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Abstract

In this work we study some topics in logic and group theory, and naturally, their in-

tersection. One important theme in this work is the notion of random groups, which is

informally the study of “what properties do ‘most’ groups satisfy?”

In Chapter 2, we are interested in the theory of a random group, i.e., the properties

we are interested here are first-order properties. Knight conjectured that the limit of

the theories of random groups should converge to the theory of the free groups. In this

chapter, we establish some partial results in the one-quantifier case.

In Chapter 3, instead of looking at a random group, we focus our attention on only

the class of nilpotent groups, and look at a random nilpotent group. We analyze the

distribution of ranks of random nilpotent groups, and establish some threshold result on

when a random nilpotent group will be finite and trivial.

In Chapter 4, we turn our attention to regular (non-random) groups, and we study

the complexities of Scott sentences and the index sets of groups. We show that many

groups that are “tame” in the sense of group theory have low-complexity Scott sentences

and index sets.
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Chapter 1

Introduction

This work is centered around logic and group theory. Historically, there has been a lot of

interaction between the two areas, including many decision problems on groups, Tarski’s

problem, and the study of stable groups, just to name a few. The author is interested

in both of these areas, and so naturally, very interested in the intersection of them.

This work includes the study of the theory of random groups in Chapter 2, the study

of random nilpotent groups in Chapter 3, and the study of computability notions of

groups in Chapter 4. Each of these chapters is written to be self-contained. However,

we assume the reader to have the basic knowledge about groups and logic which is

usually covered in a first graduate course on these topics.

One important background idea in this work is the notion of random groups. Here the

word random is in the (geometric) group theory sense, which is usually quite different

from the notion of randomness in the computability sense. Informally, we start with the

free group Fm of rank m, and uniformly independently pick R = R(`) random elements

of length ` to be our relators. Then we can ask what is the (limit of the) probability (as

` → ∞) of the resulting group (or really, the group-valued random variable) has some

given property.

We see that here, we are really choosing group presentations instead of isomorphism

types. It is actually non-trivial (but true) that we do see different isomorphism types in
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this process. Also, we only see m-generated finitely-presented groups (for a fixed m) in

this construction. In spite of these flaws, this is the standard model of random groups.

In the case where R(`) is a constant function, we have the few-relator model, which is

the model that we will focus on in Chapter 2 and 3.

In Chapter 2, we study the theory of a random group, i.e., the properties that we

are interested are the first-order properties. Knight conjectured that the limit of the

theories of the random groups should be the theory of the free groups. Using some

small cancellation theory, we show that this is indeed the case when we are looking at

existential sentences, i.e., every existential sentences that is true in the free group is also

true (asymptotically) in a random group. We also show this is true for some universal

sentences, but we also show a negative result saying that if we take the countable con-

junction of all universal sentences true in the free group (i.e. the universal theory), this

countable conjunction is false (asymptotically) in a random group with enough relators.

Chapter 3 is joint work with Matthew Cordes, Moon Duchin, Yen Duong, and An-

drew P. Sánchez. In this chapter, we are still interested in random groups, but instead

of starting with a free group, we start with a free nilpotent group. Thus, we only see

finitely-generated nilpotent groups of a certain rank and class as our random nilpotent

groups. We are able to deduce statements about the distribution of ranks for random

nilpotent groups as well as the probability that random nilpotent groups are abelian.

Considering the abelianization also yields the precise vanishing threshold for random

nilpotent groups—the analog of the famous density one-half theorem for random groups.

A random nilpotent group is trivial if and only if the corresponding random group is

perfect, i.e., is equal to its commutator subgroup, so this gives a precise threshold at

which random groups are perfect.
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In Chapter 4, we turn our attention to usual (non-random) groups, and we study

the complexities of Scott sentences and index sets. A Scott sentence of a group is an

Lω1,ω sentence whose countable models are isomorphic copies of the group. The index

set of a group is the collection of the indices of the isomorphic copies of the group.

This has been studied by Knight et al., and we generalize many of their results. We

give computable Scott sentences for many groups, including polycyclic groups, certain

solvable groups, and certain subgroups of Q. In some of these cases, we also show that

the Scott sentences we find are optimal. We also give an example showing d-Σ2 ⊊ ∆3

in the complexity hierarchy of pseudo-Scott sentences, contrasting the result saying d-

Σ2 = ∆3 in the complexity hierarchy of Scott sentences, which is related to the boldface

Borel hierarchy.
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Chapter 2

The 0-1 Conjecture for Groups

2.1 Introduction

The idea of random groups is motivated by a question of Gromov: What does a typical

group look like? To make sense of this question, we need to put a measure on the class

of all groups, and we usually call such a measure a model of random groups. To do

this, we will restrict our attention to finitely-presented groups only, and we actually pick

presentations instead of isomorphism types.

Definition 2.1. Fix ` and a function f ∶ N→ N. Let Fm denote the free group of rank m,

and let S` ⊂ Fm be the set of elements of length `. Randomly choose f(`) elements from

S` uniformly and independently. In the case where f(`) = n is a constant function, this

is the few-relator (n-relator) model, while if f(l) = (2m − 1)d`, this is called the density

model at density d. We say a random group has some property, if the probability that

the group Fm/R has said property goes to 1 as ` goes to infinity. In this chapter, we will

focus our attention on the few-relator model.

A random group behaves a lot like a free group. For example, a random group has

the C ′(λ) small cancellation property for any λ > 0, thus is non-elementary hyperbolic

and torsion-free [16]. A random group also contains many free subgroups [9].
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Indeed, Knight conjectured that a random group also looks like a free group in the

model-theoretic sense:

Conjecture 2.2 (0-1 conjecture of groups, Knight, 2013). For every first-order sentence

φ (in the language of groups), if the free groups model the sentence, then the random

group also models the sentence.

Sela [34] and Kharlampovich-Myasnikov [19] independently proved that the elemen-

tary theories of non-abelian finitely-generated free groups are equivalent. Thus, it makes

sense to say the free groups model a sentence without specifying the rank of the free

groups.

Note that there is no a priori reason why the limit of the probability that a group

modeling a sentence should equal to 0 or 1, or even converge at all, and the conjecture

is also making the statement that these limits do converge.

In Section 2.2, we will give a quick review on some basic facts on small cancellation

properties, then give a proof on the existential case of the conjecture. In Section 2.3, we

give some partial results on the universal case.

2.2 Small Cancellation Theory and the Existential

Case

There are various results on the existence of free subgroups of a random group. And if

a group contains a free subgroup, then it certainly models all existential sentences that

the free groups model. However, here we will give a proof of the conjecture in the case

the φ is existential that does not depend on the free subgroup result. Instead, we will
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use small cancellation theory to prove it.

We first review the definition of the C ′(λ) small cancellation hypothesis and the

Greendlinger’s lemma. We refer the reader to [28] for more detail on small cancellation

theory.

Definition 2.3. Let R ⊂ Fm be symmetrized, i.e. all elements of R are all cyclically

reduced and R is closed under inverse and cyclic permutation.

We say u is a piece of R if there are two distinct elements r, s ∈ R such that u is an

initial segment of both r and s. We say R satisfies small cancellation hypothesis C ′(λ)

if for every r ∈ R and piece u that is also an initial segment of r, ∣u∣ < λ∣r∣.

We also say a non-symmetrized S ⊂ Fm satisfies small cancellation hypothesis C ′(λ)

if R does, where R is obtained by taking the cyclic reduction of the words in S and is

closed under inverse and cyclic permutation. We also say a group presentation satisfies

small cancellation hypothesis C ′(λ) if its relator set does.

To show a random group satisfies small cancellation hypothesis, we can use a direct

counting argument. There are O((2m−1)n`) ways to pick n relators of length `. However,

the number of ways to have a “piece” of length λ` in these relators is O(n2l2(2m−1)n`−λ`).

Thus, as ` → ∞, the probability of having a piece of length λ` goes to 0, and we have

the following result:

Theorem 2.4. ([28]) A random group satisfies small cancellation hypothesis C ′(λ) for

any 0 < λ < 1.

One important consequence of a group satisfying the small cancellation property is

Greendlinger’s lemma, which basically says that in a small cancellation group, every

word that is equal to the identity contains a big chunk of some relator.
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Theorem 2.5 (Greendlinger’s lemma, [24]). Let R ⊂ Fm satisfy C ′(λ) for some λ < 1
6 .

Let w ∈ ⟪R⟫ be a non-trivial, cyclically reduced word, where ⟪R⟫ is the normal closure

of R in Fm. Then there is a subword u of some r ∈ R such that u is also a subword of

w and ∣u∣ > (1 − 3λ)∣r∣.

Theorem 2.6 (Existential case). For every existential sentence φ, if Fm ⊧ φ, then a

random group models φ.

Proof. Without loss of generality, let φ = ∃x⋀(ui(x) = 0 ∧ vi(x) ≠ 0), and let a ∈ Fm

be a witness. Then in a (random) group G = F /R, ui(a) is always trivial, so G ⊧ φ if

vi(a) ≠ 0.

By Greendlinger’s lemma, the length of a nonzero word in the normal closure has to

be no shorter than the length of the relators. Hence for each vi(a), as the length of the

relators go to infinity, a random group will not kill the witness, hence models φ.

2.3 The Universal Case

In this section, we take a look at certain universal sentences that are true in free groups,

and see that they are also true in a random group. However, we also show that a random

group (with enough relators) is not a limit group, i.e. it does not model the universal

theory of the free group. Note that this does not disprove the conjecture – it could still

be the case that the portions of groups that model each universal sentence that is true

in the free groups are big, but the intersection of them are small (as there are countably

many sentences).

We start by looking at some properties that are related to the universal theory of

the free group.
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Definition 2.7 ([33]). We say a group G is a limit group if it is finitely-generated and

G models the universal theory of the free groups.

Definition 2.8. We say a group G is residually free if for every 1 ≠ g ∈ G, there exists

a homomorphism f ∶ G→ Fm such that f(g) ≠ 1.

Definition 2.9. We say a group G is commutative-transitive if for every x ≠ 1 and

y, z ∈ G, if [x, y] = [x, z] = 1, then [y, z] = 1. Note that this is equivalent to the universal

sentence ∀x, y, z [(x ≠ 1 ∧ [x, y] = 1 ∧ [x, z] = 1) → [y, z] = 1].

Theorem 2.10 (Baumslag, [2]). A residually free commutative-transitive finitely-generated

group is a limit group.

We will now show that a random group is commutative-transitive, but not residually

free, thus not a limit group. Recall that a random group is torsion-free. In the few-

relator case, this can be shown using small cancellation theory and some counting. We

will omit the proof here.

Theorem 2.11 ([16], [28]). A random group is non-elementary torsion-free hyperbolic.

Remark 2.12. By a result of Sela [35], a non-elementary torsion-free hyperbolic group

is stable (in the sense of model theory). Thus a random group is stable.

Theorem 2.13. A random group G has the following property: if x, y ∈ G commute,

then there is a w ∈ G such that x and y are both powers of w. Therefore, a random group

is commutative-transitive.

Proof. If two non-trivial elements x and y of a random group commute, the subgroup

generated by them is either Z2 or Z, since a random group has no torsion elements.
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However, being a torsion-free hyperbolic group, a random group does not have Z2 sub-

groups [6], so x and y generate a subgroup isomorphic to Z. We can take w to be the

generator of Z, and the theorem follows.

We now show that a random group (with enough relators) is not a limit group.

Theorem 2.14. An m-generator, n-relator random group is not residually free if m ≤

n + 1. Therefore, it is not a limit group.

Proof. It is well known that free groups are residually p-finite for all p, i.e. for every

element g in the group, there is a homomorphism f from the group to a p-group such

that f(g) ≠ 1. Thus it suffices for us to prove that a random group is not residually

p-finite for some p.

We first consider the abelianization of the relator of a random group. The abelian-

ization of a random word is just an `-step random walk on Zm, and the probability of

the endpoints of n random walks being linearly independent goes to 1 as `→∞, because

their distribution is normal and linear dependence is a codimension-one condition (see

Chapter 3 for more on random walks in Zm.) Thus, the abelianization of a random

group is either finite or is a direct product of Z with a finite group.

Fix a prime p that does not divide the order of the torsion part of the abelianization.

Consider a homomorphism f ∶ G→ P for some p-group P . By replacing P by the image

of f , we may assume f is surjective. Consider the following commuting diagram:

G
abG// //

f
����

ab(G)

g

��
P

abP// // ab(P )
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Since P is a p-group, the torsion part of ab(G) does not contribute to the homo-

morphism g. Also, f,abP are both surjective, and so is g. Thus ab(P ) is 1-generated.

However, by a theorem of Magnus [25], any subset of a nilpotent group that generates

its abelianization also generates the group itself. Thus, P is 1-generated.

Now since a random group is non-abelian, there is a nontrivial element x ∈ G′. Then

for every homomorphism f from G to a p-group, the image is abelian, hence f(x) = 1,

proving G cannot be residually p-finite.

As was observed earlier, this theorem does not disprove the conjecture. It is still

possible that for each of the universal sentences true in the free groups, the portion

of groups modeling the sentence has density one, but the universal theory of the free

groups, which is a “conjunction” of countably many universal sentences, is only modeled

by a set of groups that has density zero.

In the future, we would like to investigate more in this direction, and try to either

prove or disprove the conjecture, and understand more about the model theory of the

random groups.
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Chapter 3

Random Nilpotent Groups

3.1 Introduction and background

3.1.1 Random groups

The background idea for the chapter is the models of random groups Γ = Fm/⟪R⟫,

where Fm is the free group on some number m of generators, and R is a set of relators

of length ` chosen by a random process. Typically one takes the number of relators

∣R∣ to be a function of `; for fixed `, there are finitely many choices of R of a certain

size, and they are all made equally likely. For instance, in the few-relators model, ∣R∣

is a fixed constant, and in the standard density model, ∣R∣ = (2m − 1)d` for a density

parameter 0 < d < 1. (When the number of relators has sub-exponential growth, this is

often regarded as sitting in the density model at density zero.)

After fixing ∣R∣ as a function of `, we can write Pr(Γ has property P ) = p to mean

that the proportion of such presentations for which the group has P tends to p as `→∞.

In particular, we say that random groups have P asymptotically almost surely (a.a.s.)

if the probability tends to 1.

The central result in the study of random groups is the theorem of Gromov–Ollivier

0This chapter is a joint work with Matthew Cordes, Moon Duchin, Yen Duong, and
Andrew P. Sánchez.
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stating that for d > 1/2 in the density model, Γ is a.a.s. isomorphic to either {1} or Z/2Z

(depending on the parity of `), while for d < 1/2, Γ is a.a.s. non-elementary hyperbolic

and torsion-free [28, Thm 11]. In the rest of this chapter, we will choose our relators

from those of length ` and `−1 with equal probability in order to avoid the parity issue;

with this convention, Γ ≅ {1} a.a.s. for d > 1/2.

The Gromov–Ollivier theorem tells us that the density threshold for trivializing a

free group coincides with the threshold for hyperbolicity, which means that one never

sees other kinds of groups, for example abelian groups, in this model. Indeed, because

Z2 cannot appear as a subgroup of a hyperbolic group, one never sees a group with

even one pair of commuting elements. To be precise, all finitely-generated groups are

quotients of Fm, but the probability of getting a nontrivial non-hyperbolic group (or

a group with torsion) is asymptotically zero at every density. Furthermore the recent

paper [12] shows that this trivial/hyperbolic dichotomy seems to persist even at d = 1/2.

However, it is a simple matter to create new models of random groups by starting

with a different “seed” group in place of the free group Fm. The r random strings

in {a1, . . . , am} that are taken as relators in the Gromov model can be interpreted as

elements of any other group with m generators. For instance, forming random quotients

of the free abelian group Zm in this way would produce a model of random abelian groups;

equivalently, the random groups arise as cokernels of random m×r integer matrices with

columns given by the Gromov process, and these clearly recover the abelianizations

of Gromov random groups. Random abelian groups are relatively well-studied, and

information pertaining to their rank distribution can be found in at least three distinct

places: the important paper of Dunfield–Thurston testing the virtual Haken conjecture

through random models [13, §3.14]; the recent paper of Kravchenko–Mazur–Petrenko on
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the generation of algebras by random elements [23]; and the preprint of Wang–Stanley on

the Smith normal form distribution of random matrices [41]. These papers use notions

of random matrices that differ from the one induced by the Gromov model, but we

will explain below that they all produce the same distribution of groups. By contrast,

there are many other ways that random abelian groups arise in mathematics: as class

groups of imaginary quadratic fields, for instance, or as cokernels of graph Laplacians

for random graphs (also known as sandpile groups). For a discussion of the heuristics

for these various distributions and a useful survey of some of the random abelian group

literature, see [42] and its references.

