � p = b � p = b, so that A � p |= a = b.

Thus, 〈πA�p
puq, π

A�p
pur〉 preserves equality, so that the function is injective. Next, suppose s, t

are Boolean elements. Then A � q × A � r |= 〈πA�p
puq, π

A�p
pur〉(s) = 〈πA�p

puq, π
A�p
pur〉(t) means that

A � q |= s u q = t u q and A � r |= s u r = t u r. Since s E p and t E p, we have that

A � p |= s = s u (q t r) = (s u q) t (s u r) = (t u q) t (t u r) = t u (q t r) = t. Finally,

suppose a, b are chaff. Then A � q × A � r |= 〈πA�p
puq, π

A�p
pur〉(a) = 〈πA�p

puq, π
A�p
pur〉(b) means that

A�q |= a = b and A�r |= a = b. Since CH(A) = CH(A�s) for any s ∈ BA(A), we have

that A � p |= a = b. Finally, if A is clean and q u r = 0, the embedding is clearly onto,

so it is an isomorphism. a
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6.2 Extending Boolean indexed models to atomless

Boolean indexed models

In this section we show how to embed models of ∅BA into models of ∅ABA. Recall that a

model A of ∅BA is a model of ∅ABA if A has infinitely much chaff, has a global element,

and is atomless. One easily embeds A into a model with an infinite amount of chaff

by simply adding an infinite set to the domain A. Embedding A into a model with

an atomless Boolean algebra requires more work. We show that this last embedding

preserves the existence of a global element.

We first show how to create a model of ∅BA ∪ {Ba19} from a model of ∅BA. Let

A |= ∅BA, and let p ∈ BA(A) with p 6= 0. Recall the structure A�−p and the morphism

πA
−p from Lemma 6.5. Further, we let π1 : A ×B → A be the projection onto the first

coordinate, and we similarly define π2. We form the pullback depicted in Figure 1.

A×A�−p A π2

//

π1

��

A

πA
−p

��
A

πA
−p

// A�−p

Figure 1: Pullback over −p

Recall that the model A×A�−pA is defined as the submodel of A×A where the domain

is the set {(x, y) : π−p(x) = π−p(y)}. Note that if we replace A ×A�−p A with A in the

above diagram and πi with idA, the diagram obviously commutes. Because of this, by a

well-known category theory result, see [7, page 71], there is a unique embedding from A

to A×A�−p A which makes Figure 2 commute.

We now discuss the form of this embedding. Let A′ be the pullback A ×A�−p A, and
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A×A�−p A π2

//

π1

��

A

πA
−p

��
A

πA
−p

// A�−p

Figure 2: Factoring A through the pullback

define F : A→ A′ by x 7→ (x, x). We now get the following result:

Lemma 6.10 F is the unique embedding from A to A′ that makes Figure 2 commute.

Proof. It suffices to show that π1 ◦ F = idA and π2 ◦ F = idA. That both hold is

obvious. a

Thus, A embeds into A′, so we may assume that A ⊆ A′. We also get the following:

Lemma 6.11 Suppose A |= ∅BA, let p ∈ BA(A) be nonzero, and set A′ as the pullback

model A×A�−p A. Then A′ |= ∅BA.

Proof. As ∅BA is universal Horn, and A′ is a submodel of a product of models of

∅BA, we have that A′ |= ∅BA. a

We now suppose that p is an atom, so we have that for all Boolean q either pu q = 0

or p u q = p. Then, for each q ∈ BA(A), we set q0 = (−p) u q. Further, if q u p = 0,

then set q1 = 0, and if q u p = p, then set q1 = 1. Thus, q = q0 t (q1 u p). We now prove

that the elements q0 and q1 are unique.

Lemma 6.12 Suppose A |= ∅BA, and p ∈ BA(A) is an atom. Recall that 2 is the

nondegenerate Boolean algebra consisting of two elements, 0 and 1. Then for each q ∈

BA(A), there is a unique (q0, q1) ∈ (BA(A�(−p)))× 2 such that q = q0 t (q1 u p).
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Proof. Suppose q = q0 t (q1 u p) = r0 t (r1 u p). As mentioned above, since p is an

atom, we have either q u p = 0 or q u p = p. Further, note that q0 u p = 0 = r0 u p, since

q0 E (−p) and r0 E (−p). Thus, q0 = (q0 t (q1 u p))u (−p) = (r0 t (r1 u p))u (−p) = r0.

Further, q u p = q1 u p = r1 u p. Since q1, r1 ∈ 2, we have that q1 = r1. a

With this, we get the following:

Lemma 6.13 BA(A) ∼= (BA(A�(−p)))× 2, by the map G(q) = (q0, q1).

Proof. By Lemma 6.12, this function is surjective. Thus, we need only show it is a

morphism. For t, note that qtr = q0t(q1up)tr0t(r1up) = q0tr0t(q1up)t(r1up) =

q0tr0t((q1tr1)up), so that G(qtr) = G(q)tG(r). Further, qur = (q0t(q1up))u(r0t

(r1up)) = (q0ur0)t(q0ur1up)t(q1upur0)t(q1ur1up). Now, since q0up = 0 = r0up,

this reduces to (q0 u r0)t (q1 u r1 u p), so we have that G(q u r) = G(q)uG(r). Further,

G(0) = (0, 0) = 0(BA(A�(−p)))×2, while G(1) = ((−p), 1) = 1(BA(A�(−p)))×2. a

For an element a ∈ ST(A), we have that A |= JE(a)K maps to (JE(a�(−p))K, 0) if

p 5 JE(a)K, and it maps to (JE(a�(−p))K, 1) if p E JE(a)K.

We now discuss the Boolean algebra of A′ derived from a model A and an atom

p ∈ BA(A). By the pullback construction, BA(A′) is the set (x, y) ∈ BA(A) × BA(A)

such that (x0 t (x1 u p)u (−p)) = (y0 t (y1 u p)u (−p)), that is, x0 = y0. As above, each

element in BA(A′) can be uniquely written as an element in (BA(A � (−p))) × 2 × 2.

We map the element (x, y) to the element (x0, x1, y1). Note that this is the same as

(y0, x1, y1). By this map, we have that BA(A′) ∼= (BA(A � (−p))) × 2 × 2. For an

element (x, y) ∈ ST(A′), we let x0 = x � (−p), x1 = x � p, y0 = y � (−p) and y1 = y � p.

Note that x0 = y0. Thus JE((x, y))K = (JE(x0)K, JE(x1)K, JE(y1)K).
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Now, as A ⊆ A′, we have that BA(A) ⊆ BA(A′), with x ∈ BA(A) identified with

(x, x). Since BA(A′) ∼= (BA(A � (−p)))× 2× 2, the element (x, x) maps to (x0, x1, x1).

Further, for an element a ∈ ST(A), JE(a)KA′ = (JE(a�(−p))K, 0, 0) if p 5 JE(a)K and

JE(a)K = (JE(a�(−p))K, 1, 1) if p E JE(a)K. We note that the image of p in (BA(A �

(−p))) × 2 × 2 is the element (0, 1, 1). Let p1 = (0, 1, 0) and p2 = (0, 0, 1). Thus, in

(BA(A � (−p))) × 2 × 2, the element p is no longer an atom, as p1 and p2 are nonzero

elements that are below p. Further, each element q ∈ BA(A′) can be uniquely written

as q0 t (q1 u p1) t (q2 u p2), where q0 ∈ BA(A�(−p)), and q1, q2 ∈ 2.

We now discuss the structural elements in the pullback.

Lemma 6.14 Suppose A |= ∅BA, and suppose p ∈ BA(A) is an atom. Let A′ = A×A�−p

A, and let q ∈ BA(A′). We write q as (q0, q1, q2).

1. If q = (q0, 0, 0), then A′q = Aq.

2. If q = (q0, 1, 0), then A′q
∼= Aq0tp.

3. If q = (q0, 0, 1), then A′q
∼= Aq0tp.

4. If q = (q0, 1, 1), then A′q is the submodel of Aq0tp × Aq0tp with domain {(x, y) ∈

(Aq0tp)
2 : x � (−p) = y � (−p)}. Equivalently, A′q is the submodel of Aq0tp × Aq0tp

with domain {(x, y) ∈ (Aq0tp)
2 : x�q0 = y �q0}.

