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Structural and topological aspects of the enumeration and
hyperenumeration degrees

Josiah Jacobsen-Grocott

Abstract
This thesis focuses on compatibility theory, mainly looking at
enumeration reducibility and related topics. In Chapter 2 we
η-representable sets. We delevope the notion of a connected

approximation and use it to give a characterization of the strongly
η-s-representable sets and new characterizations other classes of η
representable sets. The main result involves characterizing the

many-one degrees of strongly η-representable sets.
In Chapter 3 we study the enumeration degrees. In particular we

present work towards understanding the ∀∃ theory of the
enumeration degree. We study what types of minimal pairs are

possible in the enumeration degrees. These are important questions
if we want to find a decision procedure for the ∀∃ theory of the
enumeration degrees, and if it turns out that no such procedure

exists, then these questions become more significant. We prove that
there are strong minimal pairs in the enumeration degrees and that
there a no strong super minimal pairs in the enumeration degrees.

In Chapter 4 we explore topological aspects of enumeration
reducibility. This chapter builds on work from Kihara, Ng and
Pauly [26] and answers several open questions that they asked.

A point in a represented second-countable T0 space can be identified
with the set of basic open sets containing that point. By

representing a point by an enumeration of the indices of the basic
open sets containing that point we can consider the enumeration
degrees of the points in a second-countable T0 space. For example,

the ω-product of the Sierpiński space is universal for
second-countable T0 spaces and gives us all enumeration degrees and

the Hilbert cube gives us all continuous degrees.
Kihara, Ng, and Pauly [26] have studied various classes that arise
from different spaces. They show that any enumeration degree is
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contained in a class arising from some decidable, submetrizable
space, and that no T1-space contains all enumeration degrees. We
call a class of degrees a T class if it comes from a T space. So
Kihara, Ng, and Pauly show that De is not T1. Similarly they

separate T2 classes from T1 classes and T2.5 classes from T2 classes by
showing that no T2 class contains all the cylinder-cototal degrees and

no T2.5 class contains all degrees arising from (Nrp)
ω.

We extended these results to show that the cylinder-cototal degrees
are T2-quasi-minimal and the (Nrp)

ω degrees are T2.5 quasi-minimal.
We then give separations of the T2.5 classes from the submetrizable
classes using the Arens co-d-CEA degrees and the Roy halfgraph

degrees.
In Chapter 5 we present joint work with Goh, Miller and Soskova on
e-pointed trees and their enumeration degrees. E-pointed trees arise
in compatible model theory and have had several applications to the

study of enumeration and hyperenumeration reducibility. In
Chapter 6 we show how e-pointed trees can be use to show that the

analogue of Selman’s theorem is false for hyperenumeration
reducibility. We also add to the structural knowledge of the

hyperenumeration degrees by proving that they are a downwards
dense degree structure.



iii

Acknowledgements

First I must thank my advisor, Mariya for her great patience, encouragement, advice,
support and much more including hiring me as a research assistant several times through
her NSF Grant No. DMS-2053848. I know I have not always been the easiest of students
and I would not have made it to this point without your help and mentorship. I really
appreciate all that you have done for me during my time in Madison.

I would like to thank Steffen for suggesting and advising me for the project that lead
Chapter 2. Also for driving us logic student to Chicago for seminars on many occasions. I
know you will be missed by the logic students when you retire and become less involved.

I would also like to thank the other logic faculty and postdocs for their support and
education during my time here. I have learned a lot from y’all.

I would like to thank the grad students of Madison for making me feel like part of
the community. I will miss you. I would also like to thank the computability theory
community at large for being encouraging to young students like me. I am glad to be a
part of this community and wish to remain connected with it, so I can pay back to future
generations of students.

I would like to thank Joe, Jun Le and Mariya again for inviting me to work on e-pointed
trees with them.

I would like to thank Mathew for inviting me to visit him at the University of Michigan
and work on introenumerable sets.

The question of Selman’s theorem for hyperenumeration reducibility, the main result
of Chapter 6 was raised by Mariya at the Dagstuhl Seminar on Descriptive Set Theory
and Computable Topology in 2021. I would like to thank the attendees of this semi-
nar who worked on this problem there and realized the connection with e-pointed trees.
On a related topic I would like to thank Noam, who asked about Selman’s theorem for
continuously higher enumeration reducibility.

I would like to thank my committee and readers for listing to my defense and for
reading this thesis.

Finally I would like to thank my family and loved ones for their love, support and for
reading this for typo’s even if the math was incomprehensible. You mean a lot to me and
I love you all.



iv

Contents

Abstract i

Acknowledgements iii

1 Introduction 1
1.1 η-representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Enumeration reducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 The theory of the enumeration degrees . . . . . . . . . . . . . . . . . . . . . 5
1.4 Topological classes of enumeration degrees . . . . . . . . . . . . . . . . . . . 7
1.5 E-pointed trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6 Hyperenumeration reducibility . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 A Characterization of the Strongly η-Representable Many-One Degrees 15
2.1 Introduction and History . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 η-s-Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Connected Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 The Many-One Degrees of η-Representable Sets . . . . . . . . . . . . . . . . 27
2.5 Open Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Strong minimal pairs in the enumeration degrees 32
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 No strong super minimal pairs . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 A strong minimal pair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4 Forcing construction of a strong minimal pair . . . . . . . . . . . . . . . . . 37
3.5 The complexity of a strong minimal pair . . . . . . . . . . . . . . . . . . . . 43

4 Topological classification of classes of enumeration degrees 52
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.1 Represented spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.2 Computability of spaces and functions . . . . . . . . . . . . . . . . . 58

4.3 The cylinder-cototal degrees are T2-quasi-minimal . . . . . . . . . . . . . . 58
4.4 A T2.5-quasi-minimal class . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5 The doubled co-d-CEA degrees . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.6 Separating T2.5 classes from submetrizable classes . . . . . . . . . . . . . . . 70

4.6.1 General method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70



v

4.6.2 Arens co-d-CEA degrees . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.6.3 Roy halfgraph degrees . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.7 Arens co-d-CEA degrees and Roy halfgraph degrees above . . . . . . . . . . 83
4.8 Metrizable classes and degrees . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.8.1 The doubled co-d-c.e. degrees . . . . . . . . . . . . . . . . . . . . . . 95
4.8.2 Decidable, metrizable degrees . . . . . . . . . . . . . . . . . . . . . . 98

5 E-pointed trees 101
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2 Hyperenumeration reducibility . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.3 Baire e-pointed trees with dead ends . . . . . . . . . . . . . . . . . . . . . . 103
5.4 Baire e-pointed trees without dead ends . . . . . . . . . . . . . . . . . . . . 105
5.5 Introenumerable sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.6 Topological classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6 The hyperenumeration degrees 117
6.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.1.1 Admissible sets and higher computability theory . . . . . . . . . . . 118
6.1.2 Some facts about trees . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.2 A uniformly e-pointed tree in ωω without dead ends that is not of hyper
total degree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.2.1 The forcing partial order . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.2.2 The forcing relation . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.2.3 Relationship to introenumerable sets . . . . . . . . . . . . . . . . . . 127

6.3 Downwards density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.3.1 The hyper Gutteridge operator . . . . . . . . . . . . . . . . . . . . . 128
6.3.2 Downwards density below O . . . . . . . . . . . . . . . . . . . . . . 131

6.4 Other reducibilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137



1

Chapter 1

Introduction

Coding one type of mathematical object into another is a common theme throughout

mathematics. For instance, every Boolean algebra can be coded as a ring, and Fourier

series are a way of coding periodic functions as vectors in ℓ2. In computability, the basic

objects studied are subsets of ω. Subsets of ω can be coded as graphs using daisy graphs:

we create an isolated vertex with n many loops for each n ∈ A. Points in a second order

topological space can be coded at subsets of ω via a countable basis.

Computability theory gives us a way of analyzing the effectiveness of such encodings

and how easy it is to go from an encoding of a structure or set back to the original.

For example, in the case of daisy graphs we can characterize the sets with computable

daisy graph as the c.e. sets. In chapter 2 we consider a particular way of encoding sets

into a linear order known as an η-representation. We characterize the sets that have a

computable strong η-representation up to many-one degree.

In the case of topological spaces, we have a collection of points, so it is natural to

consider the classes of sets that can be encoded in a particular space with fixed basis.

In chapter 4 we look at the interaction between computability theoretic properties of the

class of sets that arise in this way and the topological properties of the underlining space.

Turing reducibility is concerned with total functions in either ωω or 2ω, but the Turing

operators that give these reductions can sometimes produce partial functions. Thus it
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is natural to ask if Turing reducibility can be extended to partial functions. One way of

doing this, independently introduced several times [12, 41, 36], is enumeration reducibility.

Enumeration reducibility has been used to capture the complexity of problems that

are not easily represented by a Turing degree. For instance, the degree of difficulty of

computing a copy of a structure can sometimes be an enumeration degree, but not a Turing

degree [37]. Another example is the degree of difficulty of computing a presentation of a

continuous function. Miller [34] characterized these degrees as the continuous degrees and

showed they are a proper subclass of the enumeration degrees.

This thesis is concerned with the study of enumeration reducibility, its hyperarithmetic

analogue, and how enumeration reducibility interacts with effective topology.

1.1 η-representations

In chapter 2 we look at computable η representations of sets. The idea of an η-representation

was introduced by Fellner [11].

Definition 2.1.1. For a set A a linear order L is said to be an η-representation of A if

there is a surjective function F : ω → A such that L has order type

∑
n∈ω

η + F (n)

where η is the order type of Q. We say L is a strong η-representation if the function F is

strictly increasing and an increasing η-representation if F is non-decreasing. If a set A has

a computable (strong, increasing) η-representation then we say A is (strongly, increasingly)

η-representable. A degree is (strongly, increasingly) η-representable if it contains a set that

is (strongly, increasingly) η-representable.

Characterizations of general η-representable sets [10] and of increasingly η-representable

sets [21] are known, but there is no known characterization of the strongly η-representable

sets. This has been an open question since they were first introduced. Notably, strong η-

representations are the only type of η-representation that has a unique order type for any
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representation of a set A and their study predates the study of general η-representations.

We look at a simpler version of this question, and study η-s-representable sets. A

set is η-s-representable if it has a computable η-representation with computable successor

relation. The hope is that we can find a characterization for the strongly η-s-representable

sets and relativise this to a characterization of the η-s-representable sets. There is reason to

believe that this is a good approach, the previous characterizations of η-representable sets

and increasingly η-representable sets can be viewed as relativizations of characterizations

of η-s-representable sets. As we show in Theorem 2.2.2, this is because the constructions

involved in these characterization create the blocks of the η-representation in isolation,

and thus the block relation is 0′-computable.

We characterize the sets with computable strong η-representation and computable

block relations as precisely those in SSILM(Q)0
′
, a class introduced by Kach and Turetsky

when characterizing the increasingly η-representable sets [21]. It is known that the stongly

η-representable sets are a stricly larger class than the sets in SSILM0′
[9]. This means

than a characterization of the strongly η-s-representable sets may not relativise, and that

the any characterization must allow for blocks merging.

With this idea of blocks merging in mind, we come up with the notion of a connected

approximation. We use connected approximations to come up with new characterizations

of the increasingly η-representable and η-representable sets, and to give a characterization

of the strongly-η-s-representable sets. We do not know if this characterization relativises

or not.

Towards characterizing the degrees of strongly-η-representable sets we prove that

any dense enough set, if it has a computable increasing η-representation then it is in

SSILM(Q)0
′
. This allows us to characterize the many-one degrees with computable strong

η-representations as precisely the degrees with sets in SSILM(Q)0
′
.
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1.2 Enumeration reducibility

Most of this thesis is focused on enumeration reducibility and classes of enumeration

degrees. Enumeration reducibility (≤e) is a reducibility that captures the notion of how

difficult it is to enumerate a given set of numbers. There are several definitions, but the

one we find most useful is the one given by Friedberg and Rogers [12].

Definition 1.2.1. For sets A,B ⊆ ω we say that A ≤e B if there is a c.e. set of axioms

W such that:

n ∈ A ⇐⇒ ∃u[⟨n, u⟩ ∈W ∧Du ⊆ B]

Here (Du)u is the collection of all finite sets given by strong indexes.

One useful property of this definition is that it gives us a collection of enumeration

operators (Ψe)e. We define A = Ψe(B) if A ≤e B via the eth c.e. set We. Enumeration

reducibility is a reducibility on the positive information about a set. This can be seen by

the fact that if A ⊆ B then Ψe(A) ⊆ Ψe(B).

Enumeration reducibility is a pre-order and the equivalence classes form an upper

semi-lattice De with least element 0e consisting of all c.e. sets and joins given by the usual

operation. There is also an enumeration jump given by A 7→ KA ⊕ KA =
⊕

eΨe(A) ⊕⊕
eΨe(A). Like with Turing jump, we have that A <e A

′.

One aspect of enumeration reducibility that has been well studied is its relationship

with Turing reducibility. The Turing degrees embed into the enumeration degrees via the

map induced by A 7→ A⊕A. This follows from the fact that A⊕A ≤e B⊕B ⇐⇒ A ≤T B.

This embedding is known to be a proper embedding [33], and the Turing and enumeration

jump coincide on these degrees. The image of the Turing degrees is known as the total

degrees:

Definition 1.2.2. We say that a set A is total if A ≤e A. We say that A is cototal if

A ≤e A. A degree is total (cototal) if it contains a total (cototal) set.

It is known that the total degrees are a proper subclass of the cototal degrees and that

the cototal degrees are a proper subclass of all enumeration degrees [1].
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While there are many similarities between these classes of degrees they are structurally

different. One notable difference is the fact that, while there are minimal Turing degrees,

Gutteridge [16] proved that the enumeration degrees are downwards dense. Gutteridge’s

proof does not relativize though, and later Cooper [8] showed that there are empty intervals

in the enumeration degrees.

We have seen that Turing reducibility can be defined in terms of enumeration reducibil-

ity. An important early result of Selman [41] shows how to define enumeration reducibility

in terms of Turing reducibility.

Theorem 1.2.3 (Selman’s Theorem). A ≤e B if and only if, for all X if B ≤e X ⊕ X

then A ≤e X ⊕X.

This theorem states that an enumeration degree is uniquely determined by the class

total degrees above it. This means that the total degrees form an automorphism base for

the enumeration degrees.

1.3 The theory of the enumeration degrees

Slaman and Woodin [42] have proven that the full theory of the enumeration degrees is

one-equivalent to the theory of second order arithmetic, so we know that is as complicated

as possible.

When looking at the theory of the enumeration degrees with bounded quantifier com-

plexity, there are two main results. First, Lagemann [28] showed that every finite lattice

embeds into the enumeration degrees, thus the ∃-theory of the e-degrees is decidable.

Later Kent [24] proved that the ∃∀∃-theory is undecidable. It is an open question if the

∃∀-theory of the enumeration degrees is decidable. For a partial order, it is known that

the ∃∀-theory is equivalent to the following question:

Question 1.3.1 (Generalized extension of embeddings). Given finite partial orders P and

Q0, . . . ,Qk−1 is it true that every embedding of P into D can be extended to Qi for some

i < k?
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The case when k = 1 is known as the extension of embedding problem. Lempp, Slaman

and Soskova [29] proved that the extension of embeddings problem is decidable for the

e-degrees. If there one wants to show that there is an algorithm to solve the generalized

extension of embeddings problem then a first step might be to show what extensions can

be forbidden by an embedding of the diamond that preserve 0.

We make some steps in this direction in Chapter 3. In Chapter 3 we look at different

types of minimal pairs.

Definition 3.1.1. In an upper semilattice with least element 0 a pair a,b > 0 is a:

• minimal pair if a ∧ b = 0.

• strong minimal pair if it is a minimal pair, and for all x such that 0 < x ≤ a we

have x ∨ b = a ∨ b.

• super minimal pair if both a,b and b,a are strong minimal pairs.

• strong super minimal pair if it is a minimal pair, and for all x,y such that 0 < x ≤ a

and 0 < y ≤ b we have x ∨ y = a ∨ b.

It is clear that if a and b are distinct minimal degrees then a and b form a strong

super minimal pair, so the question of the existence of these types of minimal pairs is only

of interest in upper semilattices with downward density, like the enumeration degrees, the

enumeration degrees below 0′ (De(≤ 0′)) and the c.e. Turing degrees. In the case of the

c.e. degrees, recent work by Cai, Liu, Liu, Peng and Yang [6] proves that there are no

strong minimal pairs.

In the case of the enumeration degrees, the motivation for studying strong super mini-

mal pairs came from an idea towards an algorithm to decide the ∃∀ theory of the e-degrees

that Lempp, Slaman and Soskova had that required these to exist. We put an end to this

idea by proving that the e-degrees do not have any strong super minimal pairs in Chapter

3.

Following on from this we asked if it was possible to find a strong or super minimal

pairs in the enumeration-degrees. It still remains an open question if there are any super
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minimal pairs in the enumeration degrees, but we give a construction of a strong minimal

pair in Chapter 3.

It was known earlier, though unpublished, that K-pairs could be used to show that

there are strong minimal pairs in the enumeration degrees. K-pairs are a useful tool in

the study of the enumeration degrees and were first introduce by Kalimullin [23] when

he proved that the jump is definable. They have since been used to prove that the total

degrees are definable [13], and we make use of K-pairs in our proof that there are no strong

super minimal pairs. We include this use of K-pairs to construct a strong minimal pair in

Chapter 3.

The new construction of a strong minimal pair that we give is more direct than the

one using K-pairs. We modify our construction to build a strong minimal pair A,B where

A is Σ0
2 and B is Π0

2. The K-pair construction of a strong minimal pair gives a pair A,B

where A is Π0
2 and B = ∅′. This means that both sides of a strong minimal pair can be

Σ0
2, however, it is open whether or not there is a strong minimal pair in De(≤ 0′).

1.4 Topological classes of enumeration degrees

A subclass of the cototal degrees that has been studied is the continuous degrees. These

were introduced by Miller [34] as a way of characterizing the degree of difficulty of pro-

ducing a representation of a point in a computably represented metric.

The question of whether there are points whose degree spectra have no least element

was asked by Pour-El and Lempp (Specifically for the space of continuous functions on

R). It was known that for spaces like ωω, 2ω and R every point has a least Turing degree,

but not for spaces like Hilbert’s cube [0, 1]ω or C[0, 1]. Miller [34] answered this question

in the affirmative, showing that the Turing degrees are not sufficient to capture points in

[0, 1]ω, but that the enumeration degrees are. Later, Andrews, Ganchev, Kuyper, Lempp,

Miller, Soskova and Soskova [1] proved that every continuous degree is cototal.

The continuous degrees turn out to arise in other natural ways, for instance Andrews,

Igusa, Miller and Soskova [2] characterize the continuous degrees in purely degree theoretic
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terms as the almost total degrees.

Kihara and Pauly [27] extended this idea and study the degrees of points in arbitrary

represented topological spaces. Of particular interest to us are the degrees that arise when

using the notion of a countably based space:

Definition 4.1.1. A cb0 space X is a second countable T0 space given with a listing of a

basis (βe)e. Given a cb0 space X = (X, (βe)e) and a point x ∈ X the coded neighborhood

filter of x is NBaseX (x) = {e ∈ ω : x ∈ βe}. We define the degrees of a space X to be

DX = {a ∈ De : ∃x ∈ X[NBase(x) ∈ a]}.

Kihara and Pauly [27] showed that De is the class of degrees of the ω-product of

Sierpiński space Sω, where S = ({0, 1}, {∅, {1}, {0, 1}}). This a universal second countable

T0 space, so we can relate the study of classes of enumeration degrees to the study of

second countable T0 spaces.

Kihara, Ng and Pauly [26] looked at many cb0 spaces from classical topology to expand

the zoo of enumeration degrees. They discovered some new classes, as well as spaces that

give rise to some previously studied classes. Some new classes that are of particular interest

in this thesis are the cocylinder degrees, the doubled co-CEA degrees, the Arens co-d-CEA

degrees and the Roy halfgraph above degrees. We also look at the degrees of the relatively

prime integer topology, Nrp.

Kihara, Ng and Pauly [26] also looked at topological separation axioms and how they

interact with classes of enumeration degrees. The separation axioms that we explore are

as follows.

Definition 4.1.2. A topological space is considered

• T0 (Kolmogorov) if for any x ̸= y there is an open set U such that either x ∈ U, y /∈ U

or x /∈ U, y ∈ U . In other words, points can be distinguished by the topology.

• T1 (Fréchet) if for any x ̸= y there are open U, V such that x ∈ U, y /∈ U and

x /∈ V, y ∈ V . Equivalently if {x} is closed for any x.

• T2 (Hausdorff) if for any x ̸= y there are disjoint open U, V such that x ∈ U, y ∈ V .
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• T2.5 (Urysohn) if for any x ̸= y there are open sets U, V such that x ∈ U , y ∈ V and

U ∩ V = ∅.

• Submetrizable if there is a coarser topology on the space that is metrizable. In other

words, if X = (X, (βe)e) is submetrizable then there is a collection of X -open sets

(αe)e such that (X, (αe)e) is metrizable.

Kihara, Ng and Pauly [26] showed that for any enumeration degree a there is a de-

cidable, effectively submetrizable cb0 space X such that a ∈ DX . Similarly there is a

(non-decidable) metric space Y such that a ∈ DY . So even if we require the topology to

be decidable, the non-metrizable separation axioms do not give rise to any new classes of

degrees like the continuous degrees.

These non-metrizable separation axioms may not give us new classes of degrees, but

we can use the separation axioms to classify classes of degrees.

Definition 4.1.3. Given a collection of cb0 spaces T we say that a class C of enumeration

degrees is T if there is some X ∈ T such that DX = C.

We have the same implications of the separation axioms, but because multiple different

cb0 spaces may give rise to the same class of degrees, it is not clear that these implications

are strict. In fact, Kihara, Ng and Pauly [26] considered another separation axiom, the

notion of a TD space. For second countable spaces TD lies strictly between T0 and T1.

However they show that for any TD cb0 space X there is a T1 space Y such that DX = DY ,

so this is a case of two topological separation axioms that are distinct for second countable

spaces, but not for classes of enumeration degrees.

Kihara, Ng and Pauly [26] gave some separations for this classification of classes of

degrees. They showed that De is T0 but not T1, that cylinder-cototal degrees are T1 but

not T2, and that DNω
rp

is T2 but not T2.5. They did not show T2.5 and submetrizable are

different notions for classes of degrees and asked as a question if there is a T2.5 class that is

not submetrizable. They also showed that the degrees of the Gandy-Harrington topology

do not arise from any metrizable space, giving a separation between submetrizable and

metrizable for classes of degrees.
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Kihara, Ng and Pauly [26] suggested some candidates for classes that could be T2.5 but

not submetrizable. They introduced the Arens co-d-CEA degrees and the Roy halfgraph

above degrees. Both classes arise from spaces that are T2.5 but not submetrizable.

In chapter 4 we answer several questions from Kihara, Ng and Pauly’s paper [26]:

• We prove that the Arens co-d-CEA degrees and the Roy halfgraph degrees are both

not submetrizable, separating classifications for classes of degrees. In the proof of

these results we introduce a general method that could be used to get similar results.

As part of the general method we introduce the notion of a space being effectively

submetrizable.

• We show that the doubled co-CEA degrees are not T2.5, giving a quasi-polish sepa-

ration of T2 and T2.5 for classes of degrees. We prove the Arens co-d-CEA degrees

and the Roy halfgraph degrees are distinct classes of degrees, neither contained in

the other.

• We improve on two of the separations given by Kihara, Ng and Pauly, showing

that the cylinder-cototal degrees are T2-quasi-minimal and that DNrp is T2.5-quasi-

minimal.

In Chapter 4 we also consider the degrees that can arise from decidable, metrizable

cb0-spaces. Kihara and Pauly [27] observed that if one takes as a basis the balls of rational

radius centered at points in the chosen countable dense set, then the degree of a point

with the cb0 representation will coincide the degree of that point as Miller [34] defined it.

It is notable that a basis taken in this way will always be decidable, but we prove that a

decidable basis need not arise in this way. We give an example of a decidable, metrizable

cb0-space that has a point with a degree that in not continuous. We do not know if all

enumeration degrees are degrees of some decidable, metrizable cb0-space.
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1.5 E-pointed trees

E-pointed trees were studied by McCarthy [32] and were used to characterize the cototal

enumeration degrees.

Definition 5.1.1. A tree T is e-pointed if for every path P ∈ [T ] we have that T ≤e P .

We say T is uniformly e-pointed if there is a single enumeration operator Ψe such that for

all paths P ∈ [T ] we have T = Ψe(P ).

McCarthy [32] was interested in e-pointed trees on Cantor space. He proved that

every e-pointed tree on 2<ω, possibly with dead ends, is a cototal set, and characterized

the cototal degrees as the degrees of uniformly e-pointed trees on 2<ω without dead ends.

E-pointed trees have been used in computable model theory, notably Montalbán [35] used

them to prove that the degree spectrum of a structure is never the upward closure of an Fσ

set unless it is an enumeration cone. In Chapter 6 we give another application of e-pointed

trees, this time on Baire space, in the study of the hyperenumeration degrees.

In Chapter 5 we look at e-pointed trees that are subsets of ωω. To distinguish them

from the e-pointed trees on Cantor space we will refer to them as Baire e-pointed trees.

The results in this chapter were obtained in collaboration with Jun Le Goh, Joseph Miller

and Mariya Soskova [14].

The degrees containing Baire e-pointed trees turn out to characterize a strictly larger

set of degrees that comes from the notion of hyperenumeration reducibility. We prove that

every Baire e-pointed tree is a hypercototal set, and that every hypercototal enumeration

degree contains a uniformly e-pointed tree. We define hyperenumeration enumeration

reducibility and hypercototal sets in Section 1.6 as well as the new results about hyper-

enumeration reducibility that we prove in Chapter 6.

Unlike in the case of e-pointed trees on 2ω, we prove in Chapter 5 that there is a

hypercototal enumeration degree that is not the degree of any Baire e-pointed tree without

dead ends. Requiring the e-pointed tree to have no dead ends may reduce the class of

degrees, but we prove that there is a uniformly Baire e-pointed tree without dead ends
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that is not of cototal degree, so it is a strictly larger class than the degrees of e-pointed

trees on 2ω. It is an open question whether every Baire e-pointed tree without dead ends

must be enumeration equivalent to a uniformly Baire e-pointed tree without dead ends.

Also of interest to us in Chapter 5 are introenumerable sets. These are a variation on

introreducible sets.

Definition 5.1.2. A set A is introenumerable if for all infinite S ⊆ A, A ≤e S. A set A is

uniformly introenumerable if there is an enumeration operator, Ψe, such that A = Ψe(S)

for all infinite S ⊆ A.

These were first introduced by Jockusch [20], although with a slightly different defini-

tion. Introenumerable sets have been studied by Greenberg, Harrison-Trainor, Patey and

Turetsky [15] who showed, among other results, that both Jockusch’s and our definitions

are equivalent in the uniform case. From recent conversations with Turetsky we have

established that the two definitions are also equivalent in the non-uniform case.

We show that the introenumerable degrees lie between the cototal and hypercototal

degrees. We prove that a uniformly e-pointed tree on 2ω without dead ends is an in-

troenumerable set and construct a uniformly introenumerable set that is not of cototal

enumeration degree. Every set S is enumeration equivalent to the set of finite increas-

ing enumerations of subsets of S. These form an ω-branching tree whose paths are all

enumerations of infinite subsets of S. If S is (uniformly) introenumerable then this tree

will be (uniformly) e-pointed. To complete the separation we give a construction of a

uniformly e-pointed tree without dead ends that is not enumerations equivalent to any

introenumerable set. It is an open question whether there is a degree that contains an

introenumerable set, but does not contain any uniformly introenumerable set.

We link these results back to those in Chapter 4 by proving that all these classes are

all T1 classes of degrees.
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1.6 Hyperenumeration reducibility

Sanchis [39] introduced the notion of hyperenumeration reducibility ≤he, an analogue

of enumeration reducibility relating to hyperarithmetic reducibility rather than Turing

reducibility.

Definition 1.6.1. [Sanchis 1978 [39]] We say that A ≤he B if there is a c.e. set W such

that

n ∈ A ⇐⇒ ∀f ∈ ωω∃u ∈ ω, x ≺ f [⟨n, x, u⟩ ∈W ∧Du ⊆ B]

Sanchis proved that ≤he is a pre-order, giving rise to the hyperenumeration degrees

Dhe. These have a similar relationship with the hyperarithmetic degrees to the relationship

the enumeration degrees have with the Turing degrees. We can define notions of hypertotal

and hypercototal.

Definition 5.2.3. We say that a set A is hypertotal if A ≤he A. We say that A is

hypercototal if A ≤he A. A degree is hypertotal (hypercototal) if it contains a hypertotal

(hypercototal) set.

Sanchis [39] proved that the map A 7→ A⊕A induces an embedding of the hyperarith-

metic degrees into the hyperenumeration degrees as the hypertotal degrees. The main

result of Sanchis’ paper was proving that there is a hyperenumeration degree that is not

a hypertotal degree.

In Chapter 6 we look at a couple of aspects of the relationships between Turing re-

ducibility and enumeration reducibility and see if they also hold for the relationship be-

tween hyperarithmetic reducibility and hyperenumeration reducibility.

First we consider Selman’s theorem. If Selman’s theorem held, it would allow us

distinguish hyperenumeration degrees by the set of hypertotal degrees above them, and

allow us to define hyperenumeration reducibility in terms of the degree of difficulty of

producing a Π1
1 presentation of a set. However, it turns out that Selman’s theorem fails

for hyperenumeration reducibility.
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Corollary 6.2.8. There are sets A,B such that B ≰he A and for any X, if A ≤he X⊕X

then B ≤he X ⊕X.

The proof of this works by constructing a uniformly e-pointed tree without dead ends

that is not of hypertotal degree.

The second aspect of enumeration reducibility that we explore for hyperenumeration

reducibility is downwards density. In this case we are successful in adapting Gutteridge’s

original proof [16] to this context. In the process, we describe a problem that arises when

trying to do priority constructions for hyperenumeration reducibility and give a method

that can be used to solve this problem in cases like downwards density.

Because Selman’s theorem fails for the he-degrees, it makes sense to question if this

is the right notion of hyperenumeration reducibility even if it has some applications, like

characterizing the degrees of e-pointed trees. We look at some other natural reducibilities

that could be considered hyperarithmetic analogues of enumeration reducibility, and we

consider their relationship to hyperarithmetic and enumeration reducibility.
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Chapter 2

A Characterization of the Strongly

η-Representable Many-One

Degrees

2.1 Introduction and History

In this chapter we study η-representations. The definition of an η-representation was first

introduced by Fellner [11].

Definition 2.1.1. For a set A a linear order L is said to be an η-representation of A if

there is a surjective function F : ω → A such that L has order type

∑
n∈ω

η + F (n)

where η is the order type of Q. We say L is a strong η-representation if the function F is

strictly increasing and an increasing η-representation if F is non-decreasing. If a set A has

a computable (strong, increasing) η-representation then we say A is (strongly, increasingly)

η-representable. A degree is (strongly, increasingly) η-representable if it contains a set that

is (strongly, increasingly) η-representable.
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Note that an η-representation of A cannot tell us if 0 or 1 is in A so we will assume

that 0, 1 /∈ A when we are talking about representations of A.

In his thesis, Fellner [11] introduced the notion of a strong η-representation (pre-

dating the introduction of general η-representations) and proved that every set with a

computable strong η-representation is ∆0
3 and that every Σ0

2 and every Π0
2 set is strongly

η-representable.

For the case of general η-representations we first look at the following definitions.

Definition 2.1.2. For any linear order L the successor relation SL on L is defined

by SL(x, y) ⇐⇒ |[x, y]| = 2. The block relation BL is given by BL(x, y) ⇐⇒

[x, y] and [y, x] are finite. A block of size n in L is a collection x0 <L · · · <L xn−1 such

that BL(x0, y) →
∨

i<n y = xi.

For any linear order L, one can see that SL is Π0
1 in L and BL is Σ0

2 in L. Feiner [10]

proved the following:

Theorem 2.1.3. For a linear order L, the set {n : L has a block of size n} is Σ0
3 in L.

For an η-representation L of a set A, we have A = {n : L has a block of size n}. This

gives us the following.

Corollary 2.1.4. If a set A has a computable η-representation then A is Σ0
3.

Coles, Downey and Khoussainov [7] show the reverse of theorem 2.1.3 is true for general

linear orders.

Theorem 2.1.5. For any Σ0
3 set A there is a computable linear order L, such that A =

{n : L has a block of size n}.

Fellner [11] showed that every strongly η-representable set is ∆0
3 and went on to conjec-

ture that every ∆0
3 set has a strong η-representation. However, Lerman [30] later showed

that this is not the case.

Theorem 2.1.6 (Lerman [30]). There is a ∆0
3 set with no computable η-representation.
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Lerman also characterized the m-degrees with computable η-representations showing

that they are the Σ0
3 degrees:

Theorem 2.1.7 (Lerman [30]). If A is Σ0
3 then A⊕ω has a computable η-representation.

This left open the questions of what are the (strongly) η-representable sets and what

are the strongly η-representable degrees. In the case of η-representations, Harris [17] came

up with a characterization involving limitwise monotonic functions. Limitwise monotonic

functions were first introduced by Khoussainov, Nies and Shore [25].

Definition 2.1.8. A function F : ω → ω is limitwise monotonic if there is a computable

function f : ω2 → ω such that F (n) = lims f(n, s) and for all n, s, f(n, s) ≤ f(n, s+ 1).

By the limit lemma, if F is limitwise monotonic then F is ∆0
2, and hence if A =

range(F ) then A is Σ0
2.

Limitwise monotonic functions have been used to solve questions computable model

theory ([18], [23], [25]). In particular Coles, Downey and Khoussainov [7] proved that for

any computable η-like linear order (a class that includes computable η-representations)

that the set {n : L has a block of size n} is the range of a 0′-limitwise monotonic function.

Harris [17] showed the reverse direction holds for computable η-representations.

Theorem 2.1.9. A set A is η-representable if and only if A is the range of a 0′-limitwise

monotonic function.

The construction of the η-representation L is performed uniformly, constructing linear

orders Ln
∼= η + F (n) and taking L =

∑
n Ln. From this, it can be seen that if A

is the range of a strictly increasing 0′-limitwise monotonic function, then A is strongly

η-representable. However, Harris [17] showed that this is not a characterization of the

strongly η-representable sets.

Harris also showed that the degrees with computable strong η-representations are not

trivial.

Theorem 2.1.10 (Harris [17]). There is a ∆0
3 degree that does not contain a set with a

computable strong η-representation.
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Kach and Turetsky [21] modified the notion of limitwise monotonic to give the follow-

ing:

Definition 2.1.11. A function F : Q → ω is support (strictly) increasing limitwise mono-

tonic function on Q if there is computable f : Q× ω → ω such that

• F (q) = lims f(q, s).

• For all q, s f(q, s) ≤ f(q, s+ 1).

• The set S := {q ∈ Q : F (q) ̸= 0} has order type ω.

• F ↾ S is (strictly) increasing.

One can relativize this to a degree d by allowing f to be d-computable. They define

SILMd(Q) to be the set of A such that A is the range of a d-support increasing limitwise

monotonic function on Q and SSILMd(Q) to be the set of A such that A is the range of

a d-support strictly increasing limitwise monotonic function on Q.

Kach and Turetsky were able to get the following result about increasing η-representations.

Theorem 2.1.12. A set A has a computable increasing η-representation if and only if

A ∈ SILM0′
(Q).

Similarly to the case of η-representable degrees, Kach and Turetsky proved that every

∆0
3 degree has a computable increasing η-representation.

Like in the case of theorem 2.1.9, the proof of Theorem 2.1.12 gives us that if A ∈

SSILM0′
(Q) then A is strongly η-representable. The converse, however, is not true in

general.

Theorem 2.1.13 (Turetsky [9]). There is a set A /∈ SSILM0′
(Q) with a computable

strong η-representation.

This is close to a characterization of strongly η-representable sets. In section 2.4 we

are able to prove that for dense enough sets this is a characterization.
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Corollary 2.4.2. Suppose g : ω → ω is a 0′-computable increasing function. If a set A

has a strong η-representation and satisfies |A∩g(n)| ≥ n for all n then A ∈ SSILM0′(Q).

Using this we are then able to characterize the sets with computable strong η-representations

up to many-one degree.

Corollary 2.4.5. The following coincide.

• The m-degrees of sets with computable strong η-representations.

• The m-degrees of sets in SSILM0′
(Q).

• The m-degrees of sets with ∆0
2 strong η-s-representations.

We make some progress towards characterizing the η-representable sets as well in this

chapter. To simplify the problem, in Section 2.2 we look at η-s-representations, which

are computable η-representations with computable successor relation. We observe that

all existing characterizations are relativizations of characterizations of η-s-representable

sets, and explore why this is the case. We also give a characterization of the sets in

SSILM0′
(Q) in terms of η-representation and explain why this means the existing tools

will not be able to give a characterization of the strongly η-representable sets.

This leads onto Section 2.3 where we introduce the notion of a connected approximation

and use this to characterize the strongly η-s-representable sets, as well as giving new

characterizations for most of the other classes of sets discussed here. It is an open question

if our characterization of the strongly η-s-representable sets relativizes to a characterization

of the strongly η-representable sets.

2.2 η-s-Representations

The existing characterizations of sets with computable η-representations and with com-

putable increasing η-representations both involve relativizing some construction to 0′ and

make use of the fact that 0′ can compute the successor relation on any computable linear

order. For this reason we propose the following definition.
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Definition 2.2.1. A (strong) η-s-representation of a set A is a computable (strong) η-

representation L where the successor relation SL is also computable.