In this chapter we initiate a study of random nilpotent groups by beginning with

the free nilpotent group Ns,m of step s and rank m and adding random relators as

above. Note that all nilpotent groups occur as quotients of appropriate Ns,m, just as all

abelian groups are quotients of some Zm and all groups are quotients of some Fm (here

and throughout, groups are taken to be finitely-generated). By construction, these free

nilpotent groups can be thought of as “nilpotentizations” of Gromov random groups;

their abelianizations will agree with those described in the last paragraph (cokernels of

random matrices), but they have more structure and therefore retain more information

about the original random groups.

Below, we begin to study the typical properties of random nilpotent groups. For

instance, one would expect that the threshold for trivialization occurs with far fewer

relators than for free groups, and also that nontrivial abelian quotients should occur

with positive probability at some range of relator growth.

The results of this chapter are summarized as follows:

� In the remainder of this section, we establish a sequence of group theory and linear
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algebra lemmas for the following parts.

� In Section 3.2, the properties of non-backtracking random walks are described in

order to deduce arithmetic statistics of Mal’cev coordinates—this is necessary to

use the prior literature on random lattices and matrices.

� We survey the existing results from which ranks of random abelian groups can be

calculated; a theorem of Magnus guarantees that the rank of a nilpotent group

equals the rank of its abelianization. (Section 3.3)

� We give a complete description of one-relator quotients of the Heisenberg group,

and compute the orders of finite quotients with any number of relators. (Section

3.4)

� Using a Freiheitssatz for nilpotent groups, we study the consequences of rank

drop, and conclude that abelian groups occur with probability zero for ∣R∣ ≤ m −

2, while they have positive probability for larger numbers of relators. Adding

relators in a stochastic process drops the rank by at most one per new relator,

with statistics for successive rank drop given by number-theoretic properties of

the Mal’cev coordinates. (Section 3.5)

� We give a self-contained proof that a random nilpotent group is a.a.s. trivial exactly

if ∣R∣ is unbounded as a function of `. We show how information about the nilpotent

quotient lifts to information about the LCS of a standard (Gromov) random group

and observe that standard random groups are perfect under the same conditions.

(Section 3.6, Section 3.7)
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3.1.2 Nilpotent groups and Mal’cev coordinates

Nilpotent groups are those for which nested commutators become trivial after a certain

uniform depth. We will adopt the commutator convention that [a, b] = aba−1b−1 and

define nested commutators on the left by [a, b, c] = [[a, b], c], [a, b, c, d] = [[[a, b], c], d],

and so on. Within a group we will write [H,K] for the subgroup generated by all

commutators [h, k] with h ranging over H ≤ G and k ranging over K ≤ G, so that in

particular [G,G] is the usual commutator subgroup of G. A group is s-step nilpotent if

all commutators with s+1 arguments are trivial, but not all those with s arguments are.

(The step of nilpotency is also known as the class of nilpotency.) With this convention,

a group is abelian if and only if it is one-step nilpotent. References for the basic theory

of nilpotent groups are [36, Ch 9], [11, Ch 10-12].

In the free group Fm of rank m, let

Tj,m = {[ai1 , . . . , aij] ∣ 1 ≤ i1, . . . , ij ≤m}

be the set of all nested commutators with j arguments ranging over the generators.

Then the free s-step rank-m nilpotent group is

Ns,m = Fm/⟪Ts+1,m⟫ = ⟨a1, . . . , am ∣ [ai1 , . . . ais+1] for all ij ⟩,

where ⟪R⟫ denotes the normal closure of a set R when its ambient group is understood.

Just as all finitely-generated groups are quotients of (finite-rank) free groups, all finitely-

generated nilpotent groups are quotients of free nilpotent groups. Note that the standard

Heisenberg group H(Z) = ⟨a, b ∣ [a, b, a], [a, b, b] ⟩ is realized as N2,2. In the Heisenberg

group, we will use the notation c = [a, b], so that the center is ⟨c⟩.

The lower central series (LCS) for an s-step nilpotent group G is a sequence of
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subgroups inductively defined by Gk+1 = [Gk,G] which form a subnormal series

{1} = Gs+1 ⊲ ⋯ ⊲ G3 ⊲ G2 ⊲ G1 = G.

(The indexing is set up so that [Gi,Gj] ⊆ Gi+j.) For finitely-generated nilpotent groups,

this can always be refined to a polycylic series

{1} = CGn+1 ⊲ CGn ⊲ ⋯ ⊲ CG2 ⊲ CG1 = G

where each CGi/CGi+1 is cyclic, so either Z or Z/niZ. The number of Z quotients in any

polycyclic series for G is called the Hirsch length of G. From a polycyclic series we can

form a generating set which supports a useful normal form for G. Make a choice of ui

in each CGi so that uiCGi+1 generates CGi/CGi+1. An inductive argument shows that

the set {u1, . . . , un} generates G. We call such a choice a Mal’cev basis for G, and we

filter it as MB1 ⊔ ⋅ ⋅ ⋅⊔MBs, with MBj consisting of basis elements belonging to Gj ∖Gj+1.

Now if ui ∈ MBj, let τi be the smallest value such that uτii ∈ MBj+1, putting τi = ∞ if

no such power exists. Then the Mal’cev normal form in G is as follows: every element

g ∈ G has a unique expression as g = ut11 ⋯u
tn
n , with integer exponents and 0 ≤ ti < τi if

τi < ∞. Then the tuple of exponents (t1, . . . , tn) gives a coordinate system on the group,

called Mal’cev coordinates. We recall that MBj ∪ ⋅ ⋅ ⋅ ∪MBs generates Gj for each j and

that (by definition of s) the elements of MBs are central.

We will construct a standard Mal’cev basis for free nilpotent groups Ns,m as follows:

let MB1 = {a1, . . . , am} be the basic generators, let MB2 = {bij ∶= [ai, aj] ∶ i < j} be the

basic commutators, and take each MBj as a subset of Tj,m consisting of some of the

commutators from [MBj−1,MB1]. We note that ∣MB2 ∣ = (m
2
), and more generally the
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orders are given by the necklace polynomials

∣MBj ∣ =
1

j
∑
d∣j
µ(d)mj/d,

where µ is the Möbius function (see [17, Thm 11.2.2]).

For example, the Heisenberg group H(Z) = N2,2 has the lower central series {1} ⊲

Z ⊲ H(Z), so its Hirsch length is 3. H(Z) admits the Mal’cev basis a, b, c (with a = a1,

b = a2, and c equal to their commutator), which supports a normal form g = aAbBcC .

The Mal’cev coordinates of a group element are the triple (A,B,C) ∈ Z3.

3.1.3 Group theory and linear algebra lemmas

In the free group Fm = ⟨a1, . . . , am⟩, for any freely reduced g ∈ Fm, we define Ai(g),

called the weight of generator ai in the word g, to be the exponent sum of ai in g.

Note that weights A1, . . . ,Am are well defined in the same way for the free nilpotent

group Ns,m for any s. We will let ab be the abelianization map of a group, so that

ab(Fm) ≅ ab(Ns,m) ≅ Zm. Under this isomorphism, we can identify ab(g) with the

vector A(g) ∶= (A1(g), . . . ,Am(g)) ∈ Zm. If we have an automorphism φ on Ns,m, we

write φab for the induced map on Zm, which by construction satisfies ab ○ φ = φab ○ ab.

Note that A(g) is also the MB1 part of the Mal’cev coordinates for g, and we can

similarly define a b-weight vector B(g) to be the MB2 part, recording the exponents of

the bij in the normal form.

To fix terminology: the rank of any finitely-generated group will be the minimum

size of any generating set. Note this is different from the dimension of an abelian group,

which we define by dim(Zd×G0) = d for any finite group G0. (With this terminology, the

Hirsch length of a nilpotent group G is the sum of the dimensions of its LCS quotients.)
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In any finitely-generated group, we say an element is primitive if it belongs to some

basis (i.e., a generating set of minimum size). For a vector w = (w1, . . . ,wm) ∈ Zm, we

will write gcd(w) to denote the gcd of the entries. So a vector w ∈ Zm is primitive

iff gcd(w) = 1. In this case we will say that the tuple (w1, . . . ,wm) has the relatively

prime property or is RP. As we will see below, an element g ∈ Ns,m is primitive in that

nilpotent group if and only if its abelianization is primitive in Zm, i.e., if A(g) is RP. In

free groups, there exists a primitive element with the same abelianization as g iff A(g)

is RP.

The latter follows from a classic theorem of Nielsen [27].

Theorem 3.1 (Nielsen primitivity theorem). For every relatively prime pair of integers

(i, j), there is a unique conjugacy class [g] in the free group F2 = ⟨a, b⟩ for which A(g) = i,

B(g) = j, and g is primitive.

Corollary 3.2 (Primitivity criterion in free groups). There exists a primitive element

g ∈ Fm with Ai(g) = wi for i = 1, . . . ,m if and only if gcd(w1, . . . ,wm) = 1.

Proof. Let w = (w1, . . . ,wm). If gcd(w) ≠ 1, then the image of any g with those weights

would not be primitive in the abelianization Zm, so no such g is primitive in Fm.

For the other direction we use induction on m, with the base case m = 2 estab-

lished by Nielsen. Suppose there exists a primitive element of Fm−1 with given weights

w1, . . . ,wm−1. For δ = gcd(w1, . . . ,wm−1), we have gcd(δ,wm) = 1. Let w = (w1

δ , . . . ,
wm−1

δ ).

By the inductive hypothesis, there exists an element g ∈ Fm−1 such that the weights of

g are w, and g can be extended to a basis {g, h2, . . . , hm−1} of Fm−1. Consider the free

group ⟨g, am⟩ ≅ F2. Since gcd(δ,wm) = 1, there exist ĝ, ĥ that generate this free group

such that ĝ has weights Ag(ĝ) = δ and Am(ĝ) = wm by Nielsen. Consequently, Ai(ĝ) = wi.
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Then ⟨ĝ, ĥ, h2, . . . , hm−1⟩ = ⟨g, h2, . . . , hm−1, am⟩ = Fm, which shows that ĝ is primitive, as

desired.

The criterion in free nilpotent groups easily follows from a powerful theorem due to

Magnus [25, Lem 5.9].

Theorem 3.3 (Magnus lifting theorem). If G is nilpotent and S ⊂ G is any set of

elements such that ab(S) generates ab(G), then S generates G.

Note that this implies that if G is nilpotent of rank m, then G/⟪g⟫ has rank at least

m − 1, because we can drop at most one dimension in the abelianization.

Corollary 3.4 (Primitivity criterion in free nilpotent groups). An element g ∈ Ns,m is

primitive if and only if A(g) is primitive in Zm.

Now we establish a sequence of lemmas for working with rank and primitivity. Recall

that a, b are the basic generators of the Heisenberg group H(Z) and that c = [a, b] is the

central letter.

Lemma 3.5 (Heisenberg basis change). For any integers i, j, there is an automorphism

φ of H(Z) = N2,2 such that φ(aibjck) = bdcm, where d = gcd(i, j) and m = ij
2d(d − 1) + k.

In particular, if i, j are relatively prime, then there is an automorphism φ of H(Z)

such that φ(aibj) = b.

Proof. Suppose ri + sj = d = gcd(i, j) for integers r, s and consider â = asb−r, b̂ = ai/dbj/d.

We compute

[asb−r, ai/dbj/d] = [as, bj/d] ⋅ [b−r, ai/d] = c(ri+sj)/d = c.

If we set ĉ = c, we have [â, b̂] = ĉ and [ĉ, â] = [ĉ, b̂] = 1, so ⟨â, b̂⟩ presents a quotient of the

Heisenberg group. We need to check that it is the full group. Consider h = (â)−i/d(b̂)s.
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Writing h in terms of a, b, c, the a-weight of h is 0 and the b-weight is (ri + sj)/d = 1,

so h = bct for some t. But then b = (â)−i/d(b̂)s(ĉ)−t and similarly a = (â)j/d(b̂)r(ĉ)−t
′

for

some t′, so all of a, b, c can be expressed in terms of â, b̂, ĉ.

Finally,

(b̂)d = (ai/dbj/d)d = aibjc−(
d
2
) ij
d2 ,

which gives the desired expression aibjck = (b̂)d(ĉ)m from above.

Proposition 3.6 (General basis change). Let δ = gcd(A1(g), . . . ,Am(g)) for any g ∈

H = Ns,m. Then there is an automorphism φ of H such that φ(g) = aδm ⋅h for some

h ∈H2.

Proof. Let wi = Ai(g) for i = 1, . . . ,m and let ri = wi/δ, so that gcd(r1, . . . , rm) = 1. By

Corollary 3.2, there exists a primitive element x ∈ Fm with weights ri. Let φ be a change

of basis automorphism of Fm such that φ(x) = am. This induces an automorphism of H,

which we will also call φ.

By construction, xδ and g have weight w. Since ab(xδ) = ab(g) = w, we must have

φab(w) = ab(φ(xδ)) = ab(φ(g)). Therefore φ(xδ) and φ(g) have the same weights.

Then ab(φ(g)) = ab(φ(xδ)) = ab(φ(x)δ) = ab(aδm), so φ(g) and aδm only differ by

commutators, i.e., φ(g) = aδm ⋅ h for some h ∈H2.

Remark 3.7. Given an abelian group G = Zm/⟨R⟩, the classification of finitely-generated

abelian groups provides that there are non-negative integers d1, . . . , dm with dm∣dm−1∣ . . . ∣d1

such that G ≅ ⊕m
i=1 Z/diZ. If G has dimension q and rank r, then d1 = ⋅ ⋅ ⋅ = dq = 0, and

dr+1 = ⋅ ⋅ ⋅ = dm = 1, so that

G ≅ Zq × (Z/dq+1Z × ⋅ ⋅ ⋅ ×Z/drZ) .
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Now consider a projection map f ∶ Zm → Zm/K ≅ ⊕m
i=1 Z/diZ. We can choose a basis

e1, . . . , em of Zm so that

K = span{d1e1, . . . , dmem} ≅
m

⊕
i=1

diZ.

Then since every element in K is a linear combination of {d1e1, . . . , dmem} and dm∣dm−1∣ . . . ∣d1,

we have that dm divides all the coordinates of all the elements in K. Also dmem ∈ K

with em being primitive.

Lemma 3.8 (Criterion for existence of primitive vector). Consider a set of r vectors in

Zm, and let d be the gcd of the rm coordinate entries. Then there exists a vector in the

span such that the gcd of its entries is d, and this is minimal among all vectors in the

span.

In particular, a set of r vectors in Zm has a primitive vector in its span if and only

if the gcd of the rm coordinate entries is 1.

Proof. With d as above, let K be the Z-span of the vectors and let

γ ∶= inf
w∈K

gcd(w).

One direction is clear: every vector in the span has every coordinate divisible by d, so

γ ≥ d. On the other hand dmem ∈ K and gcd(dmem) = dm because em is primitive. But

dm is a common divisor of all rm coordinates, and d is the greatest one, so dm ≤ d and

thus γ ≤ d.

Lemma 3.9 (Killing a primitive element). Let H = Ns,m and let K be a normal subgroup

of H. If rank(H/K) <m then K contains a primitive element.
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Proof. Since rank(H/K) < m, we also have rank(ab(H/K)) < m. Writing ab(H/K) ≅

⊕m
i=1 Z/diZ as above, we have dm = 1. By the previous lemma there is a primitive

element in the kernel of the projection ab(H) → ab(H/K), and any preimage in K is

still primitive (see Cor 3.4).

Lemma 3.10 (Linear algebra lemma). Suppose u1, . . . , un ∈ Zm and suppose there exists

a primitive vector v in their span. Then there exist v2, . . . , vn such that span(v, v2, . . . , vn) =

span(u1, . . . , un).

Proof. Since v ∈ span(u1, . . . , un), we can write v = α1u1 + ⋅ ⋅ ⋅ + αnun. Let x ∈ Zn be

the vector with coordinates αi. Because gcd(v) = 1, we have gcd(αi) = 1, so x is

primitive. Thus, we can complete x to a basis of Zn, say {x,x2, . . . , xn}. Then take

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−v−

−v2−

⋮

−vn−

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−x−

−x2−

⋮

−xn−

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⋅

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−u1−

−u2−

⋮

−un−

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. Since

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−x−

−x2−

⋮

−xn−

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ SLn(Z), it represents a change of

basis matrix, so we have span(v, v2, . . . , vn) = span(u1, . . . , un), as needed.

Lemma 3.11 (String arithmetic). Fix a free group F = Fm on m generators and let

R,S be arbitrary subsets, with normal closures ⟪R⟫,⟪S⟫. Let φ ∶ F → F /⟪R⟫ and ψ ∶

F → F /⟪S⟫ be the quotient homomorphisms. Then there exist canonical isomorphisms

(F /⟪R⟫)/⟪φ(S)⟫ ≅ F/⟪R ∪ S⟫ ≅ (F /⟪S⟫)/⟪ψ(R)⟫

that are compatible with the underlying presentation (i.e., the projections from F com-

mute with these isomorphisms).