Proof. For part 1, clearly Aq ⊆ A′q. For the other direction, let (a, b) ∈ A′q. Then

A |= (a = a � (−p)) ∧ (b = b � (−p)). Further, since πA
(−p)(a) = πA

(−p)(b), we have that

a�(−p) = b�(−p). Thus a = b, so that A′q ⊆ Aq.

For part 2, we have that

A′q = {(x, y) : x�(−p) = y �(−p), JE(x)K = q0 t p, and JE(y)K = q0}.
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In other words, for an element to be in the domain of A′q, it must be of the form

(x, x � p), where JE(x)K = q0 t p. Let F : Aq0tp → A′q be defined as F (x) = (x, x � p).

By the previous comments, this function is well defined. Further, it is clearly onto and,

by the previous comments, it is one-to-one. Now, Aq0tp |= P (a) holds if and only if

A |= JP (a)K = q0 t p. This holds if and only if A′ |= JP ((a, a))K = (q0, 1, 1), which

is equivalent to A′ |= JP (a, a�(−p))K = (q0, 1, 0) = q. Thus, A′q |= P (F (a)) if and

only if Aq0tp |= P (a). Further, suppose Aq0tp |= f(a) = b. Then A |= f(a) = b.

Thus, A′ |= f((a, a)) = (b, b), so that A′ |= f((a, a � (−p))) = (b, b � (−p)). Thus,

F (f(a)) = f(F (a)).

The proof of part 3 is nearly identical to the proof of part 2.

The proof of part 4, suppose (x, y) ∈ A′q. Then A′ |= JE((x, y))K = (q0, 1, 1). Thus,

x�(−p) = y �(−p). The last statement follows from the fact that q0 = q �(−p). a

For a model A |= ∅BA, recall that A◦ is the largest clean submodel of A. We now

describe the largest clean submodel of the pullback A′.

Lemma 6.15 Let A′ be the pullback described above. Then (A′)◦ ∼= A◦ × (A◦ �p).

Proof. Note that Figure 3 obviously commutes.

A◦ × A◦ �p
πA
−p×idA

//

π1

��

A◦ �−p× A◦ �p

π1

��
A◦

πA
−p

// A◦ �−p

Figure 3: Commutative square

It suffices to show that A◦×A◦ �p is also a pullback. Thus, suppose we have a model

B and that Figure 4 commutes.
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B
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A◦ × A◦ �p
πA
−p×idA

//

π1

��

A◦ �−p× A◦ �p

π1

��
A◦

πA
−p

// A◦ �−p

Figure 4: Factoring B through A◦ × A◦ �p

Then a straightforward diagram chase shows that 〈f, g2〉 : B → A◦ × A◦ � p is the

unique factorization. So A◦ × A◦ � p is a pullback, and as pullbacks are unique up to

isomorphism, the result holds. a

We now show that this pullback A′ preserves additional axioms from ∅ABA.

Lemma 6.16 Suppose A |= ∅BA and p ∈ BA(A) is an atom. Let A′ be the pullback

formed as above.

1. If A is clean, then A′ is clean;

2. If A has a global element, then A′ has a global element.

3. Suppose A |= 1 E JγK for an L-sentence γ. Then A′ |= 1 E JγK.

Proof. Parts 1 and 2 follow immediately from Lemma 6.15. For 3, combine Lemma

6.15 with Lemma 6.3. a

The next step in the procedure is to take the union of a chain of models derived

through this pullback procedure so as to remove all atoms to get an atomless Boolean

indexed model. It is well-known that Π0
2-sentences are preserved under unions of chains.

Therefore, we show that translations of Π0
2-sentences are also Π0

2.
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Lemma 6.17 Let ϕ be a Π0
2 L-formula. Then, over ∅BA, 1 E JϕK is equivalent to a Π0

2

Horn formula.

Proof. By Theorem 4.35, we may suppose that ϕ has the form

∀x∃y(
∧
r<s(

∧
j<m δrj →

∨
k<l εrk)), where each δrj and εrk is atomic. By Lemma 4.33,

1 E JϕK translates to

∀x(
∧
i<n

ST(xi)→ JE(x)K E J∃y(
∧
r<s

(
∧
j<m

δrj →
∨
k<l

εrk))K).

This translates to

∀x(
∧
i<n

ST(xi)→ ∃y(
∧
p<q

JE(yp)K = JE(x)K ∧ JE(x)K E J
∧
r<s

(
∧
j<m

δrj →
∨
k<l

εrk)K)).

This is equivalent to

∀x∃y(
∧
i<n

ST(xi)→ (
∧
p<q

JE(yp)K = JE(x)K ∧ JE(x)K E J
∧
r<s

(
∧
j<m

δrj →
∨
k<l

εrk)K)).

As in Lemma 4.37, we have that J
∧
r<s(

∧
j<m δrj →

∨
k<l εrk)K is the same as

d
r<s(

⊔
j<m−JδrjK t

⊔
k<lJεrkK). Thus, our formula is equivalent to

∀x∃y(
∧
i<n

ST(xi)→ (
∧
p<q

JE(yp)K = JE(x)K ∧ (JE(x)K E
l

r<s

(
⊔
j<m

−JδrjK t
⊔
k<l

JεrkK)))).

This is Π0
2 Horn, so we are done. a

We now proceed with our construction. For a model A |= ∅BA, we enumerate the

set of atoms as {pi : i < κ} for some cardinal κ. Note that as they are atoms, we

have that pi u pj = 0 for i 6= j. We let A′ be the pullback formed by A ×A�−p0 A.

Further, p1 ∈ BA(A′) is the element (p1, 0, 0), so that p1 is an atom in A′. In this

manner, we create a chain of models: let A0 = A, for a successor cardinal λ = α+ 1, set

Aλ = Aα×Aα�−pα Aα, and for a limit ordinals λ, set Aλ =
⋃
i<λ Ai. We set A(1) =

⋃
i<κ Ai.

With this, we get the following:
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Lemma 6.18 Let A(1) be the model described above. Then A(1) |= ∅BA. Additionally, if

A |= ΓBA for some set Γ of Π0
2-sentences, then A(1) |= ΓBA.

Proof. By Lemma 6.11, each pullback Ai |= ∅BA. Since ∅BA is Π0
2, it is preserved

under unions of chains of models. Thus A(1) |= ∅BA. The last claim follows from Lemma

6.17. a

All atoms in A are no longer atoms in A(1). However, A(1) may contain new atoms.

So we repeat this procedure for the model A(1), and construct a model A(2). In this way,

we create a chain of models A(1) ⊆ A(2) ⊆ . . .. Set A(ω) =
⋃
n∈ω A(n). Further, as per

the discussion at the beginning of this section, we may suppose that A(ω) has infinitely

much chaff. We are now ready to prove our main result:

Theorem 6.19 Suppose A |= ∅BA and A has a global element. Let A(ω) be constructed

as above. Then A(ω) |= ∅ABA. Further, if A |= ΓBA for some set Γ of Π0
2 L-sentences,

then A(ω) |= ΓBA.

Proof. Each A(n) |= ∅BA, so that A(ω) |= ∅BA. To see it is atomless, let p ∈ BA(A(ω)).

Then p ∈ BA(A(n)) for some n ∈ ω. If p is not an atom in A(n), we are done. Otherwise,

p is not an atom in A(n+1). The final claim follow from Lemma 6.17. a

6.3 A modified Wheeler’s conjecture

We are now ready to give a positive alternative to Wheeler’s conjecture.

Theorem 6.20 Let Γ be a set of L-sentences that has a nonempty model. If Γ has a

model companion axiomatized by a set of Π0
2 L-sentences Γ′, then the universal Horn

fragment of ΓBA2 has as its model companion (Γ′)ABA.
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Proof. We may suppose that Γ is a set of universal sentences. By Theorem 4.38,

(ΓBA2)UH = ΓBA is universal Horn. Every model of (Γ′)ABA is a model of ΓBA by

Corollary 4.36. By Theorem 5.17, (Γ′)ABA is model complete. Thus, it suffices to show

that every model of ΓBA embeds into a model of (Γ′)ABA.