The hope is that we can find a characterization of strongly η-s-representable sets and

turn it into a characterization of the strongly η-representable sets. Towards this idea we

have the following theorem.

Theorem 2.2.2. If L is a 0′-computable η-representation of some set A and the block

relation BL ≤T 0′ then there is a computable linear order D such that D ∼= L and BD ≤T

0′.

Proof. Using that L is ∆0
2 we can approximate L in stages. We keep track of the blocks

that ∅′s thinks are in Ls and build corresponding blocks in Ds. When we see two blocks

in Ls change order or merge, we keep the representative of the block with the smallest

member (in the sense of <N) and remove the other one by densifying (i.e. adding points

so that the block becomes part of a copy of Q). Then we add a new block in the correct

place if needed.

More formally, let (Ls, <s, Bs)s be a sequence of linear orders with block relation that

has limit (L,<L, B) where each Ls ⊆ Ls+1 is a subset of ω.

Define D0 = ∅. We will keep a follower function fs from the blocks of Ds to a

corresponding element in Ls that represents the block. At stage s, for any bi, bj ∈ dom(fs)

if we have fs(bi) <N fs(bj) and fs(bi) <s fs(bj) but fs(bi) >s+1 fs(bj) then in Ds+1 we

will remove bj from dom(fs+1). Similarly if fs(bi) >s fs(bj) but fs(bi) <s+1 f(bj) or

¬Bs(fs(bi), fs(bj)) but Bs+1(fs(bi), fs(bj)).

Next, for each block b ∈ dom(fs) that has not been removed we make sure it has the

correct size. Let y = minN{x : Bs(x, fs(b)) ∧ ¬Bs+1(x, fs(b))}. If y exists, remove points

from the end of b so that it has size |{x <N y : Bs(x, fs(b))}|. Now we add points to the

end of the block so that the block of fs(b) in Ls+1 will have the same size as b does in Ds+1.

Then, in case small numbers have been added we set fs+1(b) = minN{x : Bs+1(x, fs(b))}.

Then for each block c in Ls+1 that does not have an element in range(fs) we create a

corresponding block b in Ds+1 of the same size as c and set fs+1(b) = minN(c). Finally we
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densify; for all adjacent x, y which are not part of the same block in dom(fs+1), we add a

new point between x and y. We now have Ds+1.

Now the verification. It is clear that D is a computable linear order. We need to make

sure it has the right order type. At each stage we densify around the points that are not

part of a block, so between adjacent blocks we must have order type η.

Claim 2.2.2.1. For every block c ∈ L there is a unique block b ∈ D that has the same

length as c.

Proof. Let n = maxN(c) + 1. There is a stage t such that for all s ≥ t, Bs ↾ n = B and

<s↾ n =<L↾ n. At this stage t there will be a b such that ft(b) = minN(c). By our choice

of t we have fs(b) = minN(c) and |b| ≥ |c| for all s ≥ t as there can be no reason to destroy

b and we will never see any number smaller than n leave c.

Given any s > t and m = minN{x ≥N n : ∃r > s[Br(fr(b), x)]} there is a stage r > s

such that Br(fr(b), x) ∧ ¬Br+1(fr+1(b), x). So at stage r + 1 we will have |b| = |c| and as

s is arbitrary, we have |b| ≤ |c| in D.

Claim 2.2.2.2. For every block b ∈ D there is a block c ∈ L and t such that |b| = |c| and

for all s ≥ t, fs(b) = min(c). Furthermore, if bi <D bj then for the corresponding blocks

ci, cj ∈ L we have ci <L cj.

Proof. Consider a block b. Suppose fs(b) = n and ft(b) = m for s < t. Then it must be

that fs(b) ≥ ft(b). So lims fs(b) exists. If x = lims fs(b) and c is the block of x in L then

by the same argument as above we have that |b| = |c|.

If x = lims fs(bi) and y = lims fs(bj) and bi <D bj then x <L y as otherwise we would

have removed one of the blocks.

So we can see that there is an order preserving bijection F from the blocks of D to the

blocks of L with |b| = |F (b)|. Hence the order type of D is the same as that of L.

From the construction, if a point is removed from a block then it is never put back in

a block at a later stage. So 0′ can compute the set of points in D that are not in blocks.
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As D is computable, 0′ can also compute the successor relation on D. From both of these,

0′ can compute the block relation.

Theorem 2.2.2 is not quite what we would like as it requires the block relation to be

0′-computable. However, this is a property that occurs if the blocks are created in isolation

and never merged. This is precisely what happens in the constructions given in the proofs

of the characterizations of η-representable and increasingly η-representable sets.

Theorem 2.2.3. A set A is in SSILM(Q) if and only if there is a strong η-s-representation

of A with computable block relation.

Proof. For the left to right direction we observe that the usual construction (unrelativizing

the one given in [21]) has computable block relation as the blocks that are created are

never merged.

For the other direction, since we can compute if two blocks are actually the same block

we can make sure we only assign one follower to each block.

By combining Theorems 2.2.3 and 2.2.2 we get a characterization of SSILM0′
(Q) in

terms of computable η-representations:

Corollary 2.2.4. A set A is in SSILM0′
(Q) if and only if there is a strong η-representation

of A with 0′-computable block relation.

Theorem 2.1.13 states that there are strongly η-representable sets which are not in

SSILM0′
(Q), so as a result any characterization of the sets with strong η-representations

must involve merging blocks as part of the construction.

2.3 Connected Approximations

The limit lemma says that we can approximate any ∆0
2 set A with a computable sequence

(An)n such that A(x) = limnAn(x). Limitwise monotonic functions are one way of build-

ing on this idea. From what we have seen, the problem with trying to use these to char-

acterize strongly η-representable sets is that each limit of a sequence F (q) = lims f(q, s)
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is taken in isolation, and there is no natural way of merging sequences. So we propose a

different way of approximating sets that captures the idea of merging sequences.

Definition 2.3.1. A connected approximation to a set A is a sequence of finite functions

(cn)n with associated sequences of finite sets (An,m)m that satisfy the following:

1. range(cn) ⊆ dom(cn+1) for all n.

2. An,0 := dom(cn), An,m+1 := cn+m(An,m).

3. The limit An,ω := limmAn,m always exists.

4. A = ∪nAn,ω.

We can assume each cn is coded by a canonical index for the finite set of its graph

{⟨x, cn(x)⟩ : x ∈ dom(cn)}, so we can say a connected approximation (cn)n is computable

if the corresponding sequence of indices is computable.

We call a connected approximation (cn)n monotonic if cn(x) ≥ x for each n and

x ∈ dom(cn), and order preserving if each cn preserves ≤. We use the acronym MOP to

denote monotonic and order preserving.

We give characterizations of all of the existing classes described so far using connected

approximations.

Theorem 2.3.2. For a set A we have the following characterizations.

1. A has a computable connected approximation if and only if A is Σ0
2.

2. A has a computable monotonic connected approximation if and only if A is the range

of a computable limitwise monotonic function.

3. A has a computable MOP connected approximation if and only if A ∈ SILM(Q).

4. A has a computable MOP connected approximation where each cn is injective if and

only if A ∈ SSILM(Q).
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Proof of (1) and (2). We will handle the first two statements together. Given a Σ0
2 set

A we can assume A = range(F ) for F (n) = lims f(n, s) where f is computable. Then

we can define a connected approximation of A = range(F ) as follows. Let dom(cn) =

{f(x, n) : x < n} and define cn(y) = f(x, n + 1) where x is least such that f(x, n) = y.

Clearly (cn)n is computable and range(cn) ⊆ dom(cn+1). For each n,m we have that

An,m = f(Bn,m, n+m) for some Bn,m ⊆ n. We take the Bn,m which minimizes
∑

x∈Bn,m
x.

By construction
∑

x∈Bn,m
x ≥

∑
x∈Bn,m+11

and so the limit Bn,ω := limmBn,m exists.

Hence An,ω = F (Bn,ω), so we have (cn)n is a connected approximation of a subset of A.

Consider an n ∈ ω. Let t > n be a stage after which f(m, s) = F (m) for all s ≥ t,m ≤ n.

Then F [n] ⊆ At,0, so F [n] ⊆ At,ω. So (cn)n is a connected approximation of A. Notice

that if f(n, s) is monotonic in s then (cn)n is also monotonic.

Now consider a computable connected approximation (cn)n of a set A. We define a

computable function f : ω2 → ω as follows. f(n, 0) = 0, t0 = 0. Define f(n, s + 1) as

follows: f(n, s+1) = cs(f(n, s)) if n < ts. Let m0, . . . ,mk−1 list range(cs)\range(cs◦cs−1)

in order. Define f(ts + i, s+ 1) = mi and ts+1 = ts + k. For n ≥ ts+1 let f(n, s+ 1) = 0.

We have that An,m = {f(x, n + m) : x ≤ tn} and so range(F ↾ tn) = An,ω and hence

range(F ) = A. Notice that if (cn)n is monotonic then F is limitwise monotonic.

A similar idea works for characterizations (3) and (4), but when going from a connected

approximation we need to choose rationals so that the order is preserved.

Now we give a characterization of strongly η-s-representable sets using connected ap-

proximations. In a construction of a strong η-s-representation, blocks can do two things:

they can grow and they can merge. Eventually they must stop doing either of these things,

but we cannot put a computable bound of how late these actions take place. However,

if two blocks are, in fact, different then we will see infinitely many points go in between

them. Thus, if blocks merge at a late stage then the size of the resulting block should be

very large. This is the main idea behind the formula in the following characterization and

the proof.

Theorem 2.3.3. A set A has a strong η-s-representation if and only if it has a computable
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MOP connected approximation where each cn satisfies

ψ(n) = ∀x ∈ range(cn)[
∑

m∈c−1
n ({x})

(m+ n) ≤ x+ n].

Proof. Suppose we have a strong η-s-representation L of A. We can assume that L has

domain ω and let Ls = L ↾ s. Let Bs be the blocks of Ls according to SL. For blocks

b, c ∈ Bs and t ≥ s we use |b|t to denote the size the block has in Lt, and we use b <t c

and b =t c to denote the order of the, possibly merged, blocks in Lt.

We start with c0 = ∅, t0 = 0. At stage s we assume we are given dom(cs), ts and a

block bs ∈ Bts . We assume that for any c, d ∈ Bts with c <ts d ≤ts b we have |c|ts < |d|ts

and there are at least s many points between c and d in Lts . We also assume dom(cs) =

{|b|ts : b ∈ Bts ∧ b ≤ts bs}.

We let bs+1 = max<ts
Bts . Search for a t > ts such that for every c, d ∈ Bt with

c <t d ≤t bs+1 we have |c|t < |d|t and there are at least s+1 many points between c and d

in Lts . The fact that L is a strong η-s-representation guarantees that we will find such a t.

We let ts+1 = t and dom(cs+1) = {|b|t : b ∈ Bt ∧ b ≤t bs+1}. We define cs as follows. For

d ≤ts bs we set cs(|d|ts) = |d|t. This clearly gives range(cs) ⊆ dom(cs+1). This completes

the construction.

Now we need to check that cs is MOP and meets the condition ψ. If |d|ts < |c|ts for

d, c <ts bs then we have that d <ts c, so d ≤t c and |d|t ≤ |c|t. Thus cs preserves ≤.

Since L is a strong η-s-representation, we have that |d|n ≤ |d|m for n ≤ m, and so cs is

monotonic. If we combine this with the fact that there are s many points between relevant

blocks in Bts we have that if d1 <ts · · · <ts dn ≤ts bs but d1 =t · · · =t dn then we have

|di|t + s ≥
∑n

i=1(|di|ts + s). So we can conclude that cn meets the condition ψ.

All that is left to check is that the limits exist and that they give us A. We have that

An,m = {|d|tn+m : d ∈ Btn , d ≤ bn}. Since Btn is a finite set and each block in Btn only

changes size finitely often, we have that the limit An,ω exists and An,ω ⊆ A. On the other

hand, every d ∈ BL is in some Bn, so the there is a stage s such that ts > n and then we

have |d|ts+1 ∈ dom(cs+1). Thus |d| ∈ As+1,ω. So we have that A = ∪nAn,ω and (cn)n is a
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connected approximation of A as desired.

Now for the other direction. Suppose we have a connected approximation (cn)n of A

satisfying the conditions of the theorem. We construct an η-s-representation as follows.

The main idea is that at stage s we will have a linear order Ls with successor relation and

blocks Bs strictly ordered by size with s many points in between, and the sizes of blocks

of Bs are the members of dom(cs).

We define a computable function H(L, c,m) that takes a finite linear order L with

successor, a finite function c and a number m, and outputs a finite linear order D with

successor extending L if it can. We assume that the blocks BL are ordered by size the

same way they are by <L. We assume that {|b| : b ∈ BL} ⊆ dom(c). We build D in steps

as follows. If c(|b|) = c(|d|) then we merge blocks b and d and all the points in between

into one large block. This gives us a D0 that differs from L only in the successor. We then

go through each block b of D0, and if d was a block of L and d ⊆ b then we possibly add

points to the end of b so that |b| = c(|d|). If we have |b| > c(|d|) already then H fails. If H

does not fail then this gives us D1. Now, for each n ∈ range(c) \ {|b| : b ∈ BD1}, we add a

new block of length n to D1, keeping the ordering of blocks by size. This gives us a D2.

Finally, between each pair of adjacent blocks in D2, we add points in a dense way so that

there are exactly m many points between them. This is D. If one of the assumptions was

wrong then H fails, otherwise it succeeds, and D is a linear order with blocks ordered by

size the sizes of which are range(c), and there are exactly m many points between adjacent

blocks.

We define our strong η-s-representation to be L =
⋃

s Ls where L0 = ∅ and Ls+1 =

H(Ls, cs, s + 1). From the definition of H and the fact that each cn preserves ≤ and

satisfies ψ we can see, using an induction argument, that H will always succeed, so the Ls

are all well-defined. From the definition of H we can see that if two points are never part

of the same block for some Ls then there is a point in between them. So we have that

the successor relation on L is SL =
⋃

n SLn . So L is a computable linear order with c.e.

successor relation. As the successor relation of a computable linear order is always co-c.e.
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we have that SL is computable.

By construction we have that An,m = {|b|n+m : b is a block in Ln+1}, and for every

block b in Ln, cm(|b|m) = |b|m+1. So we have that An,ω = {|b|L : b is a block in Ln} and

L is an η-s-representation of A. As the blocks of Ln are ordered by increasing size so too

are the blocks of L, so L is a strong η-s-representation of A.

Note that if we replace ψ(n) by the condition ∀x ∈ dom(cn)[(
∑

m∈c−1
n ({x})m+ f(n) ≤

x + f(n)] for any computable non-decreasing f with limn f(n) = ω then a slight mod-

ification of the arguments above should still work and we get another characterization.

The relativized version of the proof with 0′-computable connected approximation, does

not necessarily build us a computable strong η-representation, so we do not have a char-

acterization of the strongly η-representable sets.

2.4 The Many-One Degrees of η-Representable Sets

We know from Kach and Turetsky [21] that if S ∈ SSILM(Q) then S has a strong η-s-

representation. The following is a condition on S under which the converse holds.

Theorem 2.4.1. Suppose g : ω → ω is a computable increasing function. If a set A has

a strong η-s-representation and satisfies |A ∩ g(n)| ≥ n for all n then A ∈ SSILM(Q).

Proof. The construction goes as follows. We use an enumeration of L = {xi : i ∈ ω}, and

at stage s we look at the maximal blocks of Ls. We pick rationals to represent the blocks

with the idea that F (r) is the size of the block represented by r, but the block that r

represents may change when blocks change. To keep track of what blocks rationals follow

we will use a sequence of helper functions hs : Q → Bts with dom(hs) = {r : f(r, s) > 0}.

Once we see a block b appear in Ls it can only grow, so it will remain a block in Lt for

t > s. Like we did in the proof of Theorem 2.3.3 we will use |b|t, b =t c and b <t c to

denote the size and order of the blocks from Ls according to Lt. We let Bt be the set of

blocks from Lt.
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At stage 0 we start with f(r, 0) = 0 for all r ∈ Q and t0 = 0. At stage s let b =

max(Bts). Let ts+1 = t be the least stage t > ts such that for each c <t d ≤t b in Bt we have

that |c|t < |d|t and there are at least g(|c|t + |d|t) many points between c and d in Lt, and

furthermore for all n such that g(n) ≤ |b|t +1 we have |{c ∈ Bt : c ≤t b∧ |c| < g(n)}| ≥ n.

As L is an η-s-representation of A there must be such a t.

Let r0 < · · · < rn−1 be the domain of hs; we begin defining hs+1 as follows. Let hs+1(r0)

be the smallest block c0 ∈ Bt such that c0 ≤t hs(r0)∧ |c0|t ≥ f(r0, s). Let hs+1(ri) be the

smallest block ci ∈ Bt such that hs+1(ri−1) <t ci ≤t hs(ri) ∧ |ci|t ≥ f(ri, s).

For each block c ≤t b that is not in range(hs+1) we pick a rational rc and set hs+1(rc) =

c so that hs+1 is order preserving and has image {c ∈ B : c ≤t b}. We define

f(r, s+ 1) =


|hs+1(r)|t r ∈ dom(hs+1)

0 otherwise

Now for the verification: first we need to show that the recursive definition of hs+1(ri)

actually works. Suppose it does not. Then let i be least such that we cannot find a block

for ri. |hs(ri)|t ≥ |hs(ri)|ts ≥ f(ri, s) so if hs(ri) does not work then there must be some

smaller rj with hs+1(rj) = hs(ri). So i > 0. We have hs+1(ri−1) ≤t hs(ri−1) <ts hs(ri), so

it must be that hs(ri−1) and hs(ri) have merged. So |hs(ri)|t > g(|hs(ri−1)|ts + |hs(ri)|ts).

So by our choice of ts we have at least |hs(ri−1)|ts + |hs(ri)|ts many blocks before hs(ri)

and at least |hs(ri)|ts have size at least |hs(ri−1)|ts . But i ≤ |hs(ri)|ts , so we would have

chosen hs+1(ri−1) to be one of these, a contradiction.

From the definition of hs we can see that hs+1(r) ≤L hs(r) for each r and s, so as the

blocks of L are well ordered, lims hs(r) exists. From the definition of f we have that it is

limitwise monotonic and F (r) = | lims hs(r)|L. So range(F ) ⊆ S. If b is a block of L then

after some stage t, all of b is in Lt as well as all smaller blocks. So at some stage s, ts > t,

so at stage s+ 1 we have an r such that hs+1(r) = b and for any n > s we have hn(r) = b

as the blocks in that part of the linear order no longer change.

So S = range(F ) as desired.
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Relativizing we get the following:

Corollary 2.4.2. Suppose g : ω → ω is a 0′-computable increasing function. If a set A

has a strong η-representation and satisfies |A∩g(n)| ≥ n for all n then A ∈ SSILM0′(Q).

This means that for dense enough sets, the notions of ∆0
2 strong η-s-representation,

strong η-representation and support strictly increasing limitwise monotonic on Q all coin-

cide.

Note that we cannot use Theorem 2.4.1 to give a characterization of SSILM(Q) as

there are sparse sets in SSILM(Q). For instance consider the function F (n) = n +∑
e∈∅′∩n h(e) where h(e) is the least s such that φe,s(e)↓. Then as F cannot be computably

bounded, S = range(F ) would not meet the condition |S ∩ g(n)| ≥ n for all n for any

computable g, but by definition it is clearly limitwise monotonic and increasing, so S ∈

SSILM(Q).

We can, however, use Theorem 2.4.1 to characterize the degrees of sets with computable

strong η-representations.

Theorem 2.4.3. If a is the m-degree of a set with a strong η-s-representation then there

is S ∈ a such that S ∈ SSILM(Q)

To prove this we use the following lemma.

Lemma 2.4.4. If A is a set with a strong η-s-representation then A⊕ω also has a strong

η-s-representation.

Proof. Suppose that A is a set with a strong η-s-representation. Let (cn)n be a computable

MOP connected approximation of A satisfying condition ψ of Theorem 2.3.3. We build a

connected approximation (dn)n of A ⊕ ω satisfying ψ as follows. The first idea is to use

cm with m much larger than n to build dn. We want m to be large enough that when we

see cm(x) = cm(y) we can merge the corresponding numbers 2x, 2y ∈ dom(dn) without

violating ψ. The second idea is that when we see cm(x) > x without any merging, we

shift the representative of x in dom(dn) to a lager number so that we can handle the case

where the gaps between numbers shrink, i.e. when cm(y)− cm(x) < y − x for y > x.
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To start let d0 = ∅ and m0 = 0. We will ensure that mn >
∑

x∈dom(dn)
(x+ n), and if

2x ∈ range(dn) then x ∈ range(cmn). Given dn and mn, let N > mn be the least number

such that if x = max(Amn,N+1) then N > 2x(2x + n + 1). Let mn+1 = N . This will

ensure that mn+1 >
∑

x∈dom(dn+1)
(x+n+1). There must be such an N as (cn)n is a valid

connected approximation, so eventually x will stabilize. Let c = cN ◦ · · · ◦ cmn+1.

Let z ∈ dom(c) be the least such that there is y > z, c(z) = c(y). For y ≥ 2z ∈

range(dn) we define dn+1(y) = 2c(z). By assumption on mn, this will not violate condition

ψ. If there is no such z then set z = max(dom(c)) + 1. Now we define dn+1 on values

smaller than 2z.

Let a0, . . . , as−1 list the elements of (dom(c)⊕ω)∩2z−1. Let b0, . . . , bs−1 list the first s

elements of range(c)⊕ω. Note that bs−1 < 2c(z) if c(z) is defined. We define dn+1(ai) = bi.

This is definitely order preserving, and it is monotonic because c is injective and monotonic

on dom(c) ∩ z. This completes the construction of (dn)n.

Verification: By construction we can see that (dn)n is MOP and satisfies ψ; all that

is left to check is that it is a connected approximation of A ⊕ ω. Let x ∈ dom(dn)

and let 2y be the least even number in dom(dn) \ x. Following the construction we

can see that dn(x) ≤ dn(2y) ≤ 2(cmn ◦ · · · ◦ cmn−1+1)(y). So if we repeat this then

we can see that the limit of x, dn(x), dn+1(dn(x)), . . . if it exists is less than the limit

of 2y, 2cmn(y), 2cmn+1(cmn(y)), . . . , so by monotonicity it exists. Thus (dn)n is a valid

connected approximation.

Fix x. Let s be a stage at which cn ↾ x = cs ↾ x for all n ≥ s. Then by the construction

we have that dn ↾ 2x = ds ↾ 2x for all n ≥ s and dom(dn) ∩ 2x = (dom(cn) ∩ x) ⊕ x. So

(dn)n is a connected approximation of A⊕ ω.

This allows us to characterize the m-degrees of sets with strong η-representations.

Corollary 2.4.5. The following coincide.

• The m-degrees of sets with computable strong η-representations.
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• The m-degrees of sets in SSILM0′
(Q).

• The m-degrees of sets with ∆0
2 strong η-s-representations.

2.5 Open Questions

We can characterize them-degrees of sets with strong η-representations, but we leave open

the following.

Question 2.5.1. Is there a characterization of the sets with computable strong η-representations

that is not in terms of linear orders?

A related question is in regards to the sets with ∆0
2 strong η-s-representations.

Question 2.5.2. Is there a set with a ∆0
2 strong η-s-representation, but no computable

strong η-representation?

A negative answer to Question 2.5.2 would give us an answer to Question 2.5.1, us-

ing the connected approximation characterization of sets with computable strong η-s-

representations.
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Chapter 3

Strong minimal pairs in the

enumeration degrees

3.1 Introduction

In this chapter we look at different types of minimal pairs, some of which can occur in the

enumeration degrees and some of which cannot occur.

Definition 3.1.1. In an upper semilattice with least element 0 a pair a,b > 0 is a:

• minimal pair if a ∧ b = 0.

• strong minimal pair if it is a minimal pair, and for all x such that 0 < x ≤ a we

have x ∨ b = a ∨ b.

• super minimal pair if both a,b and b,a are strong minimal pairs.

• strong super minimal pair if it is a minimal pair, and for all x,y such that 0 < x ≤ a

and 0 < y ≤ b we have x ∨ y = a ∨ b.

Any pair of minimal degrees form a strong super minimal pair, so we know there are

strong super minimal pairs in the Turing degrees. The question of whether these types exist

is more interesting for structures with downwards density, like the enumeration degrees
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and the c.e. degrees. Cai, Liu, Liu, Peng and Yang [6] answer these questions for the c.e.

degrees by proving that there are no strong minimal pairs in that structure. This chapter

answers some of these questions for the enumeration degrees and the enumeration degrees

below 0′.

In Section 3.2 we look at strong super minimal pairs. Using the Gutteridge operator

and K-pairs we give a proof that there are no strong super minimal pairs in the enumer-

ation degrees. The Gutteridge operator was used by Gutteridge [16] to prove that the

enumeration degrees are downwards dense. K-pairs were used by Kalimullin [22] to prove

that the jump on the enumeration degrees is definable. They have been used for other

applications to the theory of the enumeration degrees [13], and in Section 3.3 we show how

they can be used to give an example of a strong minimal pair. The example in Section

3.3 was conveyed to us by the anonymous referee for first submitted version of the paper

this chapter is based on.

In Section 3.4 we give our own, direct construction of a strong minimal pair in the

enumeration degrees. This uses a two stage forcing method to construct our sets. In

Section 3.5 we modify this construction into a finite injury argument and are able to lower

the complexity to construct a strong minimal pair A,B where A is Σ0
2 and B is Π0

2. The

example from Section 3.3 has A is Π0
2 and B = ∅′, so both sides of a strong minimal pair

can be below 0′. It is an open question this can happen at the same time, i.e. if there

are any strong minimal pairs in De(≤ 0′). Also an open question is if there are any super

minimal pairs in the enumeration degrees.

3.2 No strong super minimal pairs

We prove that there are no strong super minimal pairs in the enumeration degrees. This

proof is similar to Gutteridge’s proof of downwards density [16], and makes use of the

Gutteridge operator Θ. Gutteridge’s proof splits into two cases: one where a is ∆0
2 and

one where a is not ∆0
2. Similarly our proof splits into two cases. For the first case we have

the following lemma proven by Mariya Soskova.
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Lemma 3.2.1 (M. Soskova). If A is ∆0
2 then A,B is not a strong minimal pair in De for

any B.

The proof relies on some results about Kalimullin pairs [22], defined below.

Definition 3.2.2. A and B are a Kalimullin pair (K-pair) if there is a c.e. set W ⊆ ω2

such that A×B ⊆W and A×B ⊆W . A K-pair is called trivial if one of A,B is c.e.

We use the following two facts about K-pairs.

Theorem 3.2.3 (The minimal pair K-property, Kalimullin [22]). A,B are a K-pair if

and only if for all X ⊆ ω, A ⊕ X and B ⊕ X form a minimal pair relative to X. i.e.

Y ≤e A⊕X,Y ≤e B ⊕X =⇒ Y ≤e X.

Theorem 3.2.4 (Kalimullin [22]). Every nonzero ∆0
2 degree computes a nontrivial K-pair.

Proof of Lemma 3.2.1. Suppose that A is ∆0
2 and A,B form a minimal pair. Then by

Theorem 3.2.4 let X,Y ≤e A be a nontrivial K-pair. Then consider X ⊕ B and Y ⊕ B.

If X ⊕ B ≡e Y ⊕ B ≡e A ⊕ B then by Theorem 3.2.3 A ≤e B a contradiction. But by

assumption X,Y are both non-c.e. and bounded by A, so A,B is not a strong minimal

pair.

For the second case of his proof Gutteridge constructed an operator Θ, now known as

the Gutteridge operator. Gutteridge constructed Θ so that the following would hold:

If A is not ∆0
2 then ∅ <e Θ(A) <e A. (3.1)

Our proof below relies on the particular form of Θ, not just the fact that (3.1) holds,

so we remind the reader of this.

The construction of Θ uses a c.e. set B with the property that each column B[k] =

{x : ⟨k, x⟩ ∈ B} is finite and an initial segment of ω, that is x + 1 ∈ B[k] =⇒ x ∈ B[k].

We also have BInt = {⟨k, x⟩ : ⟨k, x+ 1⟩ ∈ B} which is also c.e. Let nk = |B[k]| − 1. Θ(A)

is defined to be the set BInt ∪ {⟨k, nk⟩ : k ∈ A}.

From this we can see the following.
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Lemma 3.2.5. Θ(A ∪ C) = Θ(A) ∪Θ(C).

Proof.

Θ(A ∪ C) = BInt ∪ {⟨k, nk⟩ : k ∈ A ∪ C}

= BInt ∪ {⟨k, nk⟩ : k ∈ A} ∪BInt ∪ {⟨k, nk⟩ : k ∈ C}

= Θ(A) ∪Θ(C)

Using this we can prove the following lemma.

Lemma 3.2.6. If A and C are not ∆0
2 then there are X,Y such that ∅ <e X ≤e A,

∅ <e Y ≤e C, and X ⊕ Y <e A⊕ C.

Proof. Take X = Θ(A ⊕ ∅), Y = Θ(∅ ⊕ C). Since A ⊕ ∅ ≡m A, by (3.1) we have that

0 <e X <e A as desired. Similarly 0 <e Y <e C. By Lemma 3.2.5 we have that

X ∪ Y = Θ(A⊕ C).

Next we show that X ⊕ Y ≡e X ∪ Y . It is clear that X ∪ Y ≤e X ⊕ Y , so we need to

consider the other direction. We have that

X ⊕ Y = {2x : x ∈ X} ∪ {2x+ 1 : x ∈ Y }

=BInt ⊕BInt ∪ {2⟨k, nk⟩ : k ∈ A⊕ ∅} ∪ {2⟨k, nk⟩+ 1 : k ∈ ∅ ⊕ C}

=BInt ⊕BInt ∪ {2⟨k, n⟩ : ⟨k, n⟩ ∈ X ∪ Y, k is even}∪

{2⟨k, n⟩+ 1 : ⟨k, n⟩ ∈ X ∪ Y, k is odd}

From this we see that X ⊕ Y ≤e X ∪ Y , as BInt ⊕BInt is c.e. So, as A⊕C is not ∆0
2, by

(3.1) we have that ∅ <e X ⊕ Y ≡e Θ(A⊕ C) <e A⊕ C.

Putting both lemmas together we get the following theorem.

Theorem 3.2.7. There are no strong super minimal pairs in the enumeration degrees.
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3.3 A strong minimal pair

In this section we use K-pairs to show that there is a strong minimal pair in the enumer-

ation degrees. We would like to thank the anonymous referee to an earlier version of this

paper for pointing out this proof.

For this proof we need some more facts about K-pairs.

Theorem 3.3.1 (The ideal K-property, Kalimullin [22]). For sets A,B,C ⊆ ω we have

the following:

1. If A,B are a K-pair and C ≤e B then A,C is a K-pair.

2. If both A,B and A,C are K-pairs then A,B ⊕ C is a K-pair.

We will only need 1 for our purposes.

Theorem 3.3.2 (The main K-property, Kalimullin [22]). If A,B are a nontrivial K-pair

then:

1. A ≤e B and B ≤e A.

2. A ≤e B ⊕ ∅′ and B ≤e A⊕ ∅′.

Now we look at a method of building K-pairs. For a set X we define LX = {σ ∈

2<ω : σ ≤lex X}. We have that LX ≤e X since if σ ≤lex D ⊆ X then σ ≤lex X. We

define RX = LX = {σ ∈ 2<ω : σ >lex X} ≤e X. LX , RX form a K-pair with witness

W = {⟨σ, τ⟩ : σ <lex τ}. Since ρ ≺ X ⇐⇒ ∃σ ∈ LX , τ ∈ RX [ρ ⪯ σ, τ ] we have that

X ⊕ X ≤e LX ⊕ RX . Now we have the tools needed to prove the existence of a strong

minimal pair.

Theorem 3.3.3. There is a strong minimal pair A,B in the enumeration degrees. Fur-

thermore A can be Π0
2 and B can be Π0

1.

Proof. Consider some non-low ∆0
2 set Y (For example Y = ∅′). Consider X = KY =⊕

eΨe(Y ). We will prove that A = RX and B = ∅′ is a strong minimal pair. Since Y is
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∆0
2 we have LX ≤e KY ≤e Y ≤e ∅′. Since Y is not low Y ′ ≰e ∅′ and Y ′ = KY ⊕KY ≡e

LX⊕RX , we must have RX ≰e ∅′. Consider any non-c.e. C ≤e A. By the ideal K-property

we have that C,LX is a K-pair. So we have that A = LX ≤e C⊕∅′ by the main K-property

since neither LX nor C is c.e. So A,B is a strong minimal pair.

Since Y is ∆0
2 we have that KY and LX are Σ0

2, so A = LX is Π0
2. ∅′ ≡e K∅ which is

Π0
1.

Now we know there are strong minimal pairs, a question we can ask is how many such

pairs are there? If A,B is a strong minimal pair and C ⊆ ω is such that B ≤e C and

A ≰e C then A,C is a strong minimal pair since A ≤e X ⊕ B ≤e X ⊕ C for any X such

that ∅ <e X ≤e A. If A ≰e B then there are 2ℵ0 many C ≥e B such that A ≰e C so the

existence of one strong minimal pair tells us there are 2ℵ0 many strong minimal pairs in

the enumeration degrees.

If we restrict our attention to the left side A of a strong minimal pair A,B then we

can observe that if C ≤e A is not c.e. then C,B is also a minimal pair and for any non-c.e.

X ≤e C we have C ≤e A ≤ X⊕B. So the existence of a strong minimal pair A,B tells us

that there are at least ℵ0 many degrees a such that a is the left side of a strong minimal

pair.

In the proof of Theorem 3.3.3 we chose the set X so that RX would be Π0
2 and not

below ∅′. If we take any X such that X ≰e ∅′ then either LX ≰ ∅′ or RX ≰ ∅′. Thus, by

the same argument from Theorem 3.3.3, either LX , ∅′ or RX , ∅′ is a strong minimal pair.

Since there are 2ℵ0 many X ⊆ ω but only countably many of them are below ∅′ there are

2ℵ0 many left sides of a strong minimal pair.

3.4 Forcing construction of a strong minimal pair

In this section we give a new proof of the existence of a strong minimal pair in the

enumeration degrees. This proof is longer than the one given in Section 3.3, but it is a

more direct construction and can be modified more easily.
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Theorem 3.4.1. There is a strong minimal pair A,B in the enumeration degrees.

Proof. The first step is to consider the requirements. We have:

Re : ∃Γ[Γ(Ψe(A)⊕B) = A] ∨Ψe(A) is c.e.

and

Ne : Ψe(B) ̸= A

SatisfyingNe gives us that A ̸≤e B and satisfyingRe gives us that for all degrees x such

that 0 < x < dege(A) we have x ∨ dege(B) = dege(A) ∨ degeB, so notably x ̸< dege(B).

If 0 < y ≤ dege(B) then y ̸≤ dege(A) as otherwise dege(A) ≤ y ∨ dege(B) = dege(B)

contradicting an Ne requirement. By downward density there is an x such that 0 < x <

dege(A) so we will have that B /∈ 0 and hence a strong minimal pair.

The Γ that we will use to satisfy Re will have a very specific form and will in fact be

chosen ahead of time. We define

Γe = {⟨a, p⟩ : ∃v[Dp = Dv ⊕ {⟨e, a, v⟩}]}

The intuitive idea is that we will enumerate ⟨e, a, v⟩ ∈ B to code the fact that Dv ⊆

Ψe(A) =⇒ a ∈ A. In other words, B[e] will look like an enumeration operator that

computes A from Ψe(A).

We will do two rounds of forcing to construct A and B. The first round will produce

a pair A(X), B(X) satisfying all Re requirements for each X ∈ 2ω. Then we will force

along 2ω to find an X such that A(X), B(X) satisfies all Ne requirements.

Definition 3.4.2. The forcing partial P = (P,≤) we will use will be defined as follows.

A condition p ∈ P will consist of a disjoint pair of computable sets (Ap, Cp) with Ap ∪Cp

coinfinite. We say that p ≤ q if Ap ⊇ Aq and Cp ⊇ Cq.

If G is a generic filter on P then we define AG =
⋃

p∈GAp. So we can think of p as

determining a subset of AG and a subset of AG . The definition of BG is more complex,
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and it will look at p /∈ G. We will give this definition later.

Definition 3.4.3. For p ∈ P and e, n ∈ ω we say p ⊩ n ∈ Ψe(A) if n ∈ Ψe(Ap) and

p ⊩ n /∈ Ψe(A) if n /∈ Ψe(Cp). We say n is determined for e by p and write p ⊩ Ψe(A)(n)

if either p ⊩ n ∈ Ψe(A) or p ⊩ n /∈ Ψe(A). We say p ⊩ Ψe(A) is c.e. if for all n we have

p ⊩ Ψe(A)(n).

It is clear from the definition that if p ∈ G and p ⊩ n ∈ Ψe(A) then n ∈ Ψe(AG);

similarly if p ⊩ n /∈ Ψe(A) then n /∈ Ψe(AG). If p ⊩ Ψe(A) is c.e. then, as each n is

determined for e by p, we have Ψe(AG) = Ψe(Ap) = Ψe(Cp) which is c.e. for any G ∋ p.

Lemma 3.4.4. For every p ∈ P, e ∈ ω we have either

1. There is q ≤ p such that q ⊩ Ψe(A) is c.e.

2. There is n ∈ ω and F ⊆fin Ap ∪ Cp such that (Ap ∪ F,Cp) ⊩ n ∈ Ψe(A) and

(Ap, Cp ∪ F ) ⊩ n /∈ Ψe(A).