Proof. We will abuse notation by writing strings from F and interpreting them in the

various quotients we are considering. Then if G = ⟨F ∣ T ⟩ ≅ F /⟪T⟫ is a quotient of F
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and U is a subset of F , we can write ⟨G ∣ U⟩ to mean F/⟪T ∪ U⟫ and can equally well

write ⟨F ∣ T,U⟩. Then the isomorphisms we need just record the fact that

⟨F ∣ R,S ⟩ = ⟨F /⟪R⟫ ∣ S ⟩ = ⟨F /⟪S⟫ ∣ R ⟩.

Because of this standard abuse of notation where we will variously interpret a string in

{a1, . . . , am}± as belonging to Fm, Ns,m, or some other quotient group, we will use the

symbol =G to denote equality in the group G when trying to emphasize the appropriate

ambient group.

3.2 Random walk and arithmetic uniformity

In this section we survey properties of the simple nearest-neighbor random walk (SRW)

and the non-backtracking random walk (NBSRW) on the integer lattice Zm, then deduce

consequences for the distribution of Mal’cev coordinates for random relators in free

nilpotent groups. For the standard basis {ei} of Zm, SRW is defined by giving the

steps ±ei equal probability 1/2m, and NBSRW is similarly defined but with the added

condition that the step ±ei cannot be immediately followed by the step ∓ei (that is, a

step cannot undo the immediately preceding step; equivalently, the position after k steps

cannot equal the position after k + 2 steps). Then for a random string w` of ` letters

from {a1, . . . , am}±, we have w` = α1α2⋯α`, where the αi are i.i.d. random variables which

equal each basic generator or its inverse with equal probability 1/2m. The abelianization

X` = A(w`) is a Zm-valued random variable corresponding to `-step SRW. A random

freely reduced string does not have an expression as a product of variables identically
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distributed under the same law, but if v` is such a string, its weight vector Y` = A(v`) is

another Zm-valued random variable, this time corresponding to NBSRW.

It is well known that the distribution of endpoints for a simple random walk in Zm

converges to a multivariate Gaussian: if X` is again the random variable recording the

endpoint after ` steps of simple random walk on Zm, and δt is the dilation in Rm sending

v ↦ tv, we have the central limit theorem

δ 1
√

`

X` Ð→ N(0, 1
mI).

This convergence notation for a vector-valued random variable V` and a multivariate

normal N(µ,Σ) means that V` converges in distribution to AW +µ, where the vector µ

is the mean, Σ = AAT is the covariance matrix, and W is a vector-valued random variable

with i.i.d. entries drawn from a standard (univariate) Gaussian distribution N(0,1). In

other words, this central limit theorem tells us that the individual entries of X` are

asymptotically independent, Gaussian random variables with mean zero and expected

magnitude
√
`/m. This is a special case of a much more general result of Wehn for Lie

groups and can be found for instance in [5, Thm 1.3]. Fitzner and Van der Hofstad

derived a corresponding central limit theorem for NBSRW in [15]. Letting Y` be the

Zm-valued random variable for `-step NBSRW as before, they find that for m ≥ 2,

δ 1
√

`

Y` Ð→ N(0, 1
m−1I).

Note that the difference between the two statements records something intuitive: the

non-backtracking walk still has mean zero, but the rule causes the expected size of the

coordinates to be slightly higher than in the simple case; also, it blows up (as it should)

in the case m = 1.
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The setting of nilpotent groups is also well studied. To state the central limit theorem

for free nilpotent groups, we take δt to be the similarity which scales each coordinate

from MBj by tj, so that for instance in the Heisenberg group, δt(x, y, z) = (tx, ty, t2z).

Proposition 3.12 (Distribution of Mal’cev coordinates). Suppose NB` is an Ns,m-

valued random variable chosen by non-backtracking simple random walk (NBSRW) on

{a1, . . . , am}± for ` steps. Then the distribution on the Mal’cev coordinates is asymptot-

ically normal:

δ 1
√

`

NB` ∼ N(0,Σ).

For SRW, this is called a “simple corollary” of Wehn’s theorem in [5, Thm 3.11]),

where the only hypotheses are that the steps of the random walk are i.i.d. under a

probability measure on Ns,m that is centered, with finite second moment (in this case,

the measure has finite support, so all moments are finite). Each Mal’cev coordinate is

given by a polynomial formula in the a-weights of the step elements αi (the polynomial

for an MBj coordinate has degree j), where the number of summands gets large as

` → ∞. Switching to NBSRW, it is still the case that NB` is a product of group

elements whose a-weight vectors are independent and normally distributed, so their

images under the same polynomials will be normally distributed as well, with only the

covariance differing from the SRW case. We sketch a simple and self-contained argument

for this in the N2,2 non-backtracking case—that the third Mal’cev coordinate in H(Z)

is normally distributed—which we note is easily generalizable to the other Ns,m with

(only) considerable notational suffering. Without loss of generality, the sample path of

the random walk is

g = ai1bj1ai2bj2 . . . airbjr
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for some integers is, jt summing to ` or ` − 1, with all but possibly i1 and jr nonzero.

After a certain number of steps, suppose the last letter so far was a. Then the next letter

is either a, b, or b−1 with equal probability, so there is a 1/3 chance of repeating the same

letter and a 2/3 chance of switching. This means that the is and jt are (asymptotically

independent) run-lengths of heads for a biased coin (Bernoulli trial) which lands heads

with probability 1/3. On the other hand, r is half the number of tails flipped by that

coin in ` (or ` − 1) trials. In Mal’cev normal form,

g = a∑ isb∑ jtc∑t<s isjt .

Thus the exponent of c is obtained by adding products of run-lengths together (r
2
) times,

and general central limit theorems ensure that adding many independent and identically

distributed (i.i.d.) random variables together tends to a normal distribution.

Our distribution statement has a particularly nice formulation in this Heisenberg

case, where the third Mal’cev coordinate records the signed area enclosed between the

x-axis and the path traced out by a word in {a, b}±.

baba = a2b2c−3

(2,2,−3)

Corollary 3.13 (Area interpretation for Heisenberg case). For the simple random walk

on the plane, the signed area enclosed by the path is a normally distributed random

variable.

Next, we want to describe the effect of a group automorphism on the distribution of

coordinates. Then we conclude this section by considering the distribution of coordinates
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in various Z/pZ.

Corollary 3.14 (Distributions induced by automorphisms). If φ is an automorphism of

Ns,m and g is a random freely reduced word of length ` in {a1, . . . , am}±, then the Mal’cev

coordinates of ab(φ(g)) are also normally distributed.

Proof. The automorphism φ induces a change of basis on the copy of Zm in the MB1

coordinates, which is given by left-multiplication by a matrix B ∈ SLm(Z). Then

φ∗(Y`) → N(0,BΣBT ).

Note that normality of the MBj coordinates follows as well, as before: they are still

described by sums of statistics coming from asymptotically independent Bernoulli trials,

and only the coin bias has changed.

Relative primality of MB1 coefficients turns out to be the key to studying the rank

of quotient groups, so we will need some arithmetic lemmas.

Lemma 3.15 (Arithmetic uniformity). Let Ai,` be the Z-valued random variable given by

the ai-weight of a random freely reduced word of length ` in {a1, . . . , am}±, for 1 ≤ i ≤m.

Let Âi,` equal Ai,` with probability 1
2 and Ai,`−1 with probability 1

2 . Then for fixed m ≥ 2,

fixed i, and `→∞,

∀k,n, Pr(Âi,` ≡ k mod n) =
1

n
+ o(1).

Furthermore, the distributions are independent in different coordinates:

Pr(Âi1,` ≡ k1,⋯Âis,` ≡ ks mod n) =
1

ns
+ o(1) for ij distinct, s ≤m.

In other words, the Z/nZ-valued random variables induced by the coordinate pro-

jections from NBSRW on MB1 approach independent uniform distributions.
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Proof. First, consider SRW on Zm, which induces a lazy random walk (i.e., stays still

with some probability, and moves forward or back with equal probabilities) on each

coordinate. For odd n, the random walk is a Markov process on the finite graph given

by the torus (Z/nZ)m, so Ai,` approaches a uniform distribution (see [10, Ch 3C]), and

the result follows for Âi,`. In fact, in that case the error term decays exponentially fast

in `

∀k,∀n ≤
√
`, ∣Pr(Ai,` ≡ k (modn)) −

1

n
∣ ≤ e−π

2`/n2

.

For n = 2 (and likewise for other even n) the construction of Â corrects the parity

bias, since Âi,` is now equally likely to have same parity as ` or the opposite parity.

To make NBSRW into a Markov process, we must create a new state space where the

states correspond to directed edges on the discrete torus, which encodes the one step of

memory required to avoid backtracking. This new state space can itself be rendered as

a homogeneous finite graph, and the result follows. Since the ith coordinate of the torus

position corresponds to the Âi,` value, uniformity over the torus implies the independence

and uniformity we need.

Corollary 3.16 (Uniformity mod p). The abelianization of a random freely reduced word

in Fm has entries that are asymptotically uniformly distributed in Z/pZ for each prime

p, and the distribution mod p is independent of the distribution mod q for any distinct

primes p, q.

Proof. For independence, consider n = pq in the previous lemma.

Corollary 3.17 (Probability of primitivity). For a random freely reduced word in Fm,

the probability that it is primitive in abelianization tends to 1/ζ(m), where ζ is the

Riemann zeta function. In particular, for m = 2, the probability is 6/π2.
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A heuristic argument for this corollary can be given by arithmetic uniformity. For a

detailed proof, please see Lemma 3.42 in Section 3.7.

Remark 3.18 (Comparison of random models). As we have seen, abelianizations of

Gromov random groups are computed as cokernels of random matrices M whose columns

are given by non-backtracking simple random walk on Zm.

Other models in the random abelian groups literature have somewhat different setup.

Dunfield and Thurston [13] use a lazy random walk: ` letters are chosen uniformly from

the (2m + 1) possibilities of a±i and the identity letter, creating a word of length ≤ `,

whose abelianization becomes a column of M . Kravchenko–Mazur–Petrenko [23] and

Wang–Stanley [41] use the standard “box” model: integer entries are drawn uniformly

at random from [−`, `], and asymptotics are calculated as ` → ∞. (This is the most

classical way to randomize integers in number theory; see [18].)

However, all of the arguments in all of these settings rely on arithmetic uniformity

of coordinates mod p to calculate probabilities of relative primality, which is why the

Riemann zeta function comes up repeatedly in the calculations. Since we have also

established arithmetic uniformity for our setting in Corollary 3.16, the results achieved

in these other models will carry over to our groups directly.

3.3 Preliminary facts about random nilpotent groups

via abelianization

In this section we make a few observations relevant to the model of random nilpotent

groups we study below. In particular, there has been substantial work on quotients of free
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abelian groups Zm by random lattices, so it is important to understand the relationship

between a random nilpotent group and its abelianization. Below, and throughout the

chapter, recall that probabilities are asymptotic as `→∞.

First, we record the simple observation that depth in the LCS is respected by homo-

morphisms.

Lemma 3.19. Let φ ∶ G → H be a surjective group homomorphism. Then φ(Gk) = Hk

where Gk, Hk are the level-k subgroups in the respective lower central series.

Proof. Since φ is a homomorphism, depth-k commutators are mapped to depth-k com-

mutators, i.e., φ(Gk) ⊆ Hk. Let h ∈ Hk. Without loss of generality we can assume h

is a single nested commutator h = [w1, . . . ,wk]. By surjectivity of φ we can choose lifts

w1, . . . ,wk of w1, . . . ,wk. We see [w1, . . . ,wk] ∈ Gk and φ(Gk) ⊇Hk.

To begin the consideration of ranks of random nilpotent groups, note that the Magnus

lifting theorem (Theorem 3.3) tells us the rank of Ns,m/⟪R⟫ equals the rank of its

abelianization Zm/⟨R⟩, so we quickly deduce the probability of rank drop.

Proposition 3.20 (Rank drop). Let G = Ns,m/⟪g1, . . . , gr⟫ be a random r-relator nilpo-

tent group, then

Pr(rank(G) <m) =
1

ζ(rm)
.

Proof. This follows directly from considering the existence of a primitive element in

⟨ab(R)⟩. By Lemma 3.8, this occurs if and only if the rm entries are relatively prime,

and by arithmetic uniformity (Lemma 3.15), this is computed by the Riemann zeta

function, as in Corollary 3.17.
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Next we observe that a nilpotent group is trivial if and only if its abelianization (i.e.,

the corresponding Zm quotient) is trivial, and more generally it is finite if and only if the

abelianization is finite. Equivalence of triviality follows directly from the Magnus lifting

theorem (Theorem 3.3). For the other claim, suppose the abelianization is finite. Then

powers of all the images of ai are trivial in the abelianization, so in the nilpotent group G

there are finite powers arii in the commutator subgroup G2. A simple inductive argument

shows that every element of Gj has a finite power in Gj+1; for example, consider bij ∈ G2.

Since [arii , aj] = b
ri
ij is a commutator of elements from G2 and G1, it must be in G3, as

claimed. But then we can see that there are only finitely many distinct elements in the

group by considering the Mal’cev normal form

g = u∗1u
∗
2⋯u

∗
r

and noting that each exponent can take only finitely many values. Since the rank of a

nilpotent group equals that of its abelianization (by Theorem 3.3 again), it is also true

that a nilpotent group is cyclic if and only if its abelianization is cyclic.

We introduce the term balanced for groups presented with the number of relators

equal to the number of generators, so that it applies to models of random groups Fm/⟪R⟫,

random nilpotent groups Ns,m/⟪R⟫, or random abelian groups Zm/⟨R⟩, where ∣R∣ = m,

the rank of the seed group. We will correspondingly use the terms nearly-balanced for

∣R∣ = m − 1, and underbalanced or overbalanced in the cases ∣R∣ < m − 1 and ∣R∣ > m,

respectively.

Then it is very easy to see that nearly-balanced (and thus underbalanced) groups are

a.a.s. infinite, while balanced (and thus overbalanced) groups are a.a.s. finite because m

random integer vectors are R-linearly independent with probability one. However, it is
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also easy to see that if ∣R∣ is held constant, no matter how large, then there is a nonzero

probability that the group is nontrivial (because, for example, all the a-weights could

be even).

To set up the statement of the next lemma, let Z(m) ∶= ζ(2)⋯ζ(m) and

P (m) ∶= ∏
primes p

(1 +
1/p − 1/pm

p − 1
) .

Recall from Remark 3.18 that we can quote the distribution results of [13],[23],[41]

because of the common feature of arithmetic uniformity.

Lemma 3.21 (Cyclic quotients of abelian groups). The probability that the quotient of

Zm by m−1 random vectors is cyclic is 1/Z(m). With m random vectors, the probability

is P (m)/Z(m).

These facts, particularly the first, can readily be derived “by hand,” but can also

be computed using Dunfield–Thurston [13] as follows: their generating functions give

expressions for the probability that i random vectors with Z/pZ entries generate a sub-

group of rank j, and the product over primes of the probability that the Z/pZ reduction

has rank ≥m − 1 produces the probability of a cyclic quotient over Z.

The latter fact appears directly in Wang–Stanley [41] as Theorem 4.9(i). We note

that corresponding facts for higher-rank quotients could also be derived from either of

these two papers, but the expressions have successively less succinct forms.

Corollary 3.22 (Explicit probabilities for cyclic quotients). For balanced and nearly-

balanced presentations, the probability that a random abelian group or a random nilpotent

group is cyclic is a strictly decreasing function of m which converges as m→∞.

In the balanced case, the limiting value is a well-known number-theoretic invariant.

Values are estimated in the table below.
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The convergence for both cases is proved in [41, Thm 4.9] as a corollary of the more

general statement about the Smith normal form of a random not-necessarily-square

matrix M , which is an expression A = SMT for invertible S,T in which A has all

zero entries except possibly its diagonal entries aii = αi. These αi are then the abelian

invariants for the quotient of Zm by the column span of M (that is, they are the di from

Remark 3.7 but with opposite indexing, di = αm+1−i). The rank of the quotient is the

number of these that are not equal to 1.

The probabilities of cyclic groups among balanced and nearly-balanced quotients of

free abelian groups and therefore also for random nilpotent groups are approximated

below. Values in the table are truncated (not rounded) at four digits.

Pr(cyclic) m = 2 m = 3 m = 4 m = 10 m = 100 m = 1000 m→∞

∣R∣ =m − 1 .6079 .5057 .4672 .4361 .4357 .4357 .4357

∣R∣ =m .9239 .8842 .8651 .8469 .8469 .8469 .8469

Computing the probability of a trivial quotient with r relators is equivalent to the

the probability that r random vectors generate Zm.

Lemma 3.23 (Explicit probability of trivial quotients). For r >m,

Pr (Zm/⟨v1, . . . , vr⟩ = 0) =
1

ζ(r −m + 1)⋯ζ(r)
.

This is a rephrasing of [23, Cor 3.6] and [41, Thm 4.8].