Let A |= ΓBA. By Theorem 4.34, AU |= Γ for all U ∈ UA. By Corollary 2.13 and

Proposition 3.19, (AU)BA2 |= ΓBA. As ΓBA is universal Horn, ΠU∈UA
(AU)BA2 |= ΓBA. As

A embeds into ΠU∈UA
(AU)BA2 by Lemma 4.32, it suffices to prove that ΠU∈UA

(AU)BA2

embeds into a model of (Γ′)ABA. Now, each AU |= Γ so by supposition AU embeds into a

model A′U |= Γ′ which must be nonempty. Then (A′U)BA2 |= (Γ′)BA by Corollary 2.13 and

Proposition 3.19. Further, ΠU∈UA
(AU)BA2 embeds into ΠU∈UA

(A′U)BA2. By Lemma 6.17,

(Γ′)BA is a set of Horn sentences. Thus, ΠU∈UA
(A′U)BA2 |= (Γ′)BA. As each (A′U)BA2 has

a global element, ΠU∈UA
(A′U)BA2 has a global element. By Theorem 6.19, ΠU∈UA

(A′U)BA2

embeds in a model of (Γ′)ABA. a

In the presence of the existence operator E(x), consistent theories may contain the

empty model. This is not true for the usual predicate logics without E(x). For a proof,

see Proposition A.1. Thus, we include the seemingly trivial condition that Γ has a

nonempty model in the statement of Theorem 6.20.

Our modified version of Wheeler’s conjecture can be described as follows: We start

with a universal theory Γ that has a model companion Γ′. Then ΓBA2 is essentially

the same theory as Γ; in particular, ΓBA2 has as its model companion (Γ′)BA2. We

take the universal Horn fragment ΓBA of ΓBA2. Out of Γ′ we are able to construct a

model companion for ΓBA. By encoding a Boolean algebra into the language, we have

sufficiently enriched its expressive power to be able to axiomatize the theory of the
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existentially closed models.

The following draws an even closer connection between Theorem 6.20 and Wheeler’s

conjecture.

Theorem 6.21 Let Γ be a set of Π0
2 L-sentences. Then ΓABA is axiomatizable by a

set of Π0
2 Horn sentences. In particular, if Γ has a model companion, then the model

companion of ΓBA has a Π0
2 Horn axiomatization.

Proof. The set ∅BA is Horn. By Lemma 6.17, ΓBA is Π0
2 Horn. Thus, it suffices to

show that Ba19 and So3 are equivalent to Π0
2 Horn sentences. The former is equivalent to

∀x∃y((xuy = 0→ x = 0)∧(xuy = x→ x = 0)), while the latter schema is equivalent to

the set of sentences ∃x((
∧
i<n BA(xi)→ ⊥)∧(

∧
i<n ST(xi)→ ⊥)∧(

∧
i<j<n xi = xj → ⊥))

for n ∈ N. These are both conjunctions of Π0
2 Horn sentences, so we are done. a

We end with two corollaries to Theorem 6.20.

Corollary 6.22 Let Γ be a set of universal L-sentences. If Γ has a model companion,

then (ΓUH)BA has a model companion.

Proof. This follows from Theorem 4.40 and Theorem 6.20. a

We note that the connection between Theorem 6.20 and Wheeler’s conjecture is

drawn even closer by Corollary 6.22.

Recall that the empty theory has a model companion, see [2]. Let ∅∗ be a Π0
2

axiomatization of that model companion. Then the following is a simple corollary of

Theorem 6.20.

Corollary 6.23 The model companion of ∅BA is (∅∗)ABA.
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Chapter 7

Intuitionistic Derivability and

Non-Discrete Models

In this chapter we discuss the logical strength of y E JϕK. We demonstrate that its de-

ductive power includes intuitionistic derivability plus the discreteness schema for atomic

formulas. We also discuss the logical strength of y EK JϕK. Due to its connection

with forcing on Kripke models, we easily show its deductive power includes intuitionistic

derivability. We then show that if Γ and ∆ are intuitionistically equivalent theories,

then ΓBA and ∆BA are equivalent. We also show that neither y E JϕK nor y EK JϕK

contain full classical derivability. We demonstrate this by creating models of ∅BA and

sentences ϕ such that the ideal associated with ϕ is not principal. We first show that

the Boolean translation is weaker than classical derivability. Our particular ϕ does not

contain any disjunctions, so that the result then follows from Proposition 3.21.

7.1 Kripke forcing

We show that p EK JϕK obeys the rules of intuitionistic logic.

Theorem 7.1 Let Γ ∪ {ϕ} be a set of L-sentences. If Γ `i ϕ, then there exists a finite

subset Γ0 ⊆ Γ such that ∅BA ` y EK J
∧
γ∈Γ0

γK→ y EK JϕK.
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Proof. By compactness, we have that Γ `i ϕ if and only if Γ0 `i ϕ for some

finite subset Γ0. By Kripke soundness, Γ0 `i ϕ implies that for all models A and

Boolean elements p, if (K(A), p) ‖−Γ0 then (K(A), p) ‖−ϕ. The result then follows from

Proposition 3.23. a

7.2 Boolean forcing

We now discuss the power of y E JϕK. As there is no clear connection between the

Boolean translation and Kripke forcing, we show that each step of the intuitionistic

sequent calculus is preserved. In this case, it is important to keep track of the set of free

variables which occur in the L-formulas.

Lemma 7.2 Suppose ϕ(x) is an L-formula, with x the set of all free variables in ϕ.

Then the free variables in the LBA-formula y E0 Jϕ(x)K are x ∪ y.

Proof. We proceed by induction on the complexity of ϕ(x). If ϕ is atomic of

the form P (t0(x), . . . , tn−1(x)), then y E0 JP (t0(x), . . . , tn−1(x))K is translated as y u

JP (t0(x), . . . , tn−1(x))K = y, so that the free variables are y and x.

Suppose ϕ(x) is ψ(x) ∧ θ(x). Then y E0 Jϕ(x)K is translated as y E0 Jψ(x)K ∧

y E0 Jθ(x)K. By induction, the free variables in this latter formula are y and x.

Suppose ϕ(x) is ψ(x) ∨ θ(x). Then y E0 Jϕ(x)K is translated as ∃y1, y2(y1 E0

Jψ(x)K ∧ y2 E0 Jθ(x)K ∧ y1 t y2 = y). By induction, the free variables in this latter

formula are y and x.

Suppose ϕ(x) is ψ(x) → θ(x). Then y E0 Jϕ(x)K is translated as ∀z((z E0 y ∧

z E0 Jψ(x)K) → z E0 Jθ(x)K). By induction, the free variables in this latter formula
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are y and x.

Suppose ϕ(x) is ∀xψ(x,x). Then y E0 Jϕ(x)K translates to ∀x(JE(x)K E0 y →

JE(x)K E0 Jψ(x,x)K). By induction, the free variables in this latter formula are y and x.

Finally, suppose ϕ(x) is ∃xψ(x,x). Then y E0 Jϕ(x)K translates to ∃x(JE(x)K =

y ∧ y E0 Jψ(x,x)K). By induction, the free variables in this latter formula are y and x.

a

Before we prove our main result, we need one last result.

Lemma 7.3 Let ϕ be an L-formula, and t an L-term where no free variables of t occur

as bound variables in ϕ or in y E JϕK. Then (y E Jϕ(x)K)(x/t) is the same string as

y E Jϕ(x)(x/t)K.

Proof. We proceed by induction on the complexity of ϕ. If ϕ is an atomic formula

of the form P (t0(x), . . . , tn−1(x)), then y E JP (t0(x), . . . , tn−1(x))K(x/t) means (y u

JP (t0(x), . . . , tn−1(x))K = y)(x/t). This becomes y u JP (t0(t), . . . , tn−1(t))K = y. But

this is the same string as y u JP (t0(x), . . . , tn−1(x))(x/t)K = y, which is the same as

y E JP (t0(x), . . . , tn−1(x))(x/t)K.

Suppose ϕ is ψ∧θ. Then (y E Jϕ(x)K)(x/t) means ((y E Jψ(x)K)∧(y E Jθ(x)K))(x/t).