Proof. Suppose we are given p ∈ P and case 2 fails. We will show that case 1 holds for

q = (Aq, Cp) where Aq is built as follows. We have requirements

Pn : n ∈ Ψe(Cp) ⇐⇒ n ∈ Ψe(Aq)

along with the requirement that Aq∪Cp is coinfinite and Aq and Cp are disjoint. We build

sequences Ap = A0 ⊆ A1 ⊆ . . . and m0 < m1 < . . . with {mt : t ∈ ω} disjoint from all As.

A requirement Pn is unmet at stage s if n /∈ Ψe,s(As) and a requirement needs attention

at stage s if it is unmet and there is some pair ⟨n, u⟩ ∈ Ψe,s such that Du ⊆ Cp

We start with m0 = max(Ap ∪ Cp) + 1 and A0 = Ap. At stage s let Pn be the

highest priority requirement that needs attention (if there is no such requirement then let

As+1 = As,ms+1 = ms + 1). So there is a pair ⟨n, u⟩ ∈ Ψe,s such that Du ⊆ Cp. Wait

until we see a possibly new pair ⟨n, v⟩ ∈ Ψe such that Dv ⊆ Cp and min(Dv \ As) > ms,

then define As+1 = As ∪Dv and ms+1 = min(As+1 ∪ Cp \ (ms + 1)). By assumption this
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search will always terminate eventually as otherwise F = ((ms + 1)∪Du) \ (Ap ∪Cp) will

have (Ap ∪ F,Cp) ⊩ n ∈ Ψe(A) and (Ap, Cp ∪ F ) ⊩ n /∈ Ψe(A), a contradiction.

So the sequence (ms)s is computable and increasing, and so the set Aq = Cp\{ms : s ∈

ω} is computable and has that Aq ∪Cp is coinfinite, Aq and Cp are disjoint and Ap ⊆ Aq.

If a requirement Pn ever needs attention then it is met no more than n stages later and

n ∈ Ψe(Aq). On the other hand if Pn never needs attention then n /∈ Ψe(Cp). So every

requirement is satisfied and q ⊩ Ψe(A) is c.e. as desired.

The key point of Lemma 3.4.4 is that if we cannot find a p that forces Ψe(A) is c.e.

and satisfy Re that way, then we can always find n that is not determined for e. We will

use this to satisfy Re using Γe while maintaining the choice of whether n ∈ Ψe(A) or not.

Next we will use this to build an embedding H : 2<ω → P and a function S : 2<ω →

{f :⊆ ω → ω : f is finite}. The idea is that for X ∈ 2ω we will have A(X) =
⋃

σ≺X AH(σ)

and if Ψe(A(X)) is not c.e. then for all σ ≺ X, |σ| > e =⇒ [S(σ)(e) ∈ Ψe(A(X)) ↔

σ̂1 ≺ X].

Construction of H and S. We define H,S as follows. At each stage of the construction

we will start considering a new Re requirement. When we can force that Ψe(A) is c.e.

we will do so immediately. For other requirements, case 2 of Lemma 3.4.4 will always

apply. These requirements will be considered active and will need to be handled at each

step. To help us keep track which requirements are active for a given σ we use a function

Z : 2<ω → {F ⊆fin ω}. We start with H(∅) = (∅, ∅), Z(∅) = ∅.

Given a node σ andH(σ), Z(σ) we ask if there is p ≤ H(σ) such that p ⊩ Ψ|σ|(A) is c.e.

If yes, then we can satisfy R|σ| by making sure we choose extensions of p for H(σ̂j).
Otherwise we redefine Z(σ) := Z(σ) ∪ {|σ|} so that R|σ| is now active and set p = H(σ).

Let 0 = e0, . . . , ek−1 list Z(σ). For each i < k define ni, Fi to be a pair satisfying case

2 of Lemma 3.4.4 for p and ei. By assumption of ei ∈ Z(σ) case 1 has failed so case 2

applies. Define F =
⋃

i<k Fi, S(σ)(ei) = ni, Z(σ̂j) = Z(σ).

Finally define H(σ̂1) = (Ap ∪ F,Cp) and H(σ̂0) = (Ap, Cp ∪ F ). Clearly p ≥

H(σ̂1), H(σ̂0) and for each i < k, H(σ̂1) ⊩ ni ∈ Ψei(A) and H(σ̂0) ⊩ ni /∈ Ψei(A).
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End of Construction.

For X ∈ 2ω we define A(X) =
⋃

σ≺X AH(σ) and

B(X) = {⟨e, a, v⟩ : (∃σ ≥lex X↾|σ|)

[a ∈ AH(σ) ∧ e ∈ dom(S(σ)) ∧Dv = {S(τ)(e) : τ ≺ σ, |τ | ≥ e, σ(|τ |) = 1}]}

Let us try to understand the definition of B(X). From the definition of Γe we want that if

⟨e, a, v⟩ ∈ B(X) then Dv ⊆ Ψe(A(X)) → a ∈ A(X). We also want that if Ψe(A(X)) is not

c.e. then for all a ∈ A(X) there exists a v such that ⟨e, a, v⟩ ∈ B(X) ∧Dv ⊆ Ψe(A(X)).

If σ ≺ X then AH(σ) ⊆ A(X) and {S(τ)(e) : τ ≺ σ, |τ | ≥ e, σ(|τ |) = 1}]} ⊆ Ψe(A(X)) so

that is where the conditions on v and a come from. The reason we need to add axioms for

σ ≥lex X↾|σ| instead of just σ ≺ X is that the latter is too restrictive and will not allow

us to meet the Ne requirements in the next stage.

Lemma 3.4.5. If X ∈ 2ω then the pair A(X), B(X) satisfies Re for each e.

Proof. Case 1: e /∈ dom(S(σ)) for any σ ≺ X. Then by construction, for σ = X↾(e + 1)

we have H(σ) ⊩ Ψe(A) is c.e. So as AH(σ) ⊆ A(X) ⊆ CH(σ) we have Ψe(A(X)) is c.e.

Case 2: we assume e ∈ dom(S(σ)) for all σ ≺ X with |σ| ≥ e. By induction along

σ ≺ X we can see that AH(σ) ⊆ A(X) ⊆ CH(σ). So by construction we have that

AH(σ̂1) \ AH(σ̂0) ⊆ A(X) ⇐⇒ S(σ)(e) ∈ Ψe(A(X)), for all σ ≺ X, |σ| ≥ e. Given

σ ≺ X, |σ| ≥ e, a ∈ AH(σ) and Dv = {S(τ)(e) : τ ≺ σ, |τ | ≥ e, σ(|τ |) = 1} we have that

Dv ⊆ Ψe(A(X)) and ⟨e, a, v⟩ ∈ B(X) so by definition of Γe, a ∈ Γe(Ψe(A(X)) ⊕ B(X)).

Therefore A(X) ⊆ Γe(Ψe(A(X))⊕B(X)).

On the other hand, if a ∈ Γe(Ψe(A(X)) ⊕ B(X)) then by definition of Γe and B(X),

there is some σ ≥lex X↾|σ| such that Dv = {S(τ)(e) : τ ≺ σ ∧ σ(|τ |) = 1}, so we have

Dv ⊆ Ψe(H(X)) and a ∈ AH(σ). If σ >lex X↾|σ| then let n be the first place that they

differ. So σ(n) = 1 and hence S(σ↾n)(e) ∈ Dv but H(X↾(n + 1)) ⊩ S(σ↾n)(e) /∈ Ψe(A).

So a was not put in Γe(Ψe(He(X)) ⊕ B(X)) by ⟨e, a, v⟩, a contradiction. So σ ≺ X and
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hence a ∈ AH(σ) ⊆ A(X). Therefore A(X) = Γe(Ψe(A(X))⊕B(X))

Now all that is left is to diagonalize and satisfy all Ne requirements.

Construction of X. We pick a path, X ∈ 2ω, satisfying one Ne requirement at a time.

We start with σ0 = ∅. Suppose at stage s + 1 we are given σs. Let Ys = σŝ1̂0ω. To

satisfy Ns ask if AH(σ̂1) ⊆ Ψs(B(Ys)). If yes then σs+1 = σŝ0 otherwise σs+1 = σŝ1.
Let X = ∪sσs.

End of Construction.

Lemma 3.4.6. If X is defined as above then A(X) and B(X) satisfy Ne for each e.

Proof. If X ≻ σŝ0, then AH(σ̂1) ⊆ Ψs(B(Ys)) and by definition of B, B(Ys) ⊆ B(X) so

AH(σ̂1) ⊆ Ψs(B(X)) but AH(σ̂1) ⊈ A(X) as σ̂0 ≺ X, so Ne is met. On the other hand

if X ≻ σŝ1, then AH(σ̂1) ⊈ Ψs(B(Ys)) and B(X) ⊆ B(Ys), so AH(σ̂1) ⊈ Ψs(B(X)), but

AH(σ̂1) ⊆ He(X). So Ne is satisfied.

So (A(X), B(X)) satisfy all the requirements and form a strong minimal pair.

An immediate corollary of this proof is that there are continuum many strong minimal

pairs in the enumeration degrees.

Corollary 3.4.7. For every set Y ∈ 2ω there is a strong minimal pair AY , BY such that

if Y ̸= Z then AY ̸= AZ , BY ̸= BZ .

Proof. Fix Y . We build X as in the construction of X from the proof of Theorem 3.4.1

but on even stages 2s we set X(2s) = Y (s) and on odd stages 2s+ 1 we chose X(2s+ 1)

to satisfy Ns as before.

It is also interesting to note the reduction A ⊕ B ≤e Ψe(A) ⊕ B is uniform in e with

Γe(Ψe(A)⊕B) = ∅ if Ψe(A) is c.e. Furthermore B can enumerate the set {e : 0 <e Ψe(A)}

by looking at which columns of B are nonempty. In this sense, we can think of A,B as

being a uniformly strong minimal pair.
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The forcing conditions are symmetric. By applying the same forcing steps to A =⋃
p∈H(x)Cp that we apply to A we can make it that both A,B and A,B are strong minimal

pairs (we can also construct examples like this with the K-pair construction). Note that

A⊕A,B will not be a strong minimal pair as LA, RA ≤e A⊕A and Lemma 3.2.1 says the

left side of a strong minimal pair cannot bound a non trivial K-pair.

If we wanted to modify the construction to get a super minimal pair we would quickly

run into problems. The design of B is very precise and if we add some point ⟨e, a, v⟩ to B

at some stage where we have ensured As ⊆ A, then it could be that already Dv ⊆ Ψe(As).

So we would have to ensure that a ∈ A, but then because we want Γi(Ψi(B)⊕A) = B we

are in the reverse situation and may need to add things to B. This could go on indefinitely

and end up making A and B cofinite or require us to add numbers to A or B that we have

ensured are not in A or B and break a negative condition. We could try increasing Cp so

that this case cannot happen, but the set {⟨e, a, v⟩ : p ⊩ Dv ⊆ Ψe(A)} is not computable

so we would be using a new partial order and Lemma 3.4.4 no longer holds.

3.5 The complexity of a strong minimal pair

Now we look at what oracle is needed to carry out the construction of the Section 3.4. To

work out if case 1 of Lemma 3.4.4 can be applied for a given condition p and number e we

ask if there exists q ≤ p such that Ψe(Aq) = Ψe(Cq). Since P is the set of pairs of disjoint

computable sets, we can encode it as a Π0
2 set of natural numbers. Similarly asking if

Ψe(Aq) = Ψe(Cq) is a Π0
2 question. So asking if case 1 of Lemma 3.4.4 can be applied is a

Σ0
3 question. Asking if a pair n, F witnesses case 2 of Lemma 3.4.4 holding is something

0′ can answer, so is not going to add to the complexity of the construction. Hence H and

S are ∆0
4.

A,B ≤T H ⊕ S ⊕X so we need to work out the complexity of X. To construct X we

ask questions of the form “is AH(σ̂1) ⊆ Ψe(B(σ̂1̂0ω))?” which is Π0
2(H ⊕ S). So X is

∆0
6. When the answer was yes, B increased in size. Therefore A is ∆0

6 and B is Π0
5.

Clearly there are some minor modifications that would reduce the complexity. We
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make some more serious changes to get the following result.

Theorem 3.5.1. There is a strong minimal pair A,B in the enumeration degrees such

that A is Σ0
2 and B is Π0

2 and quasi-minimal.

A set B is quasi-minimal if every function f with graph(f) ≤e B is a computable

function. In other words the only degree below dege(B) that is the image of a Turing

degree is 0e.

Proof. This is a finite injury argument. The idea is that we run the construction using

0′ as an oracle, but rather than building a whole tree we only build nodes along what we

believe to be on the true path (on X). 0′ will often be wrong about what the true path

is, and this is where the injury comes in.

We use a restricted set of forcing conditions, Q = {p ∈ P : Ap, Cp are finite}. In the

proof of for Lemma 3.4.4 the q we build to meet case 1 was in fact infinite, so to ensure

we satisfy Re when case 2 does not apply we will make A enumeration 1-generic.

Definition 3.5.2 ([3]). A set A is enumeration 1-generic if for every We either there is

u ∈We such that Du ⊆ A or there is F ⊆fin A such that for all u ∈We, Du ∩ F ̸= ∅.

For q ∈ Q we say q ⊩ Ψe(A) is c.e. if for all enumeration 1-generic A ⊇ Aq with A ⊇ Cq

we have that Ψe(A) = Ψe(Cq). We have a new version of Lemma 3.4.4 that applies to Q.

Lemma 3.5.3. For every q ∈ Q, e ∈ ω we have either

1. q ⊩ Ψe(A) is c.e.

2. There is n ∈ ω, F ⊆fin Aq ∪ Cq such that (Aq∪F,Cq) ⊩ n ∈ Ψe(A) and (Aq, Cq∪F ) ⊩

n /∈ Ψe(A).

Proof. Consider a pair q ∈ Q, e ∈ ω, and suppose that case 2 does not hold. Let G be an

enumeration 1-generic such that Aq ⊆ G ⊆ Cq. Then suppose that there is n such that

n ∈ Ψe(Cq) but n /∈ Ψe(G). Then consider the c.e. set W = {u : ⟨n, u⟩ ∈ Ψe}. Since G

is enumeration 1-generic and there is no u ∈ W such that Du ⊆ G we have that there is

E ⊆fin G such that for all u ∈W we have Du ∩ E ̸= ∅.
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Pick v ∈W such that Dv ⊆ Cq (since n ∈ Ψe(Cq) there must be some v). Now consider

F = (Dv \Aq) ∪ (E \ Cq). Dv ⊆ Aq ∪ F so (Aq ∪ F,Cq) ⊩ n ∈ Ψe(G). On the other hand

E ⊆ Cq ∪ F so for each u ∈ W , Du ⊈ Cq ∪ F , and thus (Aq, Cq ∪ F ) ⊩ n /∈ Ψe(G), a

contradiction. So it must be that Ψe(G) ⊇ Ψe(Cq). We already have Ψe(G) ⊆ Ψe(Cq) as

G ⊆ Cq, so Ψe(G) = Ψe(Cq). Since G was arbitrary, we have q ⊩ Ψe(A) is c.e.

The Γe we will use this time is a little different, only needing one witness from Ψe(A):

Γe = {⟨a, p⟩ : ∃m[Dp = {m} ⊕ {⟨e, a,m⟩}]}

Since we are making B a Π0
2 set we will start with all axioms in B and remove broken

axioms as we go.

Construction of Σ0
2 A and Π0

2 B. At each stage of the construction we will have a tuple

(σs ∈ 2<ω, ns = |σs|, Hs : ns + 1 → Q, (Fn,s)n<ns , Ss :⊆ ω × ns → ω,Bs)

with H = limsHs, S = lims Ss, X = lims σs, B =
⋂
Bs, Fn =

⋃
s
Fn,s, A =

⋃
nAH(n) =⋃

sAHs(ns) and A =
⋃

nCH(n) =
⋃
{Fn : X(n) = 0}. We will have Hs(n+1) < Hs(n) and

Fn,s ⊆ AHs(n+1) if σ(n)s = 1 and CHs(n) =
⋃
{Fk : σs(k) = 0, k < n}.

The requirements we will use are slightly different than in Section 3.4. We will break

each Re requirement into ω many requirements Re,n for n ≥ e.

Re,n : AH(n) ∪ Fn ⊆ Γe(Ψe(AH(n) ∪ Fn)⊕B)) ⊆ CH(n)

This means that if every Re,n requirement is satisfied (and X contains infinitely many 1’s)

then Γe(Ψe(A) ⊕ B) = A. If some Re,n cannot be satisfied then by Lemma 3.5.3 we will

have H(n) ⊩ Ψ(A) is c.e. The Ne requirements will not change.

Ni : Ψi(B) ̸= A
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And we have new requirements to make sure that A is enumeration 1-generic.

Ei : ∃u ∈Wi[Du ⊆ AH(i)] ∨ ∀u ∈Wi[Du ∩ CH(i) ̸= ∅]

And requirements to make sure that B is quasi-minimal.

Qe : Ψe(B) ̸= graph(f) for any non-computable f

The priority of the requirements is given by R0,n < · · · < Rn,n < Nn < En < Qn <

R0,n+1.

A requirement Re,n requires attention at stage s+1 if it has not been satisfied, σs(n) =

0 and there are m,u < s that show case 2 holds for (AHs(ns), CHs(n)) with m and Du (note

it may not hold for (AHs(n), CHs(n))). ∅′ can answer this question.

We say that a requirement Ni requires attention at stage s + 1 if it has not been

initialized and i < |σs|. There are two cases as to how Ni will act depending on whether

Fi,s ⊈ Ψe(Bs) or Fi,s ⊆ Ψe(D) for some finite D ⊆ Bs.

An Ei requirement needs attention at stage s + 1 if ns = i. It is only when satisfying

these Ei requirements that we will increase ns, so every Ei requirement will require attention

at some stage.

We say that a requirement Qi requires attention if it has not been initialized and

i < |σs| and there are x, y, z such that z ̸= y and ⟨x, y⟩, ⟨x, z⟩ ∈ Ψi(Bs).

Assume at stage s we have (ns, σs, Hs, (Fn,s)n<ns , Ss, AsBs). At stage s + 1 consider

the highest priority requirement that requires attention. All lower priority requirements

will be considered unsatisfied.

• Case one: the requirement is Re,n. By assumption we have m,u < s+1 that shows

e is in case 2 for (AHs(ns), CHs(n)). We set

– σs+1 = σs↾(n+ 1).

– ns+1 = n+ 1.
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– Fn,s+1 = Fn,s ∪Du ∪ CHs(ns) \ CHs(n).

– Fk,s+1 = Fk,s for k < n.

– Hs+1 = Hs↾(n+ 1) ∪ {(n+ 1, (AHs(ns), CHs(n) ∪ Fn,s+1))} if σ(n) = 0.

– Hs+1 = Hs↾(n+ 1) ∪ {(n+ 1, (AHs(ns) ∪ Fn,s+1, CHs(n)))} if σ(n) = 1.

– Ss+1 = Ss↾(ω × n+ 1) ∪ ((e, n),m).

The reason we add all the extra elements to Fn,s+1 is because Du may have contained

some of them and we need to respect the axioms on modified parts of B. For each

a ∈ Fn,s+1 and i, k such that k = Ss+1(i, n) we ask if {v : ⟨i, a, v⟩ ∈ Bs} = ω. If yes

then we define {v : ⟨i, a, v⟩ ∈ Bs+1} = {k}. Intuitively this change to B means that

a ∈ Γi(Ψi(A)⊕B) if and only if k ∈ Ψi(A).

• Case two: the requirement is Ni and Fi,s ⊈ Ψi(Bs). We have that i < ns, σs(i) = 0.

Since Fi,s ⊈ Ψi(Bs) we will redefine σs+1(i) to be 1 and add Fi,s to A.

– σs+1 = (σs↾i)̂1.
– ns+1 = i+ 1.

– Fk,s+1 = Fk,s for k ≤ i.

– Hs+1 = Hs↾ns+1 ∪ {(ns+1, (AHs(ns) ∪ Fi,s ∪ CHs(ns) \ CHs(i), CHs(i)))}.

– Ss+1 = Ss↾(ω × ns+1) and Bs+1 = Bs.

• Case three: the requirement is Ni and Fi,s ⊆ Ψi(Bs). We have that i < ns, σs(i) = 0

and there is finite D ⊆ B such that Fi,s ⊆ Ψi(D). We will add elements to A to

ensure that D will remain a subset of B. Let P = ({a : ∃e,m[⟨e, a,m⟩ ∈ D]} ∪

CHs(ns)) \ CHs(i+1). We set

– σs+1 = (σs↾i+ 1).

– ns+1 = i+ 1.

– Fk,s+1 = Fk,s for k ≤ i.

– Hs+1 = Hs↾ns+1 ∪ {(ns+1, (AHs(ns) ∪ P,CHs(i+1)))}.
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– Ss+1 = Ss↾(ω × ns+1) and Bs+1 = Bs.

• Case four: the requirement is Qi and ⟨x, y⟩, ⟨x, z⟩ ∈ Ψi(Bs). We have that i < ns

and a finite D ⊆ B such that ⟨x, y⟩, ⟨x, z⟩ ∈ Ψi(D). We will add elements to

A to ensure that D will remain a subset of B. Let P = ({a : ∃e,m[⟨e, a,m⟩ ∈

D]} ∪ CHs(ns)) \ CHs(i+1). We set

– σs+1 = (σs↾i+ 1).

– ns+1 = i+ 1.

– Fk,s+1 = Fk,s for k ≤ i.

– Hs+1 = Hs↾ns+1 ∪ {(ns+1, (AHs(ns) ∪ P,CHs(i+1)))}.

– Ss+1 = Ss↾(ω × ns+1) and Bs+1 = Bs.

• Case five: the requirement is Ei. Note that the other two cases do not increase ns.

Here is where we do so. Ask if there is u ∈Wi such that p = (AHs(ns)∪Du, CHs(ns)) ∈

Q. If not then set p = Hs(ns). Now take the least m ∈ Ap ∪ Cp and set

– σs+1 = σŝ0.
– ns+1 = ns + 1.

– Fns,s+1 = {m}.

– Fk,s+1 = Fk,s for k < ns.

– Hs+1 = Hs↾ns ∪ {(ns, p), (ns+1, (Ap ∪ Fns,s+1, Cp))}.

– Ss+1 = Ss and Bs+1 = Bs.

End of Construction.

Now we move on to the verification.

Lemma 3.5.4. A is Σ0
s and B is Π0

2.

Proof. The construction only removes points from B so B is ∅′-co-c.e. At each stage we

have that AHs(ns) ⊆ AHs+1(ns+1) so
⋃

sAHs(ns) is ∅′-c.e. At each stage the only value of
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Hs that changes is the final one, so for each n there is s such that H(n) = Hs(ns). Hence

A =
⋃

nAH(n) =
⋃

sAHs(ns) is Σ
0
2.

Lemma 3.5.5. A is enumeration 1-generic.

Proof. Consider a requirement Ei. Consider the last stage s where ns = i. Then at stage

s+1 we looked for u ∈Wi such that Du ∩CHs+1(i) = ∅. If there was such a u then we set

Du ⊆ AHs+1(i), and if not then, Du ∩CHs+1(i) ̸= ∅ for all u ∈Wi. Since no higher priority

requirements act after stage s we have nt ≥ i for all t > s and H(i) = Hs+1(i). Thus Ei is

satisfied.

Lemma 3.5.6. B is quasi-minimal.

Proof. Consider a requirement Qi. Suppose that graph(f) = Ψi(B). It is sufficient for us

to show that f is computable. Let s be a stage such that Qi is not injured at any stage

t ≥ s. We claim that graph(f) = Ψi(Bs). Since B ⊆ Bs we have graph(f) ⊆ Ψi(Bs) so

if graph(f) ̸= Ψi(Bs) then there are x, y ̸= z such that ⟨x, y⟩, ⟨x, z⟩ ∈ Ψ(Bs). This means

that we would have acted with some finite D ⊆ Bs and P at some stage ≤ s according to

the strategy for Qi.

Since D ⊈ B some Re,n requirement removed an axiom ⟨e, a,m⟩ ∈ D from B at some

stage t > s. Since Qi is not injured after stage s we must have n > i and the strategy for

Re,n put a ∈ Fn,t. So a /∈ AHt(n) ∪ CHt(n) ⊇ P ∪ CHs(i+1) ⊇ {a : ∃e,m[⟨e, a,m⟩ ∈ D]}, a

contradiction.

Lemma 3.5.7. A,B satisfies Re and Ni for all e, i ∈ ω.

Proof. Consider an Ni requirement. Let s be the last stage where Ni is injured. So

Fi = Fi,s as only higher priority requirements can change Fi,s. If Fi ⊆ Ψi(B) then

Fi ⊆ Ψi(Bt) for all t. So when Ni acted for the last time we must have set σt(i) = 0. Since

no lower priority requirements will change σt(i) we have X(i) = 0 and Fi ⊆ A.

If Fi ⊈ Ψe(B) then suppose that when Ni acted for the last time it set σt(i) = 0.

At this stage we had D ⊆ Bt so there must have been a later stage k where D ⊈ Bk.
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If we remove an axiom ⟨e, a,m⟩ from B then we have a ∈ Fn,k for some n ≤ nk. But

because lower priority requirements do not remove elements from Hk(i+ 1) we have that

a /∈ AHk(i+1) ∪ CHk(i+1) ⊇ P ∪ CHt(i+1) ⊇ {a : ∃e,m[⟨e, a,m⟩ ∈ D]}, a contradiction. So

Fi ⊆ A. Hence each Ni is satisfied.

Consider an Re requirement. We have two cases to deal with here. First, suppose that

all Re,n sub-requirements are satisfied. Now we show that Γe(Ψe(A)⊕B) = A. Consider

some a ∈ A. If {m : ⟨e, a,m⟩ ∈ B} = ω then we must have a ∈ Γe(Ψe(A) ⊕ B. If

{m : ⟨e, a,m⟩ ∈ B} ≠ ω then when we removed the missing elements at some stage s, we

ensured that there is m such that ⟨e, a,m⟩ ∈ B and m,Fk,s satisfied case 2 of Lemma 3.5.3

for e and (AHs(ns), CHs(k)) and a ∈ Fk,s. Since a ∈ A it must be that AHs(k)∪Fk,s ⊆ A; this

is because when we change Fk,s at some later stage t we ensure that Fk,s is a subset of one of

Fn,t, AHt(n)), CHt(n) for some n. So we have that m ∈ Ψe(A) and hence a ∈ Γe(Ψe(A)⊕B).

Now consider a /∈ A. Then there must be a least stage s with a ∈ Fk,s for some k. Since

a /∈ A there is some n such that a ∈ Fn ⊆ A. Since Re,n is satisfied and X(n) = 0 there is

a stage t and m,u, n′ such that a ∈ Du ⊆ Fn and m,Du satisfied case 2 of Lemma 3.5.3 for

e and (AHt(nt), CHt(n′)). Note it is possible that t is smaller than the stabilizing stage of

Fn,s and that n′ ̸= n but this does not matter. We would have used m,Du to satisfy Re,n′

and have {m} = {v : ⟨e, a, v⟩ ∈ B}. Since a /∈ A it must be that CHt(n′) ⊆ A as every

time we add a part of CHs(n) to A we make sure Fn′,s ⊆ A. Since m /∈ Ψe(CHt(n′) ∪Du)

we have m /∈ Ψe(A) and so a /∈ Γe(Ψe(A)⊕B).

Now suppose there is some Re,n that is never satisfied. Then we argue in a similar vein

to Lemma 3.5.3 that Ψe(A) = Ψe(CH(n)). Suppose not. Then there is m ∈ Ψe(CH(n)) \

Ψe(A). Consider the c.e. set {u : Du ⊆ CH(n), ⟨m,u⟩ ∈ We}. Since m /∈ Ψe(A) and A is

enumeration-1-generic there must be finite F ⊆ A \ CH(n) such that m ∈ Ψe(A ∪ F ) but

m /∈ Ψe(CH(n) ∪ F ). But then we would have usedm,F to satisfy Re,n at some sufficiently

large stage.

This completes the proof.

Is it possible for A or B to have lower complexity? Lemma 3.2.1 tells us that A cannot
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be ∆0
2 or, in fact, be above any non c.e. ∆0

2 set. So we have shown that Σ0
2 is a strict lower

bound on the complexity of A. As for B, we know from Theorem 3.3.3 that B can have

complexity Π0
1. B cannot have lower complexity because it cannot be c.e. We have shown

that both sides of a strong minimal pair can be Σ0
2 but we do not know if this can happen

at the same time.

Question 3.5.8. Is there a strong minimal pair in De(≤ 0′)?

We leave open the questions about super minimal pairs.

Question 3.5.9. Is there a super minimal pair in the enumeration degrees?

Question 3.5.10. Is there a super minimal pair in De(≤ 0′)?

Before we can hope to find an algorithm that decides the two quantifier theory of De

or De(≤ 0′), we need be able to find to find answers to the questions above.
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Chapter 4

Topological classification of classes

of enumeration degrees

4.1 Introduction

In this chapter we look at some of the interactions between the enumeration degrees and

topology. Kihara and Pauly [27] define degrees of points in arbitrary second-countable

topological spaces, using the notion of a countably based space.

Definition 4.1.1. A cb0 space X is a second countable T0 space given with a listing of a

basis (βe)e. Given a cb0 space X = (X, (βe)e) and a point x ∈ X the coded neighborhood

filter of x is NBaseX (x) = {e ∈ ω : x ∈ βe}. We define the degrees of a space X to be

DX = {a ∈ De : ∃x ∈ X[NBase(x) ∈ a]}.

Kihara and Pauly showed that De is the class of degrees of the ω-product of Sierpiński

space Sω, where S = ({0, 1}, {∅, {1}, {0, 1}}). For a point x ∈ Sω we have that NBase(x) ≡e

{n : x(n) = 1}. Sω is a universal second-countable T0 space. This can be seen by observing

that the map x 7→ NBaseX (x) is a topological embedding.

From the definition, every cb0 space X gives a class of enumeration degrees DX . From

the universality of Sω we have that every class C of enumeration degrees is DX for some

cb0 space X , namely X = {x ∈ Sω : deg(NBase(x)) ∈ C}. So the study of subclasses of
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the enumeration degrees is the study of cb0 spaces.

In this chapter we answer several open questions of Kihara, Ng and Pauly [26], focusing

on the topological separation axioms, and how they interact with classes of enumeration

degrees. The separation axioms that we explore are as follows.

Definition 4.1.2. A topological space is considered

• T0 (Kolmogorov) if for any x ̸= y there is an open set U such that either x ∈ U, y /∈ U

or x /∈ U, y ∈ U . In other words, points can be distinguished by the topology.

• T1 (Fréchet) if for any x ̸= y there are open U, V such that x ∈ U, y /∈ U and

x /∈ V, y ∈ V . Equivalently if {x} is closed for any x.

• T2 (Hausdorff) if for any x ̸= y there are disjoint open U, V such that x ∈ U, y ∈ V .

• T2.5 (Urysohn) if for any x ̸= y there are open sets U, V such that x ∈ U , y ∈ V and

U ∩ V = ∅.

• Submetrizable if there is a coarser topology on the space that is metrizable. In other

words, if X = (X, (βe)e) is submetrizable then there is a collection of X -open sets

(αe)e such that (X, (αe)e) is metrizable.

We have the following series of implications:

metrizable =⇒ submetrizable =⇒ T2.5 =⇒ T2 =⇒ T1 =⇒ T0

It is well known that this hierarchy is strict for second countable spaces. Kihara, Ng and

Pauly [26] prove that every enumeration degree is the degree of a point in a decidable,

effectively submetrizable space, so the non-metrizable separation axioms do not give us

new classes of degrees without additional computably assumptions. However we can use

the separation axioms to classify classes of degrees.

Definition 4.1.3. Given a collection of cb0 spaces T we say that a class C of enumeration

degrees is T if there is some X ∈ T such that DX = C.
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We have the same implications of the separation axioms for classes of degree as we do

for spaces, but because multiple different cb0 spaces may give rise to the same class of

degrees, it is not clear that these implications are strict.

Kihara, Ng and Pauly [26] gave some separations for this classification of classes of

degrees. They showed that De is T0 but not T1, that cylinder-cototal degrees are T1 but not

T2, and that DNω
rp

is T2 but not T2.5. They did not show that T2.5 and submetrizable are

different notions for classes of degrees and asked as a question if there is a T2.5 class that is

not submetrizable. They also showed that the degrees of the Gandy-Harrington topology

do not arise from any metrizable space, giving a separation between submetrizable and

metrizable for classes of degrees.

Kihara, Ng and Pauly [26] suggested some candidates for classes that could be T2.5 but

not submetrizable. They introduced the Arens co-d-CEA degrees and the Roy halfgraph

above degrees. Both classes arise from spaces that are T2.5 but not submetrizable. Another

candidate class introduced by Kihara, Ng and Pauly was the doubled co-d-CEA degrees.

This class contains both the Arens co-d-CEA degrees and the Roy halfgraph degrees and

arises from a space that is T2 but not T2.5. Kihara, Ng and Pauly asked if the doubled

co-d-CEA degrees are a T2.5 class or not.

In Section 4.5 we answer this question and show that the doubled co-d-CEA degrees

are not T2.5, giving a new example of a class that is T2 but not T2.5. As a result of this

we have that the class of degrees that are Arens co-d-CEA or Roy halfgraph is a strict

subset of the doubled co-d-CEA degrees. This separation is of interest in its own right

because the doubled co-d-CEA degrees arise from a quasi-Polish space and the previous

separation uses Nω
rp which is not quasi-Polish.

In Section 4.6 we prove that the Arens co-d-CEA degrees and the Roy halfgraph degrees

are both not submetrizable answering the question of Kihara, Ng and Pauly about the

distinction between T2.5 and submetrizable. In the proof of these results we introduce a

general method that could be used to get similar results. We also introduce the notion of

a space being effectively submetrizable as part of the general method.
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In Section 4.7 we look at the relationship between the Arens co-d-CEA degrees and

the Roy halfgraph degrees and prove that neither class is contained in the other. This

answers another question of Kihara, Ng and Pauly [26].

Kihara, Ng and Pauly [26] extend the notion of quasi-minimal to give a strong way in

which a class of enumeration degrees can be not T . An enumeration degree a is quasi-

minimal if it is not above any nonzero total degrees. The following extends this idea to

general classes.

Definition 4.1.4. For a cb0 space X we say that a degree a ∈ De is X quasi-minimal if

a /∈ DX and for all b ∈ DX if b ≤ a then b = 0.

For a class C ⊆ De and a set of cb0 spaces T , we say that C is T quasi-minimal if for

every X ∈ T there is a ∈ C such that a is X quasi-minimal.

Kihara, Ng and Pauly show that De is T1-quasi-minimal and as a result any class of

enumeration degrees that is downwards dense in the enumeration degrees (that is for, each

a >e 0 there is a b in our class such that 0 <e b ≤e a), like the class of semicomputable

degrees (introduced by Jockusch [19] and proven to be downwards dense by Kihara, Ng

and Pauly [26]) and the class of enumeration-1-generic degrees (introduced by Badillo and

Harris [4] and proven to be downwards dense by Badillo, Liliana, Harris and Soskova [5]),

is also T1-quasi-minimal. They also prove that the telegraph-cototal degrees, a T1 class

containing the doubled co-d-CEA degrees, are quasi-minimal for countable disjoint unions

of effective T2 spaces. A question they ask is if there is a quasi-minimal separation of T2

and T2.5.

In section 4.3 we modify the proof that the cylinder-cototal degrees are not T2 to show

that they are T2-quasi-minimal. In section 4.4 we answer the above question by modifying

the proof that DNω
rp

is not T2.5 to show that it is T2.5 quasi-minimal. An open question we

ask is if there is a quasi-minimal separation of T2.5 from submetrizable.

The continuous degrees are a subclass of the enumeration degrees, introduced by

Miller [34], and come from computably represented metric spaces. They are a proper

subclass of the cototal degrees and have some interesting interactions with the structure
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of the enumeration degrees [2]. Kihara and Pauly [27] show that their redefinition of the

degrees of a space coincide with Miller’s definition when the basis is given by the collection

of balls centered at rational points with rational radii.

In Section 4.8 we look at metrizable cb0 spaces that have different bases than the basis

of rational radius balls centered at rational points. We show that there is a metrizable cb0

space X such that DX contains all quasi-minimal doubled co-d-CEA degrees. As a result

the doubled co-d-CEA degrees are not metrizable quasi-minimal. Hence neither are the

Arens co-d-CEA or Roy halfgraph degrees. So a different T2.5 space is needed if one wants

to get a quasi-minimal separation of T2.5 from submetrizable. In this section we also ask

about the degrees of points in decidable, metrizable cb0 spaces. We show that there is a

decidable, metrizable cb0 space whose degrees contain a quasi-minimal degree. Hence the

class of degrees of points in decidable, metrizable cb0 spaces is larger than the continuous

degrees. We leave open the question of whether there is any degree that is not the degree

of a point in a decidable, metrizable cb0 space.

4.2 Preliminaries

In this section we go over some background notions related to cb0 spaces that are needed

for this chapter. More specific definitions, for instance the definition of a particular class

of degrees, will be given in the relevant section. The content of this section gives some

background and should apply to the whole chapter.

4.2.1 Represented spaces

Represented spaces are a way of defining notions of computability for arbitrary spaces,

using the notions of computability on ωω. These are a key tool in the study of computable

analysis [45].

Definition 4.2.1. A represented space X is a set X and a partial surjection δ :⊆ ωω → X.