Remark 3.24. From the description of the Smith normal form, we get a symmetry in

r and m, namely for all 1 ≤ k ≤ min(r,m),

Pr (rank (Zm/⟨v1, . . . , vr⟩) =m − k) = Pr (rank (Zr/⟨v1, . . . , vm⟩) = r − k)
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just by the observation that the transpose of the normal form expression has the same

invariants. For example, applying duality to Lemma 3.21 and reindexing, we immediately

obtain, as in Lemma 3.23,

Pr (Zm/⟨v1, . . . , vm+1⟩ = 0) =
1

Z(m + 1)
=

1

ζ(2)⋯ζ(m + 1)
.

3.4 Quotients of the Heisenberg group

We will classify all G ∶= H(Z)/⟪g⟫ for single relators g, up to isomorphism. As above,

we write a, b for the generators of H(Z), and c = [a, b]. With this notation, H(Z) can

be written as a semidirect product Z2⋊Z via ⟨b, c⟩⋊⟨a⟩ with the action of Z on Z2 given

by ba = abc−1, ca = ac.

Theorem 3.25 (Classification of one-relator Heisenberg quotients). Suppose g = aibjck ≠

1. Let d = gcd(i, j), let m = ij
2d(d− 1) + k as in Lemma 3.5, and let D = gcd(d,m). Then

G ∶=H(Z)/⟪g⟫ ≅

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

(Z ×Z/kZ) ⋊Z, if i = j = 0;

(Z/d
2

DZ × Z/DZ) ⋊Z, else,

with the convention that Z/0Z = Z and Z/1Z = {1}. In particular, G is abelian if and

only if g = c±1 or gcd(i, j) = 1; otherwise, it has step two. Furthermore, unless g is a

power of c (the i = j = 0 case), the quotient group is virtually cyclic.

Note that this theorem is exact, not probabilistic.

Remark 3.26 (Baumslag–Solitar case). The Baumslag–Solitar groups are a famous

class of groups given by the presentations BS(p, q) = ⟨a, b ∣ abpa−1 = bq⟩ for various p, q.
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For the Heisenberg quotients as described above, we will refer to D = 1 as the Baumslag–

Solitar case, because in that case sd − tm = 1 has solutions in s, t, and one easily checks

that the group is presented as

G = ⟨a, b ∣ [a, b] = btd, bd
2

= 1⟩ ≅ BS(1,1 + td)/⟪bd
2
⟫,

a 1-relator quotient of a solvable Baumslag–Solitar group BS(1, q).

Examples:

1. if g = a, then G = Z.

2. if g = c, then G = Z2.

3. if g = c2, then G = (Z ×Z/2Z) ⋊Z.

4. if g = a20b28c16, we have d = 4, m = 226, and D = 2, so we get

G = (Z2/⟨( 4
226 ) , (

0
4 )⟩

) ⋊Z ≅ (Z2/⟨( 4
2 ) , (

0
4 )⟩

) ⋊Z ≅ (Z/8Z ×Z/2Z) ⋊Z.

5. if g = a2b2c2, we have d = 2, m = 3, and D = 1. In this case, b4 =G c2 =G 1 and

the quotient group is isomorphic to Z/4Z ⋊Z with the action given by aba−1 = b3.

This is a two-step-nilpotent quotient of the Baumslag–Solitar group BS(1,3) by

introducing the relation b4 = 1.

We see that the quotient group G collapses down to Z precisely if gcd(i, j) = 1.

Namely, c =G 1 in that case, so we have a quotient of Z2 by a primitive vector.

Corollary 3.27. For one-relator quotients of the Heisenberg group, G = N2,2/⟪g⟫,

Pr(G ≅ Z) =
6

π2
≈ 60.8% ; Pr(G step 2, rank 2) = 1 −

6

π2
.
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Of course, if g = c, we have Z2, but this event occurs with probability zero. If

gcd(i, j) ≠ 1, then G is two-step (thus non-abelian) and has torsion.

Proof of theorem. First, the (i, j) = (0,0) case is very straightforward: then g = ck and

the desired expression for G follows.

Below, we assume (i, j) ≠ (0,0), and by Lemma 3.5, without loss of generality, we

will write g = bdcm.

Consider the normal closure of b, which is ⟪b⟫ = ⟨b, c⟩. This intersects trivially with

⟨a⟩, and G = ⟪b⟫⟨a⟩. Thus G = ⟨b, c⟩ ⋊ ⟨a⟩.

Now in H(Z), we compute ⟪g⟫ = ⟨bdcm, cd⟩ ⊂ ⟨b, c⟩. Thus

⟨b, c⟩ ≅ Z2/⟨( d
m ) , ( 0

d )⟩
.

We have the semidirect product structure G ≅ Z2/⟨( d
m ) , ( 0

d )⟩
⋊Z, where the action sends

( 1
0 ) ↦ ( 1

1 ) and fixes ( 0
1 ). Note that c has order d in G, and a simple calculation verifies

that b has order d2/D, where D = gcd(d,m). If we are willing to lose track of the action

and just write the group up to isomorphism, then we can perform both row and column

operations on [ d 0
m d ] to get [ d

2/D 0
0 D

], which produces the desired expression.

In fact, we can say something about quotients of H(Z) with arbitrary numbers

of relators. First let us define the K-factor K(R) of a relator set R = {g1, . . . , gr},

where relator g1 has the Mal’cev coordinates (i1, j1, k1), and similarly for g2, . . . , gr. Let

M =

⎛
⎜
⎜
⎝

i1 i2 . . . ir

j1 j2 . . . jr

⎞
⎟
⎟
⎠

and suppose its nullity (the dimension of its kernel) is q. Then

let W be a kernel matrix of M , i.e., an r × q matrix with rank q such that MW = 0.

(Note that if R is a random relator set, then q = r − 2, since the rank of M is 2 with
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probability one.) Let k = (k1, . . . , kr) be the vector of c-coordinates of relators, so that

kW ∈ Zq. Then K(R) ∶= gcd(kW ) is defined to be the gcd of those q integers.

Theorem 3.28 (Orders of Heisenberg quotients). Consider the group G =H(Z)/⟪g1, . . . , gr⟫,

where relator g1 has the Mal’cev coordinates (i1, j1, k1), and similarly for g2, . . . , gr. Let

d = gcd(i1, j1, . . . , ir, jr); let ∆ be the co-area of the lattice spanned by the ( iαjα ) in Z2;

and let K = K(R) be the K-factor defined above. Then c has order γ = gcd(d,K) in G

and ∣G∣ = ∆ ⋅ γ.

Proof. Clearly ∆ is the order of ab(G) = G/⟨c⟩. So to compute the order of G, we

just need to show that the order of c in G is γ. Consider for which n we can have

cn ∈ ⟪g1, . . . , gr⟫, i.e.,

cn =
N

∏
α=1

wα g
εα
α w−1

α

for arbitrary words wα and integers εα. First note that all commutators [w, gα] are of

this form, and that by letting w = a or b, these commutators can equal ciα or cjα for any

α, so n can be an arbitrary multiple of d.

Next, consider the expression in full generality and note that A(cn) = ( 0
0 ). Conju-

gation preserves weights, so A(wαg
εα
α w−1

α ) = A(gεαα ) = εαA(gα) = εα ( iαjα ). To get the two

sides to be equal in abelianization, the εα must record a linear dependency in the ( iαjα ).

Finally we compute

n = ∑
α

εα(xαjα − yαiα) + ∑
α<β

εαεβiβjα −∑
α

iαjα
εα(εα − 1)

2
+∑

α

εαkα,

where ( xαyα ) = A(wα). We can observe that each of the first three terms is a multiple of

d and the fourth term is an arbitrary integer multiple of K. (To see this, note that the

column span of W is exactly the space of linear dependencies in the A(gα), so ∑ εαkα
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is a scalar product of the k vector with something in that column span, and is therefore

a multiple of K.) Thus n can be any integer combination of d and K, as we needed to

prove.

3.5 Rank drop

First, we establish that adding a single relator to a (sufficiently complicated) free nilpo-

tent group does not drop the nilpotency class; the rank drops by one if the relator is

primitive in abelianization and it stays the same otherwise. Furthermore, a single relator

never drops the step unless the starting rank was two. This is a nilpotent version of

Magnus’s famous Freiheitssatz (freeness theorem) for free groups [25, Thm 4.10].

Theorem 3.29 (Nilpotent Freiheitssatz). For any g ∈ Ns,m with s ≥ 2,m ≥ 3, there is

an injective homomorphism

Ns,m−1 ↪ Ns,m/⟪g⟫.

This is an isomorphism if and only if gcd(A1(g), . . . ,Am(g)) = 1.

If m = 2 the result holds with Z↪ Ns,2/⟪g⟫.

Proof. Romanovskii’s 1971 theorem [31, Thm 1] does most of this. In our language, the

theorem says that if Am(g) ≠ 0, then ⟨a1, . . . , am−1⟩ is a copy of Ns,m−1. This establishes

the needed injection except in the case g ∈ [Ns,m,Ns,m], where A(g) is the zero vector.

In the m = 2 case, any such Ns,2/⟪g⟫ has abelianization Z2, so the statement holds.

For m > 2, one can apply an automorphism so that g is spelled with only commutators

involving am. Even killing all such commutators does not drop the nilpotency class

because m > 2 ensures that there are some Mal’cev generators spelled without am in

each level. Thus in this case ⟨a1, . . . , am−1⟩ ≅ Ns,m−1 still embeds.
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It is easy to see that if g is non-primitive in abelianization, then the rank of ab(Ns,m/

⟪g⟫) is m, and so the quotient nilpotent group has rank m as well. However, the image

of Romanovskii’s map has rank m − 1, so it is not a surjection.

On the other hand, suppose ab(g) is a primitive vector. Then the rank of the

abelianized quotient is m − 1, and by Magnus’s theorem (Theorem 3.3) the rank of

the nilpotent quotient is the same. The group G = Ns,m/⟪g⟫ is therefore realizable

as a quotient of that copy of Ns,m−1. Since the lower central series of Ns,m−1 has all

free abelian quotients, any proper quotient would have smaller Hirsch length, and this

contradicts Romanovskii’s injection. Thus relative primality implies that the injection

is an isomorphism.

Now we can use rank drop to analyze the probability of an abelian quotient for a free

nilpotent group in the underbalanced, nearly balanced, and balanced cases (i.e., cases

with the number of relators at most the rank).

Lemma 3.30 (Abelian implies rank drop for up to m relators). Let G = Ns,m/⟪R⟫,

where R = {g1, . . . , gr} is a set of r ≤m random relators. Suppose s ≥ 2 and m ≥ 2. Then

Pr(G abelian ∣ rank(G) =m) = 0.

Proof. Suppose that rank(G) =m and G is abelian. We use the form of the classification

of abelian groups (Remark 3.7) in which G ≅ ⊕mi=1Z/diZ, where dm ∣ . . . ∣ d1 so that

d1 = ⋅ ⋅ ⋅ = dq = 0 for q = dim(G), and we write ⟪ab(R)⟫ = ⟨d1e1, . . . , dmem⟩ for a basis {ei}

of Zm. Since rank(G) = m, we can assume no di = 1. We can lift the basis {ei} of Zm

to a generating set {ai} of Ns,m by Magnus (Theorem 3.3). Note that the exponent of

each generator in each relator is a multiple of dm.
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Next we show that we cannot kill a commutator in G without dropping rank. Let

b1 = [a1, am]. We claim that b1 ∉ ⟪g1, . . . , gr⟫. To do so, we compute an arbitrary element

n

∏
α

wαg
εα
α w

−1
α ∈ ⟪g1, . . . , gr⟫.

Conjugation preserves weights, so A(wαg
εα
iα
w−1
α ) = A(gεαiα ) = εαA(giα). If the product is

equal to b1, then its a-weights are all zero. Now consider the b-weights. For the product,

the b-weights are the combination of the b-weights of the gα, modified by amounts created

by commutation. However, since all the a-exponents of all the gα are multiples of dm,

we get

∑ εiA(gi) = (
0
0
⋮
0

) , ∑ εiB(gi) ≡ (
1
0
⋮
0

) (mod dm),

where each εi is the sum of the εα corresponding to gi. The second expression ensures

that the εi are not all zero, so the first equality is a linear dependence in the A(gi),

which has probability zero since r ≤m.

Theorem 3.31. (Underbalanced quotients are not abelian) Let G = Ns,m/⟪R⟫, where

R = {g1, . . . , gr} is a set of r ≤m − 2 random relators gi. Then

Pr(G abelian) = 0.

Proof. Suppose that G is abelian, and consider elements of G as vectors in Zm via the

abelianization map on Ns,m; in this way we get vectors v1 = A(g1), . . . , vr = A(gr). From

the previous result we may assume rank(G) <m. By Lemma 3.8, we can find a primitive

vector w as a linear combination of the vi. Then we apply the linear algebra lemma

(Lemma 3.10) to extend w appropriately so that span(v1, . . . , vr) = span(w,w2, . . . ,wr).

We can find a series of elementary row operations (switching, multiplication by −1,

or addition) to get (w,w2, . . . ,wr) from (v1, . . . , vr), and we lift these operations to
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elementary Nielsen transformations (switching, inverse, or multiplication, respectively)

in Ns,m to get (g′, g′2, . . . , g
′
r) from (g1, . . . , gr). Note that Nielsen transformations on a set

of group elements preserve the subgroup they generate, so also preserve normal closure.

This lets us define R′ = {g′, g′2, . . . , g
′
r} with ⟪R′⟫ = ⟪R⟫. Since g′ has a weight vector

w whose coordinates are relatively prime, the Freiheitssatz (Theorem 3.29) ensures that

Ns,m/⟪g′⟫ ≅ Ns,m−1. Thus we have G = Ns,m−1/⟪g′2, . . . , g
′
r⟫.

If r ≤ m − 2, then iterating this argument r − 1 times gives G ≅ Ns,m−r+1/⟪gr⟫ for

some new gr, and m − r + 1 ≥ 3. Then we can apply Theorem 3.29 to conclude that this

quotient is not abelian, because its nilpotency class is s > 1.

Proposition 3.32 (Cyclic quotients). If ∣R∣ = m − 1 or ∣R∣ = m, then abelian implies

cyclic:

Pr(G cyclic ∣ G abelian) = 1.

Proof. Running the proof as above, we iterate the reduction m − 2 times to obtain

G ≅ Ns,2/⟪g⟫ or Ns,2/⟪g, g′⟫.

If g (or any element of ⟪g, g′⟫) is primitive, then G is isomorphic to Z or a quotient

of Z, i.e., G is cyclic.

Otherwise, note that N ∶= Ns,2 has the Heisenberg group as a quotient (H(Z) =

N1/N3). If G is abelian, then the corresponding quotient of H(Z) is abelian. In the non-

primitive case, this can only occur if c ∈ ⟪g, g′⟫, which (as in the proof of Lemma 3.30)

implies A(g) = (0,0) (or a linear dependency between A(g) and A(g′)). But by Corol-

lary 3.14, the changes of basis do not affect the probability of linear dependency, so this

has probability zero.

Corollary 3.33. For nearly-balanced and balanced models, the probability that a random
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nilpotent group is abelian equals the probability that it is cyclic.

We reprise the table from Section 3.3, recalling that values are truncated at four

digits.

Pr(abelian) m = 2 m = 3 m = 4 m = 10 m = 100 m = 1000 m→∞

∣R∣ =m − 1 .6079 .5057 .4672 .4361 .4357 .4357 .4357

∣R∣ =m .9239 .8842 .8651 .8469 .8469 .8469 .8469

Corollary 3.34 (Abelian one-relator). For any step s ≥ 2,

Pr(Ns,m/⟪g⟫ is abelian) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

6/π2, m = 2

0, m ≥ 3.

Note that these last two statements agree for m = 2, ∣R∣ =m − 1 = 1.

3.6 Trivializing and perfecting random groups

In this final section, we first find the threshold for collapse of a random nilpotent group,

using the abelianization. Then we will prove a statement lifting facts about random

nilpotent groups to facts about the LCS of classical random groups, deducing that

random groups are perfect with exactly the same threshold again.

Recall that Tj,m = {[ai1 , . . . , aij] ∣ 1 ≤ i1, . . . , ij ≤m} contains the basic nested com-

mutators with j arguments. In this section we fix m and write F for the free group, so

we can write Fi for the groups in its lower central series. Similarly we write N for Ns,m

(when s is understood), and Tj for Tj,m. Note that ⟪Tj⟫ = Fj, so N = F /Fs+1.

For a random relator set R ⊂ F , we write Γ = F /⟪R⟫, G = N/⟪R⟫, and H = Zm/⟨R⟩ =

ab(Γ) = ab(G), using the abuse of notation from Lemma 3.11 and treating R as a set
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of strings from F to be identified with its image in N or Zm. In all cases, R is chosen

uniformly from freely reduced words of length ` or ` − 1 in F .