By induction, this is the same as y E Jψ(x)(x/t)K and y E Jθ(x)(x/t)K. This is the same

as y E J(ψ(x) ∧ θ(x))(x/t)K.

Suppose ϕ is ψ ∨ θ. Then (y E Jϕ(x)K)(x/t) is

(∃y1, y2((y1 E Jψ(x)K) ∧ (y2 E Jθ(x)K) ∧ y1 t y2 = y))(x/t).

By induction, this is the same as

∃y1, y2(y1 E Jψ(x)(x/t)K ∧ y1 E Jθ(x)(x/t)K ∧ y1 t y2 = y).
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This is the same as y E J(ψ(x) ∨ θ(x))(x/t)K.

Suppose ϕ is ψ → θ. Then (y E Jϕ(x)K)(x/t) is the same as

∀z((z E y ∧ z E Jψ(x)K)→ (z E Jθ(x)K))(x/t).

By induction, this is the same as

∀z(z E y ∧ z E Jψ(x)(x/t)K→ z E Jθ(x)(x/t)K).

This is the same as y E J(ψ(x)→ θ(x))(x/t)K.

Suppose ϕ is ∀x′(ψ(x, x′)). Then (y E Jϕ(x)K)(x/t) is

(∀x′(JE(x′)K E y → JE(x′)K E Jϕ(x, x′)K))(x/t),

which, by induction, is the same as

∀x′(JE(x′)K E y → JE(x′)K E Jϕ(x, x′)(x/t)K).

This is the same as y E J(∀x′(ϕ(x, x′)))(x/t)K.

Finally, suppose ϕ is ∃x′(ψ(x, x′)). Then (y E Jϕ(x)K)(x/t) is

(∃x′(JE(x′)K = y ∧ y = Jϕ(x, x′)K))(x/t).

By induction, this is the same as ∃x′(JE(x′)K = y ∧ y = Jϕ(x, x′)(x/t)K). This is the

same as y E J(∃x′(ϕ(t, x′)))(x/t)K. a

We now prove the main result for this section.

Lemma 7.4 Suppose `i γ(x)⇒ ϕ(x), where x is the set of all free variables that occur

in γ and ϕ. Then ∅BA `i 1 E J∀x(γ → ϕ)K.
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Proof. We proceed by induction on the length of the proof of γ ⇒ ϕ. Thus, we

suppose that the result holds for shorter lengths, and show the result holds for each step

in the intuitionistic sequent calculus presented in Appendix A. Recall that z E JE(x)K

means that z E
d
i<nJE(xi)K, so that the extent of every element of x is at least as big

as z.

We start by showing that 1 E J∀x(⊥ → ϕ)K. This translates to

∀x(
∧

ST(xi)→ ∀z((z E JE(x)K ∧ z E J⊥K)→ z E JϕK)).

But if z E J⊥K, then z = 0, so that z E JϕK by Proposition 4.8.

We now show that 1 E J∀x(ϕ→ >)K. This translates to

∀x(
∧

ST(xi)→ ∀z((z E JE(x)K ∧ z E JϕK)→ z E J>K)).

But J>K = 1, so that if z E JϕK, then clearly z E 1.

Next, we show that 1 E J∀x(ϕ→ ϕ)K. This case translates to

∀x(
∧

ST(xi)→ ∀z((z E JE(x)K ∧ z E JϕK)→ z E JϕK)).

This is obviously true.

Next, we show that 1 E J∀x(> → x = x)K. This translates to

∀x(
∧

ST(xi)→ ∀z((z E JE(x)K ∧ z E J>K)→ z E Jx = xK)).

But if z E JE(x)K, then z E Jx = xK.

Next, we show 1 E J∀x((x = y ∧ ϕ(x))→ ϕ(y))K. This translates to

∀x(
∧

ST(xi)→ ∀z(z E JE(x)K ∧ z E Jx = yK ∧ z E Jϕ(x)K→ z E Jϕ(y)K)).

But if z E Jx = yK and z E Jϕ(x)K, then by Corollary 4.4, we have that z E Jϕ(y)K.
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We now show that

1 E J∀x((ϕ→ ψ) ∧ (ψ → θ))K→ 1 E J∀x(ϕ→ θ)K.

Then, for any z E JE(x)K, z E JϕK implies that z E JψK, and for any w E JE(x)K,

w E JψK implies that w E JθK. Thus, if some z E JE(x)K is such that z E JϕK, then

z E JψK. But then z E JθK so that z E Jϕ→ θK.

Next, we show that

1 E J∀x((ϕ→ ψ) ∧ (θ → ψ))K→ 1 E J∀x((ϕ ∨ θ)→ ψ)K.

Then we have that if
∧
i<n ST(xi), then JE(x)K E Jϕ→ ψK and JE(x)K E Jθ → ψK. Now

suppose w E JE(x)K with w E Jϕ ∨ θK. Then there exist w1, w2 E w with w1 E JϕK

and w2 E JθK and w1 t w2 = w. By our suppositions, w1 E JψK and w2 E JψK. Then

w1 t w2 = w E JψK by Lemma 4.6. Thus z E J(ϕ ∨ θ)→ ψK.

Conversely, we show that

1 E J∀x((ϕ ∨ θ)→ ψ)K→ 1 E J∀x((ϕ→ ψ) ∧ (θ → ψ))K.

Suppose we have that
∧
i<n ST(xi) and w E JE(x)K. We need to show that w E Jϕ→ ψK

and w E Jθ → ψK. Let v E w and suppose v E JϕK. Then by our supposition, v E JψK.

The case for w E Jθ → ψK is similar.

Next, we show that

1 E J∀x((ϕ→ ψ) ∧ (ϕ→ θ))K→ 1 E J∀x(ϕ→ (ψ ∧ θ))K.

Then we have that if
∧
i<n ST(xi), then JE(x)K E Jϕ→ ψK and JE(x)K E Jϕ→ θK.

Suppose
∧
i<n ST(xi) and z E JE(x)K. We need to show that z E Jϕ→ ψ ∧ θK. Thus,

suppose w E z and w E JϕK. By our supposition, w E JψK and w E JθK, so w E Jψ ∧ θK.
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Conversely, we show that

1 E J∀x(ϕ→ (ψ ∧ θ))K→ 1 E J∀x((ϕ→ ψ) ∧ (ϕ→ θ))K.

Suppose
∧
i<n ST(xi) and z E JE(x)K. We need to show that z E J(ϕ→ ψ) ∧ (ϕ→ θ)K.

Thus, suppose w E z and w E JϕK. Then by our supposition, w E Jψ ∧ θK, so certainly

w E JψK. Thus, z E Jϕ→ ψK. The case for z E Jϕ→ θK is similar.

Next we show that

1 E J∀x(ϕ(x)→ ψ(x))K→ 1 E J∀x′(ϕ(t)→ ψ(t))K

where t is a term where no variable in t becomes bound, and x′ is the tuple obtained from

x by removing x and adding the free variables of t. Then, the antecedent is equivalent

to: if
∧
i<n ST(xi), then JE(x)K E Jϕ(x)→ ψ(x)K, or, equivalently, if w E JE(x)K ∧ w E

Jϕ(x)K, then w E Jψ(x)K. We wish to show that 1 E J∀x′(ϕ(t)→ ψ(t))K. Let x′ be any

set of structural elements, and suppose w E JE(x′)K and w E Jϕ(t)K. Then w E Jϕ(t)K

if and only if w E Jϕ(t�w)K by Corollary 4.3. Then, by Lemma 7.3 and applying the

antecedent to the elements x′ and t�w, we have that w E Jψ(t)K.

Next, we show that

1 E J∀x((E(x) ∧ ϕ)→ ψ)K→ 1 E J∀x′(∃xϕ→ ψ)K,

where x is a variable which is not free in ψ. Then our supposition is

∀x(
∧
i<n

ST(xi)→ ∀z((z E JE(x)K ∧ z E JE(x) ∧ ϕ(x)K)→ z E JψK)).