Given a represented space X = (X, δ) and a point x ∈ X we say that a point p ∈ ωω is a

δ-name for x if δ(p) = x. We define NameX (x) = {p : δ(p) = x}.
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For an example one nonstandard representation of ωω is to say that p is a δ-name for

f ∈ ωω if range(p) = {⟨n,m⟩ : f(n) ̸= m}. In this example it is possible that a δ-name for

a point f does not compute f , even though it describes f uniquely.

For arbitrary represented spaces X ,Y Kihara and Pauly [27] define a reducibility notion

of points ≤T, by x : X ≤T y : Y ⇐⇒ ∀ ∈ NameX (x)∃q ∈ NameY(y)[p ≤T q]. Kihara and

Pauly study the degree spectra of represented spaces in [27].

For cb0 spaces X = (X, (βe)e) there is a natural representation δ given by δ(p) = x if p

is an enumeration of NBase(x). This is well defined because X is a T0 space: if x ̸= y ∈ X

then there is some open U such that x ∈ U, y /∈ U or y ∈ U, x /∈ U , so there is an e

such that x ∈ βe ⊆ U and y /∈ βe or vice versa. Hence NBase(x) ̸= NBase(y). Kihara

and Pauly [27] observe that when we use this representation of cb0 spaces X ,Y, we have

x : X ≤T y : Y if and only if NBaseX (x) ≤e NBaseY(y).

The example of a represented space above comes from a cb0 space, the ω product of

the cofinite topology, (ωcof)
ω. Here a subbasis can be given as β⟨n,m⟩ = {f : f(n) ̸= m}

and the representation we used above was δ(p) = f if range(p) = NBase(ωcof)ω(f). For a

cb0 space we technically need a basis rather than a subbasis, however a subbasis can be

turned to into a basis by taking finite intersections. Since {e : x ∈ βe} ≡e {σ ∈ ω<ω : x ∈

βσ(0) ∩ · · · ∩ βσ(|σ|−1)}, using a subbasis rather than a basis will not change the degree of

a point. In this thesis we will sometimes specify and work with a cb0 space in terms of a

subbasis rather than a basis.

Our remark above about a (ωcof)
ω-name for f not necessarily computing f can be

stated as saying that while f : (ωcof)
ω ≤T f : ωω there are f such that f : ωω ≰T f :

(ωcof)
ω. The degrees of (ωcof)

ω are the degrees of complements of graphs of total functions.

This class is known as the graph cototal degrees [43, 1]. This class is known to be a proper

subclass of the cototal degrees [1] and to contain non-total degrees.

As a tool in Sections 4.3, 4.4 and 4.5 we will make use of multi-representations [40].

The difference between a multi-representation and a single valued representation is that

in a multi-representation δ :⊆ ωω ⇒ X is a multi function. So a point p ∈ ωω may be a
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name for more than one distinct point in X.

4.2.2 Computability of spaces and functions

For represented spaces X ,Y and a partial function f :⊆ X → Y we say that a partial

function F :⊆ ωω → ωω is a realizer, if f(δX (p)) = δY(F (p)) for every p ∈ dom(f ◦ δX ).

We say that a function f :⊆ X → Y is computable if it has a computable realizer.

For topological spaces there are several different notions of a computable representa-

tion. Since we are interested in the degrees of a space, we want a notion of computability

that prevents coding non-computable information directly into the basis.

Definition 4.2.2. For a cb0 space X = (X, (βe)e) we say X is decidable if the subset

relation between positive Boolean combinations of ∅ and (βe)e is computable. We say X is

strongly decidable if the subset relation between positive Boolean combinations of ∅, (βe)e

and (βe)e is computable.

Many natural spaces are strongly decidable, for instance 2ω, ωω, Sω, [0, 1]ω and (ωcof)
ω.

In section 4.6 we will introduce another notion of computability for spaces—that of being

effectively submetrizable.

4.3 The cylinder-cototal degrees are T2-quasi-minimal

The cylinder-cototal degrees were introduced by Kihara, Ng and Pauly [26]. They are

defined to be the degrees of the cocylinder space ωω
co = (ωω, (βe)e) where βe = {x ∈ ωω :

σe ⊀ x} for an effective enumeration (σe)e of ω<ω. This is a coarser topology than the

usual one on ωω because βe =
⋃
{[σ] : σ ∈ ω|σe|, σ ̸= σe} is open under the usual topology.

The space is T1 but not T2. Kihara, Ng and Pauly [26] prove that the cylinder-cototal

degrees are a subclass of the graph cototal degrees by embedding ωω
co into (ωcof)

ω, the

space of the graph cototal degrees. One of the reasons the cylinder-cototal degrees are

interesting is that they give us a separation of T1 and T2 for classes of degrees.

Theorem 4.3.1 (Kihara, Ng, and Pauly [26]). The cylinder-cototal degrees are not T2.
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By modifying the proof of the above theorem we are able to turn this into a quasi-

minimal separation.

Theorem 4.3.2. The cylinder-cototal degrees are T2-quasi-minimal.

To prove their result, Kihara, Ng and Pauly prove two important lemmas involving

Hausdorff spaces and network representations of spaces. To state these lemmas we need

to introduce the terminology used.

Definition 4.3.3. Given a topological space X , a point x ∈ X and a collection N ⊆ P(X)

have the following.

• N is a network at x if for each open U ∋ x there is N ∈ N such that x ∈ N ⊆ U .

• N is a strict network at x if it is a network at x and x ∈ N for each N ∈ N .

• N is a cs-network for X if for any convergent sequence (xn)n and open U ∋ limn xn

there is N ∈ N and m ∈ ω such that {xn : n > m} ⊆ N ⊆ U .

Given a space X and a countable cs-network N ⊆ P(X), the representation of X from N

is δN where δN (p) = x if {Np(e) : e ∈ ω} is a strict network at x.

For some simple examples of cs-networks consider the following. If X = (X, (βe)e) is a

cb0 space then (βe)e is a cs-network. If X is regular then (βe)e is a cs-network.

A network representation does not necessarily give us a class of enumeration degrees

like a cb0 space does, but Kihara, Ng and Pauly [26] make the following observation that

connects points in network representations with enumeration degrees.

Observation 4.3.4. If X = (X, (βe)e) is a cb0 space and Y = (Y,N ) is a space with a

countable cs-network, then y : Y ≤T x : X if and only if there is J ≤e NBaseX (x) such

that {Ne : e ∈ J} is a strict network at y.

To prove Theorem 4.3.1 Kihara, Ng and Pauly [26] consider a different type of repre-

sentation, they call the closure representation.
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Definition 4.3.5. Given a space X = (X,N ) with a countable cs-network N , the closure

representation of X is δN where δN (p) = x if {Np(e) : e ∈ ω} is a network at x and

x ∈ Np(e) for all e ∈ ω. For a point x ∈ X we say that x is nearly computable if there

is a computable δN name for x. For a space Y and point y ∈ Y we say that y is nearly

X -quasi-minimal if

∀x ∈ X [x : X ≤T y : Y =⇒ x is nearly computable]

The main difference between the closure representation and the network representation

is that the closure representation includes more names for a point x. So being nearly

computable is a weaker notion that being computable as a point x may have a computable

δN name, but no computable δN name.

In general, these representations are not single valued; that is, a name p ∈ ωω may be a

name for multiple distinct points. The following observation by Kihara, Ng and Pauly [26]

gives a condition for the closure representation to be single valued.

Observation 4.3.6. If X is a T2 space and N is a cs-network for X then δN is a single

valued representation of X .

From this observation we can conclude that if X is a T2 space and N is a countable

network for X then there are only countably many points with a computable name as

each computable p ∈ ωω represents at most one point and there are only countably many

computable p ∈ ωω.

Recall that a function f ∈ ωω is A-computably dominated if there is an A-computable

function g such that f(n) ≤ g(n) for all n. Given a space X = (X,N ) the disjointness

diagram of X is the set {(e, i) : Ne ∩Ni = ∅}. Now we can state the main lemma used to

prove Theorem 4.3.1.

Lemma 4.3.7 (Kihara, Ng, Pauly [26]). Let f ∈ ωω be a function that is not C ′-

computably dominated. Then for any second countable X = (X,N ) with C-c.e. disjoint-

ness diagram we have that f : ωω
co (viewing f as a point in ωω

co) is nearly X -quasi-minimal.
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Since we are modifying Kihara, Ng and Pauly [26]’s proof of Lemma 4.3.1, we will give

it here.

Proof of Theorem 4.3.1. Let X = (X, (βe)e) be a T2 cb0 space. Let C be an oracle such

that the disjointness diagram of (βe)e is C-c.e. By Lemma 4.3.7, if f is not C ′-computably

dominated, then f : ωω
co is nearly X -quasi-minimal. Since X is T2, there are only countably

many points in X that are nearly C-computable by Observation 4.3.6. However, there are

uncountably many functions which are not C ′-computably dominated. Thus, one can

choose a function which is not T-equivalent to any nearly computable point in X .

The above proof is close to a quasi-minimal separation. If f ∈ ωω
co is not C

′-computably

dominated then there are only countably many degrees in DX that might be below

NBaseωω
co
(f). We now use forcing to avoid computing any of these degrees.

Lemma 4.3.8. Given a set A and a countable collection of non-c.e. sets (Ci)i there is

a function f such that f is not A-computably dominated and for each i we have Ci ≰e

NBaseωω
co
(f).

Proof. We construct f in stages with f = ∪fs.

At stage s = 2n we consider the nth A-partial computable function φA
n . If φA

n (|fs|)↓

then set fs+1 = fs ∪ {(|fs|, φA
n (|fs|) + 1)}, otherwise fs+1 = fs. At stage s = 2⟨e, i⟩+1 we

ask if there is σ ≻ fs such that Ψe({τ : τ ⊥ σ}) ⊈ Ci then take fs+1 = σ, otherwise set

fs+1 = fs.

The even stages give us that f is not A-computably dominated. So we now only

need to show f satisfies the other condition. Suppose that Ci = Ψe(NBaseωω
co
(f)). Let

s = 2⟨e, i⟩ + 1. If there was σ ≻ fs such that Ψe({τ : τ ⊥ σ}) ⊈ Xi then we would

have f ≻ σ for one such σ and Ψe(NBaseωω
co
(f)) ⊈ Ci. So there is no such σ and thus

Ci = Ψe(NBaseωω
co
(f)) ⊆ Ψe({τ : τ ⪯̸ fs}) ⊆ Ci. Hence Ci is c.e., a contradiction.

Using this we can modify the proof Theorem 4.3.1 to get a quasi-minimal separation.

Proof of Theorem 4.3.2. Let X = (X, (βe)e) be a T2 cb0 space. Let C be an oracle such

that the disjointness diagram of (βe)e is C-c.e. Let (Ci)i be a listing of sets whose degrees
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are those of the non-computable nearly C-computable points in X . By Observation 4.3.6

we know that we can find such a listing. From Lemma 4.3.8 we can find an f that is not

C ′-computably dominated and has Ci ≰e NBaseco(f) for any i. By the proof of Theorem

4.3.1 we have that f is nearly X -quasi-minimal. Since f is not ∅′-computably dominated

we have that NBaseωω
co
(f) is not c.e. and hence f is X -quasi-minimal

4.4 A T2.5-quasi-minimal class

In this section we look at the relatively prime integer topology. This topology is defined

as follows. Let Z+ be the set of positive integers. The basic open sets in this topology are

{a+ bZ : gcd(a, b) = 1}. We write Nrp = (Z+, {a+ bZ : gcd(a, b) = 1}) for the cb0 space.

It is known that Nrp is second countable, T2 and not T2.5 [44].

Proposition 4.4.1. Nrp is strongly decidable, and the sets a + bZ, a+ bZ are uniformly

computable.

Proof. Given a finite collection of basic open sets (a0 + b0Z), . . . , (an−1, bn−1Z) let bn =∏
i<n bi. For each k < n we can uniformly compute ck,0 < · · · < ck,nk−1 < bn such that

ak + bkZ =
⋃

i<nk
ck,i + bnZ. So we have that the subset relationships between Boolean

combinations of ((a0 + b0Z), . . . (an−1, bn−1Z), ∅) is the same as the subset relationships

between Boolean combinations of ({c0,i : i < n0}, . . . {cn−1,i : i < nn−1}, ∅) and is hence

decidable uniformly in a0, . . . , an−1, b0 . . . , bn−1. Hence the subset relationships between

Boolean combinations of ({a+ bZ : gcd(a, b) = 1}, ∅) is decidable.

To see that Nrp is strongly decidable, we first show that for any a, b, c, d (no relatively

prime assumptions) (a + bZ) ∩ (c + dZ) ̸= ∅ if and only if a ≡ c mod gcd(b, d). If a ≡ c

mod gcd(b, d) then a = c + k gcd(b, d) for some k, so a = c + k(nd −mb) for some m,n.

So a+kmb = c+knd ∈ (a+ bZ)∩ (c+dZ). On the other hand a+ bm ≡ a mod gcd(b, d)

and c+ dn ≡ c mod gcd(b, d) so if a ̸≡ c mod gcd(b, d) then (a+ bZ) ∩ (c+ dZ) = ∅.

So (a+bZ)∩(c+dZ) ̸= ∅ if and only if (a+bZ)∩(c+gcd(b, c)Z) ̸= ∅. Let F = {0 ≤ c <

b : (∀d | b)[gcd(c, d) > 1∨(c+dZ)∩(a+bZ) ̸= ∅}. Then we have that a+ bZ =
⋃

c∈F c+bZ.
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So we get that a+ bZ is uniformly computable and using the same argument as we did to

show Nrp is decidable we can show that Nrp is strongly decidable.

Kihara, Ng and Pauly[26] proved that the notions of T2 and T2.5 are distinct for classes

of enumeration degrees.

Theorem 4.4.2. D(Nrp)ω is not T2.5.

In this section we modify the proof of the above theorem show that there are T2 classes

of degrees that are T2.5-quasi-minimal.

Theorem 4.4.3. D(Nrp)ω is T2.5-quasi-minimal.

The idea behind the proof of Theorem 4.4.2 is similar to that or Theorem 4.3.1, but

instead of looking at the closure representation from Definition 4.3.5, Kihara, Ng and

Pauly introduce a new representation.

Definition 4.4.4. Given a space X = (X,N ) with countable cs-network, we define the

representation δ̃N where δ̃N (p) = x if {Np(e) : e ∈ ω} is a network at x and Np(e)∩Np(i) ̸= ∅

for all e, i ∈ ω. For a point x ∈ X we say that x is ∗̃-nearly computable if there is a

computable δ̃N name for x. For a space Y and point y ∈ Y we say that y is ∗̃-nearly

X -quasi-minimal if

∀x ∈ X [x : X ≤T y : Y =⇒ x is ∗̃-nearly computable]

A δN -name for a point x is a δ̃N -name for x, but a δ̃N -name for a point x may not be

δN -name. As we will see δ̃N is not necessarily single valued on T2 spaces, but Kihara, Ng

and Pauly observed that it is single valued on T2.5 spaces.

Observation 4.4.5. If X is a T2.5 space and N is a cs-network for X then δ̃N is a single

valued representation of X .

Rather than working directly with Nrp Kihara, Ng and Pauly use the fact that Nrp is

countable and nowhere T2.5 and prove results about an arbitrary countable nowhere T2.5
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space H. We say H is nowhere T2.5 if for all open U, V ⊆ H we have that U ∩ V ̸= ∅. It is

known that Nrp is nowhere T2.5 [44]. If H = (ω, (He)e) is nowhere T2.5 then a witness for

being nowhere T2.5 is a set Λ ⊆ ω3 such that He, Hd ̸= ∅ then the set Λe,d = {n : (e, d, n) ∈

Λ} is nonempty and Λe,d ⊆ He ∩Hd.

Lemma 4.4.6 (Kihara, Ng, Pauly). Let H = (ω, (He)e) be a represented, second countable

space with c.e. witness for being nowhere T2.5 and let x ∈ ωω be 1-C-generic. Then for

any space Y = (Y,N ) which is strongly decidable relative to C and N is a cs-network, we

have x : Hω is ∗̃-nearly Y-quasi-minimal.

In the case of Nrp Proposition 4.4.1 tells us that there is a computable witness that

Nrp is nowhere T2.5 namely Λ = {(n, ⟨a, b⟩, ⟨c, d⟩) : n ∈ a+ bZ ∩ c+ dZ}. So the lemma

can be applied here.

Proof of Theorem 4.4.2. Let X = (X,N ) be a T2.5 space. Let C be an oracle such that X

is strongly decidable relative to C. By Lemma 4.4.6, for any 1-C-generic point x ∈ ωω we

have that x : (Nrp)
ω is ∗̃-nearly X -quasi-minimal. By Observation 4.4.5 since X is a T2.5-

space, there are only countably many points in X that are ∗̃-nearly computable. However,

there are uncountably many points in ωω which are 1-C-generic. Thus, one can choose

such a point which is not ≡T-equivalent (in terms of (Nrp)
ω) to any ∗̃-nearly computable

points in X .

In the above proof we use a counting argument to separate the two classes. Using

forcing we can get a stronger result of X -quasi-minimality.

Lemma 4.4.7. Given a countable cb0 space H = (ω, (He)e), a countable collection of non-

c.e. sets (Xi)i and set C, there is a 1-C-generic set x ∈ ωω such that 0 <e NBaseHω(x)

and Xi ≰e graph(x) for each i.

Proof. We will use forcing to construct x in stages with x =
⋃

s xs. We fix He ̸= ω, ∅ and

points a ∈ He, b /∈ He.

At stage s = 3n let Wn be the nth c.e. set. If ⟨|xs|, e⟩ ∈ Wn then set xs+1 = xŝb
otherwise xs+1 = xŝa. This ensures that Wn ̸= NBaseHω(x).
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At stage s = 3n + 1 let Vn be the nth C-c.e. subset of ω<ω. If there is σ ∈ Vn such

that xs ≺ σ then set xs+1 = σ otherwise set xs+1 = xs.

At stage s = 3⟨e, i⟩ + 2 let Ψe be the eth enumeration operator. Ask if there is a

number n /∈ Xi and σ ≻ xs such that n ∈ Ψe(graph(σ)). If yes then set xs+1 = σ,

otherwise xs+1 = xs.

At stages 3n we ensured that NBaseHω(x) is not c.e. and at stages 3n + 1 we ensure

that x is 1-C-generic. Now we need to show that Xi ≰e x for any i. Suppose that

Xi = Ψe(graph(x)). Then let s = 3⟨e, i⟩ + 2. If there is an extension σ ≻ xs such that

Ψe(graph(σ)) ⊈ Xi then we would have x ≻ σ for some such σ and Ψe(graph(x)) ⊇

Ψe(graph(σ)) ⊈ Xi, so it must be that Ψe(graph(σ)) ⊆ Xi for all σ ≻ xs. So we have

Xi = Ψe(x) ⊆ {n : ∃σ ≻ xs, n ∈ Ψe(graph(σ))} ⊆ Xi. So we have that Xi is c.e., a

contradiction.

Now we can replace the counting argument used in the proof of Theorem 4.4.2 to get

the quasi-minimal separation.

Proof of Theorem 4.4.3. Let X = (X, (βe)e) be a T2.5 space. Let C be an oracle such that

X is strongly decidable relative to C. Let (Xi)i be a list of non-c.e. sets with enumeration

degrees those of the non-computable ∗̃-nearly computable points in X . Since the open

sets of Nrp are uniformly computable we have that x : (Nrp)
ω ≤T x : ωω for all x, so

by Lemma 4.4.7 there is a 1-C-generic x such that x : (Nrp)
ω is non-computable and

z : X ≤T x : (Nrp)
ω means that z : X is computable or z : X is not ∗̃-nearly-computable.

But from Lemma 4.4.6 we have that x : (Nrp)
ω is ∗̃-nearly X -quasi-minimal, so x : (Nrp)

ω

is X -quasi-minimal.

4.5 The doubled co-d-CEA degrees

In this section we show that the doubled co-d-CEA degrees are not T2.5. Kihara, Ng and

Pauly [26] introduced the doubled co-d-CEA degrees as the degrees of points in the product

of the double origin topology DOω. Rather than working directly with this topology it is
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easier for us to work with the characterization in terms of sets that they came up with.

Definition 4.5.1. A set X = Y ⊕ Y c ⊕ (A ∪ P ) ⊕ (B ∪ N) is doubled co-d-CEA if

(A ∪ B)c, P,N are Y -c.e. and A,B, P,N are disjoint. A degree is doubled co-d-CEA if it

contains a doubled co-d-CEA set.

Since the doubled origin space is T2 the doubled co-d-CEA degrees are a T2 class.

Question 4 of the open questions asked by Kihara, Ng and Pauly [26] is if these degrees

are a proper T2 class. We show that they are a proper T2 class.

Theorem 4.5.2. The doubled co-d-CEA degrees are not T2.5.

Proof. We will make use of the ∗̃-name concept, Definition 4.4.4, from Section 4.4 again

in this proof.

Consider some T2.5 cb0 space X = (X, (βe)e). Let Y be such that X is strongly

Y -decidable. We will build coinfinite Y -c.e. sets P,N ⊆ C such that for any partition

A⊔B = Cc we have that the doubled co-d-CEA degree Y ⊕ Y c ⊕ (A∪P )⊕ (B⊕N) does

not enumerate the name of any non ∗̃-nearly-Y ′-computable x ∈ X. By doing this we

will have constructed a size continuum class of doubled co-d-CEA degrees, only countably

many of which can contain the name of a point in X . Hence we will have shown that

DDOω ⊈ DX .

Let Q = {(Cq, Pq, Nq) : Pq ∩ Nq = ∅ ∧ Pq, Nq ⊆ Cq ⊆fin ω}. For p, q ∈ Q, u ∈ ω and

a ⊆ u we define the following:

• q ⪯ p if Cq ⊇ Cp, Pq ⊇ Pp, Nq ⊇ Np.

• q ⪯u p (q extends p above u) if q ⪯ p and Cq↾u = Cp↾u, Pq↾u = Pp↾u,Nq↾u = Np↾u.

• a ◁u p (a is a p-compatible choice of A↾u) if a ⊆ u \ Cp.

• p(a, u) = Y ⊕ Y c ⊕ (a ∪ Pp)⊕ (u \ (Cp ∪ a) ∪Np)

Note that if a ◁u p and q ⪯u p then a ◁u q and p(a, u) ⊆ q(a, v) for any v ≥ u. This does

not necessarily hold if q ⪯ p.
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We will build a Y -computable sequence q0 ⪰ q1 ⪰ . . . and have C =
⋃

sCqs , P =⋃
s Pqs and N =

⋃
sNqs . This will ensure that C,P,N are Y -c.e. and P ⊔ N ⊆ C. The

requirements Re are that for any partition A⊔B = Cc we have that if Ψe(Y ⊕ Y c ⊕ (A∪

P )⊕ (B ∪N)) = NBase(x) for some x ∈ X then x is ∗̃-nearly-Y ′-computable.

The strategy for Re works as follows. Each requirement has a restriction u and when

it sets qs+1 it needs to ensure that qs+1 ⪯u qs . If at stage s the value of u is undefined

then let u = max(Cqs) + 2. If at some later stage t a higher priority requirement acts and

we have qt ⪯̸u qs then we consider Re injured and u to be undefined. Re needs to be able

to handle any partition of u \ C so for each a ◁u qs we create a new subrequirement Ra
e .

If Re is injured then we remove these subrequirments. Ra
e is satisfied if Re is satisfied for

each partition A ⊔B = Cc with A↾u = a.

The idea of the strategy for Ra
e is as follows. We consider the potential point x which is

named by Ψe of some partition extending a. We first wait until a stage when we see a way

to force x ∈ βn0 and a separate way to force x ∈ βn1 for some n0, n1 with βn0 ∩ βn1 = ∅.

We then put everything above u into C and injure lower priority requirements so that we

always have the option to put x in βn0 or βn1 without changing other facts about x. The

next step is to wait until we see a way to put x ∈ βm for some βm disjoint from βni for

some i. We then put x in both βm and βni . If we get past the waiting step then we will be

able to ensure that there is no potential point x and satisfy the requirement that way. If

we are stuck at the waiting step forever then we will show that x is close to computable.

The details of the strategy for Ra
e use states w, c, d and work as follows.

• State w: we wait until a stage r when we see some p0, p1 ⪯u qr with n0 ∈ Ψe(p0(a, u))

and n1 ∈ Ψe(p1(a, u)) such that βn0 ∩ βn1 = ∅. Then we set qr+1 = (Cq ∪

[u, r), Pqr , Nqr) and injure all lower priority requirements.

• State c: we wait until a stage v > r where we see some q ⪯r qv with m ∈ Ψe(q(a, u))

such that βn0 ∩ βm = ∅ or βn1 ∩ βm = ∅. In the first case we set qv+1 = (Cq, Pq ∪

Pp0 , Nq ∪ Np0) and in the second case we set qr+1 = (Cq, Pq ∪ Pp1 , Nq ∪ Np1). All

lower priority requirements are injured, along with Rb
e requirements that are in state
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c. This requirement moves to state d.

• State d: the requirement is considered finished and cannot be injured by fellow Rb
e

requirements.

This completes the construction of C,P,N . Now we move onto the verification.

Claim 4.5.2.1. Each requirement is injured only finitely often.

Proof. If a requirement Re is never injured after stage s then it acts only once more to

split into the Ra
e requirements. Suppose that an Ra

e is never injured by higher priority

requirements after stage s.

If Ra
e is in state c then either Ra

e is injured by an Rb
e requirement and moves back to

state w or it acts once and moves to state d, after which it never acts again and can no

longer be injured by other Rb
e requirements. So each Ra

e requirement acts finitely often

from state c.

Since each Rb
e requirement can act only finitely often in state c, and there are only

finitely many of these requirements, we can let t > s be a stage after which all Rb
e will not

act in state c. If Ra
e is in c or d then it will never again act. If Ra

e is in state w then Ra
e

will not be injured at any later stage and will act at most once more to move into state

c.

Claim 4.5.2.2. Cc is infinite.

Proof. Let s be the last stage when Re was injured. We have that if u is the restriction

chosen by Re at stage t > s then e ≤ |Cc↾u|. This follows from induction and the fact

that max(Cqt) + 1 < u means that max(Cqt) + 1 /∈ Cqj for any j ≥ t.

Claim 4.5.2.3. Each Re is satisfied.

Proof. Consider some partition A⊔B = Cc. Let Q = Y ⊕Y c⊕(A∪P )⊕(B∪N) and fix e.

We will show that Re is satisfied for Q. Let s be the last stage when a subrequirement Rb
e

changes its state. There is some subrequirement Ra
e such that Q↾u = (qs(a, u))↾u. Note
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that for any t we have qt(a, u) ⊆ Q. Let l be the last state that Ra
e is in. We will look at

the three cases.

• l = d: when we entered state d at stage s we ensured that there were m,n ∈ Ψe(Q)

such that βm ∩ βn = ∅. So Ψe(Q) is not the X -name of a point in X .

• l = c: Let r > s be the stage when Ra
e moves to state c for the last time. Suppose

that NBase(x) = (Ψe(Q)) for some x ∈ X. Then since βn0 and βn1 are disjoint there

must bem ∈ NBase(x) and i ∈ 2 such βm∩βni = ∅. Sincem ∈ Ψe(Q) there are some

finite D ⊆ A∪P,E ⊆ B∪N and t > s such that m ∈ Ψe,t(Y ⊕Y c⊕D⊕E). Consider

q = (Cqt ∪D \ u ∪ E \ u, Pqt ∪D \ u,Nqt ∪ E \ u). We have that m ∈ Ψe,t(q(a, u))

and q ⪯r qt since [u, r) ⊆ C. Thus at stage t we could have used q to enter state d,

a contradiction.

• l = w Suppose that NBase(x) = Ψe(Q) for some x ∈ X. We will show that x is

∗̃-nearly-Y ′-computable. Consider the set

J = {n : n ∈ Ψe,t(Y ⊕ Y c ⊕ (D ∪ P )⊕ (E ∪N))

for some t > s,D ⊔ E ⊆fin C
c with a = D↾u}

Note that J ≤e Y
′ because C,P,N are Y -c.e. We claim that J is a δ̃β-name for x.

Suppose not. Then since J ⊇ NBase(x) there must be some n0, n1 ∈ J such that

βn0 ∩ βn1 = ∅. Since ni ∈ J there is ti > s,D ⊔ E ⊆fin C
c with a = D↾u such that

ni ∈ Ψe,ti(Y ⊕ Y c ⊕ (D ∪Pqt)⊕ (E ∪Nqt)). Consider pi = (Cqt ∪D \ u∪E \ u, Pqt ∪

D \ u,Nqt ∪ E \ u). We have that pi ⪯u qt and ni ∈ Ψe,t(pi(a, u)). Then at stage

max(t0, t1) we would have used p0, p1 to move to state c, a contradiction.

So J is a δ̃β-name for x and hence x is ∗̃-nearly-Y ′-computable.

Since the requirements are satisfied, the construction works and we have a class of

continuum many doubled co-d-CEA degrees C such that C ∩ DX is a countable set, and
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hence DDOω ⊈ DX . Since X was an arbitrary T2.5 cb0 space we have that the doubled

co-d-CEA degrees are not T2.5.

4.6 Separating T2.5 classes from submetrizable classes

In this section we give our main result: there are T2.5 classes of degrees that are not

submetrizable. We do this for two example classes, the Arens co-d-CEA degrees and the

Roy halfgraph above degrees. Kihara, Ng and Pauly [26] show that both these classes are

T2.5 as they arise from the decidable T2.5 spaces QAω and QRω, respectively. We will give

formal definitions of these classes later in this section. The definitions of the spaces QAω

and QRω can be found in [26]. For now we will go over the general method that is used

to prove these separations.

4.6.1 General method

A submetrizable space arises by adding open sets to some underlying metric space, however

a cb0 submetrizable space does not tell us which sets are open under the metric. We would

like an effective way to find a name for a point with respect to the underlying metric space

from a name for a point with respect to the submetrizable space. We can do this with many

natural examples, but it is not always possible. This motivates the following definition.

Definition 4.6.1. We call a submetrizable cb0 space X = (X, (βe)e) effectively submetriz-

able if there is a continuous, injective function f : X → [0, 1]ω such that NBase[0,1]ω(f(x)) ≤e

NBaseX (x).

If X = (X, (βe)e) is a computable metric space and Y = (X, (βe)e⊔(αe)e) is submetriz-

able then Y is effectively submetrizable. If one looks at the examples of submetrizable

cb0 spaces in [26] they will see that these spaces are all effectively submetrizable, even the

non-decidable cb0 spaces like the Gandy-Harrington topology. Thus every enumeration

degree is an X -degree for some decidable, effectively submetrizable cb0 space X .
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Since [0, 1]ω is universal for second countable metrizable spaces, for any submetrizable

cb0 space X there is an oracle Y such that X is Y -effectively submetrizable.

Miller [34] proved that there is no quasi-minimal continuous degree. So if x is a

point in an effectively submetrizable cb0 space X and f is a witness that X is effectively

submetrizable, then NBaseX (x) is quasi-minimal implies that NBase[0,1]ω(f(x)) is c.e.

since we have NBase[0,1]ω(f(x)) ≤e NBaseX (x), so we can conclude that X has only

countably many quasi-minimal degrees.

The above is one way of showing a class is not effectively submetrizable, but it does

not help us in the case of the Arens co-d-CEA and Roy halfgraph degrees as we do not

know if they contain uncountably many quasi-minimal degrees. By looking more closely

at the total degrees below a continuous degree we come up with our method of separation.

Definition 4.6.2. A countable class S ⊆ 2ω is a Scott set if it is closed under join, Turing

reducibility and for any X ∈ S and nonempty Π0
1(X) class G there is Y ∈ S ∩ G. The

collection {degT (X) : X ∈ S} is called a Scott ideal.

So every Scott ideal contains PA degrees. In fact, for any Y ∈ S we have that S

contains a set that is PA relative to Y .

Theorem 4.6.3 (J. Miller [34]). If v is a non-total continuous degree then the set {b <e

v : b is total} is a Scott ideal. Notably, there is total b <e v such that b is a PA degree.

Now we have the tools we need to prove the following

Lemma 4.6.4. If C is an uncountable class of enumeration degrees and B is a countable

class of non PA total degrees such that for any a ∈ C we have {b ∈ DT : b ≤e a} ⊆ B,

then C ⊈ DX for any effectively submetrizable cb0 space X .

Proof. Take C as in the statement of the theorem. Let X = (X, (βe)e) be an effectively

submetrizable cb0 space with witness f . We will show that C ∩ DX is countable.

Consider some x ∈ X. Suppose that NBaseX (x) ∈ a for some a ∈ C. So we have

that NBase[0,1]ω(f(x)) ≤e a. Since a does not bound any PA degrees we have that
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NBase[0,1]ω(f(x)) has total degree. So we have that that dege(NBase[0,1]ω(f(x))) ∈ B.

Since f is injective, NBase[0,1]ω(f(x)) uniquely determines x and there are only count-

ably many x ∈ X such that dege(NBaseX (x)) ∈ C. So C ∩ DX is countable, and hence

C ⊈ DX .

Now we relativize to get the result for arbitrary submetrizable spaces.

Theorem 4.6.5. Suppose that for each Y ⊆ ω, we have an uncountable class of enumer-

ation degrees CY and BY a countable class of non Y -PA total degrees such that for any

a ∈ C we have Y ⊕ Y c ≤e a and {b ∈ DT : b ≤e a} ⊆ BY . Then
⋃

Y CY ⊈ DX for any

submetrizable cb0 space X .

Proof. Let X = (X, (βe)e) be a submetrizable space. Let f : X → [0, 1]ω be a continuous

injection. Let Y = {⟨n,m⟩ : βn ⊆ f−1[αm]} where (αe)e is the standard basis on [0, 1]ω.

So for any x ∈ X we have that NBase[0,1]ω(x) ≤e Y ⊕Y c⊕NBaseX (x). We will show that

the CY ⊈ DX .

Consider some x ∈ X. Suppose that NBaseX (x) ∈ a for some a ∈ CY . So we have that

Y ⊕Y c ≤e NBaseX (x) and hence NBase[0,1]ω(x)⊕Y ⊕Y c ≤e a. If NBase[0,1]ω(x)⊕Y ⊕Y c

is not a total degree, then since it is a continuous degree and Y ⊕ Y c ≤e NBase[0,1]ω(x)⊕

Y ⊕ Y c, by Theorem 4.6.3 there is some total degree b ≤ NBase[0,1]ω(x) ⊕ Y ⊕ Y c such

that b is PA relative to Y . So it must be that NBase[0,1]ω(x)⊕ Y ⊕ Y c is total and hence

dege(NBase[0,1]ω(x)⊕ Y ⊕ Y c) ∈ BY . Since NBase[0,1]ω(x) uniquely determines x and the

downward closure of BY is countable there are only countably many x ∈ X such that

dege(NBaseX (x)) ∈ CY . So CY ∩ DX is countable and hence CY ⊈ DX .

Now that we have a method to prove classes are not submetrizable, we can use it on

some classes to get new separations.

4.6.2 Arens co-d-CEA degrees

Now we show that the Arena co-d-CEA degrees are not submetrizable. The Arens co-d-

CEA degrees were introduced in [26] and are the degrees of points in a T2.5 space. By
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proving that the Arens co-d-CEA degrees are not submetrizable we prove that the notions

of T2.5 and submetrizable are distinct for classes of enumeration degrees.

Definition 4.6.6. A degree is Arens co-d-CEA if it contains a set of the form:

Y ⊕ Y c ⊕ (A0 ∪ P0)⊕ (A1 ∪ P1)⊕ ((A0 ∪A1 ∪N)c ∪M)

where (A0∪A1)
c, N, P0, P1,M are Y -c.e. A0, A1, N are disjoint, P0, P1,M ⊆ N are pairwise

disjoint, and there is a partition N0 ⊔ N1 = N such that N0, N1 are Y -c.e. and P0 ⊆

N0, P1 ⊆ N1.

When referring to an Arens co-d-CEA set (or subset) we will often use the notation

L⊕R⊕Z to keep the track of the different columns of (A0∪P0)⊕ (A1∪P1)⊕ ((A0∪A1∪

N)c ∪M). By definition L,R,Z are disjoint and the L ⊕ R part is a doubled co-d-CEA

set by itself. The Z part is of co-d-c.e. degree and keeps track of numbers that have been

added to (A0 ∪ A1)
c but not to P0 ∪ P1. In order for some number in (A0 ∪ A1)

c to not

show up in Z it must appear in N . This means the number is in N0 or N1, so if the

number is also in P0 ∪ P1 then we know which of P0, P1 contains it. The set M gives us a

way of adding numbers in N back into Z.

We will introduce some notation that will help us keep track of the different c.e. sets

when constructing an Arens co-d-CEA degree, or class of degrees. Let

Q = {(Cq, P q = P q
0 ⊔ P q

1 , N
q = N q

0 ⊔N q
1 ,M

q) : P q
i ⊆ N q

i ,M
q ⊆ N q ⊆ Cq,M q ∩ P q = ∅}

Here Cq is meant to represent the c.e. set (A0∪A1)
c. For p, q ∈ Q, u ∈ ω and a = a0⊔a1 ⊆ u

we define the following:

• q ⪯ p if Cq ⊇ Cp, P q
i ⊇ P p

i , N
q
i ⊇ Np

i ,M
q ⊇Mp.

• q ⪯u p (q extends p above u) if q ⪯ p and Cq↾u = Cp↾u, P q↾u = P p↾u,N q↾u =

Np↾u,M q↾u =Mp↾u.

• a ◁u q (a is a q-compatible choice of A↾u) if a = u \ Cq.



74

• q(a) = (a0 ∪ P q
0 )⊕ (a1 ∪ P q

1 )⊕ (Cq \N q ∪M q).

• q is considered u-robust if Cq \N q ⊆ u and Cq \ u is an interval.