Here we give an incomplete treatment of the threshold theorem. We also include a

complete (but a lot more technical) proof in Section 3.7.

First we need a result describing the divisibility properties of the determinants of

matrices whose columns record the coordinates of random relators.

Lemma 3.35 (Arithmetic distribution of determinants). For a fixed rank m ≥ 1 and

prime p, let M be an m ×m random matrix whose entries are independently uniformly

distributed in Z/pZ and let ∆ = detM . Then

Pr(∆ ≡ 0 mod p) = 1 − [(1 −
1

p
)(1 −

1

p2
)⋯(1 −

1

pm
)] ,

and the remaining probability is uniformly distributed over the nonzero residues.

Proof. The number of nonsingular matrices with Fq entries is

∣GLm(Fq)∣ = (qm − 1) (qm − q)⋯(qm − qm−1)

out of qm
2

total matrices, where q is any prime power [30]. This establishes the proba-

bility that p ∣ ∆. On the other hand, it is a classical fact due to Gauss that every prime

modulus has a primitive root, or a generator for its multiplicative group of nonzero

elements. Suppose α is a primitive root mod p. If x is the random variable that is

uniformly distributed in Z/pZ, then αx is as well. For any m ×m matrix A, let f(A)

be the matrix whose entries are identical to A but (f(A))1j = αa1j for the first-row

entries. Then det(fk(A)) ≡ αk∆. If ∆ ≢ 0, then this takes all nonzero values modulo

p for k = 0,1, . . . ,m − 1. But since all of the matrix entries are distributed by the same



44

law for each random matrix fk(M), it follows that ∆ gives equal probability to each

nonzero value mod p.

The following theorem tells us that in sharp contrast to Gromov random groups,

where the number of relators required to trivialize the group is exponential in `, even the

slowest-growing unbounded functions, like log log log ` or an inverse Ackermann function,

suffice to collapse random abelian groups and random nilpotent groups.

Theorem 3.36 (Collapsing abelian quotients). For random abelian groups H = Zm/⟨R⟩

with ∣R∣ random relators, if ∣R∣ → ∞ as a function of `, then H = {0} with probability

one (a.a.s.). If ∣R∣ is bounded as a function of `, then there is a positive probability of a

nontrivial quotient, both for each ` and asymptotically.

Proof. For a relator g, its image in Zm is the random vector A(g), which converges

in distribution to a multivariate normal, as described in Section 3.2. Furthermore, the

image of this vector in projection to Z/pZ has entries independently and uniformly

distributed. We will consider adding vectors to this collection R until they span Zm,

which suffices to get H = {0}.

Choose m vectors v1, . . . vm in Zm at random. These vectors are a.a.s. R-linearly inde-

pendent, because their distribution is normal and linear dependence is a codimension-one

condition. Therefore they span a sublattice L1 ⊂ Zm. The covolume of L1 (i.e., the vol-

ume of the fundamental domain) is ∆1 = det(v1, . . . , vm). As we add more vectors, we

refine the lattice. Note that ∆1 = 1 if and only if L1 = Zm. Similarly define Lk to be

spanned by v(k−1)m+1, . . . , vkm for k = 2,3, . . . , and define ∆k to be the corresponding

covolumes.

Note that for two lattices L,L′, the covolume of the lattice L∪L′ is always a common
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divisor of the respective covolumes ∆,∆′. Therefore, the lattice L1∪⋅ ⋅ ⋅∪Lk has covolume

≤ gcd(∆1, . . . ,∆k). Here, the ∆k are identically and independently distributed with the

probabilities described in the previous result (Lemma 3.35), and divisibility by different

primes is independent, and therefore the probability of having gcd(∆1, . . . ,∆k) = 1 is

∏
primes p

1 − [1 − (1 −
1

p
)(1 −

1

p2
)⋯(1 −

1

pm
)]

k

,

which goes to 1 as k → ∞. (To see this, note that first applying a logarithm, then

exchanging the sum and the limit, gives an absolutely convergent sequence.)

On the other hand, it is immediate that for any finite ∣R∣ there is a small but nonzero

chance that all entries are even, say, which would produce a nontrivial quotient group.

Of course this also follows immediately from the statement in Lemma 3.23, because

Pr(span{v1, . . . , vr} = Zm) =
1

ζ(r −m + 1)⋯ζ(r)
Ð→ 1

for any fixed m as r →∞, but the above argument is appealingly self-contained.

We immediately get corresponding statements for random nilpotent groups and stan-

dard random groups. Recall that a group Γ is called perfect if Γ = [Γ,Γ]; equivalently, if

ab(Γ) = Γ/[Γ,Γ] = {0}.

Corollary 3.37 (Threshold for collapsing random nilpotent groups). A random nilpo-

tent group G = Ns,m/⟪R⟫ is a.a.s. trivial precisely in those models for which ∣R∣ → ∞ as

a function of `.

Corollary 3.38 (Random groups are perfect). Random groups Γ = Fm/⟪R⟫ are a.a.s.

perfect precisely in those models for which ∣R∣ → ∞ as a function of `.
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Proof. Zm/⟨R⟩ = {0} ⇐⇒ ab(Γ) = {0} ⇐⇒ ab(G) = {0} ⇐⇒ G = {1}, with the last

equivalence from Theorem 3.3.

We have established that the collapse to triviality of a random nilpotent group G

corresponds to the immediate stabilization of the lower central series of the corresponding

standard random group: Γ1 = Γ2 = . . . In fact, we can be somewhat more detailed about

the relationship between G and the LCS of Γ.

Theorem 3.39 (Lifting to random groups). Γ = Fm/⟪R⟫ and G = Ns,m/⟪R⟫ are related

by the isomorphism Γ/Γs+1 ≅ G. Furthermore, the first s of the successive LCS quotients

of Γ are the same as those in the LCS of G, i.e.,

Γi/Γi+1 ≅ Gi/Gi+1 for 1 ≤ i ≤ s.

Proof. Since homomorphisms respect LCS depth (Lemma 3.19), the quotient map φ ∶

F → Γ gives φ(Fj) = Γj for all j. We have

Γ/Γs+1 ≅ F /⟪R,Fs+1⟫ ≅ N/⟪R⟫ = G

by Lemma 3.11 (string arithmetic).

From the quotient map ψ ∶ Γ→ G, we get Γi/Γs+1 = ψ(Γi) = Gi. Thus

Gi/Gi+1
≅ Γi/Γs+1/Γi+1/Γs+1

≅ Γi/Γi+1
.

Corollary 3.40 (Step drop implies LCS stabilization). For G = Ns,m/⟪R⟫, if step(G) =

k < s = step(Ns,m), then the LCS of the random group Γ stabilizes: Γk+1 = Γk+2 = . . . .

Proof. This follows directly from the previous result, since step(G) = k implies that

Gk+1 = Gk+2 = 1, which meansGk+1/Gk+2 = 1. Since k+1 ≤ s, we conclude that Γk+1/Γk+2 =
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1. Thus Γk+2 = Γk+1, and it follows by the definition of LCS that these also equal Γi for

all i ≥ k + 1.

Thus, in particular, when a random nilpotent group (with m ≥ 2) is abelian but not

trivial, the corresponding standard random group has its lower central series stabilize

after one proper step:

⋯Γ4 = Γ3 = Γ2 ⊲ Γ1 = Γ

For instance, with balanced quotients of F2 this happens about 92% of the time.

In future work, we hope to further study the distribution of steps for random nilpotent

groups.

3.7 Detailed proof of Corollary 3.17 and Theorem

3.36

In this section we give a detailed (but technical) proof of Corollary 3.17 and Theorem

3.36. Here we state them again:

Corollary 3.17 (Probability of primitivity). For a random freely reduced word in Fm,

the probability that it is primitive in abelianization tends to 1/ζ(m), where ζ is the

Riemann zeta function. In particular, for m = 2, the probability is 6/π2.

Theorem 3.36 (Collapsing abelian quotients). For random abelian groups H = Zm/⟨R⟩

with ∣R∣ random relators, if ∣R∣ → ∞ as a function of `, then H = {0} with probability

one (a.a.s.). If ∣R∣ is bounded as a function of `, then there is a positive probability of a

nontrivial quotient, both for each ` and asymptotically.
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Recall that we have: Y` is Zm-valued NBSRW. Let R` be the random walk on Z

given by projecting Y` to a single coordinate. Let M` be m ×m matrix-valued random

variable whose columns are Y`, and let ∆ = ∆` be its determinant, a Z-valued random

variable. Let Mk,` be the k × k matrix-valued random variable whose columns are given

by projections of Y` to the first k coordinates; that is, it’s the upper left-hand k×k minor

of M`, so that R` =M1,`.

If E` is an event that depends on a parameter `, we use the symbol P(E`) for the

probability for fixed ` and write P(E`) ∶= lim
`→∞

P(E`) for the asymptotic probability. If E

is an event with respect to a matrix-valued random variable, we use the notation P′(E)

to denote the conditional probability of E given that no matrix entries are zero.

Note that for any ε > 0 and for large enough `, we have P(R` < `1/2+ε) = 1. Indeed,

the expectation for ∣R`∣ is
√

`
m−1 by [15].

We will analyze primes by their size relative to `. Define

P1 ∶= {p ≤ log log `} P2 ∶= {log log ` ≤ p ≤ `
1
2
−ε}

P3 ∶= {`
1
2
−ε ≤ p ≤ `m+1} P4 ∶= {p ≥ `m+1}.

Lemma 3.41 (Divisibility of coordinate projections). For every m,n ≥ 2 and ` ≫ 1,

there is a conditional probability bound given by

P(R` ≡ 0 mod n ∣ R` ≠ 0) < 1/n.

Proof. This follows from the bell-curve shape of the distribution.

Now Corollary 3.17 follows easily from the following lemma:

Lemma 3.42. Let δ be the greatest common divisor of the entries of Y`. Then

P(δ > 1) = 1 −
1

ζ(m)
.
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Proof. We have

P(p∣δ for some p ∈ P1) < P(δ > 1) < P′(p∣δ for some p ∈ P1)

+ P′(p∣δ for some p > log log `)

+ P(some entry is zero)

Now P(p∣δ for some p ∈ P1) → 1 − 1
ζ(m) by arithmetic uniformity and independence

(Lemma 3.15 and Corollary 3.16). By Lemma 3.41,

P′(p∣δ for some p > log log `) < ∑
p∉P1

1

pm
→ 0,

where we have convergence because the sum is the tail of a converging sequence. Lastly,

P(some entry is zero) → 0 and the lemma follows.

Lemma 3.43 (Values of coordinate projections). There is a constant cm such that for

any α ∈ Z and any ε > 0,

P(R` = α) + P(R` > `
1
2
+ε) <

cm
√
`

for `≫ 1.

Proof. Bounding P(R` = α) is achieved by straightforward Stirling approximation, and

the second term decays exponentially.

Lemma 3.44 (Divisibility of determinants by large primes). Fix ε > 0. Then for suffi-

ciently large ` and any large prime p (i.e., p ≥ `
1
2
+ε), we have

P′(detMk,` ≡ 0 mod p) <
(m − 1)cm

√
`

+
1

p
,

where P′ denotes conditional probability given that the matrix entries are nonzero.

Proof. For fixed m, we induct on k. When k = 1, the statement follows from Lemma 3.41.
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For k > 1, we introduce the equivalence relation A ∼ B ⇐⇒ aij = bij for all (i, j) ≠

(k, k); that is, we declare two k×k matrices equivalent if they agree in all entries except

possibly the bottom right. Then there is a constant CM for each matrix M such that

detA = akk detN +CM ∀A ∈ [M],

where N is the upper left-hand (k−1)×(k−1) minor. Now if p ∤ detN , then solving for

akk gives (detA−CM)(detN)−1 mod p. For `≫ 1, the choice of p ensures that ∣akk∣ < p/2

with high probability; but there is only one matrix A ∈ [M] with −p/2 < akk < p/2

satisfying the needed congruence. By Lemma 3.43, the probability that a matrix in [M]

takes a particular value or that the entry falls outside those bounds is at most cm√
`
. Finally,

the induction hypothesis provides that the probability of p∣detN is less than (m−2) cm√
`
+1
p .

We get the needed bound from the expansion P′(E) = P′(A)⋅P′(E∣A)+P′(Ac)⋅P′(E∣Ac) ≤

P′(A)⋅1 + 1⋅P′(E∣Ac), namely

P′(p∣detMk,`) = (
(m − 2)cm

√
`

+
1

p
)⋅1 + 1⋅(

cm
√
`
) .

Lemma 3.45 (Divisibility of determinants by medium primes). For sufficiently large `

and any medium prime p (i.e., `1/2−ε ≤ p ≤ `1/2+ε), we have

P′(detMk,` ≡ 0 mod p) <
2(m − 1)cm

`
1
2
−2ε

+
1

p
,

where P′ denotes conditional probability given that the matrix entries are nonzero.

Proof. We induct on m. Then in each equivalence class [M], we have detA = detN ⋅

ann + CM as before. For large enough `, we may assume all the entries are less than

`1/2+ε. Now if p ∤ detN , then solving for akk gives (detA −CM)(detN)−1 mod p, so at
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most 1/p of the akk values in Z give a possible solution. Thus there are at most 2`1/2+ε/p

matrices A ∈ [M] with determinant divisible by p in this case, and this has a conditional

probability at most 2`1/2+ε

p
c√
`
< c
`1/2−2ε

(given that the matrix falls in the equivalence class).

Finally, the induction hypothesis says that the probability that detN is divisible by

p is < (m − 2) c
`1/2−2ε

+ 1
p . Thus, the lemma follows by induction.

These two lemmas together gives us that there is some c′m such that for any p ∈ P3

P′(p ∣ ∆i) < c
′
ml

2ε− 1
2 < c′mp

4ε−1
2m+2

Lemma 3.46 (Divisibility of determinants by small primes). For a fixed p ∈ P1,

P(p ∣ d`) = [1 − (1 −
1

p
)(1 −

1

p2
)⋯(1 −

1

pm
)]

k

+O(e−`)

Proof. The number of nonsingular matrices with Fp entries is

∣GLm(Fp)∣ = (pm − 1) (pm − p)⋯(pm − pm−1)

out of pm
2

total matrices [30]. Thus the lemma follows from the fact that each entry

approaches a uniform distribution with the error term decays exponentially fast in `.

Lemma 3.47 (Nonsingularity). P(∆ = 0) = 0.

Proof. Determinant zero is a codimension one condition.

Now let’s define a Z-valued random variable d` ∶= gcd(∆1, . . . ,∆k) for a fixed k.

Lemma 3.48 (Common divisors of random determinants). Fix m and k > 4m + 4.

P(d` = 1) = ∏
primes p

1 − [1 − (1 −
1

p
)(1 −

1

p2
)⋯(1 −

1

pm
)]

k

.
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Proof. We’ll break down the probability by the sizes of possible prime divisors relative to

`. Fix ε > 0 sufficiently small that 4m+4
1−4ε ≤ k to partition the primes P into the size ranges

P1, P2, P3, and P4. Let Pm(p) ∶= 1 − (1 − 1
p) (1 − 1

p2)⋯(1 − 1
pm), as in the statement of

the lemma, and note that

Pm(p) =
1

p
+
−1

p2
+

0

p3
+ ⋅ ⋅ ⋅ +

(−1)m

p(
m+1
2
)
,

with appropriate integer numerators.

For one bound, we have d` > 1 iff there exists some prime p such that p ∣ ∆1, . . . ,∆k,

where the ∆i are i.i.d. random variables. For each ` we have

P(p ∣ d` for some p ∈ P1) = 1 − P(p ∤ d` for every p < log log `)

= 1 −∏
P1

(1 − [Pm(p)]
k
) +O(e−`) Ð→ 1 −∏

P
(1 − [Pm(p)]

k
) ,

where the product expression is valid because ∏
p<log log `

p <
√
`, which means that the

events of divisibility by the primes in the class are asymptotically independent, with

exponentially small error term. This shows that P(d` = 1) < ∏
primes p

(1 − [Pm(p)]
k
).

Next,

P(p ∣ d` for some p ∈ P2) < ∑
P2

P(p∣d`) = ∑
P2

(Pm(p) +O(e−`))
k

= ∑
P2

(
1

p
+
−1

p2
+

0

p3
+ ⋅ ⋅ ⋅ +

(−1)m

p(
m+1
2
)
+O(e−`))

k

= ∑
P2

(
1

pk
+ ⋅ ⋅ ⋅ +

(−1)mk

pk(
m+1
2
)
+O(e−`)) Ð→ 0,

where the Pm(p) term appears because p < `
1
2
−ε means we can apply Lemma 3.46. To

justify the convergence to zero, note that each individual ∑P2

a
pb

has b ≥ k, and so is part

of the tail of a convergent p-series; all other terms are `
1
2
−ε a
(log log `)bO(e−`) (obtained by

using `
1
2
−ε as an upper bound for the number of terms in the sum), and these do not

contribute.
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Now observe

P(d` > 1) < (
4

∑
j=1

P′(p∣d` for some p ∈ Pj)) + P(some entry is zero).