We need to show that 1 E J∀x′(∃xϕ→ ψ)K. This translates to

∀x′(
∧
x′∈x′

ST(x′)→ ∀w((w E JE(x′)K ∧ ∃x(JE(x)K = w ∧ w E Jϕ(x)K))→ w E JψK)).
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Thus, suppose we have a set of structural elements x′ and an element x such that

JE(x)K = w and w E Jϕ(x)K. Then we have w E JE(x)K ∧ w E Jϕ(x)K, so by our

supposition, w E JψK.

Conversely, we show that

1 E J∀x′(∃xϕ→ ψ)K→ 1 E J∀x((E(x) ∧ ϕ)→ ψ)K,

again with x not free in ψ. As above, the antecedent translates to

∀x′(
∧
x′∈x′

ST(x′)→ ∀z((z E JE(x)K ∧ ∃x(JE(x)K = z ∧ z E JϕK))→ z E JψK)).

We wish to show that

∀x(
∧
i<n

ST(xi)→ ∀w((w E JE(x)K ∧ w E JE(x) ∧ ϕ(x)K)→ w E JψK)).

Thus, suppose x are structural elements, w E JE(x)K and w E JE(x) ∧ ϕ(x)K. Then,

by replacing x with x � w, we have that JE(x)K E z, w E JE(x)K, JE(x)K = w, and

w E Jϕ(x)K. Thus w E JψK.

Next we show that

1 E J∀x(ϕ→ (E(x)→ ψ))K→ 1 E J∀x′(ϕ→ ∀xψ)K,

where x is not free in ϕ. Then we have that if x are structural and for all z, if

z E JE(x)K∧z E JϕK, then z E JE(x)→ ψK. We need to show that 1EJ∀x′(ϕ→ ∀xψ)K,

or equivalently,

∀x′(
∧
x′∈x′

ST(x′)→ ∀z(z E JE(x′)K ∧ z E JϕK→ ∀x(JE(x)K E z → JE(x)K E JψK))).

Let x′ be structural and suppose z E JϕK, z E JE(x′)K, and x is such that JE(x)K E z. Let

w = JE(x)K. Then w E JE(x′)K, w E JϕK, and w E JE(x)K, so that w = JE(x)K E JψK.
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Conversely, we show that

1 E J∀x′(ϕ→ ∀xψ)K→ 1 E J∀x(ϕ→ (E(x)→ ψ))K,

where again x is not free in ϕ. Then our supposition is that

∀x′(
∧
x′∈x′

ST(x′)→ ∀z(z E JE(x′)K ∧ z E JϕK→ ∀x(JE(x)K E z → JE(x)K E JψK))).

We need to show that 1 E J∀x(ϕ→ (E(x)→ ψ))K. Suppose we have structural elements

x and a Boolean element z where z E JE(x)K and z E JϕK. Then we have that x′ are

structural elements, z E JE(x′)K, and z E JϕK. By replacing x with x � z, we have that

JE(x)K E z, so we can apply our supposition to get z = JE(x)K E JϕK.

Next, we show that

1 E J∀x((ϕ ∧ ψ)→ θ)K→ 1 E J∀x(ϕ→ (ψ → θ))K.

Then we have that if x are structural, z E JE(x)K, and z E Jϕ ∧ ψK, then z E JθK. We

wish to show that if x are structural, w E JE(x)K, and w E JϕK, then w E Jψ → θK. To

this end, suppose that v E w and v E JϕK. We need to show that v E Jψ → θK. So let

u E v and u E JψK. Then u E JϕK, so u E Jϕ ∧ ψK. By our supposition, u E JθK.

Finally, we show that

1 E J∀x(ϕ→ (ψ → θ))K→ 1 E J∀x((ϕ ∧ ψ)→ θ)K.

Suppose x are structural. We need to show that JE(x)K E J(ϕ ∧ ψ)→ θK. Suppose

z E JE(x)K and z E Jϕ ∧ ψK. Then z E JϕK, so by our supposition, z E Jψ → θK. But

since z E JψK, then z E JθK. a

We get the following theorem as an immediate result.
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Theorem 7.5 Let Γ be a set of L-formulas, let ∆ = {∀x(δ ∨ ¬δ) : δ a quantifier-free

L-formula}. If Γ ∪∆ `i ϕ, then ΓBA `i 1 E JϕK.

Proof. This follows from Lemma 7.4 and the fact that quantifier-free formulas are

discrete. a

Thus, by Lemma 7.4, intuitionistically equivalent axiomatizations of a theory Γ have

the same translated theory ΓBA: if we include 1 E JϕK and Γ `i ϕ → ψ, then ΓBA |=

1 E JψK. Theorem 7.5 shows that the deductive strength of y E JϕK is strictly stronger

than intuitionistic logic.

We end with an obvious corollary to Lemma 7.4.

Corollary 7.6 Let Γ and ∆ be intuitionistically equivalent theories. Then ΓBA and ∆BA

axiomatize the same theory.

7.3 Non-discrete models

In this section, we present models of ∅BA with L(A)-sentences ϕ such that there is no

p ∈ BA(A) where A |= JϕK = p. This shows that the Boolean translation is not as

powerful as full classical derivability. As our example of ϕ contains no disjunction, by

Proposition 3.21 the result also holds for the Kripke translation.

Recall that an L(ST(A))-sentence is discrete if its ideal is principal.

Definition 7.7 Let A |= ∅BA. We say that A is discrete if every L(ST(A))-sentence

is discrete. We say A is non-discrete otherwise.

In other words, A is non-discrete if there is an L(ST(A))-sentence ϕ such that (ϕ] is

not principal.
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We present some simple examples of non-discrete models. For the examples we

present, it is easy to describe the structure of the model so that it does not satisfy the

axiom Pt5. By a pullback construction like we made in Chapter 6, we can embed this

into a model of Pt5. We present this construction in Appendix B

7.3.1 A two element non-discrete model

We begin by discussing the Boolean algebra for our model A. Let C be Cantor space

2ω. It is well known to be a compact metric 0-dimensional space. It has a countable

clopen basis, which we describe as follows: let α ∈ 2<ω be of length n. We define

α̂ = {f ∈ C : ∀i < n(f(i) = α(i))}. Thus each α̂ is a clopen subset of C, and all clopen

subsets of C are constructed by taking finite unions of elements α̂. We let C represent

the collection of clopen subsets of C. The Boolean algebra BA(A) for our model is C.

The only functions symbols in our language LBA are x�y, JE(x)K, and Jx = yK. We

have one global element, which we call a. Now, the rest of our structure is generated as

follows: let p0 be the clopen subset of C which corresponds to the cone of elements above

0̂. Let p1 be the clopen subset which corresponds to the cone of elements above 1̂0. Let

p2 be the clopen subset which corresponds to the cone of elements above 1̂10. Let p3 be

the clopen subset which corresponds to the cone of elements above 1̂110. Continue in

this fashion to get a sequence of Boolean elements pi. Over each pi, we introduce a new

structural element which we call ai. Thus for each pi, |Api | = 2. By Lemma B.8, this

embeds into a model of ∅BA, which we call A′.

We now investigate the extent of the sentence ∃xy(¬(x = y)):

Lemma 7.8 Let 1 represent the function in 2ω which is the constant 1. Then
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p E J∃xy(¬(x = y))K if and only if 1 /∈ p.

Proof. For q ∈ C, q E J∃xy(¬(x = y))K if and only if

∃x(JE(x)K = p ∧ p E J∃y(¬(x = y))K).

This holds if and only if

∃x((JE(x)K = p) ∧ ∃y(JE(y)K = p ∧ p E (¬(x = y)))),

which holds if and only if ∃xy(JE(x)K = JE(y)K = p∧∀q(q E p∧ q E Jx = yK→ q = 0)).

Suppose 1 /∈ p. Then p is covered by some finite set of pi. Call this finite set

I. Now, each pi E J∃xy(¬(x = y))K, as witnessed by a � p and ai. Thus, by Lemma

4.6, we have that
⊔
i∈I pi E J∃xy(¬(x = y))K. Since p E

⊔
i∈I pi, then by Lemma 4.5,

p E J∃xy(¬(x = y))K.