Note that we can have q ⪯ p but p(a) ⊈ q(a). This is why we need the notion of a

condition being u-robust. Note that for a u-robust p if a ◁u p and q ⪯u p then a ◁u q and

p(a) ⊆ q(a). Note also that for every condition p ∈ Q and u ∈ ω there is q ⪯u p such that

p(a) = q(a) and q is u-robust.

Theorem 4.6.7. The Arens co-d-CEA degrees are not submetrizable.

Proof. We use Lemma 4.6.5 and show there are c.e. sets C,P = P0 ⊔P1, N = N0 ⊔N1,M

such that Cc is infinite and for any partition A0 ⊔A1 = Cc we have that X = (A0 ∪P0)⊕

(A1 ∪ P1)⊕ (C \N ∪M) has Arens co-d-CEA degree and if any f ≤e X is the graph of a

total function, then f ≤T 0′ and degT (f) is not PA.

Fix a nonempty Π0
1 class G where each x ∈ G has PA degree, and fix a computable

tree T with [T ] = G.

We will build a computable sequence q0 ⪰ q1 ⪰ . . . of qi ∈ Q and have C =
⋃

sC
qs ,

P =
⋃

s P
qs , N =

⋃
sNqs and M =

⋃
sM

qs . This will ensure that C,P,N are c.e. and will

produce an Arens co-d-CEA set for any partition of Cc. The requirements Re are that for

any partition A0 ⊔A1 = Cc we have that if f = Ψe((A0 ∪ P0)⊕ (A1 ∪ P1)⊕ (C \N ∪M))

is the graph of a total function then f ≤T ∅′ and f /∈ G.

The strategy for Re works as follows. If at stage s, Re is initialized then let ue =

max(Cqs) + 2. If at some later stage t we have qt ⪯̸ue qs then we consider Re injured and

will reinitialize it. For each a ◁ue qs we create a new subrequirement Ra
e . If Re is injured

then we remove these subrequirements. Ra
e is satisfied if Re is satisfied for each partition

A0 ⊔ A1 = Cc with Ai↾u = ai. We add an interval consisting of the Ra
e to the order

of requirements placing the interval just below Re in priority. Initially the restriction uae

given to each Ra
e is ue but this may increase if Re

e is injured by a higher priority Rb
e. When

Ra
e is injured, we set uae = max(Cqs) + 1.

The strategy for each Ra
e has states g, w, c, n, d. Initially they are in state g. Let

u = uae , the actions for each state are as follows.
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• State g: we start with n = 0 and σ0 = ∅. If at some stage s we see some x ∈ ω and

u-robust q ⪯u qs such that ⟨n, x⟩ ∈ Ψe,s(q(a)) then we set qs+1 = q and injure all

lower priority requirements. If σn̂x /∈ T then we go to state w otherwise we remain

in state g and set n = n+ 1, σn+1 = σn̂x.
• State w: we wait until at some stage s we see m,x0, x1 ∈ ω and a u-robust pair

r0, r1 ⪯u qs such that ⟨m,xi⟩ ∈ Ψe,s(ri(a)) and x0 ̸= x1. We set qs+1 = (Cqs ∪Cr0 ∪

Cr1 , P qs , N qs ,M qs). Let v = max(Cqs+1) + 1. All lower priority requirements are

injured and we enter state c.

• State c: we wait until we see a stage t such that for some v-robust p ⪯v qt we

have ⟨m,x2⟩ ∈ Ψe,t(p(a)) for some x2. Pick i such that xi ̸= x2. Set qt+1 =

(Cp, P p, Np ∪N ri ,Mp) (N ri and Np do not conflict because p ⪯v qs+1). Note that

now we have qt+1(a)↾s ⊆ ri(a), p(a). Set o = max(Cqt+1) + 1 and enter state n.

• State n: we wait until we see a stage ℓ such that for some o-robust h ⪯o qt we have

⟨m, y⟩ ∈ Ψe,t(v(a)) for some y. If y ̸= xi then set qℓ+1 = (Ch, P h∪P ri , Nh,Mh∪M ri)

and move into state d. Otherwise y ̸= x2 and we set qℓ+1 = (Ch, P h, Nh,Mh ∪ v \

(u ∪ P h)). Then we move into state d.

• State d: in this state Ra
e is considered satisfied.

This completes the construction of C,P,N,M . Now we move onto the verification.

Claim 4.6.7.1. Each requirement is injured only finitely often.

Proof. If a requirement Re is never injured after stage s then it acts only once more to

split into the Ra
e requirements.

Suppose that an Ra
e is never injured by higher priority requirements after stage s.

The first case we need to deal with is if Ra
e remains in state g and injures lower priority

requirements infinitely often. Each time it acts n increases, so we have that f =
⋃

n σn ∈ 2ω

and f is computable. Since every σ ≺ f is in T we have that f ∈ G, but this is a

contradiction as no PA degree is computable. So Ra
e acts only finitely often in state g.
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In states w, c, n the requirement acts at most once, so there is a stage after which Ra
e

stops injuring lower priority requirements.

For each requirement Re let ue be the restriction that is given to Re after the last time

it is injured.

Claim 4.6.7.2. Cc = {ue − 1 : e ∈ ω}

Proof. Because the restriction ue is defined to be max(Cqs)+2 we have that ue−1 /∈ Cqs .

Since lower priority requirements only work above ue we have that ue − 1 /∈ C. On the

other hand, whenever a subrequirement Ra
e acts it makes sure that [uae ,max(Cqs)] ⊆ Cqs .

So we have that [uae , ue+1 − 1) ⊆ C.

Claim 4.6.7.3. Each Re is satisfied.

Proof. Consider some partition A⊔B = Cc. Let X = (A0∪P0)⊕ (A1∪P1)⊕ (C \N ∪M)

and fix e. We will show that Re is satisfied for X. Let s be the last stage where a

subrequirement Rb
e changes its state. There is some subrequirement Ra

e such that X↾uae =

qs(a)↾uae . Note that for any t we have qt(a) ⊆ X. Let l be the last state that Ra
e is in and

u = uae . We will look at the four cases.

• l = d: when we entered state d at stage t we ensured that ⟨m, y⟩, ⟨m,xi⟩ ∈ Ψe,t(qt+1(a)) ⊆

Ψe(X) with y ̸= xi, so Ψe(X) is not the graph of a total function.

• l = g: consider the last value n takes. We know from Claim 4.6.7.1 that Ra
e acts

finitely often, so n is finite. Suppose that n ∈ dom(Ψe(X)). Then there are some

finite L⊕R⊕ Z ⊆ X and t > s such that n ∈ dom(Ψe,t(L⊕R⊕ Z)). Consider q =

(Cqt∪L\u∪R\u∪Z\u, (P qt
0 ∪L\u)⊔(P qt

1 ∪R\u), N qt∪L\u∪R\u∪Z\u,M qt∪Z\u).

We have that q ≺u qt and n ∈ dom(Ψe,t(q(a))). So at stage t we would have set

qt+1 = q, a contradiction. So n /∈ dom(Ψe(X)) and thus Ψe(X) is not a total

function.

• l = c: Since Ra
e is never injured after stage s we have a fixed collection m, r0, r1 such

that ri ̸⊥ qt for any t. Furthermore, because of the restriction imposed byRa
e we have
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that for all t > s we haveN ri\u ⊆ Cqt\N qt ⊆ [u, v). Suppose thatm ∈ dom(Ψe(X)).

Then, like in the previous case, there are some finite L⊕R⊕Z ⊆ X and t > s such

that m ∈ domΨe,t(L⊕R⊕ Z). Let z = max(L ∪R ∪ Z). Consider

q = (Cqt ∪ [v, z], (P qt
0 ∪ L \ v) ⊔ (P qt

1 ∪R \ v), N qt ∪ [v, z],M qt ∪ Z \ v).

We have that q ⪯v qt is v-robust and m ∈ dom(Ψe,t(q(a))). Thus at stage t we could

have used q to enter state n, a contradiction. So m /∈ dom(Ψe(X)), and thus Ψe(X)

is not a total function.

• l = n: Since Ra
e is never injured after stage s we have a fixed collection m, ri, p

such that ri, p ̸⊥ qt for any t. Like before, we have that for all t > s we have

Np\v ⊆ Cqt\N qt ⊆ [v, o). Suppose thatm ∈ dom(Ψe(X)). Then, like in the previous

case, there are some finite L⊕R⊕Z ⊆ X and t > s such thatm ∈ domΨe,t(L⊕R⊕Z).

Let z = max(L ∪R ∪ Z). Consider

q = (Cqt ∪ [o, z], (P qt
0 ∪ L \ v) ⊔ (P qt

1 ∪R \ v), N qt ∪ [o, z],M qt ∪ Z \ v).

We have that q ⪯o qt is o-robust and m ∈ dom(Ψe,t(q(a))). Thus at stage t we could

have used q to enter state n, a contradiction. So m /∈ dom(Ψe(X)), and thus Ψe(X)

is not a total function.

• l = w Suppose that f = Ψe(X) is a total function. We will show that f /∈ G and

that f ≤T 0′. Since we left state g there is some n such that f↾n+ 1 /∈ T , so f /∈ G.

To compute f(m) from 0′ search for a stage t > s and u-robust r ⪯u qt such that

m ∈ dom(Ψe,t(r(a))) and r ̸⊥ qk for all k. 0′ can carry out this search, and since

m ∈ dom(Ψe(X)) the search will halt. We claim that f(m) = Ψe(r(a))(m). Suppose

not. Since m ∈ dom(Ψe(X)) there are some finite L ⊕ R ⊕ Z ⊆ X and k > t such

that m ∈ dom(Ψe,k(L⊕R⊕ Z)). Let z = max(L ∪R ∪ Z). Consider

q = (Cqt ∪ [u, z], (P qt
0 ∪ L \ u) ⊔ (P qt

1 ∪R \ u), N qt ∪ [u, z],M qt ∪ Z \ u).
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We have that q is u-robust and q ̸⊥ qk for all k. But we also have r ̸⊥ qk for all k. So

at some stage j we would have entered state c using robust extensions of q and r along

with m, f(m) and Ψe(r(a))(m). This is a contradiction, so f(m) = Ψe(r(a))(m) and

hence f ≤T 0′.

We can relativize this construction to get a relativizable class as in the statement of

Theorem 4.6.5, and then apply the theorem to get that the Arens co-d-CEA degrees are

not submetrizable.

4.6.3 Roy halfgraph degrees

Now we give another example of a class that is T2.5 but not submetrizable. The Roy

halfgraph degrees were introduced in [26] and are defined as follows.

Definition 4.6.8. Define ω̃ = ω ∪ {−1,∞} For a function f : ω → ω̃ we define

HalfGraph(f) ={⟨n,m⟩ ∈ ω : f(n) ∈ ω ∧ f(n) = 2m}⊕

{⟨n,m⟩ ∈ ω : f(n) ∈ ω ∧ f(n) ≥ 2m}

HalfGraph+(f) = {⟨n,m⟩ ∈ ω : f(n) ≤ 2m} ⊕ {⟨n,m⟩ ∈ ω : f(n) ≥ 2m}

We say that f is Y -computably dominated if there is a Y -partial computable φ such that

for all n we have f(n) ∈ ω =⇒ φ(n)↓ ≥ f(n).

We say a degree d is Roy halfgraph above if it contains a set of the form

Y ⊕ Y c ⊕HalfGraph+(f)

where f is Y -computably dominated and HalfGraph(f) is Y c.e.

Kihara, Ng and Pauly [26] show that Roy halfgraph graph degrees are the degrees of

the product space of Roy’s lattice space QRω, a T2.5 space which is not submetrizable.

Now we prove that this class of degrees does not arise from any submetrizable cb0 space.
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Theorem 4.6.9. The Roy halfgraph degrees are not submetrizable.

Proof. Given a partial function ψ :⊆ ω → ω we define a Roy extension of ψ to be a total

function f : ω → ω̃ such that f−1(ω) = dom(ψ).

We will build a partial function ψ :⊆ ω → ω such that HalfGraph(ψ) is c.e., ψ is

computably dominated, dom(ψ) is coinfinite and for any Roy extension f of ψ we have if

h ≤e HalfGraph+(f) then h ≤T 0′ and degT (h) is not PA.

Now we consider what enumeration operators on the halfgraph of a function look

like. If we see 2⟨n,m⟩ ∈ HalfGraph+(f) then we know that f(n) ≤ 2m and if we see

2⟨n,m⟩ + 1 ∈ HalfGraph+(f) then we know that f(n) ≥ 2m. So an enumeration of

HalfGraph+(f) can be viewed as a refinement of even ended intervals containing f . This

is the idea behind the following notation.

Let I be the set of all closed intervals in ω̃ with end points in {2n : n ∈ ω} ∪ {−1,∞}.

Let (αv)v be an effective listing of all functions α : ω → I such that α(n) = ω̃ for all but

finitely many n. For f : ω → ω̃ define Φe(f) = {n : ∃⟨x, v⟩ ∈ We[∀n(f(n) ∈ αv(n))]}.

For any f we have that X ≤e HalfGraph+(f) if and only if X = Φe(f) for some e. For

f :⊆ ω → ω̃, note that if n ∈ Φe(f) via α then there is g : ω → ω such that f(m) = g(m)

for all m ∈ f−1(ω) and n ∈ Φe(g) via α.

We will use a finite injury construction to create partial functions ψ,φ such that

HalfGraph(ψ) is c.e., φ is partial computable and φ dominates ψ.

We will build ψ and φ in stages and use the following notation. Let Q = {(q, p) : q, p :⊆

ω → ω ∧ dom(q) = dom(p) ⊆fin ω ∧ ∀n ∈ dom(q)[q(n) ≤ p(n)]}. For (q0, p0), (q1, p1) ∈ Q,

u ∈ ω and a : u→ ω̃ we define the following:

• (q0, p0) ⪯ (q1, p1) if HalfGraph(q0) ⊇ HalfGraph(q1) and p0 ⊇ p1.

• (q0, p0) ⪯u (q1, p1) ((q0, p0) extends (q1, p1) above u) if (q0, p0) ⪯ (q1, p1), q0↾u = q1↾u

and dom(q0) \ u is an interval.

• a ◁u (q, p) if a : u→ ω̃ and HalfGraph(a) = HalfGraph(q↾u).

Note that if a ◁u (q1, p1) and (q0, p0) ⪯u (q1, p1) then a ◁u (q0, p0) and Φe(a ∪ q1) ⊆
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Φe(a ∪ q0). Note that if (q0, p0) ⪯ (q1, p1) and q1(n) = 2m then q0(n) = 2m, but if

q1(n) = 2m+ 1 then q0(n) can be any number in [2m, p1(n)].

For α : ω → I and a◁u(q, p) we say a, (q, p) ⊩u f ∈ α if for all n we have that if α(n) ̸= ω̃

then (a ∪ q)(n) ∈ α(n) and in addition if n ≥ u then q(n) ∈ 2Z. We say a, (q, p) ⊩u f /∈ α

if for all (q0, p0) ⪯u (q, p) we have a, (q0, p0) ⊮u f ∈ α. Note that because even values

of q cannot change in extensions if (q0, p0) ⪯u (q1, p1) and a, (q1, p1) ⊩u f ∈ α then

a, (q0, p0) ⊩u f ∈ α.

We will build a computable sequence (q0, p0) ⪰ (q1, p1) ⪰ . . . and have ψ = limn qn

with φ =
⋃

n pn. This will ensure that HalfGraph(ψ) is c.e. and ψ is computably dominated

by φ. Fix a Π0
1 class G such that for each x ∈ G degT (x) is PA and a computable tree T

such that [T ] = G. The requirements Re are that for any Roy extension f of ψ we have

that if h = Φe(f) is the graph of a total function then h ≤T ∅′ and h /∈ G.

The strategy for Re works as follows. If at stage s Re is initialized then let u =

max(dom(qs))+2. If at some later stage t we have (qt, pt) ⪯̸u (qs, ps) then we consider Re

injured and will reinitialize it. For each a◁u(qs, ps) we create a new subrequirementRa
e . We

put an order on these subrequirements and add them to the list of all requirements as an

interval just below Re in priority. If Re is injured then we remove these subrequirements.

Ra
e is satisfied if Re is satisfied for each Roy extension f of ψ with a ⊆ f .

Each Ra
e has states g, w, c, d and a bound ua. Initially they are in state g and have ua =

u. Each time Ra
e is injured by a higher priority requirement we set ua = max(dom(qs))+1

and return to state g. When an Ra
e sets qs we will have that [ua,max(dom(qs))] ⊆ dom(qs)

so that lower priority Rb
e can work with a higher restriction than ua without the need to

split into more subrequirements. The actions for each state are as follows.

• State g: we start with n = 0 and σ0 = ∅. If at some stage s we see some x, v such that

⟨⟨n, x⟩, v⟩ ∈ We,s and we see (qs+1, ps+1) ⪯ua (qs, ps) such that a, (qs+1, ps+1) ⊩ua

f ∈ αv then we act and injure all lower priority requirements. If σn̂x /∈ T then we

go to state w otherwise we remain in state g and set n = n+ 1, σn+1 = σn̂x.
• State w: we wait until at some stage s we see m,x0, x1, v0, v1 ∈ ω such that
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⟨⟨m,xi⟩, vi⟩ ∈ We,s and a, (qs, ps) ⊮ua f /∈ αvi for i ∈ 2. Chose a condition

(q, p) ⪯ua qs such that for all n ≥ ua the following hold.

1. If αv0(n) ∩ αv1(n) ̸= ∅ then q(n) ∈ αv0(n) ∩ αv1(n) and q(n) is even.

2. If max(αvi(n)) < min(αv1−i(n)) then q(n) = max(αvi(n)) + 1 and p(n) ≥

min(αv1−i)

So we get that q(n) ∈ αv0(n) ⇐⇒ q(n) ∈ αv1(n). Set (qs+1, ps+1) = (q, p). If

a, (q, p) ⊩ua f ∈ αv0 , αv1 then move to state d. Otherwise move to state c. Let

r = max(dom(q) + 1. Note that a, (qs, ps) ⊮ua f /∈ αvi but a, (q, p) ⊩r f /∈ αvi .

• State c: we wait until we at some stage t we see a pair x, v ∈ ω such that ⟨⟨m,x⟩, v⟩ ∈

We,t and a, (qt, pt) ⊮r f /∈ αv. Pick i such that xi ̸= x. Choose a condition (q, p) ⪯ua

(qs, ps) such that the following all hold.

1. If αvi(n) ∩ αv(n) ̸= ∅ then q(n) ∈ αvi(n) ∩ αv(n) and q(n) is even.

2. If max(αv(n)) < min(αvi(n)) then q(n) = max(αv(n)) + 1.

We set (qt+1, pt+1) = (q, p). If a, (q, p) ⊩ua f ∈ αv, αvi then we will move to state

d. Otherwise we will remain in state c. If we remain, then note that there is n

such that q(n) = max(αv(n)) + 1. Since max(αv1−i) < qt(n) ∈ αv(n) we now have

a, (q, p) ⊩ua f /∈ αv1−i . We redefine x1−i = x, v1−i = v, r = max(dom(q) + 1.

• State d: in this state Ra
e is considered satisfied.

This completes the construction of ψ and φ. Now we move onto the verification.

Claim 4.6.9.1. Each requirement is injured only finitely often.

Proof. If a requirement Re is never injured after stage s then it acts only once more to

split into the Ra
e requirements. Suppose that Ra

e is never injured after stage s. Then there

is a stage after which the state of Ra
e remains the same. In states w and d it is clear Ra

e

can act at most once. We now look at the other two states.
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First, suppose that Ra
e remains in state g and injures lower priority requirements

infinitely often. Each time it acts n increases, so we have that h =
⋃

n σn ∈ 2ω and h is

computable. Since every σ ≺ h is in T we have that h ∈ G, but this is a contradiction as

no PA degree is computable.

Second, suppose that Ra
e remains in state c and injures lower priority requirements

infinitely often. Let n0 . . . nk−1 be the values where qs(n) /∈ αvi(n) for i ∈ 2. Each time

Ra
e acts the collection n0 . . . nk−1 either stays the same or decreases. So there is a stage

after which this collection is fixed. Consider one of these n. At each stage t when Ra
e

acts we have that qt(n) ∈ αv(n) so qt+1(n) > qt(n). This can only happen finitely often,

a contradiction.

Claim 4.6.9.2. dom(ψ) is coinfinite.

Proof. Let s be the last stage when Re was injured. We have that if u is the restriction

chosen by Re at stage t > s, then e = |dom(ψ)c↾u|. This follows by induction and from

the fact that max(dom(qt)) + 1 < u means that max(dom(qt)) + 1 /∈ dom(qj) for any

j ≥ t.

Claim 4.6.9.3. Each Re is satisfied.

Proof. Consider some Roy extension f of ψ. Fix e. We will show that Re is satisfied for

f . There is some subrequirement Ra
e such that f↾ua = a ∪ ψ↾ua. Note that for any t we

have Φe(a ∪ qt) ⊆ Φe(f). Let s be a stage such that Ra
e is never injured after this stage.

Let l be the last state that Ra
e is in. We will look at the four cases.

• l = d: when we entered state d at stage t we ensured that ⟨m,x0⟩, ⟨m,x1⟩ ∈ Φe,t(a∪

qt+1) ⊆ Φe(f) for x0 ̸= x1 so Φe(f) is not a function.

• l = g: consider the last value n takes. We know from Claim 4.6.9.1 that Ra
e acts

finitely often, so n is finite. Suppose that n ∈ dom(Φe(f)). Then there are some

x, v ∈ ω and t > s such that ⟨⟨n, x⟩, v⟩ ∈We,t and f(m) ∈ αv(m) for all m. But then

there is (q, p) ⪯ua (qt, pt) such that a∪q = f↾{n : αv(n) ̸= ω̃}. Define q′(n) = q(n)−1
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if q(n) is odd and n ≥ ua, and q
′(n) = q(αv) otherwise. We have (q′, p) ⪯ua (qt, pt)

and a, (q′, p) ⊩ f ∈ αv. Thus the requirement would be able to act again using

(q′, p), a contradiction.

• l = c: Let t − 1 be the last stage when Ra
e acts. So from stage t onward we have

fixed m, r and (qk, pk) ⪯r (qt, pt) for all k ≥ t. Suppose that m ∈ dom(Φe(f)). Then

like in the case above there is some stage k and (q, p) ⪯r (qk, pk) such that m ∈

dom(Φe,k(a ∪ q)). But then Ra
e would have acted again at stage k, a contradiction.

• l = w: Suppose that h = Φe(f) is a total function. We will show that h /∈ G and

that h ≤T 0′. Since we left state g there is some n such that h↾n + 1 /∈ T , so

h /∈ G. To compute h(m) search for a stage t > s and (q, p) ⪯ua qt such that

m ∈ dom(Φe,t(a ∪ q)) and ψ↾dom(q) = q. 0′ can carry out this search since ψ

is 0′ computable and m ∈ dom(Φe(f)), so the search will halt. We claim that

f(m) = Φe(a ∪ q).

Suppose not. Let αv be the witness that m ∈ dom(Φe,t(a ∪ q)). Since m ∈

dom(Φe(f)) there is j ≥ t and (q1, p1) ⪯ua (qj , pj) such that ⟨m, f(m)⟩ ∈ Φe,j(a∪q1)

via some witness αv1 and ψ↾dom(q1) = q1. So for all k we have that (qk, pk) ⊮

f /∈ αv,(qk, pk) ⊮ f /∈ αv1 . But we would have used αv and αv1 to enter state c, a

contradiction. So f(m) = Φe(a ∪ q) and hence f ≤T 0′.

By meeting all Re requirements we have ensured ψ has the desired properties. By

relativizing this construction we can find classes of Roy halfgraph degrees CY as in the

statement of Theorem 4.6.5. So the Roy halfgraph degrees are not submetrizable.

4.7 Arens co-d-CEA degrees and Roy halfgraph degrees above

We have seen that the Arens co-d-CEA degrees and the Roy halfgraph above degrees are

both examples of classes which are T2.5 but not submetrizable. In this section we look
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at the relationship between these classes. Kihara, Ng and Pauly [26] showed that both

of these classes contain the co-d-CEA degrees, and that the Roy halfgraph degrees are a

subclass of the doubled co-d-CEA degrees. We show that the Arens co-d-CEA degrees are

also a subclass of the doubled co-d-CEA degrees.

Proposition 4.7.1. Every Arens co-d-CEA degree is doubled co-d-CEA

Proof. Consider an Arens co-d-CEA set Y ⊕Y c⊕(A0∪P0)⊕(A1∪P1)⊕((A0∪A1∪N)c∪M).

We have that Y ⊕Y c⊕ (A0∪P0)⊕ (A1∪P1) is doubled co-d-CEA by definition. Consider

the set (A0 ∪ A1 ∪ N)c ∪M = (A0 ∪ A1)
c ∩ N c ∪M = (A0 ∪ A1)

c ∩ (N c ∪M). Since

(A0 ∪ A1)
c is Y -c.e. let f be a Y computable enumeration of (A0 ∪ A1)

c. Then we have

Y ⊕Y c⊕ (A0∪A1)
c∩ (N c∪M) ≡e Y ⊕Y c⊕{n : f(n) ∈ N c}∪{n : f(n) ∈M}. The right

hand side is a co-d-CEA and hence doubled co-d-CEA. The join of two doubled co-d-CEA

degrees is doubled co-d-CEA so we have that Y ⊕ Y c ⊕ (A0 ∪ P0) ⊕ (A1 ∪ P1) ⊕ ((A0 ∪

A1 ∪N)c ∪M) has doubled co-d-CEA degree.

Now we know from Theorem 4.5.2 that these classes are both proper subclasses of the

doubled co-d-CEA degrees and since the co-d-CEA degrees are a submetrizable class [26]

we know that they both properly contain the co-d-CEA degrees. The next question to ask

is if these two classes are distinct from each other. We now give separations that show

neither class is contained in the other. The proofs below make use of some of the notation

and ideas from the proofs of Theorems 4.6.7 and 4.6.9

Theorem 4.7.2. There is a Roy halfgraph degree that is not an Arens co-d-CEA degree.

Proof. Our proof is a finite injury construction. Since we are building a single Roy half-

graph degree we will use an extension of the partial order from 4.6.9. Let

Q = {(q, p) : q : ω → ω̃∧ |q−1[ω∪{∞}]| < ω∧ p : q−1[ω] → ω∧∀n ∈ dom(p)[q(n) ≤ p(n)]}

The difference from before is that now q is total and its range is no longer restricted to ω.

For (q0, p0), (q1, p1) ∈ Q and u ∈ ω we define the following:
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• (q0, p0) ⪯ (q1, p1) if HalfGraph(q0) ⊇ HalfGraph(q1) and p0 ⊇ p1.

• (q0, p0) ⪯u (q1, p1) ((q0, p0) extends (q1, p1) above u) if (q0, p0) ⪯ (q1, p1), q0↾u =

q1↾u.

We will again make use of the enumeration of sequences of even ended intervals (αv)v

and the operators (Φe)e. This time we define ⊩u a little differently. For α : ω → I we say

(q, p) ⊩u f ∈ α if for all n we have f(n) ∈ α(n) and for all n ≥ u we have f(n) ∈ 2Z or

α(n) = ω̃. We say (q, p) ⊩u f /∈ α if for all (q0, p0) ⪯u (q, p) we have (q0, p0) ⊮u f ∈ α.

Note that because even values of q cannot change in extensions, if (q0, p0) ⪯u (q1, p1) and

(q1, p1) ⊩u f ∈ α then (q0, p0) ⊩u f ∈ α.

We will build a computable sequence (q0, p0) ⪰ (q1, p1) ⪰ . . . such that f = lims qs is

well defined. We will have that HalfGraph+(f) has Roy halfgraph degree. Note that if q0

and q1 differ only in that q0(n) = −1 and q1(n) = ∞ then for an appropriate p we have

(q0, p) ⪯ (q1, p) ⪯ (q0, p), so ⪯ is not a partial order. The reason f will be well defined

is that requirements put up restrictions, so for each u there is a large enough s such that

(qs, ps) ⪰u (qs+1, ps+1) ⪰u . . . and so f↾u = qs↾u.

The requirements will be Re,i,j,N,P,M,A where e, i, j ∈ ω, A,N, P,M are enumeration

operators such that given some total set Y they produce Y -c.e. sets AY , NY = NY
0 ⊔

NY
1 , P

Y = P Y
0 ⊔P Y

1 ,M
Y with P0 ⊆ NY

0 ⊆ AY , P Y
1 ⊆ NY

1 ⊆ AY , andMY ⊆ NY \P Y . The

intuition forRe,i,j,N,P,M,A is that if Y = Φi(f) is the graph of a total function and Y ⊕Φe(f)

is an Arens co-d-CEA set of the form Y ⊕(A0∪P Y
0 )⊕(A1∪P Y

1 )⊕((A0∪A1∪NY )c∪MY )

for some A0 ⊔A1 = (AY )c then we need to have Ψj(Y ⊕Φe(f)) ̸= HalfGraph+(f). So we

say Re,i,j,N,P,M,A is satisfied if one of the following conditions holds.

1. Y = Φi(X) is not the graph of a total function.

2. Φe(X) ̸= (A0 ∪ P Y
0 ) ⊕ (A1 ∪ P Y

1 ) ⊕ ((A0 ∪ A1 ∪ NY )c ∪ MY ) for any partition

A0 ⊔A1 = (AY )c.

3. Ψj(Y ⊕ Φe(f)) ̸= HalfGraph+(f).
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Now we consider the strategies for Re,i,j,A,N,P,M . Each Re,i,j,A,N,P,M will be given some

restriction u by higher priority requirements and must ensure that (qs+1, ps+1) ⪯u (qs, ps)

whenever it sets (qs+1, ps). Let Ys = Φi,s(qs). There are several strategies forRe,i,j,A,N,P,M .

First we try to meet condition 2 directly. If we ever see some (q, p) ⪯u (qs, ps) such that for

L⊕R⊕Z = Φe,s(q) we have L,R,Z are not disjoint or one of the pairs (P Y
0 ∪MY , R), (P Y

1 ∪

MY , L), (P Y , Z) is not disjoint, then we set (qs+1, ps+1) = (q, p) and injure lower priority

requirements by forcing their restriction to be larger than the use of Φe,s,Φi,s. At each

stage when Re,i,j,A,N,P,M is active we will run this strategy and then move on to the next

strategy.

For the second strategy we try to meet condition 1. We do this by running a simplified

version of the strategy we used for Theorem 4.6.9 for Ra
i to try to make Ψi(X) not the

graph of a total function. This time we start in state w.

• State w: we wait until at some stage s we see m,x0, x1, v0, v1 ∈ ω such that

⟨⟨m,xi⟩, vi⟩ ∈ We,s and (qs, ps) ⊮u f /∈ αvi for i ∈ 2. Chose a condition (q, p) ⪯u qs

such that for all n ≥ u the following hold.

1. If αv0(n) ∩ αv1(n) ̸= ∅ then q(n) ∈ αv0(n) ∩ αv1(n) and q(n) is even.

2. If max(αvi(n)) < min(αv1−i(n)) then q(n) = max(αvi(n)) + 1 and p(n) ≥

min(αv1−i).

So we get that q(n) ∈ αv0(n) ⇐⇒ q(n) ∈ αv1(n). Set (qs+1, ps+1) = (q, p).

If (q, p) ⊩u f ∈ αv0 , αv1 then move to state d. Otherwise move to state c. Let

r = max(dom(q) + 1. Note that (qs, ps) ⊮u f /∈ αvi but (q, p) ⊩r f /∈ αvi .

• State c: we wait until some stage t we see a pair x, v ∈ ω such that ⟨⟨m,x⟩, v⟩ ∈We,t

and (qt, pt) ⊮r f /∈ αv. Pick i such that xi ̸= x. Choose a condition (q, p) ⪯u (qs, ps)

such that the following all hold.

1. If αvi(n) ∩ αv(n) ̸= ∅ then q(n) ∈ αvi(n) ∩ αv(n) and q(n) is even.

2. If max(αv(n)) < min(αvi(n)) then q(n) = max(αv(n)) + 1.
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We set (qt+1, pt+1) = (q, p). If a, (q, p) ⊩u f ∈ αv, αvi then we will move to state

d. Otherwise we will remain in state c. If we remain, then note that there is an n

such that q(n) = max(αv(n)) + 1. Since max(αv1−i) < qt(n) ∈ αv(n) we now have

(q, p) ⊩u f /∈ αv1−i . We redefine x1−i = x, v1−i = v, r = max(dom(q) + 1.

• State d: in this state Re,i,j,A,N,P,M is considered satisfied via case 1.

If the strategy finishes then we get that Y is multivalued, and thus not the graph of a

function. If the strategy remains in state c then m /∈ dom(Y ) so Y is not total. In both

these cases Re,i,j,A,N,P,M is satisfied.

If the strategy never leaves state w then it is possible that Y is the graph of a total

function. However if this is the case then we have the following important observation:

if Y is the graph of a total function and (r, p) ̸⊥u (qt, pt) for all t then it must be that

Φi(r) ⊆ Y as otherwise we would have used (r, p) to move into state c at some point. We

make repeated use of this in the third strategy to ensure that Y is consistent at every

stage when we act.

The third strategy tries to meet condition 3. Define Ls ⊕ Rs ⊕ Zs = Φe,s(qs) and

Ds = Ls ∪ Rs ∪ Zs. For (q, p) ∈ Q and v ∈ ω we say that (q, p) →v f(n) ≤ 2m (implies

f(n) ≤ 2m) if 2⟨n,m⟩ ∈ Ψj(Y ⊕ Φe(q↾v) and (q, p) →v f(n) ≥ 2m if 2⟨n,m⟩ + 1 ∈

Ψj(Y ⊕ Φe(q↾v).

When Re,i,j,A,N,P,M is initialized we pick a witness x > u and start with qs(x) = −1.

The steps for this strategy are as follows.

1. If we ever see a stage s and v ∈ ω where we see (qs, ps) →s f(x) ≤ 0 then we injure

all lower priority requirements with restriction s and set qs+1(x) = ∞. If we are

waiting forever at this step then Re,i,j,A,N,P,M is satisfied by condition 3.

2. Next we wait until we see a stage t > s where Ys ⊆ Yt, Ds ⊆ Dt ∪ NYt and

(qt, pt) →t f(x) ≥ 2. Then injure all lower priority requirements with restriction t

and set qt+1(x) = −1 and D = Ds ∪Dt.
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Note that for any Arens co-d-CEA set Y ⊕L⊕R⊕Z we have that L∪R∪Z∪N = ω.

So if we wait forever to see Ds ⊆ Dt∪NYt then Re,i,j,A,N,P,M is satisfied by condition

2.

If we have Ls⊕Rs⊕Zs ⊆ Lt⊕Rt⊕Zt then the strategy is finished—this is because

if Re,i,j,A,N,P,M is not injured after stage t then we will have we have (qt, pt) →t

f(n) ≤ 0 ∧ f(n) ≥ 2 meeting condition 3. Otherwise we move on to the next step.

3. We wait until a stage l > t where Yt ⊆ Yl and Ll ⊕Rl ⊕ Zl looks like a subset of an

Arens co-d-CEA set on D, more precisely, we must have D ∩AYl ∩ (Lt ∪Rt) ⊆ P Yl ,

D ∩ Zt ⊆ AYl and D ∩ NYl ∩ Zt ⊆ MYl . Then set ql+1(x) = ∞, and injure lower

priority requirements with restriction l.

For any Arens co-d-CEA set Y ⊕L⊕R⊕Z we must have (A0 ∪A1)
c ∩ (L∪R) ⊆ P ,

Z ⊆ (A0∪A1)
c and N∩Z ⊆M . So if we wait forever at this step, then Re,i,j,A,N,P,M

is satisfied by condition 2.

4. We wait until a stage r > l where we have Yl ⊆ Yr and where Ls ⊕ Rs ⊕ Zs looks

like an Arens co-d-CEA set on D. Then set qr+1(x) = −1, and injure lower priority

requirements with restriction r.

5. We repeat steps 4 and 3 until we have l < r such that AYl , P Yl , NYl ,MYl agree

with AYr , P Yr , NYr ,MYr on D. This must happen eventually as D is finite and

AYl , P Yl , NYl ,MYl can only increase each time we repeat these steps.

Since the witness of Lr ⊕ Rr ⊕ Zr ⊆ Φe,t(qt) only uses finitely many axioms there

is a large enough n such that for any axiom (z, α) used we have if 2n ∈ α(x) then

∞ ∈ α(x). Set pr+1(x) = 2n+1, qr+1(x) = 1. The next step will be repeated several

times; we start with i = 0, s0 = l and r0 = r.

6. We wait for a stage k > ri where Yri ⊆ Yk and Lk ⊕ Rk ⊕ Zk looks like an Arens

co-d-CEA set on Dsi ∪Dr, more precisely P Yk
0 ∩ (Dsi ∪Dr) ⊆ Lk, P

Yk
1 ∩ (Dsi ∪Dr) ⊆

Rk,M
Yk ∩ (Dsi ∪Dr) ⊆ Zk, Zk∩ (Dsi ∪Dr) ⊆ AYk and Dsi ∪Dr ⊆ Dk∪NYk . Again,
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if we are waiting forever at this step, then Re,i,j,A,N,P,M is satisfied by condition 2

or condition 1.

We now have several cases to consider.

(a) If we have Lsi ⊕ Rsi ⊕ Zsi ⊆ Lk ⊕ Rk ⊕ Zk then (qk, pk) →k f(x) ≤ 2i but

q(k) > 2i, so we injure all lower priority requirements with restriction k and

set qk+1 = qk. We have now met condition 3.