We now compute the case of P3 = {`
1
2
−ε ≤ p ≤ `m+1}.

P′(p ∣ d` for some p ∈ P3) ≤ ∑
P3

P′(p ∣ d`) = ∑
P3

(P′(p ∣ ∆i)
k) < ∑

P3

c′m ⋅p
4ε−1
2m+2k.

Since the sum over all primes of p−k/2 converges, this certainly converges to zero as

`→∞.

In the range p > `m+1, since all coordinates of the random walk vector are ≤ `, we

have ∣∆∣ ≤ m!`m < `m+1 for ` ≫ 1. Since ∆ = 0 is an asymptotically negligible event

(Lemma 3.47), we have P′(p∣d` for some p > `m+1) Ð→ 0. Finally, the probability of a

zero entry also goes to zero (Lemma 3.43), which completes the proof.

If we take k to be a function of ` such that k → ∞, then P(d` = 1) = 1. This proves

Theorem 3.36.
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Chapter 4

Describing Groups

4.1 Introduction

One important aspect of computable structure theory is the study of the computability-

theoretic complexity of structures. Historically, there are many natural questions of this

flavor even outside the realm of logic. For example, the word problem for groups asks:

for a given finitely-generated group, is there an algorithm that can determine if two

words are the same in the group? It was shown in [29] that there is such an algorithm

if and only if the group is computable in the sense of computability theory.

In this work, we will study the computability-theoretic complexity of groups. Among

many different notions of complexities of a structure, we look at the quantifier complexity

of a computable Scott sentence and the complexity of the index set.

4.1.1 Background in recursive structure theory

Instead of just using the first-order language, we will work in Lω1,ω. This is the language

where we allow countable disjunctions and countable conjunctions in addition to the

usual first-order language. A classic theorem of Scott shows that this gives all the

expressive power one needs for countable structures.
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Theorem 4.1 (Scott, [32]). Let L be a countable language, and A be a countable struc-

ture in L. Then there is a sentence in Lω1,ω whose countable models are exactly the

isomorphic copies of A. Such a sentence is called a Scott sentence for A.

To work in a computability setting, this is not good enough, because we also want

the sentence to be computable in the following way:

Definition 4.2. We say a set is computably enumerable ( c.e., or recursively enumer-

able, r.e.) if there is an algorithm that enumerates the elements of the set.

We say a sentence (or formula) in Lω1,ω is computable if all the infinite conjunctions

and disjunctions in it are over c.e. sets. Similarly, we define a computable Scott sentence

to be a Scott sentence which is computable.

All the Lω1,ω sentences and formulas we mention in this chapter will be computable,

so we will say Scott sentence instead of computable Scott sentence.

We say a structure is computable if its atomic diagram is computable. We also

identify a structure with its atomic diagram. However, the effective Scott theorem is

not true, that is, not all computable structures have a computable Scott sentence.

We say an Lω1,ω formula is Σ0 or Π0 if it is finitary (i.e. no infinite disjunction or

conjunction) and quantifier free. For α > 0, a Σα formula is a countable disjunction of

formulas of the form ∃xφ where φ is Πβ for some β < α. Similarly, a Πα formula is a

countable conjunction of formulas of the form ∀xφ where φ is Σβ for some β < α. We

say a formula is d-Σα if it is a conjunction of a Σα formula and a Πα formula. The

complexity of Scott sentences of groups will be one of the main topics throughout this

chapter.

Another complexity notion we will study is the following:
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Definition 4.3. For a structure A, the index set I(A) is the set of all indices e such

that φe gives the atomic diagram of a structure B with B ≅ A.

There is a connection between the two complexity notions that we study:

Proposition 4.4. For a complexity class Γ, if we have a computable Γ Scott sentence

for a structure A, then the index set I(A) is in Γ.

This proposition and many examples lead to the following thesis:

For a given computable structure A, to calculate the precise complexity of

I(A), we need a good description of A, and once we have an “optimal”

description, the complexity of I(A) will match that of the description.

In this chapter, we focus on the case where the above-mentioned structures are

groups. The thesis is shown to be false in [21], where they found a subgroup of Q with

index set being d-Σ2 (shorthand of d-Σ0
2) which cannot have a computable d-Σ2 Scott

sentence. However, in the case of finitely-generated groups, the thesis is still open, and

the groups we considered give further evidence for the thesis in this case. For more

background in computable structure theory, we refer the reader to [1].

4.1.2 Groups

We fix the signature of groups to be {⋅,−1 ,1}. Throughout the chapter, we will often iden-

tify elements (words) in the free group Fk = F (x1, . . . , xk) with functions from Gk → G,

by substituting xi by the corresponding elements from G, and do the group multiplica-

tion in G. Here we restate the relation between word problem and computability of the

group:
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Theorem 4.5 ([29]). A finitely-generated group is computable if and only if it has solv-

able word problem.

In this chapter, all the groups we consider will be computable.

4.1.3 History

Scott sentences and index sets for many classes of groups have been studied, for exam-

ple, reduced abelian p-groups [7], free groups [8], finitely-generated abelian groups, the

infinite dihedral group D∞, and torsion-free abelian groups of rank 1 [22]. We will not

list all the results, but will mention many of them as needed.

4.1.4 Overview of results

For the reader’s convenience, we summarize the main results of each section:

� (Section 2) Every polycyclic group (including the nilpotent groups) has a com-

putable d-Σ2 Scott sentence, and the index set of a finitely-generated non-co-

Hopfian nilpotent group is m-complete d-Σ2.

� (Section 3) Certain finitely-generated solvable groups, including (Z/dZ) ≀Z, Z ≀Z,

and the solvable Baumslag–Solitar groups BS(1, n), have computable d-Σ2 Scott

sentences and their index sets are m-complete d-Σ2.

� (Section 4) The infinitely-generated free nilpotent group has a computable Π3 Scott

sentence and its index set is m-complete Π3.

� (Section 5) We give an example of a subgroup of Q whose index set is m-complete

Σ3, achieving an upper bound of such groups given in [22].
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� (Section 6) We give another example of a subgroup of Q which has both com-

putable Σ3 and computable Π3 pseudo-Scott sentences, but has no computable

d-Σ2 pseudo-Scott sentence, contrasting a result in the Borel hierarchy of Mod(L).

4.2 Finitely-generated nilpotent and polycyclic groups

In this section, we will focus on finitely-generated groups, especially nilpotent and poly-

cyclic groups. A priori, even if a structure is computable, it might not have a com-

putable Scott sentence. However, the following theorem says that a computable finitely-

generated group always has a computable Scott sentence.

Theorem 4.6 (Knight, Saraph, [22]). Every computable finitely-generated group has a

computable Σ3 Scott sentence.

If we think of nilpotent and polycyclic groups as classes of “tame” groups, then the

abelian groups are the “tamest” groups. Using the fundamental theorem of finitely-

generated abelian groups, which says that every finitely-generated abelian group is a

direct sum of cyclic groups, one can obtain the following theorem saying that the previous

computable Scott sentences are not optimal in the case of abelian groups:

Theorem 4.7 (Knight, Saraph, [22]). Let G be an infinite finitely-generated abelian

group. Then G has a computable d-Σ2 Scott sentence. Furthermore, I(G) is m-complete

d-Σ2.

This theorem, together with some other results in [22], leads to the question: Does

every finitely-generated group have a computable d-Σ2 Scott sentence? Generalizing

the previous theorem, we show that this is true for polycyclic groups, and also prove
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completeness for certain classes of groups. We start by giving the definition for several

group-theoretic notions that are used in the discussion.

Definition 4.8. For two subgroups N,M of G, we write [N,M] to be the subgroup of

G generated by all commutators [n,m] with n ∈ N and m ∈M .

For a group G, we inductively define G1 = G and Gk+1 = [Gk,G]. We call Gk the

k-th term in the lower central series. A group is called nilpotent if Gk+1 is the trivial

group for some k, and the smallest such k is called the nilpotency class of the group.

Note that G is abelian if its nilpotency class equals 1.

We also inductively define Z0(G) = 1 and Zk+1(G) = {x ∈ G ∣ ∀y ∈ G, [x, y] ∈ Zi(G)}.

We call Zk(G) the k-th term in the upper central series. It is well-known that a group

G is nilpotent if and only Zk(G) = G for some k. In this case, the smallest such k is

equal to to the nilpotency class of the group.

We define the free nilpotent group of rank m and class p by Np,m = F (m)/F (m)p+1,

where F (m) is the free group of m generators.

Definition 4.9. For a group G, we inductively define G(0) = G and G(k+1) = [G(k),G(k)].

We call G(k) the k-th term in the derived series. In the case when k = 1, this is the

derived subgroup G′ = G(1) of G. A group is called solvable if G(k) = 1 for some k, and

the smallest such k is called the derived length of the group. Note that G is abelian if

its derived length equals 1.

Definition 4.10. A polycyclic group is a solvable group in which every subgroup is

finitely-generated.

By definition, every polycyclic group is solvable. It is well known that every finitely-

generated nilpotent group is polycyclic. It is also known that all polycylic groups have
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solvable word problem, and thus are computable. By contrast, an example of a finitely-

presented solvable but non-computable group is given in [20].

We start by giving a sentence saying a tuple generates a subgroup isomorphic to a

given finitely-generated computable group G. We first fix a presentation ⟨a ∣ R ⟩ of G,

where R is normally closed. The solvability of the word problem of G then says R is

computable. Throughout this chapter, we will write ⟨x⟩ ≅ G to be shorthand for

⋀
w(a)∈R

w(x) = 1 ∧ ⋀
w(a)∉R

w(x) ≠ 1.

Since R is computable, the sentence is also computable, and we see it is Π1. And since

x satisfies all the relations of a and nothing more, this sentence implies ⟨x⟩ ≅ ⟨a⟩ = G.

However, this actually says more – this sentence requires that these two groups are

generated in the same way. Thus, for instance, if a1 is a central element in G, then

so is x1. This will be a useful observation later. This also implies that the choice of

presentation is relevant. In most of our discussion, the choice will be implicit, which is

usually the standard presentation (i.e. the one given in the definition.)

The following is a very useful lemma for finding a computable Scott sentence for

finitely-generated groups. We will use this lemma for both polycyclic and solvable

groups.

Lemma 4.11 (Generating Set Lemma). In a computable group G, if there is a non-

empty computable Σ2 formula φ(x) such that every x ∈ G satisfying φ is a generating

tuple of the group, then G has a computable d-Σ2 Scott sentence.

Proof. Consider the Scott sentence which is the conjunction of the following:

1. ∀x [φ(x) → ∀y⋁
w
w(x) = y]
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2. ∃x [φ(x) ∧ ⟨x⟩ ≅ G]

In (1), w ranges over all words in x.

Note that (1) is Π2 and (2) is Σ2, thus the conjunction is d-Σ2. To see this is a

Scott sentence, pick a group H satisfying the sentence. Then pick a tuple x ∈ H that

satisfies the second conjunct. The first conjunct then says H is generated by x, thus is

isomorphic to G.

We now are ready to state and prove our theorem about polycyclic groups, which

generalizes the result in [22] about infinite finitely-generated abelian groups.

Theorem 4.12. Every polycyclic group G has a computable d-Σ2 Scott sentence.

Proof. We will prove the claim that there is a d-Σ1 formula φ(x) such that every x ∈ G

satisfying φ is a generating set of the group. We induct on the derived length of G.

When the derived length is 1, i.e. G is abelian, the statement of the theorem was

proved in [22], but for the inductive hypothesis, we need to find φ for G. For simplicity,

we think of G additively in this case. By the fundamental theorem of abelian groups,

suppose G ≅ Zn ⊕ T , where T is the torsion part of G, and ∣T ∣ = k. Let χ(y) be the

(finitary) sentence saying the k-tuple y satisfies the atomic diagram of T . Then we

consider φ(x, y) to be

χ(y) ∧ (⋀
m>1

mx ≠ 1) ∧ ( ⋀
det(M)≠±1

∀z ⋀
⟨ij⟩∈kn

Mz ≠ x + ⟨yij⟩).

Here, we use two tuples x and y for clarity, but one can concatenate them into just one

tuple x.

The first conjunct says that y is exactly the k torsion elements in the group. The

second conjunct says x is torsion-free. In the third conjunct, we are thinking z, x,



62

and ⟨yij⟩ as row vectors, and M ranges over all n × n matrices with entries in Z and

determinant not equal to ±1. Thus ⋀
⟨ij⟩∈kn

Mz ≠ x + ⟨yij⟩ is really saying Mz ≠ x modulo

T . So, working modulo T and again thinking of the xi’s as row vectors in Z ≅ G/T , the

third conjunct forces x, as an n × n matrix, to have determinant ±1. Thus, x is a basis

of G modulo T , and so every x, y satisfying φ will generate the group G. Finally, we see

that the sentence is Π1, thus proving the induction base.

Now we prove the induction step. Assume the claim is true for all polycyclic groups

with derived length less than that of G. In particular, the derived subgroup G′ has

a computable d-Σ1 formula φG′ as described in the claim. In G, G′ is defined by the

computable Σ1 formula

G′(x) ≡ ∃s ⋁
w∈(F

∣s∣)′
x = w(s).

Thus, we may relativize φ by replacing ∃xθ(x) by ∃x(G′(x)∧θ(x)), ∀xθ(x) by ∀x(G′(x) →

θ(x)), and adding one more conjunct ⋀
i
G′(xi). This does not increase the complexity

of the sentences. Furthermore, every element of G satisfying the relativized version φ̃G′

of φG′ generates G′ in G. As in the base case, suppose G/G′ ≅ Zn ⊕ T , where T is the

torsion part, and let χ(y) to be the atomic diagram of T . We consider φ(x, y, z) to be

the conjunction of the following:

1. ( ⋀
m>1

mx ≠̂ 1) ∧ ( ⋀
det(M)≠±1

∀z ⋀
⟨ij⟩∈kn

Mz ≠̂ x + ⟨yij⟩)

2. χ̂(y)

3. φ̃G′(z)

Notice that in (1) we still think of G/G′ additively for clarity, while we should really

think of it multiplicatively since G is no longer abelian. This is very similar to the
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sentence in the base case, but everything is relativized. We write a =̂ b to denote that

∃g(G′(g) ∧ a = bg), i.e. a and b are equal in the quotient group, and this is Σ1. And we

write a ≠̂ b to denote the negation of a =̂ b, which is Π1. So, the complexity of (1) is still

Π1. For χ̂(y), again we replace all the = and ≠ in χ by the relativized versions =̂ and

≠̂, hence making it d-Σ1. The relativization doesn’t increase the complexity of φG′ , thus

the whole conjunct is d-Σ1.

Now (2) says y is T in G/G′, (1) says x generates Zn in G/G′, and (3) says z generates

G′ in G. Thus, x, y, and z together generate G, hence proving the claim. The theorem

now follows from the Generating Set Lemma (Lemma 4.11).

We now turn our attention to index sets. We give some results on the completeness

of index sets of nilpotent groups, but we need a group-theoretic lemma and a definition

first.

Proposition 4.13 (Finitely-generated nilpotent group lemma). Every finitely-generated

infinite nilpotent group has infinite center. In particular the center is isomorphic to Z×A

for some abelian group A.

Proof. We induct on the nilpotency class. The statement is obvious when the nilpotency

class is 1.

Suppose N is a finitely-generated nilpotent group with finite center. It suffices to

show that N is finite. Let the order of the center Z(N) be k. Then Z(N)k = 1. Let the

upper central series of N be 1 = Z0(N)◁Z1(N)◁Z2(N)◁⋯◁Zp(N) = N . For g ∈ Z2(N)

and h ∈ N , one has [g, h] ∈ Z(N). Thus, using the identity [xy, z] = [y, z]x[x, z], we

have [gk, h] = [g, h]k = 1, and so gk ∈ Z(N), i.e., Z2(N)/Z(N) has exponent dividing k.

Now consider M = N/Z(N). We have Z(M) = Z2(N)/Z(N), thus has exponent
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dividing k. Since N is finitely-generated and nilpotent, so is M , and so is Z(M). Hence

Z(M) is finite. But the nilpotency class of M is less than that of N , so by the induction

hypothesis, M is finite. Then ∣N ∣ = ∣M ∣ ⋅ ∣Z(N)∣ is also finite.

Definition 4.14. A group is co-Hopfian if it does not contain an isomorphic proper

subgroup.

Consider G to be a finitely-generated non-co-Hopfian group. Then let φ ∶ G → G

be an injective endomorphism from G onto one of its proper isomorphic subgroups.

Then we can form the direct system G
φ // G

φ // G
φ // ⋯ , and write the direct

limit as Ĝ. Since every finite subset of Ĝ is contained in some finite stage, Ĝ is not

finitely-generated, thus is not isomorphic to G. This observation will be used later.