Conversely, suppose 1 ∈ p, and assume p E J∃xy(¬(x = y))K. Let x and y witness

that p E J∃xy(¬(x = y))K. Since 1 ∈ p, and each of x and y is constructed by piecing

together finitely many pieces of a and elements ai, then there exists a nonzero element

q ∈ BA(A′) with 1 ∈ q such that q E Jx = aK and q E Jy = aK, so that q E Jx = yK.

Then q u p 6= 0 since 1 ∈ p and 1 ∈ q. But q u p E 0 and q u p E Jx = yK, but q u p 6= 0,

a contradiction. Thus we must have that p 5 J∃xy(¬(x = y))K. a

From this we get an immediate corollary:

Corollary 7.9 A′ is non-discrete.

Proof. Since there is no element of C which consists of all of C except 1, the extent

of ∃xy(¬(x = y)) is not in C. a
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Note that (¬∃xy¬(x = y)] = 0. To see this, let p ∈ (¬∃x∃y¬(x = y)]. Then for all

q, if q E p and q E J∃x∃y¬(x = y)K, then q = 0. Assume p 6= 0. As C is atomless, there

exists q E p such that q 6= 0 and 1 /∈ q. Then q E p and q E J∃x∃y¬(x = y))K, so that

q = 0, a contradiction. Thus p = 0. So we get the following.

Theorem 7.10 Let ϕ be ∃x∃y¬(x = y). Then Jϕ ∨ ¬ϕK 6= 1.

As `c ϕ∨¬ϕ, we see that the Boolean translation does not contain the full power of

classical predicate logic. Since ϕ does not have any disjunctions, with Proposition 3.21

the Kripke translation is also weaker than classical predicate logic.

7.3.2 An infinite non-discrete model

We again start with a model A with Boolean algebra C. The language L consists of

only one binary predicate, ≤. We take a properly descending sequence of elements of

C, {pn : n ∈ ω}, with p0 = 1C, whose intersection is a single point, which we name c.

Over each element pn, we introduce an element n with extent pn, i.e. JE(n)K = pn. If

m,n ∈ N with m ≤ n, then Jm ≤ nK = pn. The structure of this model consists of finite

piecing together of these elements n. Again, by Lemma B.8, this embeds into a model

A′ |= ∅BA.

We look at the extent of ∃x∀y(y ≤ x), i.e. there is a largest element.

Theorem 7.11 Let q ∈ C. Then q E J∃x∀y(y ≤ x)K holds if and only if c /∈ q.

Proof. We start by noting that q E J∃x∀y(y ≤ x)K holds if and only if ∃x(JE(x)K =

q ∧ q E J∀y(y ≤ x)K). This holds if and only if ∃x(JE(x)K = q ∧ ∀y(JE(y)K E q →

JE(y)K E Jy ≤ xK)). Further, for every n ∈ N, the Boolean element pn u (−pn+1) E
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J∃x∀y(y ≤ x)K. In fact, we have that pn u (−pn+1) E J∀y(y ≤ n)K. Also, −pi = ((−pi)u

pi−1) t ((−pi−1) u pi−2) t . . . t ((−p1) u p0). Since each pn u (−pn+1) E J∃x∀y(y ≤ x)K,

by Lemma 4.6, we have −pi E J∃x∀y(y ≤ x)K for each i.

Suppose c /∈ c. Since c /∈ c, q is covered by some finite set of −pi. As each

−pi E J∃x∀y(y ≤ x)K, we have that q E J∃x∀y(y ≤ x)K by Lemma 4.5.

Conversely, suppose c ∈ c and assume there exists an element a ∈ Aq such that

∀yJE(y)K E q → Jy ≤ aK = JE(y)K. Since c ∈ c, there exists an n ∈ N such that pn E c.

Further, since a is made by piecing together a finite number of elements, then there is a

largest m ∈ N such that m is used in constructing a. Now pm+1 E pn, so that pm+1 E c.

Further, JE(m + 1)K = pm+1 and Jm + 1 ≤ aK = 0, a contradiction. Thus, we must have

that q 5 J∃x∀y(y ≤ x)K. a

We get an immediate corollary:

Corollary 7.12 The sentence ∃x∀y(y ≤ x) is not discrete.

Proof. By the previous theorem, (∃x∀y(y ≤ x)] = {c : c /∈ c}. However, there is no

element in C that consists of all subsets that do not contain c. Thus, (∃x∀y(y ≤ x)] is

not a principal ideal. a

Note that (¬∃x∀y(y ≤ x)] = 0. To see this, let p ∈ (¬∃x∀y(y ≤ x)]. Then for all

q, if q E p and q E J∃x∀y(y ≤ x)K, then q = 0. Assume p 6= 0. As C is atomless, there

exists q E p such that q 6= 0 and c /∈ q. Then q E p and q E J∃x∀y(y ≤ x)K, so that

q = 0, a contradiction. Thus p = 0. So we get the following.

Theorem 7.13 Let ϕ be ∃x∀y(y ≤ x). Then Jϕ ∨ ¬ϕK 6= 1.
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Again we see that the Boolean translation does not contain the full power of classical

predicate logic.

7.3.3 A non-discrete model with a complete Boolean algebra

Recall that a Boolean algebra is complete if it is closed under arbitrary joins and meets.

We show that there exists a model of ∅BA with a complete Boolean algebra. Note in a

complete Boolean algebra, an ideal is principal exactly when it is closed under arbitrary

joins of elements in the ideal. We construct a model and a sentence ϕ such that the

ideal generated by ϕ is not closed under arbitrary joins of elements, so that the ideal is

not principal, and thus ϕ is not discrete.

The language L contains no function symbols and no predicates besides the usual

E(x) and x = y. We construct a model A over LBA as follows: We let BA(A) be the

power set Boolean algebra on N. For each singleton {n} ∈ P(N), we place above it the

one element structure. We call its element an. We set ST(A) =
⋃
n∈N{an}. For each n,

we set JE(an)K = {n}, and we set Jan = amK = 0 for all n 6= m. Further, for N ⊆ N, we

set an �N equal to an if n ∈ N and $ otherwise. One easily shows that A |= ∅BA\{Pt5}.

By Lemma B.8, this embeds into a model A′. We note that A′ does not have a global

element, as we are only permitted to piece together finitely many elements.

Proposition 7.14 Let A′ be as above, and let ϕ be the L-sentence ∃x(x = x). Then

(ϕ] is the set of all finite subsets of P(N). Additionally ϕ is non-discrete.

Proof. The first claim follows from the fact that we are able to glue together finitely

many ai. Note that N is not in (ϕ]. Thus, the ideal (ϕ] is contains every finite subset of

N, but does not contain the join of these elements. a
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Note that it was vital to the proof that there is no global element. This example

shows that having a complete Boolean algebra is not sufficient to showing the model is

discrete.

7.4 Sufficient conditions for discrete models

We now present two sufficient conditions for a model to be discrete.

7.4.1 Internally finite models

Many of our models have structures with infinitely many elements. For example, if a

model has an atomless Boolean algebra and a structural element not equal to $, then

the structure of the model must be infinite. However, some models will have a finitely

many structural elements such that every structural element can be partitioned into

those places where it equals those finite structural elements.

Definition 7.15 A model A of ∅BA is internally finite if there exist finitely many

elements a ∈ ST(A) such that JE(ai)K = 1 for all i and for every a′ ∈ ST(A), JE(a)K =⊔
i<nJai = aK.

In some sense, this is an approximation of a finite model. More precisely, A is

internally finite if and only if A |= 1 E J∃x∀y(
∨
i<n y = xi)K for some n. We now show

that being internally finite is a sufficient condition for being a discrete model.

Proposition 7.16 Suppose A |= ∅BA. If A is internally finite, then A is a discrete

model.
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Proof. Let A |= ∅BA, and let a ∈ ST(A) witness that A is internally finite. Let ϕ be

a L(ST(A))-sentence. We show by induction that JϕK is Boolean. By Corollary 4.17 and

Corollary 4.18, we only need to show the inductive case for the universal and existential

cases.

Suppose ϕ is ∀xψ(x). Now, for each element a of a, Jψ(a)K is discrete. Let q =

d
i<nJψ(ai)K. We show that q = J∀xψ(x)K. First, q E J∀xψ(x)K: let a be such that

JE(a)K E q. Now,
⊔
i<nJai = aK = JE(a)K. Now, by Corollary 4.4, Jai = aK E Jψ(a)K.