(b) If we have Lsi ⊈ Lk ∪ NYk
0 , Rsi ⊈ Rk ∪ NYk

1 or Zsi ⊈ Zk ∪ NYk , then set

qk+1(x) = 2i and injure all lower priority requirements with restriction k. In

this case we are meeting condition 2 directly with the first strategy, as either

(Lsi ⊕Rsi ⊕ Zsi) ∪ (Lk ⊕Rk ⊕ Zk) is not the join of three disjoint sets or NYk

does not match with Lsi ⊕Rsi ⊕ Zsi .

(c) Otherwise set i = i+ 1, si = k, qk+1(x) = 2i+ 1 and repeat this step.

Now we verify this part of the construction. Consider a requirementR = Re,i,j,A,N,P,M .

Let s be a stage after which R is never injured. We need to show that R acts only finitely

often and is satisfied. If R acts at stage t > s via the first strategy then it never acts again

and has ensured that Φi(f)⊕ Φe(f) is not an Arens co-d-CEA set with A,N, P,M , so R

is satisfied via condition 2.

If at some point the second strategy acts then by the same sort of verification used in

the proof of Theorem 4.6.9 we can see that R acts only finitely often and is satisfied via

condition 1.

Now we must consider the third strategy. If we end up waiting forever at any of the

steps then R acts only finitely often and by looking at each step and the current state of

q(x) one can see that R must be satisfied by one of the three conditions. Similarly if the

strategy finishes then R never acts again and is satisfied directly.

Suppose towards a contradiction that R acts infinitely often. Then it must be that we

are in case (6c) of step 6 for all values of i ∈ ω. Since Ysi ⊆ Ysi+1 we have that NYsi ⊆

NYsi+1 . Since case (6b) does not apply we have that Ls0 ⊆ Ls1 ∪N
Ys1
0 ⊆ Ls2 ∪N

Ys2
0 ⊆ . . .
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and Rs0 ⊆ Rs1 ∪ N
Ys1
1 ⊆ Rs2 ∪ N

Ys2
1 ⊆ . . . Now consider when i = n. This means that

Lr ⊕ Rr ⊕ Zr ⊆ Lsi ⊕ Rsi ⊕ Zsi . However, since we finished repeating steps 3 and 4 we

have that Zl ∩D = Zr ∩D and since Lr ⊕Rr ⊕ Zr and Ll ⊕Rl ⊕ Zl disagree somewhere

on D there must be k ∈ Lr ∩ Rl or k ∈ Ll ∩ Rr. But then the first strategy would act,

a contradiction. This also means that the largest i we can get is i = n so qsi(x) will not

exceed psi(x).

So R acts only finitely often and is satisfied. So HalfGraph+(f) is not of Arens co-d-

CEA degree.

Now we prove the other direction.

Theorem 4.7.3. There is an Arens co-d-c.e. degree that is not a Roy halfgraph above

degree.

Proof. Note that this proof is very similar to the proof of Theorem 4.7.2 above and shares

a lot of the same structure and ideas.

We will use a modified set of conditions from the set Q from the proof of Theorem

4.6.7 to construct a specific Arens co-d-c.e. set. Let P = {(a, q) : q ∈ Q, a ⊆fin C
q}. For

(a, q), (b, p) ∈ P we define the following new notions:

• (a, q) ⪯ (b, p) if q ⪯ p.

• (a, q) ⪯u (b, p) if q ⪯u p and a↾u = b↾u.

• q(a) = (a ∪ P q
0 )⊕ ((Cq)c \ a ∪ P q

0 )⊕ (Cq \N q ∪M q).

We will build a computable sequence (a0, q0) ⪰ (a1, q1) ⪰ . . . and have C =
⋃

sC
qs ,

P =
⋃

s P
qs , N =

⋃
sN

qs ,M =
⋃

sM
qs and ensure that A0 = limn as is a well defined.

We will define A1 = Cc \A0 so A0, A1 is partition of Cc. This will ensure that C,P,N,M

are c.e. and that X = L ⊕ R ⊕ Z := (A0 ∪ P0) ⊕ (A1 ∪ P1) ∪ (C \ N ∪M) is an Arens

co-d-c.e. set.
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The requirements are Re,i,j,H where H is an c.e. operator. We think of Ψi(X)⊕Ψe(X)

as being a Roy halfgraph set where Ψi(X) is the total part Y and Ψe(X) is HalfGraph+(f)

for some f : ω → ω̃ with HY = HalfGraph(f). If this really is the case, then we want

Ψj(Ψi(X)⊕Ψe(X)) ̸= X. We say that Re,i,j,H is satisfied if one of the following holds.

1. Y = Ψi(X) is not the graph of a total function.

2. There is no f : ω → ω̃ such that Ψe(X) = HalfGraph+(f) and HY = HalfGraph(f).

3. X ̸= Ψj(Y ⊕Ψe(X)).

Fix a requirement R = Re,i,j,H and let u be the restriction given to R by higher

priority requirements. We will now give a strategy for R.

Like in the proof of Theorem 4.7.2, the first strategy for R is to attempt to make Y

not the graph of a total function. Again, for this we use the strategy from the proof of

Theorem 4.6.7. This time we only need states w, c, n, d and not g.

• State w: we wait until at some stage s we seem,x0, x1 ∈ ω and a pair (b0, r0), (b1, r1) ⪯u

(as, qs) such that ⟨m,xk⟩ ∈ Ψi,s(rk(bk)) and x0 ̸= x1. Let v bound the use of

⟨m,xk⟩ ∈ Ψi,s(rk(bk)). Without loss of generality we can assume [u, v] ⊆ Crk ⊆ [0, v]

as we can find some (b, r) ⪯u (as, qs) with this property that has r(b)↾v = rk(br)↾v

by putting to [u, v]\Crk into P r. Note this means we are assuming b0 = b1 = as ↾ u.

We set qs+1 = (Cqs ∪ Cr0 ∪ Cr1 , P qs , N qs ,M qs) and as+1 = as \ Cqs+1 . All lower

priority requirements are injured with restriction v and we enter state c.

• State c: we wait until we see a stage t such that for some (b, p) ⪯s (at, qt) we

have ⟨m,x2⟩ ∈ Ψi,t(p(b)) for some x2. Pick k such that xk ̸= x2. Set qt+1 =

(Cp, P p, Np ∪ N rk ,Mp) (we know N rk and Np do not conflict because p ⪯v qs+1

and v bounds N rk) and set at+1 = b. Note that now we have qt+1(b)↾v ⊆ rk(b), p(b).

Let o bound Cqt+1 and the use of ⟨m,x2⟩ ∈ Ψi,t(p(b)). We injure all lower priority

requirements with restriction o and enter state n.

• State n: we wait until we see a stage ℓ such that for some (a, h) ⪯o (aℓ, qℓ) we have

⟨m, y⟩ ∈ Ψi,ℓ(h(a)) for some y. If y ̸= xk then set qℓ+1 = (Ch, P h ∪ P rk , Nh,Mh ∪
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M rk). Otherwise y ̸= x2 and we set qℓ+1 = (Ch, P h, Nh,Mh∪v \(u∪P h)). In either

case all lower priority requirements are injured with the use of ⟨m, y⟩ ∈ Ψi,ℓ(v(a))

and we enter state d.

• State d: in this state R is considered satisfied.

If this strategy ends in state d then we have ensured that Y is multivalued. If it ends

in state c or n then we have that m /∈ dom(Y ). In either case R is satisfied via condition

1.

If we remain forever in state w then it might be Y is the graph of a total function.

However if this is the case then we again have the following important observation: if

Y is the graph of a total function and (a, q) ̸⊥u (at, qt) for all t then it must be that

Ψi(q(a)) ⊆ Y as otherwise we would have used (a, q) to move into state c at some point.

We make repeated use of this in the third strategy to ensure that Y is consistent at every

stage when we act. While this first strategy is waiting in state w we will enact the second

strategy.

Before we describe the second strategy we introduce some notation. We define Ys =

Ψi(qs(as)) and Hs = HYs . Since it is easier to think of a Roy halfgraph set in terms

of the function f rather than the formal definition we will think of elements of Ψe(q(a))

as putting restrictions on f . We say that q(a) → f(n) ≥ 2m if 2⟨n,m⟩ ∈ Ψe(q(a))

and q(a) → f(n) ≤ 2m if 2⟨n,m⟩ + 1 ∈ Ψe(q(a)). For an interval [x, y] ∈ I we define

q(a) → f(n) ∈ [x, y] if q(a) → x ≤ f(n) ≤ y (I is the set of even ended intervals from the

proof of Theorem 4.6.9). For a sequence of intervals α : ω → I we say q(a) → f ∈ α if

for all n we have q(a) → f(n) ∈ α(n). In a similar way we define Hs → f(n) ≥ 2m and

Hs → f(n) = 2m (we cannot define Hs → f(n) ≤ 2m as the HalfGraph(f) does not give

upper bounds on f(n) unless f(n) is even).

We also use notation for implications in the other direction. We say Ys, α → x ∈ L

if {x} ⊕ ∅ ⊕ ∅ ⊆ Ψj(Ys ⊕ ({⟨n,m⟩ : 2m ≤ min(α(n))} ⊕ {⟨n,m⟩ : 2m ≥ max(α(n))})).

Similarly we define Ys, α→ x ∈ R and Ys, α→ x ∈ Z.

The steps of the second strategy for R are as follows:
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1. Pick some x /∈ Cqs ∪ u and set as+1 = as ∪ {x}, qs+1 = qs.

2. Wait for a stage s where we see some α0 such that Ys, α0 → x ∈ L and qs(as) → f ∈

α0. Set as+1 = as \ {x}, qs+1 = qs. Injure all lower priority requirements with the

use of Ys, α0 → x ∈ L and qs(as) → f ∈ α0.

3. Like in the previous step wait for a stage t such that Ys ⊆ Yt and we see some α1

such that Yt, α1 → x ∈ R and qt(at) → f ∈ α1. Set as+1 = as∪{x}, qt+1 = qt. Injure

all lower priority requirements with the use of Yt, α1 → x ∈ R and qt(at) → f ∈ α1.

4. Let k = max{m : αi(m) ̸= ω̃} + 1. Now we wait until a stage s1 > t such that

Yt ⊆ Ys1 and Hs1 , f are well behaved up to k. More precisely, for each n < k we

want the following:

• Hs1 → f(n) = 2m ⇐⇒ qs1(as1) → f(n) = 2m.

• Hs1 → f(n) ≥ 2m ∧ Hs1 ↛ f(n) ≥ 2m + 2 ⇐⇒ qs1(as1) → 2m ≤ f(n) ≤

2m+ 2.

• Hs1 ↛ f(n) ≥ 0 =⇒ qs1(as1) → f(n) ≤ 0∨qs1(as1) → f(n) ≥ max(8,min(α0(n)),min(α1(n))).

We use 8 here because the interval [0, 8] can be divided into 4 even ended sub

intervals. Set as1+1 = as1 \ {x}, qs1+1 = qs1 . Injure all lower priority requirements

with the use that witnesses Hs1 , f are well behaved.

5. Again search for a t1 > s1 such that Ys1 ⊆ Yt1 and Ht1 , f are well behaved up to k.

Set at1+1 = at1 ∪{x}, qt1+1 = qt1 . Injure all lower priority requirements with the use

that witnesses Ht1 , f are well behaved.

6. Repeat the previous two steps until we have si < ti such that Hsi and Hti agree up

to k. Since k is finite we only have to do this finitely many times. If we have that

qti(ati) → f ∈ α0 ∩ α1 then the strategy is finished and we have satisfied condition

3.

If this is not the case, then there is some n < k such that Hsi , Hti ↛ f(n) ≥ 0

and we have qsi(asi) → f(n) ≤ 0 and qti(ati) → f(n) ≥ 8 or vica versa. Now set
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ati+1 = ati \ {x}, Cqti+1 = Cqti ∪ {x} and leave the rest of qti+1 unchanged from qti .

Injure all lower priority requirements.

7. Wait until a stage r > ti when we see Yti ⊆ Yr and β such that Yr, β → x ∈ Z

and qr(ar) → f ∈ β. Furthermore we want that f and Hr are well behaved upto

max{m : β(m) ̸= ω̃}+ 1.

Since Hr, f are well behaved on k we have that qr(ar) → f(n) ≥ 4 or qr(ar) →

f(n) ≤ 4 for the n from the previous step. We will assume that qr(ar) → f(n) ≥ 4

and qsi(asi) → f(n) ≤ 0 and give the steps for this case. The cases where qr(ar) →

f(n) ≤ 4 or qti(ati) → f(n) ≤ 0 are similar.

In this case we add x to N
qr+1

0 , injure lower priority requirements and proceed to

the next step.

8. We now wait for a stage v > r where we see one of qv(av) → f(n) ≥ 2 or qv(av) →

f(n) ≤ 2. If qv(av) → f(n) ≥ 2 then we add x to P
qv+1

0 . If qv(av) → f(n) ≤ 2 then

we add x to M qv+1 . In either case we have ensured qv(av) → f(n) ∈ ∅ so we have

met condition 2.

If the strategy finishes, then as explained we meet either 2 or 3. If the strategy waits

forever at one of the steps then R is also met. If we are waiting because we never see a

t > s where Ys ⊆ Yt then either Y is not total or we have an opportunity to use the tools

from the proof of Theorem 4.6.7. Either way we meet condition 1.

If we are waiting forever at a step for some other reason then one of the other conditions

will be met. In the case of steps 2 and 3 we meet condition 3 and in the case of steps 4,5,

6 and 8 we meet condition 2. For step 7 will be condition 3 if we never see Yr, β → x ∈ Z

and condition 2 if we never see that Hr, f are well behaved.
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4.8 Metrizable classes and degrees

4.8.1 The doubled co-d-c.e. degrees

In Section 4.5.2 we showed that the doubled co-d-CEA degrees are not T2.5 and in Section

4.6 we show that the Arens co-d-CEA degrees and the Roy halfgraph degrees are both

not submetrizable. A natural question to ask is if these results can be improved to quasi-

minimal separations. In this section we give a negative answer to that question. This

result and others come from the following theorem.

Theorem 4.8.1. For each Y there is a metrizable cb0 space XY such that

DXY
= {a : a is doubled co-d-c.e. in Y }

In fact XY is homeomorphic to ω × 2ω.

Proof. Fix a total set Y and Y -c.e. sets C,P,N such that P ∩N = ∅ and P,N ⊆ C. Let

X = {f : Cc ∪ P ∪N → 2 : f [P ] = {0}, f [N ] = {1}}. We give a subbasis (βn)n of X as:

• f ∈ β3n if f(n) = 0,

• f ∈ β3n+1 if f(n) = 1 and

• f ∈ β3n+2 if n ∈ Y .

If Cc is infinite then X ∼= 2ω otherwise X is finite. We have that DX = {a : ∃A ⊔ B =

Cc[Y ⊕ Y c ⊕ (A ∪ P ) ⊕ (B ∪ N) ∈ a]}. By taking the disjoint union over all Y -c.e. sets

C,P,N where Cc is infinite we get the desired XY .

Corollary 4.8.2. There is a second countable metric space X such that for all computably

submetrizable spaces Y we have DX ⊈ DY .

Corollary 4.8.3. There is a second countable metric space X such that the quasi-minimal

degrees in DX are the exactly the quasi-minimal doubled co-d-CEA degrees.
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Corollary 4.8.2 tells us that a lot of complexity can be coded into a non-computable

basis of a metrizable space, but it does not tell much about submetrizable classes that

are not metrizable. We know there are effectively submetrizable classes that are not

metrizable, for instance the co-d-CEA degrees. This follows from the fact that there are

quasi-minimal co-d-CEA degrees relative to any oracle. However, since the co-d-CEA

degrees are contained in the doubled co-d-CEA degrees, Corollary 4.8.3 tells us that this

is not a quasi-minimal separation. In fact every effectively submetrizable space X can

have only countably many quasi-minimal degrees since points representing these degrees

get mapped to computable points under the continuous injection f : X → [0, 1]ω. Because

it is possible to encode any countable set of degrees into the basis of a metric space we

have the following result.

Proposition 4.8.4. There is no effectively submetrizable class of degrees C that is metriz-

able quasi-minimal.

However, if we drop the effective requirement then this becomes an open question.

Question 4.8.5. Is the a submetrizable class of degrees C that is metrizable quasi-

minimal?

Corollary 4.8.3 means that there is no hope to separate the classes of degrees of a T2.5

space from the classes of degrees of an arbitrary second countable submetrizable space

using the notion of T quasi-minimal with the given examples of T2.5 spaces. If there is

such a separation we will need to look at new spaces.

Question 4.8.6. Is there a (decidable) T2.5 class of degrees that is submetrizable quasi-

minimal?

While the doubled co-d-CEA degrees are not metrizable quasi-minimal it may still be

possible to get quasi-minimal separations by adding a computability constraint. In this

vein, we have the following questions.

Question 4.8.7. For every decidable T2.5 space X is there a doubled co-d-CEA degree

that is X quasi-minimal?
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Question 4.8.8. For every effectively submetrizable space X is there an Arens co-d-CEA

degree or Roy halfgraph degree that is X quasi-minimal?

Since an effectively submetrizable space can have at most countably many quasi-

minimal degrees and any countable collection of enumeration degrees can be encoded into

an effectively submetrizable space the previous question is equivalent to the following.

Question 4.8.9. Are there uncountably many quasi-minimal Arens co-d-CEA degrees or

quasi-minimal Roy halfgraph degrees?

Now we explore the spaces from Theorem 4.8.1 a little more. By combining them all

together in the right way we can get a new cb0 space that represents all doubled co-d-CEA

degrees.

Definition 4.8.10. We define the doubled co-d-CEA space (DCD) as follows. For each

triple of c.e. functionals C,P,N with P Y , NY ⊆ CY , P Y ∩NY = ∅ define the set XC,P,N =

{(Y, f) : Y ∈ 2ω, f : (CY )c ∪ P Y ∪ NY , f [P Y ] = 1, f [NY ] = 0}. The subbasis (βe)e of

XC,P,N is coded by pairs ⟨σ,m⟩, σ ∈ 2<ω,m ∈ ω with β⟨σ,2n⟩ = {(Y, f) : σ ≺ Y, (n, 0) ∈ f}

and β⟨σ,2n+1⟩ = {(Y, f) : σ ≺ Y, (n, 1) ∈ f}.

Let Γe = (Γe,2,Γe,1,Γe,0) be a effective listing of all valid triples of functionals. We

define DCD to be
⊔

eXΓe . The subbasis of DCD is given by β⟨e,σ,m⟩ where β⟨e,σ,m⟩ is the

open set β⟨σ,m⟩ in XΓe .

Theorem 4.8.11. DDCD is the class of doubled co-d-CEA degrees.

Proof. Consider a point (Y, f) ∈ XΓe . Let (C,P,N) = Γe. We have that

NBaseDCD(Y, f) = {⟨e, σ, 2n⟩ : σ ≺ Y, f(n) = 0} ∪ {⟨e, σ, 2n+ 1⟩ : σ ≺ Y, f(n) = 1}

Let A = f−1[{1}] \CY , B = f−1[{0}] \CY . Let X = Y ⊕ Y c ⊕ (A ∪ P )⊕ (B ∪N). So we

have that X is doubled co-d-CEA and NBaseDCD(Y, f) ≡e X.

Now consider some doubled co-d-CEA set X = Y ⊕ Y c ⊕ (A∪P )⊕ (B ∪N). Let e be

such that Γe,2(Y ) = (A ∪ B)c,Γe,1(Y ) = P,Γe,0(Y ) = N . Let f : A ∪ B ∪ P ∪N → 2 be
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given by f(n) = 1 if n ∈ A ∪ P , f(n) = 0 if n ∈ B ∪N . Then we have that (Y, f) ∈ XΓe .

Then just like above we have that NBaseDCD(Y, f) ≡e X.

So we have a different space that represents the doubled co-d-CEA degrees. It is less

natural than the double origin topology, but more explicitly represents these degrees.

Theorem 4.8.12. DCD is T2 \ T2.5.

Proof. Since DCD gives us the doubled co-d-CEA degrees we know that it cannot be T2.5.

So now we need to show that the space is T2.

Fix an e and consider XC,P,N for (C,P,N) = Γe. Consider two distinct points

(Y0, f0), (Y1, f1) ∈ XC,P,N . If Y0 ̸= Y1 then there is σ0 ≺ Y0 and σ1 ≺ Y1 such that

σ0 ⊥ σ1. Consider the open sets V0 =
⋃

m
β⟨σ0,m⟩ and V1 =

⋃
m
β⟨σ1,m⟩. Since σi ≺ Yi we

have Yi ∈ Vi. For any (Y, f) ∈ V0, σ0 ≺ Y so σ1 ⊀ Y . Hence (Y, f) /∈ V1, so V0 and V1 are

disjoint.

Now suppose that Y0 = Y1. So f0 ̸= f1 and there is n such that f0(n) ̸= f1(n). So

we have (Yi, fi) ∈ β⟨⟨⟩,2n+fi(n)⟩. If (Y, f) ∈ β⟨⟨⟩,2n+f0(n)⟩ then f(n) = f0(n) ̸= f1(n) so

(Y, f) /∈ β⟨⟨⟩,2n+f1(n)⟩. Hence β⟨⟨⟩,2n+f0(n)⟩ and β⟨⟨⟩,2n+f0(n)⟩ are disjoint.

4.8.2 Decidable, metrizable degrees

We know that any enumeration degree can be realized in a decidable, effectively sub-

metrizable cb0 space. A natural question to ask is the following.

Question 4.8.13. What is the class of degrees a such that a ∈ DX for some decidable,

metrizable cb0 space X ?

We know that this class includes all continuous degrees, since [0, 1]ω is decidable with

the usual basis. Theorem 4.8.14 below shows that this class contains a quasi-minimal,

and hence non continuous, degree. So this class is strictly larger than the class of the

continuous degrees. It remains open whether there are any enumeration degrees that do

not belong to this class.
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Theorem 4.8.14. There is a decidable, metrizable cb0 space X such that DX contains a

quasi-minimal degree.

Proof. The metric space X = (X, d) we will construct will be X = ω × ω ∪ {∞} with the

metric given by d((a, n), (b,m)) = 2−min(n,m) if (a, n) ̸= (a,m) and d((a, n),∞) = 2−n.

So ω × ω has the discrete topology and ∞ is the limit of all sequences where the second

coordinate is increasing. The basis we will use is given by β2⟨a,n⟩ = {(a, n)} and

β2n+1 = {(a,m) : m ≥ n ∧ (∀k ≤ n)(pk ∤ a ∨ n /∈ Bk ∨m ∈ Bn)} ∪ {∞ : Bn is cofinite}

where (pn)n is the sequence of primes and (Bn)n are uniformly computable sets that we

will build by finite injury. There will be infinitely many n such that Bn is cofinite, hence

for each n there is m > n such that ∞ ∈ β2m+1 ⊆ B(∞, 2−n). So (βn)n is a basis of X .

To ensure that (X, (βe)e) is decidable we will ensure that n ∈ Bn ⊆ ω \ n and we

will ensure for all m < n if n ∈ Bm then Bn ⊆ Bm. This means that if n ∈ Bm

then β2n+1 ⊆ β2m+1. To show that the ⊆ relation on positive Boolean combinations is

computable it is enough to look at questions of the form
⋂

i<k βei ⊆
⋃

j<k′ βdj . If some ei is

even then, since the Bn are uniformly computable we can answer the question computably.

So we can assume that all ei are odd. Since |
⋂

i<k βei | is either 0 or ω we can assume all

dj are odd. Let e = min{ei : i < k}. Let ei = 2ri +1 and dj = 2vj +1. If there is i, j such

that ri ∈ Bvj then it is true that
⋂

i<k βei ⊆
⋃

j<k′ βdj as βei ⊆ βdj . If this is not the case

then let r = max{ri : i < k} and consider p =
∏

j:vj≤r pj . Since r /∈ Bvj for any j we have

that (p, r) /∈ βdj . On the other hand since ri /∈ Bvj for any i, j we have that (p, r) ∈ βei

for each i < k.

Now we move on to the construction of (Bn)n. We define As = {n : s ∈ Bn}, which

means that Bn = {s : n ∈ As}. We will build As in stages and have A = limsAs. Note

that ∅ ⊕A = NBase(∞) so we want to ensure that A is quasi-minimal. The requirements

are Ne : A ̸= We and Re : Ψe(A) is the graph of a total function =⇒ Ψe(A) ≤e ∅. Each

requirement will be given a restriction u ≤ s by higher priority requirements and will not

be allowed to change the value of A↾u.
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The strategy for an Ne requirement is as follows. If Ne is initialized at stage s then we

will use s as a witness and give lower priority requirements restriction s+ 1 and will not

change A. By definition we must have s ∈ As. We wait until a stage t > s where we see

s ∈We. Then we set At+1 = (As \ {s}) ∪ {t+ 1} and give all lower priority requirements

restriction t. The strategy is finished after this step.

The strategy for an Re requirement is as follows. If Re is initialized at stage s then

we give lower priority requirements restriction s. Now we wait until a stage t where we

see a pair ⟨x, y⟩, ⟨x, z⟩ ∈ Ψe,t(As ∪ [s, t]) with y ̸= z. When we see such a pair we set

At+1 = As ∪ [s, t + 1] and give all lower priority requirements restriction t. The strategy

is now finished. Since A↾s has not changed between stages s and t defining At+1 as above

will not violate the requirement that Bn ⊆ Bm if n ∈ Bm.

The Ne requirement ensures that A ̸=We. The Re requirement ensures that if Ψe(A)

is the graph of a total function then Ψe(A) = Ψe(As∪ [s,∞)) for some s and is hence com-

putable. So A has quasi-minimal degree and hence is D(X,(βe)e) = {0, dege(A)} contains a

quasi-minimal degree.



101

Chapter 5

E-pointed trees

5.1 Introduction

In this chapter we look at e-pointed trees. The work in this chapter was done in collabo-

ration with Jun Le Goh, Joseph Miller and Mariya Soskova and can be found in [14].

E-pointed trees were studied by McCarthy [32] and have been used in computable

model theory [35].

Definition 5.1.1. A tree T is e-pointed if for every path P ∈ [T ] we have that T ≤e P .

We say T is uniformly e-pointed if there is a single enumeration operator Ψe such that for

all paths P ∈ [T ] we have T = Ψe(P ).

McCarthy [32] studied e-pointed trees on 2ω and characterized their enumeration de-

grees as the cototal degrees. In this chapter we focus on e-pointed trees on ωω, henceforth

referred to as Baire e-pointed trees. It turns out these have an interesting relationship

with hyperenumeration reducibility (introduced by Sanchis [39]). We show in Section 5.3

that they characterize the hypercototal degrees. In Chapter 6 we make use of them to

prove that Selman’s theorem does not hold in the hyperenumeration degrees.

McCarthy [32] showed that in the case of Cantor e-pointed trees, allowing the trees to

have dead ends does not change enumeration degrees represented by these trees. In the

case of Baire e-pointed trees, we prove in Section 5.4 that the class of enumeration degrees
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of Baire e-pointed trees without dead ends is a strictly smaller class than the class of the

degrees of Baire e-pointed trees with dead ends.

Also of interest to us in this chapter are introenumerable sets:

Definition 5.1.2. A set A is introenumerable if for all infinite S ⊆ A, A ≤e S. A set A is

uniformly introenumerable if there is an enumeration operator, Ψe, such that A = Ψe(S)

for all infinite S ⊆ A.

We study these in Section 5.5. It turns out that the class of introenumerable degrees,

lies strictly between the cototal degrees and the degrees of Baire e-pointed trees without

dead ends.

We end this chapter with a brief overview of the topological classification of these

classes, using the notions from Chapter 4.

5.2 Hyperenumeration reducibility

Since this is the first chapter to make use of hyperenumeration reducibility we will use

this section to discuss some concepts that will be useful for the rest of this thesis.

We defined enumeration reducibility in terms of operators (Ψe)e. Using Definition

1.6.1 we can define hyperenumeration operators (Γe)e.

Definition 5.2.1. For the eth c.e. set We we define the hyperenumeration operators Γe

by n ∈ Γe(A) ⇐⇒ ∀f ∈ ωω∃σ ⪯ f, u ∈ ω[⟨n, σ, u⟩ ∈We ∧Du ⊆ A].

Now we examine the relationship between Γe and Ψe. Both use the same setWe in their

definition. Consider the tree SA
e defined by n̂σ /∈ SA

e ⇐⇒ ∃τ ⪯ σ, u ≤ |σ|[⟨n, τ, u⟩ ∈

We,|σ| ∧ Du ⊆ A]}. From the definition of Γe, we have that n ∈ Γe(A) if and only if SA
e

does not have an infinite path starting with n. We have that SA
e ≤e A and SA

e ≤e A.

While the notation is a little different, Sanchis [39] used a similar idea when proving

the existence of a non-hypertotal degree. The form of SA
e inspires us to come up with the

notion of a hyperenumeration of a set.
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Definition 5.2.2. We say that a tree S is a hyperenumeration of a set B if B = {n : ∀f ∈

[S](f(0) ̸= n}.

From this we have that B ≤he S via the same operator for every hyperenumeration S

of B. By coding a set X into a layer of SX
e , we have that for every X such that B is Π1

1 in

X, there is a hyperenumeration S of B such that S ≡T X. So the hyperenumerations of

B characterize the hypertotal degrees above deghe(B) much like how the enumerations of

B characterize the total e-degrees above the dege(B). Recall the definition of hypertotal

and hypercototal:

Definition 5.2.3. We say that a set A is hypertotal if A ≤he A. We say that A is

hypercototal if A ≤he A. A degree is hypertotal (hypercototal) if it contains a hypertotal

(hypercototal) set.

Sanchis proved some other results about hyperenumeration reducibility that we will

use in this thesis:

Lemma 5.2.4 (Sanchis [39]). For sets A,B ⊆ ω we have the following:

1. If there is a Π1
1 set V such that n ∈ A ⇐⇒ ∀f ∈ ωω∃σ ⪯ f, u ∈ ω[m̂⟨n, σ, u⟩ ∈

V ∧Du ⊆ B] then A ≤he B.

2. If A ≤e B then A ≤he B and A ≤he B.

5.3 Baire e-pointed trees with dead ends

In this section we give a characterization of the enumeration degrees of e-pointed trees

with dead ends on ωω as precisely the hypercototal degrees.

Theorem 5.3.1 (Goh, Jacobsen-Grocott, Miller and Soskova [14]). For a degree a ∈ De

the following are equivalent.

1. a contains a Baire e-pointed tree (with dead ends).

2. a contains a uniformly Baire e-pointed tree (with dead ends).
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3. a contains a hypercototal set.

4. Every A ∈ a is hypercototal.

Proof. It is clear that 2 =⇒ 1 and 4 =⇒ 3.

3 =⇒ 2: consider a set A ≤he A via some hyperenumeration operator Γe. This

gives us a hyperenumeration SA
e of A with SA

e ≤e A. We use this to define a tree T =

{
⊕

n<m in̂σn : ∀n < m[(in = 0 ∧ n̂σn ∈ SA
e ) ∨ (in = 1 ∧ n ∈ A)]}. Essentially a string

σ ∈ T breaks up into a finite join of strings ⊕n<min̂σn where σ(⟨n, k⟩) = (in̂σn)(k). So
for a path p ∈ [T ] we have p =

⊕
n in̂pn. If in = 0 then we have n̂pn ∈ SA

e so n /∈ A. If

in = 1 then n ∈ A, so we have that A ≤e p uniformly. We have that T ≤e S
A
e ⊕A ≤e A so

by composing enumeration operators we can see that T is uniformly Baire e-pointed and

that T ≤e A. We have that n ∈ A if and only if there is σ ∈ T such that σ(⟨n, 0⟩) = in = 1

and hence A ≤e T .

1 =⇒ 4: This proof follows the equivalent one by McCarthy [32] for e-pointed trees

on Cantor space. Consider a Baire e-pointed tree T . We will build S ⊆ T such that every

path in S uniformly enumerates T and S ≤e T . We build S in stages, by attempting to

build a path in T that does not enumerate T . This process will fail, at which point we

will have found our S.

We start with S0 = T . At stage s we ask if there is a σ ∈ Ss such that Ψs(σ) ⊈ T and

σ can be extended to an infinite path in Ss. If yes, then we define Ss+1 = {τ ∈ Ss : τ ∤ σ}.

If no, then we ask if there is σ ∈ T such that the tree {τ ∈ Ss : σ /∈ Ψs(τ)} is illfounded.

If yes then we take this tree as Ss+1. If no, then every path in Ss uniformly enumerates

T with witness Ψs.

If this process does not stop, then we have a path p =
⋂

s Ss such that Ψe(p) ̸= T for

e and thus T is not uniformly Baire e-pointed.

Since at each stage of the construction we have Ss+1 ≤e Ss we get that S ≤e T

as desired. Now we show how to use this tree to prove that every set in dege(T ) is

hypercototal. Suppose that T ≡e A. Then S ≤e A so by Lemma 5.2.4 we have that

S ≤he A. Observe that σ ∈ T ⇐⇒ ∀f ∈ ωω∃τ ⪯ f [τ /∈ S ∨ σ ∈ Ψ(τ)] where Ψ is the
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witness that every path in S uniformly enumerates T . This shows that T ≤he S and hence

A ≤e T ≤he S ≤he A.

5.4 Baire e-pointed trees without dead ends

In this section consider e-pointed trees without dead ends. Notably it is this type of tree

that Montalbán uses in [35]. It is also this kind of tree that we use in Chapter 6 to disprove

Selman’s theorem for hyperenumeration reducibility.

We observe that the uniformly Baire e-pointed tree we constructed in the proof of

Theorem 5.3.1 contained many dead ends. This is unavoidable as the following shows:

Theorem 5.4.1 (Goh, Jacobsen-Grocott, Miller and Soskova [14]). There is a ∆0
3 set A

that is not enumeration equivalent to any Baire e-pointed tree without dead ends.

Proof. We build A in initial segments with A =
⋃

s a
+
s for as ∈ 2<ω (here a+ = {n : a(n) =

1}). For each enumeration operator Ψe we build a sequence (pen)n such that if Ψe(A) is a

tree without dead ends then pe =
⋃

n p
e
n is a path in that tree and for all i ∈ ω, Ψi(p

e) ̸= A.

So either Ψe(A) is not e-pointed or it is not equivalent to A. As part of ensuring this, we

will also build an increasing sequence of forbidden sets (F e
n)n with

⋃
n F

e
n ⊊ A.

The construction starts with a0 = pe0 = F e
0 = ∅.

• At sage s = ⟨e, 0⟩ we ask if there is a string a ⪰ as and string p ∈ Ψe(a
+) such that

for all b ⪰ a we have that p is a dead end in Ψe(b
+). If yes then we take as+1 = a

and we don’t need to build pe. If no, then we set as+1 = as and we will build pe at

future stages; to do this we will use the forbidden sets F e
n.

• At stage s = ⟨e, n+1⟩ we build pen+1 and F e
n+1. Given as, p

e
n and F e

n we ask if there

is a ⪰ aŝ0 and p ∈ Ψe(a
+ \ F e

n) such that |as| ∈ Ψn(p) and p ⪰ pen. If yes, then we

set pen+1 = p, F e
n+1 = F e

n and as+1 = a and move to the next stage. If no, then we

set pen+1 = pen,F
e
n+1 = F e

n ∪ {|as|} and as+1 = aŝ1.
Now we verify that the construction works. Suppose that towards a contradiction that

A is equivalent to some Baire e-pointed tree without dead ends. Then there is some e
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such that Ψe(A) is this tree. If at stage s = ⟨e, 0⟩ we were able to find the extension a

and finite path p that we were searching for, then we have a contradiction, as p must have

some extension p′ ∈ Ψe(A), but then p
′ ∈ Ψe(at) for some t. So we can conclude that the

construction of pe and F e took place.

In a similar way we can see that we would always be able to find extensions of pen in

Ψe(a
+
s \ F e

n). So (as there are infinitely many operators Ψn with d ∈ Ψn(p) ⇐⇒ |p| ≥ n)

we can see that pe must be an infinite sequence.

Since pe is infinite, it can enumerate Ψe(A), and Ψe(A) ≥e A by our assumption, so

there must be n such that Ψn(p
e) = A. Now consider the question we asked at stage

s = ⟨e, n⟩. If there was such an a and p, then p ⪯ pe and a ⪯ A but |as| ∈ Ψn(p
e) \ A, a

contradiction. If there was no such a and p, then |as| ∈ A∩F e
n+1. So |as| ∈ Ψn(p

e), hence

there is m > n, t > s such that |as| ∈ Ψn(p
e
m) and pem ∈ Ψe(a

+
t \ F e

m). But then if we take

a = aŝ0̂1|at| we get pem ∈ Ψn(a
+ \ F e

n), a contradiction of there being no such a and p.

Hence we can conclude that Ψn(p) ̸= A for any n, and so A is not equivalent to any

Baire e-pointed tree without dead ends. To see that A is ∆0
3 we observe that each question

we ask in the construction consists of only two quantifiers, so could be answered by 0′′.

Since every ∆0
3 set is a Π1

1 set, and hence hyperenumeration equivalent to ∅, we get

the following:

Corollary 5.4.2. There is a hypercototal enumeration degree that does not contain any

Baire e-pointed trees without dead ends.

This distinguishes the Baire e-pointed trees with dead ends from those without. In

the question of Baire e-pointed trees without dead ends it is an open question if requiring

uniformity has an effect on the degrees.

Question 5.4.3. Is there a Baire e-pointed tree without dead ends that is not equivalent

to any uniformly Baire e-pointed tree without dead ends.
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5.5 Introenumerable sets

In this section we look at introenumerable sets and their relationship to e-pointed trees

on 2ω and ωω.