We’re now ready to prove the completeness result:

Theorem 4.15. The index set of a finitely-generated nilpotent group is Π2-hard. Fur-

thermore, the index set of a non-co-Hopfian finitely-generated nilpotent group N is d-

Σ2-complete.

Proof. We start by proving the second statement. Fix φ to be an injective endomorphism

of N onto one of its proper isomorphic subgroups. Then we apply the construction above

to obtain N̂ .

For a d-Σ2 set S, we write S = S1 ∖ S2, where S1 ⊇ S2 are both Σ2 sets, and we let

S1,s and S2,s be uniformly computable sequences of sets such that n ∈ Si if and only if
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for all but finitely many s, n ∈ Si,s. Then we construct

Gn ≅

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N̂ , n ∉ S1

N, n ∈ S1 ∖ S2

N ×Z, n ∈ S1 ∩ S2.

To build the diagram of Gn, at stage s, we build a finite part of Gn and a partial

isomorphism to one of these three groups based on whether n ∉ S1,s, n ∈ S1,s ∖ S2,s, or

n ∈ S1,s ∩S2,s. It is clear how to build the partial isomorphisms, since all the groups are

computable, so we only need to explain how we can change between these groups when

S1,s and S2,s change.

To change from N to N̂ , we apply φ. Note that at every finite stage, the resulting

group will still be isomorphic to N , but in the limit, it will be N̂ if and only if we apply

φ infinitely often, i.e., n ∉ S1, as desired.

To change from N to N ×Z, we simply create a new element a that has infinite order

and commutes with everything else. To change from N ×Z to N , we choose an element b

of infinite order in Z(N) by the finitely-generated nilpotent group lemma (Lemma 4.13).

We collapse the new element a by equating it with a big enough power of b. (Indeed,

there is an elementary extension G of N with an element g of infinite order such that

N × ⟨g⟩ ≅ N × Z. Thus N ⊆ N × ⟨g⟩ ⊆ G, and hence (N,h) ≤1 (N × Z, h) for every

finite tuple h ∈ N .) Again, this will result in the limiting group being N if we collapse b

infinitely often, i.e. n ∉ S2, and N ×Z if we collapse b only finitely often, i.e. n ∈ S2.

The second statement follows from doing only the Π2 part of the above argument,
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i.e. constructing

Gn ≅

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

N, n ∉ S2

N ×Z, n ∈ S2.

Note that here we do not have a completeness result for the class of co-Hopfian

finitely-generated nilpotent groups. For a discussion about this ad-hoc class of groups,

we refer the readers to [4]. However, “most” finitely-generated nilpotent groups are

non-co-Hopfian, including the finitely-generated free nilpotent groups, and we have the

following:

Corollary 4.16. The index set of a finitely-generated free nilpotent group is d-Σ2-

complete.

Note. Using the nilpotent residual property (Lemma 4.28), we can show the d-Σ2 com-

pleteness result for free nilpotent groups within the class of free nilpotent groups, provided

that the number of generators is more than the step of the group. For the definition and

more discussion on the complexity within a class of groups, we refer the reader to [8].

To close this section, we state a proposition about co-Hopfian and non-co-Hopfian

groups.

Proposition 4.17. The index set of a computable finitely-generated non-co-Hopfian

group is Σ2-hard. On the other hand, a computable finitely-generated co-Hopfian group

G has a computable d-Σ2 Scott sentence.

Proof. The first statement is proved by running the Σ2 part of the argument in Theorem

4.15.
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For the second statement, consider the computable Π1 formula φ(x) ≡ ⟨x⟩ ≅ G. This

is a non-empty formula, and since G is co-Hopfian, every realization of φ in G generates

G. Thus by the Generating Set Lemma (Lemma 4.11), G has a computable d-Σ2 Scott

sentence.

4.3 Some examples of finitely-generated solvable groups

In this section, we continue to look at the bigger, but still somewhat tame, class of

finitely-generated solvable groups. Note that even though the class of solvable groups

is closed under subgroups, the class of finitely-generated solvable groups is not. This

leads to an inherent difficulty when dealing with solvable groups, namely a group could

possibly contain a higher-complexity subgroup. For example, the lamplighter group,

which we shall define later and prove to have a computable d-Σ2 Scott sentence, contains

a subgroup isomorphic to Zω, whose index set is m-complete Π3.

We start this section with the definition of the (regular, restricted) wreath product,

which is a technique often used in group theory to construct counterexamples:

Definition 4.18. For two groups G and H, we define the wreath product G ≀H of G

by H to be the semidirect product B ⋊H, where the base group B is the direct sum of

∣H ∣ copies of G indexed by H, and the action of H on B is by shifting the coordinates

by left multiplication.

One important example of a finitely-generated solvable group is the lamplighter

group. It is usually defined as the wreath product Z/2Z ≀ Z, but we will be looking

at two generalizations of it, (Z/dZ) ≀Z and Z ≀Z.
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Theorem 4.19. The lamplighter groups Ld = (Z/dZ) ≀ Z each have computable d-Σ2

Scott sentences. Furthermore, their index sets are m-complete d-Σ2.

Proof. To find the Scott sentence, we will use the Generating Set Lemma (Lemma 4.11).

Consider the formula

φ(a, t) ≡ (⟨a, t⟩ ≅ Ld) ∧ (∀s⋀
i>1

at ≠ a(s
i)) ∧ (∀b⋀

k

∏
i

(bki)t
i

≠ a).

In the second conjunct, s ranges over the group elements. In the second infinite

conjunction, k ranges over all sequences in Z indexed by Z and has only finitely many,

but at least two, nonzero entries. We first observe that the standard generator satisfies

this formula, so φ does not define the empty set.

Now let (a, t) be a tuple satisfying φ. The first conjunct implies that a is in the base

group, and t is not in the base group. The second conjunct says that if we think of t

as an element of the semidirect product Ld ≅ (Z/dZ)Z ⋊Z, then the Z-coordinate of t is

±1. The third coordinate then says that a does not have more than one nonzero entries,

and hence (by the first conjunct) the only nonzero entry must be co-prime to d. Thus, a

generates a copy of Z/dZ. Using conjugation by t to generate the other copies of Z/dZ,

we see a together with t generate the whole group. So by the Generating Set Lemma

(Lemma 4.11), Ld has a computable d-Σ2 Scott sentence.

To show completeness of the index set, fix φ to be an injective endomorphism of Ld

onto one of its proper isomorphic subgroups, say mapping the standard generators (a, t)

to (a, t2). Let L̂d be the direct limit of Ld
φ // Ld

φ // Ld
φ // ⋯ .

For a d-Σ2 set S, we write S = S1 ∖ S2, where S1 ⊇ S2 are both Σ2 sets, and we let

S1,s and S2,s be uniformly computable sequences of sets such that n ∈ Si if and only if
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for all but finitely many s, n ∈ Si,s. Then we construct

Gn ≅

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L̂d, n ∉ S1

Ld, n ∈ S1 ∖ S2

(Z/dZ) ≀Z2, n ∈ S1 ∩ S2.

As in the nilpotent case (Theorem 4.15), we build a partial isomorphism of one of

these groups in stages. To change between Ld and L̂d is the same as before, we apply φ

whenever n ∉ S1,m, and keep building Ld otherwise.

To change from Ld to (Z/dZ)≀Z2, we create a new element s to be the other generator

of Z2, and equate it with a big enough power of t to change back. (Again, there is an

elementary extension G of Ld with an element g of infinite order such that ⟨Ld, g⟩ ≅

(Z/dZ) ≀Z2. Thus Ld ⊆ ⟨Ld, g⟩ ⊆ G, and hence (Ld, h) ≤1 ((Z/dZ) ≀Z2, h) for every finite

tuple h ∈ N .) This will result in the limiting group being Ld if we collapse s infinitely

often, i.e. n ∉ S2, and (Z/dZ) ≀Z2 otherwise.

Theorem 4.20. Let L = Z ≀Z. Then L has a computable d-Σ2 Scott sentence, and I(L)

is m-complete d-Σ2.

Sketch of proof. The proof is essentially the same as above. The Π1 formula will be

φ(a, t) ≡ (⟨a, t⟩ ≅ L) ∧ (∀s⋀
i>1

at ≠ a(s
i)) ∧ (∀b⋀

l,k

∏
i

(bki)t
li ≠ a).

The only difference is that we will also allow k to have only one nonzero entry which is

not ±1, in addition to k’s which have at least two nonzero entries. This is to rule out

the case where a is a power of the standard generator.
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For completeness, we will construct

Gn ≅

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L̂, n ∉ S1

L, n ∈ S1 ∖ S2

Z ≀Z2, n ∈ S1 ∩ S2.

Remark 4.21. In fact, this theorem can be generalized to Zn ≀ Zm. However, we will

omit the proof in the interest of space. We have to add into φ(a, t) extra conjuncts to

make sure that a generates a copy of Zn and t generates Zm modulo the base group, and

the extra conjuncts are similar to what we did in the polycyclic case (Theorem 4.12). In

proving completeness, we use the direct limit and Zn ≀Z(m+1) as the alternate structures.

We now look at another class of groups, the Baumslag–Solitar groups, which are very

closely related to the lamplighter groups. Indeed, in [37], it was shown that BS(1, n)

converges to Z ≀ Z as n → ∞. We shall see great similarity in the arguments used for

these groups also.

Definition 4.22. The Baumslag–Solitar groups BS(m,n) are two-generator one-relator

groups given by the presentation:

BS(m,n) = ⟨a, b ∣ bamb−1 = an ⟩

Note that BS(m,n) ≅ BS(n,m).

Theorem 4.23. BS(m,n) is solvable if and only if ∣m∣ = 1 or ∣n∣ = 1, in which case it

is also not polycyclic and its derived length is 2.
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Theorem 4.24. For each n, the solvable Baumslag–Solitar group BS(1, n) has a com-

putable d-Σ2 Scott sentence. Furthermore, its index set is m-complete d-Σ2 for every

n.

Proof. BS(1, n) has the semidirect product structure B ⋊ Z where B = Z[ 1
n ,

1
n2 , . . . ] =

{
x

y
∶ y∣nk for some k}, and the action of 1 ∈ Z on B is by multiplication by n. Again we

are abusing notation by writing BS(1, n) multiplicatively but B additively.

For finding the Scott sentence, we consider the formula

φ(a, t) ≡ (⟨a, t⟩ ≅ BS(1, n)) ∧ (∀b ⋀
gcd(i,n)=1

bi ≠ a).

This is not empty because the standard generators (1,0), (0,1) ∈ B ⋊Z satisfy it.

For a tuple (a, t) satisfying φ, the first conjunct guarantees that a is in the base

group and t, as an element of the original Baumslag–Solitar group BS(1, n) = B ⋊ Z,

has the Z coordinate being 1 in the semidirect product, because of the inclusion of the

formula tat−1 = ad. The second conjunct guarantees that the B coordinate of a is x
y for

some x and y both dividing some power of n. Thus appropriately conjugating a by t, we

see 1
y′ ∈ ⟨a, t⟩ for some y′, thus 1 ∈ ⟨a, t⟩, and hence a and t generate the whole group. By

the Generating Set Lemma (Lemma 4.11), we obtain a computable d-Σ2 Scott sentence

for BS(1, n).

To show completeness, we first observe BS(1, n) is not co-Hopfian. Indeed, let p be

a prime not dividing n, then consider the endomorphism sending a to ap and fixing b.

This is injective but not surjective because, for instance, it misses the element 1 in B.
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Thus, we construct

Gn ≅

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

̂BS(1, n), n ∉ S1

BS(1, n), n ∈ S1 ∖ S2

(BZ) ⋊ (Z2), n ∈ S1 ∩ S2,

where in (BZ)⋊(Z2), BZ is the direct sum of countably many copies of B, indexed by Z,

and the action of the first coordinate of Z2 is by multiplying by n (to each coordinate),

and the action of the second coordinate is by shifting the copies of B. The same argument

as above will show this construction gives d-Σ2 completeness of I(BS(1, n)).

4.4 Infinitely-generated free nilpotent groups

We will now turn our attention to infinitely-generated groups. In this section, we

start with a natural continuation of Section 2, showing that the infinitely-generated

free nilpotent groups Np,∞ have a computable Π3 Scott sentence, and their index sets

are m-complete Π3. We start by stating the following result for p = 1:

Theorem 4.25 ([7]). The infinitely-generated free abelian group Zω has a computable

Π3 Scott sentence. Furthermore, I(Zω) is m-complete Π3.

To find a computable Scott sentence for the infinitely-generated free nilpotent group,

we give a lemma analogous to the Generating Set Lemma (Lemma 4.11).

Lemma 4.26 (Infinite Generating Set Lemma). Suppose G ≅ ⟨a1, a2, . . . ∣ R ⟩, where R

is a normal subgroup of Fω. Let Ri be R ∩ Fa1,...,ai ⊂ Fω. If there are ⟨γk⟩k∈ω such that

1. γk(x) implies ⟨x⟩ ≅ ⟨a1, a2, . . . , ak ∣ Rk ⟩ modulo the theory of groups.
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2. G ⊧ ∃x1 γ1(x1).

3. G ⊧ ⋀
k

(∀x1, . . . , xk[γk(x1, . . . , xk) → ∀y ⋁
l≥k+1

∃xk+1, . . . , xl γl(x1, . . . , xl)∧z ∈ ⟨x1, . . . , xl⟩])

(“Every γk(x) can be ‘extended’ ”. In a countable group, this implies x can be ex-

tended to a basis.)

Then φ, the conjunction of the group axioms and the sentences (2) and (3), is a Scott

sentence of G.

Proof. By assumption, G models φ. Let H be a countable group modeling φ. We first

choose x1 by (2). Note that (3) allows us to extend any x satisfying γk to generate any

element in the group H. Thus, we enumerate H, and iteratively extend x to generate the

whole group H. If we consider the relations that hold on the infinite limiting sequence x,

the relation on x1, . . . , xk is exactly Rk by (1), thus the group H = ⟨x⟩ ≅ ⟨a ∣ R ⟩ = G.

Corollary 4.27. Np,∞ has a computable Π3 Scott sentence.

Proof. Let γk(y) ≡ (⟨y⟩ ≅ Np,k)∧(∀z ⋀
det(M)≠±1

Mz ≠̂ y), where in the second conjunct the

inequality is relativized (as in the polycyclic case, Theorem 4.12) to the abelianization

H/H ′ and we are abusing notation and thinking of the abelianization additively. So for

Mz we mean matrix multiplication, thinking of each zi as a row vector.

To show the γk’s satisfy the extendibility condition, fix x satisfying γk. Working in

the abelianization, after truncating the columns in which x has no nonzero entries , we

write x in its Smith normal form, i.e. find invertible k × k and n × n matrices S and T

such that SxT has all but the (i, i)-th entries being zero. The second conjunct of γk

guarantees that all the (i, i)-th entries are actually 1. Thus, x can be extended to a

basis of Z∞ = ab(Np,∞). By a theorem of Magnus ([25, Lemma 5.9]), this implies that x

can be extended to a basis of Np,∞, thus satisfying the extendibility condition.
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The γk’s are Π1, and a direct counting shows that the Scott sentence we obtain from

the previous lemma is Π3.

For completeness of the index set of Np,∞, we generalize the technique from the

abelian case, but we will need the following group-theoretic lemma.

Lemma 4.28 (Nilpotent residual property). For n,m ≥ p, Np,n is fully residually-Np,m.

I.e., for every finite subset S ⊂ Np,n, there exists a homomorphism φ ∶ Np,n → Np,m such

that φ is injective on S.

Proof. Baumslag, Myasnikov, and Remeslennikov in [3] showed that any group univer-

sally equivalent to (i.e., having the same first-order universal theory as) a free nilpotent

group Np,m is fully residually-Np,m. Timoshenko in [38] showed that Np,n and Np,m are

universally equivalent for n,m ≥ p. Combining these two results, we prove the desired

lemma.

Corollary 4.29. I(Np,∞) is m-complete Π3 for every p.

Proof. Recall that COF, the index set of all cofinite c.e. sets, is m-complete Σ3. We will

reduce the complement of COF to I(Np,∞).

We construct Gn uniformly in n. We first fix an infinite set of generators a0, a1, . . .

and p distinguished generators b0, b1, . . . , bp distinct from the ai’s, and we start the con-

struction by constructing b. At a finite stage, if we see some natural number k being

enumerated into Wn, we collapse ak by taking the subgroup Np,m ⊂ Np,∞ generated by

all the generators that have been mentioned so far. Having the b means m > p, so by

the nilpotent residual property (Lemma 4.28), we can embed what we have constructed

so far into Np,m−1 with the same generators except ak.
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Thus, in the limit, if n ∈ COF, then we will collapse all but finitely many ai’s, hence

the limiting group will be a finitely-generated (free) nilpotent group not isomorphic to

Np,∞; and if n ∉ COF, we will still have infinitely many of the ai’s, and the limiting

group will be isomorphic to Np,∞. This shows I(Np,∞) is m-complete Π3.