By Lemma 4.6, JE(a)K =
⊔
i<nJai = aK E Jψ(a)K.

We now show J∀xψ(x)K E q. Suppose p E J∀xψ(x)K. Now, JE(ai �p)K = p, since

JE(ai)K = 1 for all i. Thus, p E Jψ(ai �p)K, so by Corollary 4.3, p E Jψ(ai)K for all i.

Thus, p E
d
i<nJψ(ai)K = q.

Suppose ϕ is ∃xψ(x). Let q =
⊔
i<nJψ(ai)K. We show that q = J∃xψ(x)K. First,

q E J∃xψ(x)K: let a′i = ai � Jψ(ai)K, so that Jψ(ai)K = Jψ(a′i)K. By Corollary 4.3, we

have that JE(a′i)K E Jψ(a′i)K. Thus, Jψ(a′i)K E J∃xψ(x)K. By Lemma 4.6,
⊔
i<nJψ(ai)K =

q E J∃xψ(x)K.

Conversely, suppose p E J∃xψ(x)K. Let a be such that JE(a)K = p and p E Jψ(a)K.

Now,
⊔
i<nJai = aK = p. By Lemma 4.5, Jai = aK E Jψ(a)K, and by Corollary 4.4,

Jai = aK E Jψ(ai)K. Thus p =
⊔
i<nJai = aK E

⊔
i<nJψ(ai)K = q a

7.4.2 Model completeness

We show that if A is a model of a translated model complete theory, then A is discrete.

This encompasses Lemma 5.15.

Proposition 7.17 Let Γ be a Π0
2 axiomatization of a model complete L-theory, and let
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A |= ΓABA. Then A is discrete.

Proof. By Lemma 5.15, it suffices to show that all L(ST(A))-sentences have the

same extent as an existential L(ST(A))-sentence. We proceed by induction on the com-

plexity of ϕ. The result obviously holds for atoms, and is preserved under conjunction,

disjunction, and existential closure.

Suppose ϕ is ψ → γ. By induction, ψ has the same extent as ∃xψ′ and γ has the

same extent as ∃yγ′. As ψ and γ are discrete, JϕK is the same as J¬∃xψ′K t J∃yγ′K. By

Corollary 5.16, there is a sentence ∃zψ′′ such that J¬∃xψ′K = J∃zψ′′K. Then ϕ has the

same extent as ∃zψ′′ ∨ ∀yγ′.

Suppose ϕ is ∀xψ. By induction, ψ has the same extent as ∃xψ′. By Corollary 5.16,

there is a sentence ∃yγ such that JψK = J¬∃yγK. So (ϕ] = (∀x¬∃yγ]. By Theorem 7.5,

(∀x¬∃yγ] = (¬∃x∃yγ]. Apply Corollary 5.16 to get ∃zθ such that (¬∃x∃yγ] = (∃zθ].

a
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Appendix A

Intuitionistic Sequent Calculus

We include as a reference a version of the intuitionistic sequent calculus. Here, ϕ ⇒ ψ

means that ψ is derivable from ϕ. Our particular choice of predicate logic allows us

to have empty models. We discuss this at the end of the appendix. Here ϕ and ψ are

formulas, a single line means that the suppositions on top imply the bottom, and a

double line means that the implication goes both ways.

⊥ ⇒ ϕ

ϕ⇒ >

ϕ⇒ ϕ

> ⇒ x = x

x = y ∧ ϕ(x)⇒ ϕ(y) where x and y are not bound after substitution

ϕ⇒ ψ ψ ⇒ θ
ϕ⇒ θ

ϕ⇒ ψ θ ⇒ ψ

ϕ ∨ θ ⇒ ψ

ϕ⇒ ψ ϕ⇒ θ

ϕ⇒ ψ ∧ θ
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ϕ(x)⇒ ψ(x)
ϕ(t)⇒ ψ(t)

where t is any term, and no free variable in t becomes bound.

(E(x) ∧ ϕ)⇒ ψ where x is not free in ψ.

∃xϕ⇒ ψ

ϕ⇒ (E(x)→ ψ) where x is not free in ϕ.

ϕ⇒ ∀xψ

ϕ ∧ ψ ⇒ θ

ϕ⇒ ψ → θ

This is a well-known version of the intuitionistic sequent calculus. We refer the reader

to [12], [11], and [1] for reference.

This system is known to contain the empty model. We show that the usual predicate

calculus does not permit this.

Proposition A.1 In the usual predicate calculus with E(x) replaced by >, the system

proves ∃x(x = x).

Proof. We have that > ⇒ x = x. We also have that ∃x(x = x) ⇒ ∃x(x = x).

Further, from ∃x(x = x)⇒ ∃x(x = x) we derive x = x⇒ ∃x(x = x). From this we get

> ⇒ ∃x(x = x). a
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Appendix B

Piecing Together

We now show how embed a clean, nondegenerate model of ∅BA \ {Pt5} into a model

of ∅BA. Often when constructing models of ∅BA, it is easier to introduce the structure

of the model without piecing together. We show that this is sufficient, that is, such a

model embeds into a model with piecing together. Further, our construction will preserve

axioms Ex5, Ba19 and So2. Throughout this appendix, we fix a clean, nondegenerate

model A |= ∅BA.

Let p, q be elements of BA(A) such that p t q = 1. We form the following pullback:

(A�p)×A�(puq) (A�q)π2

//

π1

��

A�q

πA�q
puq

��
A�p

πA�p
puq

// A�(p u q)

Figure 5: Pullback over p and q

Recall that the model A � p ×A�(puq) A � q is the submodel of the product model

A � p × A � q with domain {(x, y) ∈ (A � p × A � q) : πA�p
puq(x) = πA�q

puq(y)}. We label this

pullback model A′. We wish to show that A embeds into A′. By [7, page 71], if Figure

6 commutes, then there is a unique embedding from A to A′.

Lemma B.1 πA�p
puq ◦ πA

p = πA�q
puq ◦ πA

q , so that A factors through A′.

Proof. This holds because πA�p
puq ◦ πA

p = πA
puq = πA�q

puq ◦ πA
q . a
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A
πA
q

//

π1

��

A�q

πA�q
puq

��
A�p

πA�p
puq

// A�(p u q)

Figure 6: Commutative square over p and q

Thus, the diagram commutes, and we get a unique embedding from A to A′. We

now discuss the form of this embedding.

Let F : A→ A�p× A�q by F (x) =


(x�p, x�q) if A |= E(JE(x)K)

(x u p, x u q) if A |= BA(x)

Thus, we get the following diagram:

A
π2◦F

//

π1◦F
��

A�q

πA�q
puq

��
A�p

πA�p
puq

// A�(p u q)

Figure 7: Mapping through F

We now show the following:

Lemma B.2 F is the unique embedding from A to A′ which makes Figure 7 commute.

Proof. It suffices to show that the above diagram commutes. Now, π1 ◦F = πA
p , and

π2 ◦ F = πA
q . The result then follows by Lemma B.1. a

With this Lemma, we get the following result:

Lemma B.3 Let p, q ∈ BA(A) be such that A |= ptq = 1 and A′ = (A�p)×A�(puq)(A�q).

Then BA(A) ∼= BA(A′).

Proof. For the Boolean algebra, all that needs to be shown is that the function F

from Lemma B.2 is onto. Let (r, s) ∈ BA(A′). Then r u q = s u p. Let t ∈ BA(A) be
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such that t = rts. Then F (t) = (tup, tu q). But tup = (rts)up = (rup)t (sup) =

(rup)t(ruq) = r. Similarly, tuq = s. Thus F is onto BA(A′), so that BA(A) ∼= BA(A′).

a

By Lemma B.2, we have that A embeds into A′. Thus, we may assume that A ⊆ A′,

and by Lemma B.3, we have that BA(A) = BA(A′). Similarly, we identify the elements

a ∈ A with the image (a�p, a�q) ∈ A′. We now discuss the theory of A′.

Lemma B.4 Let p, q ∈ BA(A) be such that ptq = 1, and let A′ be (A�p)×A�(puq) (A�q).