Proposition 5.5.1 (Goh, Jacobsen-Grocott, Miller and Soskova [14]). Every cototal enu-

meration degree contains a uniformly introenumerable set.

Proof. If a is a cototal degree then a contains a uniformly Cantor e-pointed tree T without

dead ends [32]. Let Ψ be such that Ψ(p) = T for all infinite p ∈ [T ]. Consider an infinite

S ⊆ T . Consider the set A = {σ : ∃τ ∈ S[σ ∈ Ψ(τ)]}. It is clear that A ≤e S. By König’s

Lemma, we know that there must some path p ∈ [T ] such that S contains arbitrarily large

initial segments of p. This means that T ⊆ A as T = Ψ(p). On the other hand, since T

has no dead ends and Ψ(p) = T for all p ∈ T it must be that A ⊆ T . So A = T .

Since the definition of A is uniform, T is uniformily introenumerable.

For the case of Baire e-pointed trees we have the following.

Proposition 5.5.2 (Goh, Jacobsen-Grocott, Miller and Soskova [14]). For a set A

• If A is introenumerable then A ≡e T for some Baire e-pointed tree T without dead

ends.

• If A is uniformly introenumerable then A ≡e T for some uniformly Baire e-pointed

tree T without dead ends.

Proof. Fix A. Consider the tree T = {σ ∈ ω<ω : range(σ) ⊆ A ∧ σ is strictly increasing}.

So A ≡e T and if A is infinite, then T does not have any dead ends. For any path p ∈ [T ]

we have range(p) is an infinite subset of A. So if A is (uniformly) introenumerable then

every path in T (uniformly) enumerates A and hence T is a (uniformly) Baire e-pointed

tree without dead ends.

This completes the known implications regarding introenumerable degrees. Now we

move on to showing that these implications are strict.
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Theorem 5.5.3 (Goh, Jacobsen-Grocott, Miller and Soskova [14]). There is a uniformly

introenumerable set that is not of cototal enumeration degree.

Before we begin the construction of this set we will specify the operator via which it

will be uniformly introenumerable.

Lemma 5.5.4. There is a computable f : Pfin(ω) → Pfin(ω)

1. f(∅) = ∅.

2. For each finite set D ⊆ ω and function g : P(D) → Pfin(ω) there are infinitely many

x ∈ ω such that (∀E ⊆ D) f(E ∪ {x}) = g(E).

Proof. Take an effective enumeration {(Dn, gn, kn)}n of tuples with Dn ⊆fin ω, gn :

P(Dn) → Pfin(ω) and kn ∈ ω. We define f by recursion.

f(∅) = ∅. Next assume that n > maxD for some D ∈ dom(f) We let

f(D ∪ {x}) =


gn(D) D ⊆ Dn,

∅ otherwise

It is clear that 1 holds. For 2 fix a D and g : P(D) → Pfin(ω). Observe that there are

infinitely many n such that Dn = D and gn = g. If n > max(D) then f(E ∪ {x}) = g(E)

for each E ⊆ D.

To define our witness enumeration operator Ψ we take f as in Lemma 5.5.4 and define

Ψ(A) =
⋃

D⊆finA

f(D).

Now that we have our operator, the next step is to define the forcing partial order we

use in this construction. For this we will use an order like structure N = ω · 2∪ {∝} with

the ordering 0 < 1 < · · · <∝<∝< ω < ω + 1 . . . . The idea with ∝ is that it represents an

arbitrarily large finite number that has not yet been specified, hence we want that ∝<∝.

A condition p is a tuple (Gp, Bp
0 , . . . , B

p
k, L

p) that satisfies the following properties:
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1. Gp ⊔Bp
0 ⊔ · · · ⊔Bp

k is a partition of some finite A ⊆ ω.

2. Lp : A× P(A) → N .

3. For all D ⊆ A,m ∈ ω, we have L(m,D) = 0 ⇐⇒ m ∈ Ψ(D).

4. If E ⊊ D ⊆ A and m ∈ A, then either Lp(m,D) < Lp(m,E) or Lp(m,D) =

Lp(m,E) = 0.

5. If L(m,D) =∝, then for some j ≤ k we have D ⊆ G ∪
⋃

i>j B
p
i and m ∈ Bp

j .

6. If we have D ⊆ G ∪
⋃

i>j B
p
i and m ∈ Bp

j then L(m,D) ≥∝.

7. If L(m,E ∪D) < ω and ∀n ∈ E(L(n,D) < ω), then L(m,D) < ω.

A condition p extends q, if Gp ⊇ Gq, Lp ⊇ Lq and Bp
0 , . . . , B

p
k ⪰ Bq

0, . . . , B
q
k′ .

The idea here is that G represents the numbers that will become part of our introenu-

merable set and
⋃

i≤k Bi represents numbers that will not become part of our introenu-

merable set. The labeling function Lp(n,D) tells us how many numbers we have to add

to D before Ψ enumerates n. In our construction it is important to have the ability to

add Bp
k to G and end up with a valid condition. This is why the labeling extends to the

Bp
i . However we cannot allow Ψ to enumerate anything in Bp

i , hence the need to add ∝

to N . Note that by 3 and 6 we have that G ⊇ Ψ(G).

For any generic filter G we define IG =
⋃

p∈G G
p. We will show that for any sufficiently

generic G, IG is uniformly introenumerable and not of cototal degree. Since Ψ(∅) = ∅ we

observe that there is at least one condition, (∅, ∅, ∅). Now we give two ways of extending

conditions.

Definition 5.5.5. For a condition p and number n ∈ ω we define q = p[+n] as follows:

• Gq = Gp ∪ {n}.

• Bq
i = Bp

i for i ≤ k.
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•

Lq(m,D) =



ω + |Ak+1| − |D| n = m

Lp(m,D) n /∈ D ∪ {m}

∝ n ∈ D ∧ ∃j[m ∈ Bq
j ∧D ⊆ Aj ]

0 otherwise

where Aj = Gq ∪
⋃

i>j B
q
i .

Lemma 5.5.6. For each p there are infinitely many n such that p[+n] is a valid condition

and p[+n] < p.

Proof. We use the same meaning for Aj as above. For m ∈ A and D ⊆ A, we say that m

is left of D if there is some j such that D ⊆ Aj and m ∈ Bj . Using this we define the

function g : P(A) → P(A) by

g(D) = {m ∈ A : m is not left of D}

for any D ⊆ A. By part 2 of Lemma 5.5.4 we know that there are infinitely many n /∈ A

such that (∀D ⊆ A) g(D ∪ {x}) = f(D). We now argue that p[+n] is well defined.

It is clear from the definition that p[+n] satisfies 1 and 2. 3 to 7 all hold for p so if

they fail for p[+n], then n must be involved. So we will look at those cases.

By our choice of g and n we have that L(n,D) ̸= 0 and n /∈ g(D) = Ψ(D ∪ {n}) so 3

does not fail for p[+n] when n is on the left. If n ∈ D and m ∈ A \ {n} then L(m,D) = 0

unless m is left of D \ {n} and by definition of g that is the only time when m /∈ f(D)

and so m /∈ Ψ(D). So 3 holds for p[+n].

To prove 4 for p[+n] we consider some E ⊊ D ⊆ A and m ∈ A. If m = n, then

L(n,D) < L(n,E) as |D| > |E|. If n ∈ D and m is to the left of D then L(m,D) =∝.

Since m is also to the left of E we have that L(m,E) ≥∝ whether or not n ∈ E.

For 5 and 6 we observe that L(n,D) ≥ ω, so they both hold when m = n. When

n ∈ D and n ̸= m, the only time we have L(m,D) =∝ is exactly when m is to the left of

D so both 5 and 6 hold.
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The last part to check is 7. Suppose that L(m,E ∪ D) < ω and for each i ∈ E,

L(i,D) < ω. We know that L(n, F ) ≥ ω for all F ⊆ A, so m ̸= n and n /∈ E. If n /∈ D

then 7 holds, since it holds for p. If n ∈ D then as m ̸= n we have L(m,D) ∈ {0,∝} so

L(m,D) < ω.

The fact that p[+n], p[−1] < p follows from their definition.

From this we can see that our forcing partial order is not empty and that every con-

dition has an extension that increases the set G. This allows us to conclude that for any

sufficiently generic G, IG is infinite. Furthermore, we can prove the following.

Lemma 5.5.7. If G is sufficiently generic, then IG is uniformly introenumerable.

Proof. As pointed out, IG is infinite because the set of conditions when |Gp| > n is a dense

set for each n.

Fix n ∈ IG and consider some infinite S ⊆ IG . We will prove that n ∈ Ψ(S). Let p be

a condition such that n ∈ Gp and consider α = Lp(n, ∅). Let i ∈ 2, j ∈ ω be such that

α = ω · i+ j. Let q ≤ p be such that q ∈ G and |Gq ∩ S| > j. Since S is infinite and G is

a filter there must be such a q. Let β = Lq(n,Gq ∩ S). By 4 it must be that β + j < α so

β < ω. Now we let r ≤ q be such that r ∈ G and |Gr ∩ S \Gq| > β. Now by 4 it must be

that Lr(n,Gr ∩ S) = 0 so by 3 we have that n ∈ Ψ(Gr ∩ S) ⊆ Ψ(S).

We have shown that IG ⊆ Ψ(S) for any infinite S ⊆ IG . Now we prove the other

direction. If D ⊆fin IG , then there is p ∈ G such that D ⊆ Gp. If n ∈ Ψ(D) then by 3

Lp(n,D) = 0 so n ∈ Gp ⊆ IG . So Ψ(S) ⊆ Ψ(IG) ⊆ IG for any S ⊆ IG .

We have given a tool for extending conditions by adding numbers to G, now we give

a tool that can be used to extend a condition by adding to the sequences of Bi’s.

Definition 5.5.8. For conditions q ≤ p we define r = fin(q, p) to be the condition:

• Gr = Gp ∪ {n ∈ Gq : Lq(n,Gp) < ω}.

• Br
i = Bp

i for i ≤ k.

• Br
k+1 = Gq \Gr.
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• Lr = Lq

Lemma 5.5.9. If q ≤ p then fin(q, p) is a valid extension of p.

Proof. Fix q ≤ p and let r = fin(q, p). By definition and the fact that q was a valid

condition, it is clear that 1–4 and 7 all hold. Since we have only increased the sequences

of Bi’s 5 will hold. For 6 the only time this might fail is if m ∈ Br
k+1 and D ⊆ Gr. In this

case, since m /∈ Gr there is some Lr(m,Gp) ≥ ω. On the other hand, since D ⊆ Gr for

each n ∈ D\Gp we have that Lr(n,Gp) < ω. So by 7 it cannot be that Lr(m,D∪Gp) < ω.

So Lr(m,D) ≥ ω ≥∝.

The fact that r ≤ p should be clear from the definition.

The final tool we will need before we can prove Theorem 5.5.3 is that that we can

move numbers from the Bi’s to G and still have a valid condition.

Definition 5.5.10. For a condition q = (Gq, Bq
0, . . . , B

q
ℓ , L

q) and k ≤ ℓ we define r =

merge(q, k) as follows:

• Gr = Gq ∪
⋃

i>k B
q
i .

• Br
i = Bp

i for i ≤ k.

•

Lr(m,D) =


Lq(m,D) Lq(m,D) ̸=∝ ∨∃j ≤ k[m ∈ Br

j ∧D ⊆ Aj ]

x+ 1 + |Ak+1| − |D| otherwise

where x = max{Lq(n,D) : Lq(n,D) ∈ ω} and Aj = Gr ∪
⋃

i>j B
r
i .

Lemma 5.5.11. For all conditions q we have that merge(q, k) is a valid condition.

Proof. We start by showing that r = merge(q, 1) is a valid condition. 1 and 2 hold because

they held for q. For 3 observe that Lr(m,D) = 0 ⇐⇒ Lq(m,D) = 0.

Fix m, D and E ⊊ D. If Lr(m,D) = Lq(m,D) and Lr(m,E) = Lq(m,E) then 4

holds. If Lr(m,D) ̸= Lq(m,D) then Lq(m,D) =∝ and Lr(m,D) = x+1+ |Ak+1|− |D| <
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min(x + 1 + |Ak+1| − |E|,∝) ≤ Lr(m,E). If Lr(m,E) ̸= Lq(m,E) then Lq(m,E) =∝

and m is not to the left of E. Hence m is not to the left of D and Lq(m,D) <∝ means

Lr(m,D) ≤ x+ 1 + |Ak+1| − |D| < x+ 1 + |Ak+1| − |E|. So 4 holds.

If Lr(m,D) =∝ then there is j ≤ k such thatm ∈ Br
j∧D ⊆ Aj , so 5 holds. On the other

hand if there is j ≤ k such that m ∈ Br
j ∧D ⊆ Aj , then j ≤ k′ so Lr(n,D) = Lq(n,D) ≥∝.

Hence 6 holds. For 7 we observe that Lr(n,D) < ω ⇐⇒ Lq(n,D) < ω and 6 holds for q.

So we can conclude that r is a valid condition. The result for large k comes from applying

merge to r.

Now we are ready to prove Theorem 5.5.3.

Proof of Theorem 5.5.3. We will prove that IG ≰e KIG for any sufficiently generic G.

Consider some condition p0 and an enumeration operator Ψe. We will build an r ≤ p0

such that r ⊩ IG ̸= Ψe(KIG ). In this way we will have shown that the set {p : p ⊩

IG is not cototal} is dense.

By Lemma 5.5.6, we know that there is n such that p0[+n] is well defined. If p0[+n] ⊮

n ∈ Ψe(KIG ), then we can take r ≤ p0[+n] such that r ⊩ n /∈ Ψe(KIG ). So r ⊩ n ∈

IG \Ψe(KIG ).

So now we will assume that p0[+n] ⊩ x ∈ Ψe(KIG ). This means that there must be

some p ≤ p0[+n] and axiom (n, u) ∈ Ψe such that p ⊩ Du ⊆ KIG .

Now we take q0 = fin(p, p0). Observe that since Lp0[+n](n,Gp0) ≥ ω, n /∈ Gq. If

q0 ⊮ n /∈ Ψe(KIG ), then we can take any r ≤ q0 such that r ⊩ n ∈ Ψe(KIG ). Then

r ⊩ n ∈ Ψe(KIG ) \ IG as desired.

Suppose that q0 ⊩ n /∈ Ψe(KIG ). Now we work toward getting a contradiction. Since

q0 ⊩ n /∈ Ψe(KIG ) there is some extension q ≤ q0 and m ∈ Du such that q ⊩ m ∈ KIG .

Furthermore we can ask that m ∈ KGq .

Suppose that q = (Gq, Bq
0, . . . , B

q
ℓ , L

q) and p = (Gp, Bp
0 , . . . , B

p
k, L

p). We now claim

that r = merge(q, k) is an extension of p. By definition of fin we have that Lp = Lq0 ⊆ Lq,

Bp
0 , . . . , B

p
k ⪯ Bq

0, . . . , B
q
ℓ . G

p = Gq0 ∪Bq
k+1. So we get that Bp

0 , . . . , B
p
k = Br

0, . . . , B
r
k and
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Gp ⊆ Gr. Recall that Lr(m,D) ̸= Lq(m,D) only if Lq(m,D) =∝ and m is not to the left

of D for condition r. This can only happen when m ∈
⋃

k<j≤ℓB
q
j , so (m,D) /∈ dom(Lp).

Thus we can conclude that r ≤ p.

However, we have that p ⊩ Du ⊆ KIG , so r ⊩ Du ⊆ KIG , but G
r ⊇ Gq so m ∈ KGr

and thus r ⊩ Du ⊈ KIG , a contradiction.

Theorem 5.5.12 (Goh, Jacobsen-Grocott, Miller and Soskova [14]). There is a uniformly

Baire e-pointed tree that is not enumeration equivalent to any introenumerable set.

Rather than repeat the proof of this theorem from [14] we will instead make use of the

forcing used in Chapter 6 to prove a stronger separation.

Theorem 5.5.13. There is a uniformly Baire e-pointed tree that is not hyperenumeration

equivalent to any introenumerable set.

We will leave the proof of this until Chapter 6.

This completes the known separations. The following we leave as an open question.

Question 5.5.14. Is there an introenumerable set that is not equivalent to any uniformly

introenumerable set?

5.6 Topological classification

In this section we consider the topological classification of the classes we have studied

in this chapter. We have proven that they all contain the cototal degrees, and hence

the cylinder-cototal degrees, so from Theorem 4.3.2 we know that they are all T2-quasi-

minimal. Now we explain how they are all T1 classes.

Theorem 5.6.1. There is a T1 cb0-space X such that the hypercototal degrees are DX .

Proof. We start by considering the space ω≤ω = ωω ∪ ω<ω with basis (βσ)σ∈ω<ω where

βσ = {τ ∈ ω≤ω : σ ⪯ τ}. Observe that βσ is the smallest open set containing σ. Consider

some closed F ⊆ ω≤ω. F is closed under initial segments as every open set containing
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some σ contains all extensions of σ. If σ0 ≺ σ · · · ⊆ F then the usual limit f = limn σn is

also the limit of this sequence in ω≤ω so the closed set F is uniquely determined by the

tree F ∩ ω<ω.

Now we consider a new cb0-space X = (X, (ασ)σ∈ω<ω) where X = {F ⊆ ω≤ω :

F is closed} and ασ = {F ∈ X : βσ ∩ F ̸= ∅}.

Now we define the hypercototal space HCT as the disjoint union of HCT e where

HCT e = {F ∈ X : ∀f ∈ F ∩ ωω[F ∩ ω<ω = Ψe(f)]} is the set of uniformly Baire e-

pointed trees via Ψe. From this definition it should be clear that NBaseHCT (e, F ) ≡e {σ ∈

F ∩ ω<ω}, so DHCT is class of hypercototal degrees.

To see thatHCT is a T1 space it is enough to show thatHCT e is T1 for each e. Consider

F0 ̸= F1 ∈ HCT e. Since these are distinct uniformly Baire e-pointed trees via the same

operator there must not be infinite paths f ∈ F0 ∩ F1 as Ψe(f) is a single tree. So pick

two infinite paths f0 ∈ F0 \ F1 and f1 ∈ F1 \ F0. Since f0 /∈ F1, there is finite σ0 ≺ f0

such that σ0 /∈ F1. Similarly we can find σ1. So we have now have F0 ∈ ασ0 \ ασ1 and

F1 ∈ ασ1 \ ασ1 . Thus HCT e is T1.

Worth observing here is that HCT as we defined it above is not a decidable cb0-space.

We can improve this by observing that there is a fixed e such that if T is uniformly Baire

e-pointed, then T is equivalent to a uniformly Baire e-pointed tree via Ψe (for example

the enumeration operator we use in our construction in Chapter 6 has this property). If

HCT e has the property that every finite tree extends to a point in HCT e (as is the case

with the operator from Chapter 6) then HCT e is strongly decidable, as it is a dense subset

of X .

Another point to note is that this space is not a Gδ space (a space where every closed

set is the countable intersection of open sets). Kihara, Ng and Pauly [26] characterized

the degrees of effectively Gδ spaces as precisely the cototal degrees. Ever Gδ cb0-space is

effectively Gδ relative to some oracle, but relativizing Theorem 5.5.3 shows that even on

an enumeration cone, there are non-cototal uniformly introenumerable degrees.

Other general questions one might ask this class would be its size in terms of measure
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or category. Sanchis’ [39] construction of a non hypertotal degree can be made symmetric

to construct a set that is neither hypertotal or hypercototal. This shows that these classes

are meager. In terms of measure recent work by Ang Li [31] shows that these classes are

null sets.
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Chapter 6

The hyperenumeration degrees

In Chapter 5 we introduced hyperenumeration reducibility and used it to characterize the

degrees of Baire e-pointed trees with dead ends. In this chapter we investigate hyper-

enumeration reducibility in more depth and try to lift some results about enumeration

reducibility to this context. In particular we are interested in Selman’s theorem and

downwards density.

In Section 6.2 we look at Selman’s theorem. The work done in this section was started

at the Dagstuhl Seminar on Descriptive Set Theory and Computable Topology in 2021. In

particular, the connection to e-pointed trees, and Corollary 6.2.8 were discovered during

that workshop.

As it turns out, Selman’s theorem fails for hyperenumeration reducibility.

Corollary 6.2.8. There are sets A,B such that B ≰he A and for any X, if A ≤he X⊕X

then B ≤he X ⊕X.

This follows from the fact that there is a uniformly Baire e-pointed tree without dead

ends that is not hypertotal.

Theorem 6.2.1. There is a uniformly e-pointed tree T G ⊆ ω<ω with no dead ends such

that T G is not hypertotal.

Most of Section 6.2 is dedicated to proving this theorem. At the end of the section we

make use of the forcing notions developed to prove Theorem 5.5.13 from Chapter 5.
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In section 6.3 we look at downwards density. It turns out that the hyperenumeration

degrees are downwards dense and Gutteridge’s [16] proof does lift to the hyperenumeration

context. We explore some issues that can arise when attempting priority constructions,

and how these issues can be overcome for particular constructions like downwards density.

Since Selman’s theorem fails for hyperenumeration reducibility it is natural to ask if

this is the correct hyperarithmetic analogue of enumeration reducibility. In Section 6.4

we look at some other readabilities that could be considered analogues of enumeration

reducibility.

6.1 Preliminaries

We will give a brief overview of some of the tools of higher computability theory that

we will use in this chapter. A more in depth introduction to higher computability can

be found in Sacks’ book [38]. For an introduction to the hyperenumeration degrees, see

Section 5.2 of Chapter 5.

Some basic points of notation. We use n,m, i, j, k for natural numbers. We use α, β, γ

for ordinals. We use σ, τ, ρ, υ, x, y, z to represent strings of natural numbers. ⟨σ⟩ corre-

sponds to the Gödel number of the string σ. We use T and S to refer to trees in ω<ω.

6.1.1 Admissible sets and higher computability theory

The usual definition of a Π1
1 set of natural numbers is a set of the form m ∈ X ⇐⇒

∀f ∈ ωω∃n[R(f, n,m)] where R is a computable relation. However admissibility gives us

another definition in terms of LωCK
1

that is useful.

Definition 6.1.1. A set M is admissible is it is transitive, closed under union, pairing

and Cartesian product as well as satisfying the following two properties:

∆1-comprehension: for every ∆1 definable class A ⊆M and set a ∈M the set A ∩ a ∈

M .
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Σ1-collection: for every Σ1 definable class relation R ⊆ M2 and set a ∈ M such that

a ⊆ dom(R) there is b ∈M such that a = R−1[b].

The smallest admissible set is HF, the collection of hereditarily finite sets. Looking at

the ∆1 and Σ1 subsets of HF is one notion of computability. We have that the ∆1 subsets

of HF are computable sets and the Σ1 subsets of HF are the c.e. sets. We generalize this

to an arbitrary admissible setM by calling a set A ⊆M M -computable if it is a ∆1 subset

of M and M -c.e. if it is a Σ1 subset of M .

The smallest admissible set containing ω is LωCK
1

. We have that the LωCK
1

-c.e. subsets

of ω are precisely the Π1
1 sets. This means that the LωCK

1
-computable subsets of ω sets are

the hyperarithmetic sets. Note that ∆1-comprehension means that the hyperarithmetic

sets are precisely the sets in P(ω) ∩ LωCK
1

.

These results about Π1
1 and hyperarithmetic sets can be relativized for some set X.

We define LX to be the smallest admissible set containing X. We have that A ⊆ ω is Π1
1

in X if and only if it is LX -c.e. and hyperarithmetic in X if and only if A ∈ LX . Note that

while we have ORDLX = ωX
1 and LωX

1
⊆ LX it is only sometimes the case that LX = LωX

1
.

6.1.2 Some facts about trees

We will deal a lot with trees in this chapter so it is useful to have operations on trees.

For a tree S ⊆ ω<ω and string x we define Ext(S, x) to be the tree of extensions of x.

{y : x̂y ∈ S}. A relation on trees that we will use is ⪯. We say T ⪯ S if S is an end

extension of T . That is, T ⊆ S and for all σ ∈ S the longest initial segment of σ that is

in T is a leaf in T .

Now we define rank(S) for a well founded tree S using transfinite recursion. We define

rank(∅) = 0. Given a tree S we define rank(S) = supi∈S rank(Ext(S, i)) + 1.

As it turns out, this function rank is in fact LωCK
1

-partial computable, i.e. its graph is

LωCK
1

-c.e. To help the reader feel more familiar with computability on LωCK
1

we include a

sketch of the proof of this fact.

For a tree T ∈ LωCK
1

and function f ∈ LωCK
1

we say that f is a rank function on T if
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dom(f) = T , range(f) ⊆ ωCK
1 , for each leaf x ∈ T we have f(x) = 1 and for each non leaf

y ∈ T we have that f(y) = supŷi∈T f(ŷi) + 1. Since the quantifies are all bounded it is

LωCK
1

-computable to check if f is a rank function on T . If f is a rank function on T then

f is unique and f(∅) = rank(T ). So we can define rank by rank(T ) = α if there is a rank

function f on T such that f(∅) = α or α = 0 and T = ∅. So we now have a Σ1 definition

of rank. The only problem is that its domain may not consist of all well founded trees

T ∈ LωCK
1

.

To prove that the domain of rank is all well founded trees in LωCK
1

we use induction

on the true rank of T . Suppose all trees of rank less than T are in the domain of rank.

Then for each i ∈ T there is a rank function fi for Ext(T, i). Since the map, S 7→ f

where f is the rank function on S, is LωCK
1

-c.e, Σ1-collection tells us that the map i 7→ fi

is in LωCK
1

. So we can build a rank function f ∈ LωCK
1

on T by f(îx) = fi(x) and

f(∅) = supi∈T fi(∅) + 1.

One nice result of this is that if a tree T ∈ LωCK
1

is well founded, then it has rank

< ωCK
1 and the set of all well founded trees in LωCK

1
is LωCK

1
-c.e. This could also be seen

by observing that trees in LωCK
1

are ∆0 definable and so hyperarithmetic.

6.2 A uniformly e-pointed tree in ωω without dead ends that

is not of hyper total degree

In this section we prove the following theorem.

Theorem 6.2.1. There is a uniformly e-pointed tree T G ⊆ ω<ω with no dead ends such

that T G is not hypertotal.

6.2.1 The forcing partial order

To build this we will need a new set of forcing conditions similar to those used in the

construction of a uniformly e-pointed tree without dead ends that is not of introenumerable

degree. So let {Tσ : σ ∈ ω<ω} be an effective listing of all finite trees in ω<ω where for
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each σ ∈ ω<ω the sequence Tσ̂0, Tσ̂1, . . . lists each finite tree that contains Tσ infinitely

often. We will need a labeling that is allowed to use any ordinal below ωCK
1 . From now

on a condition is some p = (T p, Lp : T p × T p → ωCK
1 ) ∈ LωCK

1
where the following hold:

1. T p ⊆ ω<ω is a well founded tree.

2. For each σ ∈ T p we have that Tσ ⊆ T p.

3. Lp(σ, τ) = 0 if and only if σ ∈ Tτ .

4. If ρ ≺ τ then Lp(σ, τ) = 0 or Lp(σ, τ) < Lp(σ, ρ).

5. For each τ ∈ T p and n < ω the set {σ : Lp(σ, τ) ≤ n} is finite.

For two conditions p and q we say p ≤ q if T q ⪯ T p and Lq ⊆ Lp. For a filter G we define

T G =
⋃

p∈G T
p. The fact that we must have T q ⪯ T p means that if p ∈ G, σ is not a leaf in

T p and σ̂i /∈ T p then σ̂i /∈ T G . So we have a way of forcing strings into the complement

of T G .

Proposition 6.2.2. The set of conditions is LωCK
1

-c.e. and the relation ≤ on conditions

is LωCK
1

-computable.

Proof. Properties 2—5 are all straightforwardly ∆1 conditions. To check if a tree T is well

founded we ask if there is a rank function f ∈ L such that f(σ) = rank(Ext(T, σ)), so a Σ1

question. So property 1 is a Σ1 condition. Hence the set of valid conditions is LωCK
1

-c.e.

q ≤ p is clearly ∆0 so ≤ is an LωCK
1

-computable relation with LωCK
1

-c.e. domain.

Proposition 6.2.3. For a condition p we have Lp(σ, τ) ≥ rank({ρ : τ̂ρ ∈ T p, σ /∈ Tτ̂ρ})
for all σ, τ ∈ T p.

Proof. We will use induction on Lp(σ, τ). Base case, Lp(σ, τ) = 0. Then σ ∈ Tτ so

{ρ : τ̂ρ ∈ T p, σ /∈ Tτ̂ρ} = ∅ and rank(∅) = 0. Now suppose the proposition holds for

all β < α and Lp(σ, τ) = α. Then we have for each τ̂i ∈ T p we have Lp(σ, τ̂i) ≥

rank({ρ : τ̂îρ ∈ T p, σ /∈ Tτ̂îρ}) by induction hypothesis. By property 4 and definition

of rank we have Lp(σ, τ) ≥ supτ̂i∈T p Lp(σ, τ̂i)+ 1 ≥ supτ̂i∈T p rank({ρ : τ̂îρ ∈ T p, σ /∈

Tτ̂îρ}) + 1 = rank({ρ : τ̂ρ ∈ T p, σ /∈ Tτ̂ρ}).
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In order for this forcing notion to have nontrivial generics we need a way to extend

conditions. Fix a condition p. Let A ⊆ ω<ω be a set such that for all σ̂i ∈ A we have

σ ∈ T p and {τ : Lp(τ, σ) ≤ 1} ⊆ Tσ̂i ⊆ TP ∪A. For such an A we can define q = p[A] by

T q = T p ∪A and Lq given by

Lq(σ, τ) =



Lp(σ, τ) σ, τ ∈ T p

⟨σ⟩+ rank(Ext(T q, τ)) σ ∈ A, σ /∈ Tτ

0 σ ∈ Tτ

Lp(σ, ρ)− 1 ρ̂i = τ ∈ A, σ /∈ Tτ , L
p(σ, ρ) < ω

⟨σ⟩ otherwise

Lemma 6.2.4. If A meets the requirement of the definition then p[A] is a valid condition.

If we also have that T p ⪯ T p ∪A then p[A] ≤ p.

Proof. We show that q = p[A] is well defined. Our requirement for A ensures that 1 and 2

hold. For 3—5, since Lp = Lq ↾ T p × T p the only way we can run into a problem is when

considering σ̂i ∈ A. If ρ ≺ τ ∈ T q then by definition Lq(σ̂i, ρ) > Lq(σ̂i, τ). If ρ ≺ σ̂i
then Lp(τ, ρ) ≥ Lp(τ, σ). If 0 < Lp(τ, σ) < ω then Lq(τ, σ̂i) = Lp(τ, σ)− 1 < Lp(τ, σ). If

Lp(τ, σ) ≥ ω then Lq(τ, σ̂i) < ω. So 4 holds.

Fix n and τ and consider the set {ρ : Lq(ρ, τ) ≤ n}. If τ ∈ T p then we have added at

most n many elements to the set, so it is still finite. If τ = σ̂i ∈ A and ρ is in this set

then either ρ belongs to the finite set {ρ : Lp(ρ, σ) ≤ n+ 1} or ⟨ρ⟩ ≤ n. So there are only

finitely many ρ that can be in {ρ : Lq(ρ, τ) ≤ n}. So 5 holds.

Now consider the set {ρ : Lq(ρ, τ) = 0}. If τ ∈ T p then Lq(σ, τ) ≥ 1 for each σ ∈ A,

so we have {ρ : Lq(ρ, τ) = 0} = {ρ : Lp(ρ, τ) = 0} = Tτ . If τ ∈ A then by definition of Lq

we have ρ ∈ Tτ if and only if Lq(ρ, τ) = 0. So 3 holds.

Since Lp ⊆ Lq if T p ⪯ T p ∪A = T q then p[A] ≤ p.

Corollary 6.2.5. If G is a sufficiently generic filter then T G is a uniformly e-pointed tree

with no dead ends.
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Proof. First we show that for each condition p and σ ∈ T p the set {q ≤ p : σ is not a dead end}

is dense below p. If σ is a dead end in T p then enumeration of (Tσ)σ∈ωω gives us an i such

that Tσ̂i = {ρ : Lp(ρ, σ) ≤ 1}. Thus we can take p[{σ̂i}] < p where σ is no longer a

dead end. So T G does not have any dead ends.

To show T G is uniformly e-pointed consider some path P ∈ [T G ]. We will show that

TG =
⋃

σ≺P Tσ. If σ ∈ T G then σ ∈ T p for some p ∈ G. So by property 2 we have that

Tσ ⊆ T p ⊆ T G . On the other hand if σ ∈ T G then consider a sequence p0 > p1 > · · · ⊆ G

with P ↾ n ∈ T pn . Now consider the sequence (Lpn(σ, P ↾ n))n. Since Lpn ⊆ Lpn+1

property 4 means that this is a decreasing sequence. Since ωCK
1 is a well order there is n

such that Lpn(σ, P ↾ n) = 0. So we have that σ ∈ TP ↾n. Hence T
G =

⋃
σ≺P Tσ.

6.2.2 The forcing relation

Now that we have a forcing partial order and some useful operations on conditions, we will

talk about forcing with conditions. We define Sp
e ⊆ ω<ω to be the tree where x /∈ Sp

e ⇐⇒

∃y ≺ x[y ∈ Ψe(T
p)]. For a filter G we define SG

e

⋂
p∈G S

p
e . So x /∈ SG

e ⇐⇒ ∃y ≺ x[y ∈

Ψe(T
G)]. By definition of Γe we have that Γe(T

G) = {n : Ext(SG
e , n) is well founded}.

We define p ⊩ rank(Ext(SG
e , x)) ≤ α if rank(Ext(Sp

e , x)) ≤ α. From this definition it is

clear that if p ⊩ rank(Ext(SG
e , x)) ≤ α then for any G ∋ p we have that rank(Ext(SG

e , x)) ≤

α. We now work towards proving the opposite direction.

Lemma 6.2.6. Fix a condition p. Suppose that for each i ∈ ω, r ≤ p there is q ≤ r such

that q ⊩ rank(Ext(SG
e , x̂i)) ≤ β for some β < ωCK

1 then there is p̂ ≤ p and α < ωCK
1

such that p̂ ⊩ rank(Ext(SG
e , x)) ≤ α.

Proof. The function (q, e) 7→ Sq
e is LωCK

1
-partial computable so by composition, the map

(q, e, x) 7→ rank(Ext(Sq
e , x)) is also LωCK

1
-partial computable. So the set

C = {(i, r, q, β) : q ≤ r ∧ rank(Ext(Sq
ex̂i)) ≤ β}

is LωCK
1

-c.e.
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For each i we will define a condition ri as follows. For each leaf σ ∈ T p let kσ be

the ith number such that Tσ̂kσ = {τ : Lp(τ, σ) ≤ 1}. Now we define Ai = {σ̂kσ :

σ is a leaf in T p} and define ri = p[Ai]. The definition of ri only involves computable

operations so the map i 7→ ri is LωCK
1

-computable and since ω ∈ LωCK
1

the set {(i, ri)} ∈

LωCK
1

by Σ1-collection. Using Σ1-collection again, this time with the set C, we get that

there is a function f ∈ LωCK
1

such that f(i) = (qi, βi) for some qi ≤ ri and βi such that

qi ⊩ rank(Ext(SG
e , x̂i)) ≤ βi. Let α = supi{βi : i ∈ ω}. Since f ∈ LωCK

1
, α < ωCK

1 .

To build p̂ let T p̂ =
⋃

i∈ω T
qi . Since f ∈ LωCK

1
we have that T p̂ ∈ LωCK

1
. T p̂ will satisfy

property 1 because the sets T qi \ T p are disjoint and so T p̂ is well founded.

We define Lp̂ using the following tools. For τ ∈ T p̂ let τp be the longest initial segment

of τ that is in T p. For σ, τ ∈ T p̂ let rank(σ, τ) = rank({ρ : τ̂ρ ∈ T p̂, σ /∈ Tτ̂σ}). Note

that both of these operations are LωCK
1

-computable. Define

Lp̂(σ, τ) =



Lp(σ, τ) σ, τ ∈ T p

0 σ ∈ Tτ

Lp(σ, τp)− |τ |+ |τp| σ ∈ T p \ Tτ , τ /∈ T p, Lp(σ, τp) < ω

⟨σ⟩+ rank(σ, τ) otherwise

Now we prove that p̂ is a valid condition. Since it is built in an effective way out of

LωCK
1

-computable functions Lp̂ is LωCK
1

-computable. Since dom(Lp̂) ∈ LωCK
1

we have that

Lp̂ ∈ LωCK
1

. So we have that p̂ ∈ LωCK
1

.

Now we show that p̂ has the properties of a condition. Property 2 is straightforward.

Property 3 follows from the definition of Lp̂ and the fact that it held for each qi.

For property 4 consider σ, ρ ≺ τ , and suppose that Lp̂(σ, ρ) > 0. We look at several

cases.

• σ, τ ∈ T p. Then ρ ∈ T p so by 4 for p we have Lp̂(σ, τ) = Lp(σ, τ) < Lp(σ, ρ) =

Lp̂(σ, ρ).

• σ ∈ Tτ . Then L
p̂(σ, τ) = 0 < Lp̂(σ, ρ).
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• σ ∈ T p \ Tτ , τ /∈ T p, Lp(σ, τp) < ω. We have two subcases: if ρ /∈ T p then τp = ρp

so Lp̂(σ, τ) = Lp(σ, τp)− |τ |+ |τp| < Lp(σ, τp)− |ρ|+ |ρp| = Lp̂(σ, ρ). If ρ ∈ T p then

ρ ⪯ τp so Lp̂(σ, τ) = Lp(σ, τp)− |τ |+ |τp| < Lp(σ, τp) ≤ Lp(σ, ρ) = Lp̂(σ, ρ).