Remark 4.30. In the corollary, one actually can prove that I(Np,∞) is m-complete Π3

within the class of free nilpotent groups. The interested reader can compare this to the

same result for infinitely-generated free abelian groups in [7].

4.5 A subgroup of Q

In this section, we will look at a special subgroup of Q. Knight and Saraph [22, §3]

considered subgroups of Q, distinguishing between cases by looking at the following

invariants.

Definition 4.31. We write P for the set of primes. Let G be a computable subgroup of

Q. Without loss of generality, we will assume 1 ∈ G; otherwise, we can take a subgroup

of Q isomorphic to G containing 1. We define:

1. P 0(G) = {p ∈ P ∶ G ⊧ p ∤ 1}

2. P fin(G) = {p ∈ P ∶ G ⊧ p∣1 and pk ∤ 1 for some k}

3. P∞(G) = {p ∈ P ∶ G ⊧ pk∣1 for all k}

Remark 4.32. 1. Define P k(G) = {p ∈ P ∶ G ⊧ pk∣1 and pk+1 ∤ 1}. Then two sub-

groups G, H of Q are isomorphic if and only if P k(G) =∗ P k(H) for every k, with

equalities holding on cofinitely many of k, and P∞(G) = P∞(H). S =∗ T means S

and T only differ by finitely many elements.
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2. Since G is computable, P 0 is Π1, P fin ∪ P∞ is Σ1, P fin is Σ2, and P∞ is Π2.

Dividing the subgroups of Q into cases by these invariants, Knight and Saraph de-

termined the upper and lower bound of complexities of Scott sentences and the index

sets in some cases. The case we consider here is when P 0 is infinite, P fin is finite (and

thus, without loss of generality, empty), and P∞ is infinite. This is case 5 in [22], and

they have the following results:

Theorem 4.33 ([22]). Let G be a computable subgroup of Q with ∣P 0∣ = ∞, P fin = ∅,

and ∣P∞∣ = ∞. Then

1. G has a computable Σ3 Scott sentence.

2. I(G) is d-Σ2-hard.

3. If P∞ is low, then I(G) is d-Σ2.

4. If P∞ is not high2, then I(G) is not m-complete Σ3.

It was not known that if there is a subgroup of Q as in the theorem that has m-

complete Σ3 index set, thus achieving the upper bound in (1). In Proposition 4.35, we

shall give such an example.

Also, the following theorem shows that such a group does not have a computable

d-Σ2 Scott sentence unless P 0 is computable.

Theorem 4.34 ([21]). Let G be a computable subgroup of Q with ∣P 0∣ = ∞, P fin = ∅,

and ∣P∞∣ = ∞, and suppose P∞ is not computable. Then G does not have a computable

d-Σ2 Scott sentence.
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Thus, when P∞ is low but not computable, this gives a negative answer to the

conjecture that the complexity of the index set should equal to the complexity an optimal

Scott sentence. Continuing in this direction, we give an example of a subgroup in this

case where the two complexities do equal each other, and are both Σ3.

Proposition 4.35. Let K be the halting set. Let G ⊆ Q be a subgroup such that 1 ∈ G,

P∞(G) = {pn ∈ P ∣ n ∈K}, and P fin(G) = ∅. Then I(G) is m-complete Σ3.

Proof. Fix n. We construct Gn so that Gn ≅ G if and only if n ∈ COF.

For every s, we can recursively find the index ks = e of a program such that

φe(e) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

↓, if φn(s) ↓

↑, if φn(s) ↑ .

Now we construct Gn by making pks ∣1 for every ks. We also make pi divide every

element if we see i ∈K.

Now we verify Gn ≅ G if and only if n ∈ COF. We first observe that P∞(Gn) = {pi ∣

i ∈ K}. It’s also clear from construction that P fin(Gn) = {pks ∣ ks ∉ K}. But ks ∈ K if

and only if φn(s) ↓, thus P fin(G) = {pks ∣ φn(s) ↑}.

Now, P∞(Gn) = {pi ∣ i ∈ K} = P∞(G). Thus Gn ≅ G iff P fin(Gn) =∗ P fin(G) = ∅ iff

P fin(Gn) = {pks ∣ φn(s) ↑} is finite iff n ∈ COF.

Remark 4.36. Note that this argument works for any X ≡m K. It is natural to then

ask that whether we can find a Turing-degree based characterization of when the index

set will be m-complete Σ3. In the next section, we will show this cannot be found.
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4.6 Complexity hierarchy of pseudo-Scott sentences

In this section, we continue looking at subgroups of Q as above. We first give the defini-

tion of a pseudo-Scott sentence, which, just like a Scott sentence, identifies a structure,

but only among the computable structures. Note that every computable Scott sentence

is a pseudo-Scott sentence.

Definition 4.37. A pseudo-Scott sentence for a structure A is a sentence in Lω1,ω whose

computable models are exactly the computable isomorphic copies of A.

Similar to the case of computable Scott sentences, a pseudo-Scott sentence of a

structure yields a bound on the complexity of the index set of the structure.

We shall give an example of a group which has a computable Σ3 pseudo-Scott sentence

and a computable Π3 pseudo-Scott sentence, but no computable d-Σ2 pseudo-Scott

sentence. This is related to a question about the effective Borel hierarchy in Mod(L).

Consider the complexity hierarchy of (computable pseudo-)Scott sentences. Since

α∖ (β ∖ γ) = (α∧¬β) ∨ (α∧ γ), we see that the hierarchy collapses in the sense that the

complexity classes k-Σn are all the same for k ≥ 2.

One open question is whether the complexity classes ∆n+1 and d-Σn are the same

or not for regular, computable, and pseudo-Scott sentences. The complexity hierarchy

of Scott sentences (computable Scott sentences, respectively) is related to the boldface

(effective, respectively) Borel hierarchy on the space Mod(L), see [40] and [39]. In [26],

it was shown that ∆n+1 and d-Σn are the same in the boldface case, i.e. if a structure has

a Σn+1 Scott sentence and a Πn+1 Scott sentence, then it also has a d-Σn Scott sentence.

This gives a positive answer to the question for Scott sentences. However, we will prove

that this is not true in the complexity hierarchy of computable pseudo-Scott sentences
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by giving a subgroup G ⊂ Q which has a computable Σ3 pseudo-Scott sentence and a

computable Π3 pseudo-Scott sentence, but no computable d-Σ2 pseudo-Scott sentence.

This gives a negative answer to the question for pseudo-Scott sentences. The question

of whether ∆n+1 and d-Σn are the same in the effective case (the complexity hierarchy

of computable Scott sentence) remains open.

We start by strengthening a result in [21]. The first part of the proof where we

construct the theory T is unchanged.

Lemma 4.38. Fix a non-computable c.e. set X, and let G ⊂ Q be a subgroup such that

1 ∈ G, P∞(G) = {pi ∣ i ∈X}, and P fin(G) = ∅. Then G does not have a computable d-Σ2

pseudo-Scott sentence.

Proof. Suppose G has a computable d-Σ2 pseudo-Scott sentence φ ∧ψ, where φ is com-

putable Π2 and ψ is computable Σ2. Let α be a computable Π2 sentence characterizing

the torsion-free abelian groups A of rank 1 such that P∞(A) ⊆X. By [21, Lemma 2.3],

α ⊢ φ, thus we can replace φ by α in the pseudo-Scott sentence.

Also, again by [21], we can assume ψ has the form ∃x χ(x) where x is a singleton

and χ(x) is a c.e. conjunction of finitary Π1 formulas.

Now, we consider an elementary first-order theory T , in the extension of the language

L by an extra constant symbol c, where T is generated by the following sentences:

1. axioms of torsion-free abelian groups,

2. ∀x∃y py = x for each p ∈X,

3. ρi(c) for every finitary Π1 conjunct ρi(x) of the Π1 sentence χ(x).

Now we show that [21, Lemma 2.4] is still true:
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Claim 4.39. For every i ∉X, there is some k such that T ⊢ pki ∤ c.

Proof of claim. Suppose this is not true. There is n ∉ X such that T ∪ {pkn∣c ∶ k ≥ 1}

is consistent. Take a model H of T ∪ {pkn∣c ∶ k ≥ 1}, and let C ⊂ H be the subgroup

consisting of rational multiples of c.

Let K ⊂ Q be the computable group with 1 ∈ K, P∞(K) = {pi ∣ i ∈ X} ∪ {pn}, and

P fin(K) = ∅. Then K is isomorphic to a subgroup of C. By interpreting the constant

symbol c in K as the preimage of c ∈ C, K is a substructure of H. Thus all the finitary

Π1 statements ρi(c) are also true in K.

So, K is a torsion-free rank 1 abelian group satisfying T , thus K ⊧ φ∧ψ. Since K is

computable, it is isomorphic to G, but P∞(G) ≠ P∞(K), a contradiction.

Now we have a computable theory T such that for every i ∉ X, there is some k

such that T ⊢ pki ∤ c. Therefore, the complement of X is c.e., and this contradicts the

assumption that X is non-computable c.e.

We also need the following lemma:

Lemma 4.40. There exists a c.e. set X ⊆ ω with X ≡T 0′ satisfying the following:

There is a uniformly c.e. sequence Sn so that if Wn ⊃X, Wn ≠∗ X, then Sn is an infinite

c.e. subset of Wn ∖X.

Proof. Write Ii = [ i(i+1)
2 , (i+1)(i+2)

2 ). Note that the interval ∣Ii∣ has length i + 1. Consider

the following requirements:

� Ri: X ∩ Ii ≠ ∅ if and only if i ∈ 0′

� Qk: build an infinite c.e. Sk ⊂Wk ∖X if Wk ⊃X and Wk ≠∗ X
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If at some stage Ri sees i ∈ 0′, then it puts some element of Ii that is not yet blocked

by higher priority Qk’s into X.

Qk will attempt to put n into Sk whenever n ∈ Wk ∖X at stage s. Suppose n ∈ Ii.

If i < k, then Qk does nothing. If i > k, then Qk puts n into Sk, and blocks Ri from

enumerating n into X, but Qk will also block itself from enumerating other elements of

Ii into Sk.

Note that for each Ri, at most i elements of Ii will be blocked, because for each Ii,

every higher priority Qk will block at most one element. Thus Ri can always satisfy the

requirement.

Also, if Wk ⊃ X and Wk ≠∗ X, then Qk will eventually enumerate infinitely many

numbers into Sk, since after enumerating finitely many of them, there are only finitely

many things blocked by Qk itself and finitely many higher priority Ri’s. Lastly, Sk will

be disjoint from X because whenever n is enumerated into Sk, the Ri’s will be blocked

from enumerating it into X.

Theorem 4.41. There exists a group with both computable Σ3 and computable Π3

pseudo-Scott sentences (i.e. ∆3), but no computable d-Σ2 pseudo-Scott sentence.

Proof. Choose X as in the previous lemma. Consider the subgroup G ⊂ Q with P fin(G) =

∅ and P∞(G) =X. By [21], G has a computable Σ3 (pseudo-)Scott sentence. By Lemma

4.38, G does not have a computable d-Σ2 pseudo-Scott sentence.

Let φ be the conjunction of ⋀
Sk

∃g ⋀
p∈Sk

p ∤ g, “G is a subgroup ofQ”, and “P∞(G) ⊇X”.

Say H ⊧ φ is a computable group. Then P∞(H) ∪ P fin(H) is c.e., so let n be such

that Wn = P∞(H)∪P fin(H). Note that Wn ⊃X. If H ≇ G, then Wn ≠∗ X. Now consider

Sn ⊂ Y ∖X, and the corresponding conjunct in φ which says ∃g ⋀
p∈SY

p ∤ g. But every
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element in H is divisible by all but finitely many elements from Wn, and Sn is an infinite

subset of Wn, so H cannot model this existential sentence, a contradiction. Thus φ is a

computable Π3 pseudo-Scott sentence of GX .

Remark 4.42. Note that in the first countable conjunction, the set of indices of SY for

Y ⊃ X and Y ≠∗ X is not c.e. However, the set of indices of SY for all Y ⊂ ω is c.e.,

even computable, by construction, and GX still models φ for this bigger conjunction.

Note that the two groups in Proposition 4.35 and Theorem 4.41 both have P fin = ∅

and P∞ ≡T 0′. However, one of them has index set being m-complete Σ3, while the other

has index set being ∆3. This tells us that we cannot hope to give a Turing-degree based

characterization of which combinations of P 0, P fin, and P∞ give m-complete Σ3 index

sets and which do not.
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Chapter 5

Addendum: Normal Closures in

Nilpotent Groups

We include in this addendum a lemma, which was proved when the author was studying

random nilpotent groups, but ended up not being used there.

Magnus proved that two elements a and b of a free group have the same normal

closure if and only if a is conjugate to b or b−1 [24, Chapter II, Proposition 5.8]. In [14],

Endimioni gave an analog of Magnus’ theorem for a nilpotent metabelian group. Here,

we give a generalization of Endimioni’s result for any nilpotent group.

First we fix some notations. We will write the commutator as [x, y] = xyx−1y−1,

conjugates as xy = yxy−1, and thus we have the identity [xy, z] = [y, z]x[x, z]. For a

group G, we write G1 = G and Gk+1 = [Gk,G], and call G1 ⊇ G2 ⊇ . . . the lower central

series of G.

For a subset S of a group G, we write ⟨S⟩ to be the subgroup generated by S in

G, and ⟪S⟫ to be the normal subgroup generated by S in G. For an element g ∈ G,

we define [g,G] = ⟨{[g, x]∣x ∈ G}⟩. Note that [g,G] is normal by the identity [g, h]k =

[g, k]−1[g, kh].

Lemma 5.1. Let g ∈ G. If h ∈ [g,G], then there exists an ` ∈ [h,G] such that `h ∈

[gh,G].
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Proof. Since h ∈ [g,G], we can write h = ∏
i

[g, xi]
εi , where xi ∈ G, and εi = ±1. Let

` = (∏
i

[gh, xi]
εi)h−1, so we have `h ∈ [gh,G]. Now we compute (modulo [h,G]):

` = (∏
i

[gh, xi]
εi)h−1 = (∏

i

([h,xi]
g[g, xi])

εi)h−1 = (∏
i

[g, xi]
εi)h−1 = 1

Thus, ` ∈ [h,G].

Lemma 5.2. Let g, k be two elements of a nilpotent group N of class r. If k−1g ∈ [g,G],

then ⟪g⟫ = ⟪k⟫.

Proof. First, we have k−1 = k−1g ⋅g−1 ∈ ⟪g⟫, so ⟪g⟫ ⊇ ⟪k−1⟫ = ⟪k⟫. We then need to show

⟪k⟫ ⊇ ⟪g⟫.

Let n ≤ r + 1 be the largest number such that k−1g ∈ Nn. We induct on n.

When n = r + 1, g = k and thus ⟪g⟫ = ⟪k⟫.

For n ≤ r, using the previous lemma with h = g−1k ∈ [g,G], we obtain an ` ∈ [h,G]

such that `h ∈ [gh,G] = [k,G] ⊆ ⟪k⟫. Now ⟪k⟫ = ⟪gh⟫ ⊇ ⟪(gh)(`h)−1⟫ = ⟪g`−1⟫. Write

k′ = g`−1, we have (k′)−1g = ` ∈ [h,G] ⊂ ⟪h⟫ ⊆ [g,G], and (k′)−1g = ` ∈ [h,G] ⊆ Nn+1.

Thus by induction, ⟪g`−1⟫ = ⟪k′⟫ = ⟪g⟫. It follows that ⟪k⟫ ⊇ ⟪g`−1⟫ = ⟪g⟫, which

completes the proof.

Theorem 5.3. Let g, k be elements of a nilpotent group N . Then the following are

equivalent:

1. ⟪g⟫ = ⟪k⟫

2. There is an integer µ such that k−µg ∈ [g,G] where µ is coprime to the order of k

if k is of finite order, and µ = ±1 otherwise.
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Proof. Suppose that ⟪g⟫ = ⟪k⟫. Then [g,G] = [⟪g⟫,G] = [⟪k⟫,G] = [k,G]. Since

⟪g⟫/[g,G] and ⟪h⟫/[g,G] are both cyclic, we have g = kµ and k = gλ mod [g,G] for

some integers µ and λ. In particular, we have k−µg ∈ [g,G]. We also have kµλ−1 ∈ [g,G].

So by [14, Lemma 3.2], k(µλ−1)m = 1 for some m. Thus µ is coprime to the order of k if

k is of finite order, and µ = ±1 otherwise.

Now suppose that k−µg ∈ [g,G] with µ being either coprime to the order of k and

k is of finite order, or ±1. In any case, we can find an integer s such that kµs = k−1,

and hence ⟪kµ⟫ = ⟪k−1⟫. Now by applying the previous lemma with k′ = kµ, we have

⟪g⟫ = ⟪kµ⟫ = ⟪k⟫, and the theorem follows.
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