Then A′ is a clean model of ∅BA \ {Pt5}. Further,

1. A is atomless if and only if A′ is atomless;

2. If A has a global element, then A′ has a global element.

3. If A |= Pt5 and p u q = 0, then A = A′.

Proof. Since ∅BA is universal Horn, and A′ is a submodel of a product of models of

∅BA \ {Pt5}, we have that A′ |= ∅BA \ {Pt5}. Further, the domain of A is the set of

elements of A � p × A � q such that {(x, y) ∈ (A � p × A � q) : πA�p
puq(x) = πA�q

p (y)}. Since

πA�p
puq(x) = πA�q

p (y) implies that both x and y are Boolean or both x and y are structural,

we do not create any chaff. Thus, A′ is clean.

Claim 1 also follows from the fact that BA(A) = BA(A′). For part 2, let a ∈ A such

that A |= JE(a)K = 1. Then (a �p, a � q) ∈ A′, and A′ |= JE((a�p, a�q))K = (p, q) = 1A′ .

For part 3, we show that F from Lemma B.2 is onto. Let (a, b) ∈ A′. Then A |=

JE(a)K u JE(b)K = 0. Since A satisfies the piecing together axiom, there is an element

a ⊕ b with JE(a⊕ b)K = JE(a)K t JE(b)K, (a ⊕ b) � JE(a)K = a, and (a ⊕ b) � JE(b)K = b.

Then F (a⊕ b) = (a, b). a
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We now prove the following Lemma:

Lemma B.5 Let p, q, r, s ∈ BA(A) be such that p u q = 0, p t q = 1, r E p, and s E q,

and let A′ = (A�p)×A�(puq) (A�q). Then if a ∈ Ar and b ∈ As, then a⊕ b ∈ A′rts.

Proof. We have that (a, b) ∈ A′. Then JE((a, b))K = (r, s), which is the image of rts

in A′. Further, (a, b)� JE((a, 0))K = (a, 0), the image of a in A′, and (a, b)� JE((0, b))K =

(0, b), the image of b in A′. Thus, (a, b) = a⊕ b. a

Lemma B.6 Let p, q ∈ BA(A) be such that pu q = 0 and pt q = 1. Set A′ equal to the

pullback model A�p×A�(puq) A�q. Let r E p and s E q. Then A′rts
∼= A′r × A′s.

Proof. We need only show that the function in Lemma 3.13 is onto. To see it is

surjective, let (a, b) ∈ A′r×A′s. Then a ∈ A�p and b ∈ A�q, and πA�p
puq(a) = πA�q

puq(b). Thus,

(a, b) ∈ A′. We show that JE((a, b))K = rts. Let t = JE((a, b))K. Then tup = JE(a)K = r

and t u q = JE(b)K = s. Thus, t = t u (p t q) = r t s. Thus, (a, b) ∈ A′rts, and maps to

(a, b). a

We now show that a clean model A of ∅BA \ {Pt5} embeds into a clean model of ∅BA

with the same underlying Boolean algebra. We enumerate all elements p ∈ BA(A) as

pi with i < κ for a cardinal κ. We set A0 = A, and set A1 equal to the pullback model

A0 �p0 ×A�(p0u−p0) A0 �−p0.

By Lemma B.3, we have that BA(A) = BA(A1). We create a chain of models in

the following fashion: if λ is a successor ordinal, with λ = α + 1, we set Aλ = Aα �

pα ×Aα�(pαu−pα) Aα �−pα, and if λ is a limit ordinals, we set Aλ =
⋃
i<λ Ai. Thus, we get

a chain of models Ai for i < κ. We call A(1) the union of this chain of models.
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Lemma B.7 A(1) is a clean model of ∅BA \ {Pt5} with BA(A(1)) = BA(A). Further,

1. A is atomless if and only if A(1) is atomless;

2. If A has a global element, then A(1) has a global element.

3. If A |= Pt5, then A(1) = A.

Finally, if r, s are such that r u s = 0, then for all a ∈ Ar, b ∈ As, there exists

c ∈ A
(1)
rts such that c�r = a, c�s = b, that is, c = a⊕ b.

Proof. As the axioms of ∅BA are all Π0
2, they are preserved under chains of models.

Further, since A(1) is a union of clean models, it itself is clean. Finally, since each

pullback has the same Boolean algebra, BA(A(1)) = BA(A).

Part 1 follows from the fact that BA(A(1)) = BA(A). For part 2, note that Ex5 is a

Π0
2 sentence. Now, by Lemma B.4, if A satisfies Ex5 then each pullback satisfies Ex5.

Since Π0
2 sentences are preserved under unions of chains, we get that A(1) satisfies Ex5

as well. Part 3 follows from Lemma B.4.

For the last claim, let a ∈ Ar and b ∈ As, and let pλ be such that r E pλ and s E −pλ.

Then, a⊕ b is in the pullback model Apλ+1
by Lemma B.5. Thus, a⊕ b is in A(1). a

By construction, we have that A ⊆ A(1). We repeat this process with the same

enumeration of Boolean elements to get a model A(2) with A(1) ⊆ A(2). We continue in

this manner to get a chain of models A(1) ⊆ A(2) ⊆ A(3) ⊆ . . .. Thus, for every n ∈ N

and any r, s ∈ BA(A) with r u s = 0, we have the picture in Figure 8. In Figure 8, ⊕

is the map taking (a, b) to a ⊕ b, h is the isomorphism from Lemma B.6, and g is the

inclusion map.
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A(n+1)

h ((QQQQQQQQQQQQQ

A
(n)
r × A

(n)
s

⊕

OO

g // A
(n+1)
r × A

(n+1)
s

Figure 8: Comparing A(n+1) to A(n)

We set A(ω) equal to the union of the chain of models
⋃
n∈ω A(n). We are now ready

to prove our major result:

Theorem B.8 A(ω) is a clean model of ∅BA with BA(A(ω)) = BA(A). Further,

1. A is atomless if and only if A(ω) is atomless;

2. If A has a global element, then A(ω) has a global element.

3. If A |= Pt5, then A(ω) = A.

Proof. As each A(n) |= ∅BA \ {Pt5}, and A(ω) is a union of a chain of models,

then A(ω) |= ∅BA. Now, let a, b ∈ ST(A(ω)) such that A(ω) |= JE(a)K u JE(b)K = 0. If

JE(a)K = 0, then b satisfies the piecing together axiom. Thus, we may suppose JE(a)K 6= 0

and JE(b)K 6= 0. Let p and q be any elements such that JE(a)K E p, JE(b)K E q, puq = 0,

and p t q = 1. Now, let N ∈ N such that a, b ∈ A(N). Now, by Lemma B.7, the model

A
(N)
r × A

(N)
s maps into A

(N+1)
rts . Thus, there is an element in A(N+1) corresponding to

(a, b). Call this element a⊕ b. Then JE(a⊕ b)K = JE(a)Kt JE(b)K, a⊕ b�JE(a)K = a and

a⊕ b�JE(b)K = b.

Again, part 1 follows from the fact that BA(A(ω)) = BA(A). For part 2, if A satisfies

Ex5, then each model A(n) does as well. As Ex5 is a Π0
2 sentence, so that A(ω) |= Ex5.

Finally, part 3 follows from Lemma B.7. a

We now show a simple corollary of this theorem.
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Corollary B.9 Suppose A |= ∅BA \ {Pt5}. Then A embeds into a model B of ∅BA with

BA(B) = BA(A).

Proof. Let A′ be largest clean submodel of A given by Proposition 3.4, and let A(ω)

be the model of ∅BA ∪ {Pt5} given by Theorem B.8. We set B = A(ω) ∪ CH(A), with

predicates and functions interpreted as in A(ω). Then B clearly models ∅BA ∪ {Pt5},

with BA(B) = BA(A(ω)). a

We combine the results form Chapter 6 and this appendix into one result.

Theorem B.10 Suppose A |= ∅BA \ {Pt5}. Then A embeds into a model B of ∅ABA.

Proof. By Theorem B.8, A embeds into a model of ∅BA. By Theorem 6.19, this

model embeds into a model of ∅ABA. a
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