• Otherwise Lp̂(σ, τ) = ⟨σ⟩ + rank(σ, τ). If ρ /∈ T p or σ /∈ T p then Lp̂(σ, ρ) = ⟨σ⟩ +

rank(σ, ρ) > ⟨σ⟩+rank(σ, τ) as ρ ≺ τ . If ρ, σ ∈ T p then consider i such that τ ∈ T qi .

By Proposition 6.2.3 we have that rank(σ, τ) ≤ Lqi(σ, τ) < Lqi(σ, ρ) = Lp(σ, ρ) =

Lp̂(σ, ρ).

For property 5 fix τ and n. Suppose that Lp̂(σ, τ) ≤ n. Then one of the following is

true: Lp(σ, τ) ≤ n or σ ∈ Tτ or Lp(σ, τp)− |τ |+ |τp| ≤ n or ⟨σ⟩+rank(σ, τ) ≤ n. So σ is a

member of the finite set {σ : Lp(σ, τ) ≤ n}∪Tτ ∪{σ : Lp(σ, τp) ≤ n+ |τ |} ∪ {σ : ⟨σ⟩ ≤ n}.

Hence the set {σ : Lp̂(σ, τ) ≤ n} is finite.

So we have shown that p̂ is a valid condition. Since T p ⪯ T p̂ and Lp ⊆ Lp̂ we have

p̂ ≤ p. Consider Ext(Sp̂
e , x). By definition of T p̂ we have that Sp̂

e ⊆ Sqi
e for each i ∈ ω,

so rank(Ext(Sp̂
e , x̂i)) ≤ rank(Ext(Sqi

e , x̂i)) < α. Thus we have rank(Ext(Sp̂
e , x)) ≤ α as

desired.

Now we use this lemma to show that if a condition p cannot be extended to some q

that forces SG
e to have computable rank then p in fact forces SG

e to be ill founded. We

say p ⊩ Ext(SG
e , x) is ill founded if for all sufficiently generic filters G ∋ p we have that

Ext(SG
e , x) contains an infinite path.

Lemma 6.2.7. If for all q ≤ p and α < ωCK
1 we have q ⊮ rank(Ext(SG

e , x)) ≤ α then

p ⊩ Ext(SG
e , x) is ill founded.

Proof. We define p ⊩ rank(Ext(SG
e , x)) = ∞ if ∀q ≤ p, α < ωCK

1 [q ⊮ rank(Ext(SG
e , x)) ≤

α]. To prove this lemma, we first prove the simpler statement: if p ⊩ rank(Ext(SG
e , x)) = ∞

then there is q ≤ p, i ∈ ω such that q ⊩ rank(Ext(SG
e , x̂i)) = ∞.

Suppose this statement fails for some p and x. Then p ⊩ rank(Ext(SG
e , x)) = ∞, so

we have that ∀q ≤ p, α < ωCK
1 [q ⊮ rank(Ext(SG

e , x)) ≤ α], and there is no q ≤ p, i ∈ ω

such that q ⊩ rank(Ext(SG
e , x̂i)) = ∞ so we have ∀q ≤ p, i ∈ ω[∃r ≤ q, α < ωCK

1 (r ⊩
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(Ext(SG
e , x̂i)) ≤ α)]. So by Lemma 6.2.6 there is p̂ ≤ p such that p̂ ⊩ rank(Ext(SG

e , x)) ≤

α. This contradicts the fact that p ⊩ rank(Ext(SG
e , x)) = ∞, so the statement holds.

Now we use this to prove the lemma. Since the set {q : q ≤ p} ⊇ {q : q ≤ r} for r ≤ p

we have that if p ⊩ rank(Ext(SG
e , x)) = ∞ then r ⊩ rank(Ext(SG

e , x)) = ∞ for all r ≤ p. So

if p ⊩ rank(Ext(SG
e , x)) = ∞ then the set {q ≤ p : ∃i ∈ ω[q ⊩ rank(Ext(SG

e , x̂i)) = ∞]} is

dense above p. So if p ∈ G for some sufficiently generic G then there is q ∈ G and i ∈ ω such

that q ⊩ rank(Ext(SG
e , x̂i)) = ∞. By repeating this argument we can build a sequence

X ∈ ωω such that for all y ≺ X there is q ∈ G such that q ⊩ rank(Ext(SG
e , y)) = ∞.

We have that X ∈ SG
e as otherwise there would be some r ∈ G and y ≺ X such that

r ⊩ rank(Ext(SG
e , y)) = 0, a contradiction of G being a filter and p ⊩ rank(Ext(SG

e , x)) =

∞.

Now we have all the tools needed to prove the main result of this section.

Theorem 6.2.1. There is a uniformly e-pointed tree T G ⊆ ω<ω with no dead ends such

that T G is not hypertotal.

Proof. We show that for a sufficiently generic G we have that T G is not hypertotal. We say

p ⊩ T G ̸= Γe(T
G) if there is σ ∈ T p and α < ωCK

1 such that p ⊩ rank(Ext(SG
e , ⟨σ⟩)) ≤ α, or

if there is σ /∈ T p such that the initial segment of σ in T p is not a leaf and p ⊩ Ext(SG
e , ⟨σ⟩)

is ill founded. To show that T G is not hypertotal it is enough for us to show that the sets

{p : p ⊩ T G ̸= Γe(T
G)} are dense for each e. To see this consider the two cases. If p ∈ G

and there is σ ∈ T p and α < ωCK
1 such that p ⊩ rank(Ext(SG

e , ⟨σ⟩)) ≤ α then we have

that Ext(Sp
e , ⟨σ⟩) is well founded and so Ext(SG

e , ⟨σ⟩) ⊆ Ext(Sp
e , ⟨σ⟩) is also well founded

so σ ∈ T G ∩ Γe(T
G). On the other hand if there is σ /∈ T p such that the initial segment of

σ in T p is not a leaf and p ⊩ Ext(SG
e , ⟨σ⟩) is ill founded, then by definition p ∈ G means

that Ext(SG
e , ⟨σ⟩) is ill founded, so σ /∈ Γe(T

G). Since the initial segment of σ in T p is not

a leaf, no q ≤ p has σ ∈ T q so σ /∈ T G .

Suppose towards a contradiction that {p : p ⊩ T G ̸= Γe(T
G)} is not dense. Let p be

such that for all q ≤ p we have q ⊮ T G ̸= Γe(T
G). Consider some leaf σ ∈ T p and let i, j be

such that Tσ̂i = Tσ̂j = {ρ : Lp(ρ, σ) ≤ 1}. Now consider q = p[{σ̂i}]; this is well defined
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by Lemma 6.2.4. By assumption on p we have that q ⊮ Ext(SG
e , ⟨σ̂j⟩) is ill founded, so

by Lemma 6.2.7 there is r ≤ q, α < ωCK
1 such that r ⊩ rank(Ext(SG

e , ⟨σ̂j⟩)) ≤ α. Now

consider r′ = r[{σ̂j}]. Since σ̂i ∈ T r we have {ρ : Lr(ρ, σ) ≤ 1} ⊆ Tσ̂i = Tσ̂j and thus

the condition r′ is a valid condition. Since r ≤ p and σ is a leaf in T p we have that r′ ≤ p.

But we have Sr
e ⊇ Sr′

e so r′ ⊩ rank(Ext(SG
e , ⟨σ̂j⟩)) ≤ α a contradiction. So we have that

the set {p : p ⊩ T G ̸= Γe(T
G)} is dense.

So for sufficiently generic G we have that T G is uniformly e-pointed without dead ends

and for all e we have T G ̸= Γe(T
G), and thus T G ≰he T

G.

This now allows us to conclude the following:

Corollary 6.2.8. There are sets A,B such that B ≰he A and for any X, if A ≤he X⊕X

then B ≤he X ⊕X.

Proof. We will have A = T and B = T where T is a uniformly e-pointed tree with no

dead ends that is not hypertotal. Suppose that T is Π1
1 in X. Since T has no dead ends,

there must be a path P ∈ [T ] such that P ≤h X. So T ≤e P and by Lemma 5.2.4 we have

T ≤he P ≤h X. So we get that T ≤he X ⊕X.

6.2.3 Relationship to introenumerable sets

As promised in Chapter 5 we now have the tools to prove the following theorem:

Theorem 5.5.13. There is a uniformly Baire e-pointed tree that is not hyperenumeration

equivalent to any introenumerable set.

Proof. To do this we use the following lemma.

Lemma 6.2.9. If T G is sufficiently generic and Γe(T
G) is infinite then there is p ∈ G

such that Γe(T
p) is infinite.

Proof. Fix e and some condition p. For each n consider the set Dn,p = {q ≤ p : ∃α <

ωCK
1 m > n[q ⊩ rank(Ext(SG

e ,m)) ≤ α]}. If for some n this is not dense above p then by

Lemma 6.2.7 there is an extension of p that forces Γe(T
G) to be finite.
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So suppose that this set is dense above p for each n. Like in Lemma 6.2.6 we can define

a sequence of extensions ri < p such that for any qj < rj and qi < ri, T
qj ∩ T qi = T p.

Observe that the set Dn,ri is uniformly LωCK
1

-c.e. in i, n so by Σ1-collection we have that

there is a function f ∈ LωCK
1

such that f(i) ∈ Di,ri . Using the same merging of conditions

that we did in Lemma 6.2.6 we can build p̂ < p such that Γe(T
p̂) is infinite.

We have now shown that the set {p : |Γe(T
p)| = ω ∨ p ⊩ |Γe(T

G)| < ω} is dense. Thus

a sufficiently generic G satisfies this lemma.

For a sufficiently generic G we now claim that T G does not hyperenumerate any non-Π1
1

introenumerable sets. Suppose that Γe(T
G) is infinite. By Lemma 6.2.9 there is a p ∈ G

such that Γe(T
p) is infinite. If Γe(T

G) is introenumerable then Γe(T
G) ≤he Γe(T

p) ≤he

T p ∈ LωCK
1

, so Γe(T
G) is Π1

1.

Since for any sufficiently generic G, T G is not a Π1
1 set, T

G cannot be hyperenumeration

equivalent to any introenumerable set below it.

6.3 Downwards density

In this section we prove that the hyperenumeration degrees are downwards dense. The

first part involves lifting the finite injury construction of the Gutteridge operator to a

construction in LωCK
1

.

6.3.1 The hyper Gutteridge operator

Gutteridge [16] proved the downwards density of the non-∆0
2 enumeration degrees using

an operator Θ with the properties that if Ψe(Θ(A)) = A then A is c.e. and if Θ(A) is c.e.

then A is ∆0
2. Here we will take Gutteridge’s construction and run it in LωCK

1
to produce

a hyperenumeration operator Λ with similar properties. Thus we get the following result

Theorem 6.3.1. If A ⊆ ω and A ≰he O then there is C ⊆ ω such that ∅ <he C <he A.

Proof. Recall the definition of Θ: there is a c.e. set B =
⊕

k∈ω nk which is the join of ω

many initial segments of ω. Θ is defined by Θ(A) = B∪{(k, nk) : k ∈ A}. B is built using
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finite injury to ensure that if Ψe(Θ(A)) = A then A is c.e. If Θ(A) is c.e. then A ≤e B

and so A is ∆0
2. Hence for any non-∆0

2 set A we have that ∅ <e Θ(A) <e A.

To ensure that if Ψe(Θ(A)) = A then A is c.e. B has the property that for any

D ⊆ n ≥ e we have that n ∈ Ψe(Θ(D)) ⇐⇒ n ∈ Ψe(Θ(D∪ (ω \n))). So if Ψe(Θ(A)) = A

then

D ⪯ A ⇐⇒ D↾e ≺ A↾e ∧ ∀n ∈ D \ e[n ∈ Ψe(Θ(D↾n)]

We will use this idea to build Λ.

Before we start building Λ we need to set up some notation. For an LωCK
1

-c.e. set A,

given by formula ∃yφ(x, y) where φ is ∆0, we define Aα = {x ∈ Lα : Lα |= ∃yφ(x, y)}.

Since φ is ∆0 we have that A =
⋃

α<ωCK
1

Aα. In this manner we can think of LωCK
1

-

c.e. sets as being enumerated over ordinal stages. Using this, for a set B ∈ LωCK
1

and

ordinal α < ωCK
1 we can define Γe,α(B) ∈ LωCK

1
and get an LωCK

1
-computable map

(B, e, α) 7→ Γe,α(B). This is the hyperenumeration analogue of Ψe,s(D). We can define

Γe,α(B) more explicitly as Γe,α(B) = {n : rank(Se,n(B)) ≤ α}.

In the enumeration case, it is clear that Ψe(W ) =
⋃

sΨe,s(Ws) for a c.e. setW , but this

is not so clear for an LωCK
1

-c.e. set A. Γe is monotonic, so we have that
⋃

α∈ωCK
1

Γe,α(Aα) ⊆

Γe(A). The other direction is needed for our construction, so we will prove it here using

the rank of nodes in Se(A).

Claim 6.3.1.1.
⋃

α∈ωCK
1

Γe,α(Aα) = Γe(A) for any  LωCK
1

-c.e. A.

Proof. Consider some node x ∈ Se(A) with ordinal rank. We will use induction on the

rank of x and Σ1
1 bounding to prove that there is α < ωCK

1 such that x has rank < α in

Se(Aα). Base case: if x is a leaf then by definition of Γe there is a finite Du ⊆ A such that

(x, u) ∈We. There is α < ωCK
1 such that Du ⊆ Aα so x is a leaf in Se(Aα).

For the inductive step, suppose by the inductive hypothesis that for each i ∈ ω there

is a least αi < ωCK
1 such that x̂i has rank < αi in Se(Aαi). Consider the map i 7→ αi.

This is LωCK
1

-computable and hence by Σ1-collection there is a β < ωCK
1 such that αi < β

for all i. So it must be that x has rank ≤ β in Se(Aβ).
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So we have that if n ∈ Γe(A) then there is α < ωCK
1 such that rank(Se,n(Aα)) < α

hence we have that n ∈ Γe,α(Aα).

For our construction of Λ we will modify Gutteridge’s proof. We will build an LωCK
1

-

c.e. set B =
⊕

k∈ω nk and define Λ(A) = B ∪ {(k, nk) : k ∈ A}. We will build B using

stages in ωCK
1 and satisfy the following requirements for D ⊆ m ≥ e:

Re,m,D : m ∈ Γe(B ∪ {(k, nk) : k ∈ D}) ⇐⇒ m ∈ Γe(B ∪ {(k, nk) : k ∈ D ∨ k ≥ m})

We chose an ordering of requirements so that Re,m,D is higher priority than Ri,m+1,E .

Note that this means the priority of our requirements has order type ω.

Now we can move onto the construction. A requirement Re,n,D requires attention

at stage α if there is n /∈ Γe,α(Bα ∪ {(k,B[k]
α ) : k ∈ D}) and there is B ∈ Lα such

that Bα ⊆ B and B
[k]
α = B[k] for k < n, B is the join of initial segments of ω and

n ∈ Γe,α(B ∪ {(k,B[k]) : k ∈ D}).

At stage α we consider the highest priority requirement that requires attention with

some witness B. We then define Bα+1 = B. This completes the construction.

By the monotonicity of the Γe each requirement will need to act at most once, and

that means that each column of B is finite. Now suppose that Γe(Λ(A)) = A for some A

and e. It is enough for us to show that A is LωCK
1

-c.e. We claim that A = ∪{D : D↾e =

A↾e∧∃α∀n ∈ D \ e[n ∈ Γe,α(Λα(D↾n))]}. If D is such that ∀n ∈ D \ e[n ∈ Γe,α(Λα(D↾n))]

then by induction on n ≥ e we can see that D ⊆ A. So what we need to prove is that

all n ∈ A are contained in some such D. Fix n ∈ A \ e and consider D = A↾n. We have

Λ(D∪(ω\n)) is LωCK
1

-c.e. Since n ∈ A by Claim 6.3.1.1 there is a stage α < ωCK
1 such that

n ∈ Γe,α(Λα(D ∪ (ω \ n))). So at stage α or earlier the requirement Re,n,D will have acted

and we have n ∈ Γe,α+1(Λα+1(D)). We can assume by induction that D has the property

∃α∀n ∈ D\e[n ∈ Γe,α(Λα(D↾n))]. We have now proven thatD∪{n} = A↾n+1 also has this

property, thus by induction A = ∪{D : D↾e = A↾e ∧ ∃α∀n ∈ D \ e[n ∈ Γe,α(Λα(D↾n))]}.

Hence A is LωCK
1

-c.e.
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6.3.2 Downwards density below O

We have proven downwards density for most degrees in Dhe, but the proof may not work

when a degree is below O. If we look at some of the proofs of downwards density for

the degrees below 0′e and try to translate them, then we have a problem. They are

finite injury constructions and rely on the following property of enumeration operators:

Ψe(A) =
⋃

D⊆finA
Ψe(D). This property does not hold for hyperenumeration operators.

In fact there are many sets A and operators e such that Γe(A) ̸=
⋃

H⊆hypA
Γe(H). For

example, if A is the graph of a non-hyperarithmetic function and Γe is such that 0 ∈ Γe(B)

if and only if B contains the graph of some function. None of the hyperarithmetic subsets

of A will contain a function, but A does contain a function, so 0 ∈ Γe(A)\
⋃

H⊆hypA
Γe(H).

The reason we did not have this problem when adapting the Gutteridge operator was

because of the special way that it was constructed. First, it is important to note that

for Π1
1 sets A we do have Γe(A) =

⋃
H⊆hypA

Γe(H) by Claim 6.3.1.1. This property also

holds for sets X of the form X = Λ(A). To see this fix some Γe. For n ≥ e we have

n ∈ Γe(X) ⇐⇒ n ∈ Γe(Λ(A ↾ n)). Here Λ(A ↾ n) is a Π1
1 set, if n ∈ Γe(X) then there

is some hyperarithmetic H ⊆ Λ(A ↾ n) ⊆ X with n ∈ Γe(H). The result for n < e comes

from some coding of indices of reductions.

We will make use of this idea in the proof of the following:

Theorem 6.3.2. If A is not Π1
1 and Λ(A) is Π1

1 then there are X <he A such that

X >he 0.

Proof. Let (As)s<ωCK
1

be an LωCK
1

-computable approximation to A. We know there must

be one since Λ(A) is Π1
1. We will build LωCK

1
-c.e. operator Ψ, and define X = Ψ(A). There

are two types of requirements we need to satisfy

Ae : X ̸= Ve where Ve is the eth Π1
1 set



132

that will ensure that 0 <he X, and

Be : Γe(X) ̸= A

that will ensure that A ≰he X. The ordering of requirements is A0 < B0 < A1 < . . . . We

will build Ψ and X in ωCK
1 many stages. We will want to be able to add infinitely much

to columns of X so we will build X as a subset of ωCK
1

2
. By fixing an LωCK

1
-computable

injection from ωCK
1 to ω (for instance the well founded part of a Harrison order) we can

turn X into a subset of ω.

We will use an infinite injury construction here, putting the requirements on a tree of

strategies. The outcome of node σ on the tree will be a set Â ∈ LωCK
1

that represents

the strategy σ’s guess at A at this stage of the construction. Strategies σ̂Â and below

will only add axioms of the form (n,H) to Ψ for sets H ⊇ Â. This way their work will

not interfere with strategies who think Â ⊈ A. Each strategy σ can put up a restriction

u < ωCK
1 and require that strategies to the right of them on the tree only put things in

columns ≥ u of X. For σ we consider its restriction u to be the sup of all the restrictions

put up by nodes to the left of or above σ. The ordering of outcomes is Â < B̂ if Â ⊇ B̂.

This is only a partial order on sets, but we will see in the construction that we only use a

limited collection of outcomes for each strategy, and this collection will be linearly ordered.

We will argue that the leftmost path visited cofinally often is correct in its guesses about

A and along this path all requirements are met. When a strategy has outcome Â to the

left of a previous outcome B̂, it adds (n, Â) to Ψ for all n added by strategies below B̂ to

ensure that axioms added by strategies below B̂ cannot interfere with the strategies below

Â.

Strategies: The strategy for a node σ of requirement Be is to find a witness m where

m ∈ A\Γe(X). When this strategy is initialized at some stage s it is given outcome Â from

its parent node and restriction u, the sup of the restrictions put up by nodes to the left of

σ. σ has one variable ms that it keeps track of. When initialized, we start with ms+1 = 0.
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At a limit stage s, we define ms = lim inft<smt if that exists, otherwise ms = 0. We also

have Xs = Ψs(Â) which is σ’s guess at X at stage s. In the verification, we will prove that

Xs eventually agrees with X on the first u many columns, that m = lims<ωCK
1

ms exists,

and that A(m) ̸= Γe(X)(m).

Given ms and Xs at stage s, the strategy asks if ms /∈ Γe,s(Xs) and there is some

H ∈ Ls such that H ⊆ (ωCK
1 \ u) × ωCK

1 and ms ∈ Γe,s(Xs ∪ H). If yes, then we put

ms ∈ X: we add axioms (⟨α, β⟩, Â) to Ψs+1 for each ⟨α, β⟩ ∈ Xs ∪H with α ≥ u. This

will injure all lower priority A requirements. If no and ms /∈ (As ∪ Â)△Γe,s(Xs), then we

need to pick a new witness: set ms+1 to be the least m in (As ∪ Â)△Γe,s(Xs). Otherwise

ms+1 = ms. No matter what, the outcome of σ is always Â, and σ does not put up any

restriction.

The strategy for a node τ of requirement Ae is as follows. We will try to build an

LωCK
1

-c.e. aproximation (Ps)s to A by encoding parts of A into column u of X. The

aproximation to A will eventually fail, as A is not LωCK
1

-c.e., and we will use this point of

difference to ensure that so that X ̸= Ve. To this end we will build a sequence of coding

points (nβ,mβ)β<αs . The only changes we will make to this sequence are to add a new

element to the sequence or remove the last element (if there is one). So at limit stages

s we can have αs = lim inft<s αt and that will ensure that all the coding points are well

defined at stage s. The idea with the coding points is that for all but the top one we have

ensured that ⟨u, nβ⟩ ∈ Ve and that ⟨u, nβ⟩ ∈ X only if mβ ∈ A. Our aproximation Ps will

be Â∪ {mβ : ⟨u, nβ⟩ ∈ Ve,s}. Since Ve,s is increasing, Ps is increasing as long as we do not

remove coding points (nβ,mβ) after putting mβ ∈ P .

We are trying to make X ̸= Ve, so when we notice mβ /∈ As it appears that we have

succeeded and do not need to do anything. The problem with this is that once we have

αs > ω there are infinitely many mβ so we may see mβ /∈ At for a different β at each stage

t > s but have mβ ∈ A for all β < αs. We could avoid this problem if we knew that As

stabilized on hyperarithmetic sets, but we only know that it stabilizes on finite sets. This

is enough for us, but we will have to keep track of the β where mβ /∈ As, and sometimes
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our outcome will need to include numbers that are not in As.

To this end, τ will keep track of a finite sequence of victories β̂s = β0 > β1 > · · · > βk−1

with the property that mβ0 < · · · < mβk−1
are numbers we thought were out of A at the

previous stage. When τ is initialized we start with β̂ = ∅ and at limit stages s we define

β̂s to be the longest sequence β̂ such that β̂i = limt<s β̂t,i. At a stage s the requirement

updates the victories as the first step. We consider β such that mβ is the smallest m ∈ As

with the property for all i < k, mβi
≤ m =⇒ βi > β. If there is such a β then we add

it to our sequence of victories for β̂s+1 and remove all victories βi < β. Next we remove

invalid victories: if there is any i < k such that mβi
∈ As then we remove that victory

and all victories for j ≥ i. The reason we also remove larger victories is to deal with the

fact that As only stabilizes on finite sets. In the verification we will prove that an initial

segment of β̂s stabilizes, and to ensure that that initial segment is βs cofinally often, we

need to remove smaller βi whenever we see a change.

If the sequence of victories has become empty, then we think Ps ⊆ A so we need to

consider adding a coding point. If αs is a successor, then we consider the highest coding

point (n,m). If ⟨u, n⟩ ∈ X \ Ve then we can satisfy the Ae without any victories. So if

⟨u, n⟩ /∈ Ve,s and m /∈ As, then we add the axiom (⟨u, n⟩, Ps) to Ψs+1 to keep ⟨u, n⟩ ∈ X.

This will, however, invalidate the coding point, meaning we will have to remove it and try

again if we ever see ⟨u, n⟩ enter Ve. If ⟨u, n⟩ ∈ Ve then it is time to add a new coding point.

If (n,m) has been invalidated, then we remove it from the sequence of coding points first.

If (n,m) has not been invalidated then we add m to Ps+1. To pick a new coding point we

choose nαs to be the least unused number in column u and mαs to be the least member of

As \ Ps if there is one. We then add the axiom (⟨u, nαs⟩, Ps ∪ {mαs}) to Ψs+1. If As ⊆ Ps

then we cannot add a new coding point yet.

If there are no victories and αs is a limit or 0, then we proceed to add a new coding

point as above.

Finally we come to defining the outcome and restriction of τ . We always impose

restriction u + 1 on lower priority requirements so they cannot interfere with our coding
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points in column u. To define the outcome, we use the sequence of victories. If there are no

victories this means we have outcome Ps since it looks like Ps ⊆ A. If there are victories,

then we consider the least victory βk−1. Since it looks like mβk−1
/∈ A but mβ ∈ A for

all β < βk−1 we give outcome Â ∪ {mβ : β < βk−1}. Note that, as promised above, the

collection of outcomes is linearly ordered.

Verification: We will use induction to argue that for each node σ on the true path, the

following hold:

1. There is a left most outcome Â that is visited cofinally often.

2. Â ⊆ A.

3. For all B̂ < Â that were outcomes of σ we have B̂ ⊈ A.

4. Ψ(Â)[u] = Ψ(A)[u].

5. σ stops adding axioms to Ψ after some stage.

6. The requirement for σ is satisfied.

We start with the case where σ is a strategy for a Be requirement. Let s be a stage after

which no node to the left of σ is visited and no node above σ adds axioms to Ψ. In this

case σ only has one outcome Â, and since it only adds axioms using Â, 1. through 4. hold.

So we just need to check that the requirement was met and stops adding axioms. Consider

the set W =
⋃

s<ωCK
1

Γe,s(Xs) = lims<ωCK
1

Γe,s(Xs). Since W is LωCK
1

-c.e. there is some

least m ∈ W△A. So we have that m = lims<ωCK
1

ms, and once this limit settles down σ

puts axioms into Ψ at most once more, so 5. is satisfied.

Now to show the requirement is met. We have two cases. Case 1: suppose that

m ∈W . Then m /∈ A and m ∈ Γe(X) since Xs ⊆ Ψs(Â) ⊆ Ψ(A) = X, so the requirement

is satisfied.

Case 2: suppose that m ∈ A. Then consider the set X∗ = Ψ(Â) ∪ {n : ∃H, τ ≺

σ[τ put (n,H) ∈ Ψ]}. Since any number put into X by a strategy to the right of σ is put
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into X with a subset of Â when we next visit σ, and because requirements to the left of

σ only add axioms (n,H) for H ⊈ A by 3., we have that X ⊆ X∗ and X [v] = X∗[v] for

all v < u. It is clear that X∗ is LωCK
1

-c.e. so if m ∈ Γe(X
∗) then by Claim 6.3.1.1 there is

t < ωCK
1 and hyperarithmetic H ⊆ X∗ such that m ∈ Γe,t(H). Since X and X∗ agree on

the first u many columns we have that m ∈ W as σ will have acted at some stage ≥ t to

ensure this. But m ∈ A, a contradiction, so m /∈ Γe(X
∗) ⊇ Γe(X). So the requirement is

satisfied.

Now we consider the case where σ is a strategy for an Ae requirement. First we will

argue that we stop adding coding locations after some stage. Consider the set P =
⋃

s Ps.

This is an LωCK
1

-c.e. set, so there is some least m ∈ P△A. Consider some stage s such

that A↾m+ 1 = At↾m+ 1 = Ps↾m+ 1△{m} for all t > s. If m ∈ P then after stage s we

will always have m = mβ0 as the first victory, so σ will stop growing P and will not add

any more coding locations. If m /∈ P then after stage s whenever we chose a new coding

location (n′,m′) we will have m′ = m. Since m never leaves At this location will never

be invalidated, so, since m /∈ P , it must be that ⟨u, n′⟩ /∈ Ve so we stop adding coding

locations. In either case 5. is satisfied.

Next we argue that the sequence of victories stabilizes on an initial segment. If P ⊆ A

then this initial segment will be the empty set. Otherwise, observe that Ps = {mβ : β <

αs} (with the last element excluded if it has not been added). Consider the sequence

(βi)i<k defined by taking βi is the least β such that mβ is the least element of {mβ : β <

βi−1}\A if this set is nonempty. Since αs is well founded this sequence must be finite and

have some length k. Consider a stage s after which At↾mβk−1
+ 1 and Pt have stabilized.

At all stages t > s where σ is visited we must have β0 > · · · > βk as a proper initial

segment of the sequence of victories as these are all true victories and no other victories

could be added for mβ < mβk−1
after stage s. So after stage s the outcome of σ will always

be a subset of Â := B̂ ∪ {mβ : β < βk−1} where B̂ was the outcome of the parent of σ.

We now claim that Â will satisfy 1. through 3.

If the outcome is ever Ĉ < Â then it must be that mβk−1
∈ Ĉ so 3. is satisfied and
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after stage s we never have any outcome left of Â. Since we could not extend our sequence

(β + i)i<k it must be that Â ⊆ A so 2. is satisfied. This also means that any victory β

added to the end of our sequence of victories must have mβ ∈ A. This means that β will

eventually be removed from our sequence of victories when we see mβ ∈ At for some t.

We remove a victory, we also remove all victories for m > mβ, so there will be cofinally

many stages where the sequence of victories is just (βi)i<k. Hence the outcome of σ will

cofinally often be Â, satisfying 1. To see 4. recall that when coding location (n,m) was

added at stage t we used Pt ∪ {m} to put it in X. So if it was added before the coding

location (nβk−1
,mβk−1

) was added then ⟨u, n⟩ ∈ Ψe(Â), and if it was added after, then

⟨u, n⟩ /∈ Ψ(A).

To see that the requirement for σ is satisfied, we need to look at two cases. First,

if the sequence of victories was empty this meant that P ⊆ A and we stopped adding

coding locations because the top location (n,m) had ⟨u, n⟩ /∈ Ve. If this location was

never invalidated then, m ∈ A and ⟨u, n⟩ ∈ Ψ(A). If it was invalidated, then we added

the axiom (⟨u, n⟩, P ) to Ψ so ⟨u, n⟩ ∈ Ψ(A). Second, if the sequence of victories was not

empty then mβ0 /∈ A, so ⟨u, nβ0⟩ /∈ Ψ(A) but mβ0 ∈ P so ⟨u, nβ0⟩ ∈ Ve.

This completes the induction. Note that condition 1. ensures that there is a true path.

Since each requirement on the true path is satisfied we have that X is not LωCK
1

-c.e. and

A ≰he X. The fact that X ≤he A follows from Proposition 6.4.4, which is proved in the

next section.

6.4 Other reducibilities

We now look at some other reducibilities that are different from ≤he but could be consid-

ered notions of hyperenumeration reducibility. We show most of these reducibilities ≤∗

share some of the properties of ≤he, like extending enumeration reducibility and having

A ≤∗ B ⊕ B ⇐⇒ A is Π1
1 in B. The reducibility to consider is the notion of relatively

Π1
1.
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Definition 6.4.1. We say that A is relatively Π1
1 in B, A ≤Π1

1
B, if whenever B is Π1

1 in

X we have that A is Π1
1 in X.

We say that A is uniformly relatively Π1
1 in B, A ≤uΠ1

1
B, if there is a computable f

such that if B = Γe(X ⊕X) then A = Γf(e)(X ⊕X)

We used hyperenumeration operators to define ≤uΠ1
1
, but it could equivalently be

defined by saying there is Turing operator that turns hyperenumerations of B into hyper-

enumerations of A or that there is a computable function that turns Π1
1 formulas for B

into Π1
1 formulas for A.

The fact that composition of hyperenumeration operators is uniform means that A ≤he

B =⇒ A ≤uΠ1
1
B and by definition we have A ≤uΠ1

1
B =⇒ A ≤Π1

1
B. It is natural to

ask if these implications are strict. From Theorem 6.2.1 we can see that ≤he is different

from ≤Π1
1
because by definition each relatively Π1

1 degree is uniquely determined by the

total degrees above it. A closer look at the proof of Corollary 6.2.8 show us that T ≤uΠ1
1
T

for any uniformly e-pointed tree without dead ends, hence ≤he and ≤uΠ1
1
are different.

The remaining possible separation is an open question.

Question 6.4.2. Are there sets A and B such that A ≤Π1
1
B and A ̸≤uΠ1

1
B.

A negative answer to the above questions could be seen as a proof of Selman’s theorem

for ≤uΠ1
1
. One approach to try to answer this question is to see if one can transform

Selman’s original proof to this context.

On the other hand, we observe that the uniformity of an e-pointed tree T without dead

ends is important for the proof of T ≤uΠ1
1
T . Perhaps there is a sufficiently generic non-

uniformly e-pointed tree T without dead ends such that T ̸≤uΠ1
1
T . Such a result would

be interesting because it would show that there is no notion hyperenumeration operators

for relatively Π1
1.

Another way that may be natural to define hyperenumeration reducibility is by chang-

ing the nature of the set W in the usual definition of enumeration reducibility.

Definition 6.4.3. We say that A is continuously higher enumeration reducible to B,

A ≤che B if there is a Π1
1 set W such that n ∈ A ⇐⇒ ∃u[⟨n, u⟩ ∈W ∧Du ⊆ B].
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We say that A is ωCK
1 -enumeration reducible to B, A ≤ωCK

1
B, if there is an LωCK

1
-c.e.

set W such that n ∈ A ⇐⇒ ∃H[(n,H) ∈W ∧H ⊆ B]

Both these reducibilities can be thought of as relativizations of enumeration reducibil-

ity to LωCK
1

. In the case of continuously higher enumeration operators these are, like

enumeration operators, continuous functions §ω, hence the name. This reducibility could

be thought of as an enumeration analogue of continuously higher Turing reducibility.

Both of these reducibilities imply hyperenumeration reducibility. For ≤che this follows

from the fact (Sanchis [39]) that we can replace the c.e. set in the definition of hyper-

enumeration reducibility with a Π1
1 set. It takes a bit more work for ωCK

1 -enumeration

reducibility.

Proposition 6.4.4. If A ≤ωCK
1

B then A ≤he B.

Proof. SupposeW is a LωCK
1

-c.e. set of pairs such that n ∈ A ⇐⇒ ∃H[(n,H) ∈W ∧H ⊆

B]. Since W is LωCK
1

-c.e. there is an LωCK
1

-computable injection f : ωCK
1 →W . Consider

the set

V = {⟨n, σ̂k, u⟩ : ∃H, i, e[(n,H) ∈W,Du = H ↾ k, |σ| = ⟨i, e⟩, e ∈ O, H = Ψi(∅(e))]}

Since W and O are LωCK
1

-c.e., V is also LωCK
1

-c.e. and hence Π1
1. Now all that is needed

is to check that A ≤he B via V . If H ⊆ B and (n,H) ∈W then V will put n ∈ A as every

path of length ⟨i, e⟩+ 1 will be removed for H = Ψi(∅(e)). If there is no H ⊆ B such that

(n,H) ∈W then we can build a path f as follows:

f(⟨i, e⟩) =


0 e /∈ O ∨ (n,Ψi(∅(e))) /∈W

least k such that Ψi(∅(e)) ↾ k ⊈ B otherwise.

Note: for all σ ≺ f we have that ⟨n, σ, u⟩ /∈ V for any u with Du ⊆ B.

So both these reducibilities imply hyperenumeration reducibility. These implications

are strict. In fact, if we consider some set X with LωCK
1

∈ LX then anything ωCK
1 enumer-
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ation reducible toX⊕X will be hyperarithmetic in X and there are sets hyperenumeration

reducible to X ⊕X that are not hyperarithmetic in X, for instance OX .

Since these are weaker than hyperenumeration reducibility, it can be that Selman’s

theorem holds for these reducibilities. For continuously higher enumeration reducibility

we have a proof of Selman’s theorem that uses the enumeration degrees.

Theorem 6.4.5. The continuously higher enumeration degrees embed as the enumeration

degrees above O via the map X 7→ O ⊕X.

Proof. For one direction, suppose that X ⊕O ≤e Y ⊕O. Then X ≤e Y ⊕O ≤che Y .

For the other direction, suppose that X =≤che Y via the Π1
1 set W . Let f be an

m-reduction of W to O. We define a c.e. set We = {⟨n, u⟩ : Du = Dv ⊕ Dq ∧ Dq =

{2f(⟨n, v) + 1}}. So we have that n ∈ Ψe(Y ⊕O) ⇐⇒ ∃v[Dv ⊆ Y ∧ f(∧n, v⟩) ∈ O] ⇐⇒

∃v[Dv ⊆ Y ∧ ⟨n, v⟩ ∈W ] ⇐⇒ n ∈ X. So X ⊕O ≤e Y ⊕O.

To see that this embedding is onto, observe that every enumeration degree above O

contains a set of the form X ⊕O.

To see how this gives us Selman’s theorem recall that every enumeration degree a

above O is uniquely determined by the class of total degrees above a. This means that

every che-degree is uniquely determined by the class of degrees above it that map to a

total enumeration degree. If an enumeration degree above O is total then it will contain

a set of the form X ⊕X ⊕O and be the image of a che-total degree.

Note that there are che-total degrees that get mapped to non-total e-degrees. For

instance O is not total.
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