
Computability in Uncountable Binary Trees

By

Reese Johnston

A dissertation submitted in partial fullfillment of the

requirements for the degree of

Doctor of Philosophy

(Mathematics)

at the

UNIVERSITY OF WISCONSIN - MADISON

2018

i

Abstract

Computability, while usually performed within the context of ω, may be extended to

larger ordinals by means of α-recursion. In this thesis, I concentrate on the particular

case of ω1-recursion, and study the differences in the behavior of Π0
1-classes between this

case and the standard one.

Of particular interest are the Π0
1-classes corresponding to computable trees of countable

width. Classically, it is well-known that the analog to König’s Lemma - “every tree of

countable width and uncountable height has an uncountable branch” - fails; I demonstrate

that not only does it fail effectively, but that the failure is as drastic as possible. This is

proven by showing that the ω1-Turing degrees of even isolated paths in computable trees

of countable width are cofinal in the ∆1
1 ω1-Turing degrees.

Finally, I consider questions of non-isolated paths, and demonstrate that the degrees

realizable as isolated paths and the degrees realizable as non-isolated ones are very distinct;

in particular, I show that there exists a computable tree of countable width so that every

branch can only be realized in a tree with ℵ2 branches.

ii

Acknowledgments

I would of course like to thank my advisor, Steffen Lempp, for his unfailing support and

his dedication to helping me find new opportunities, and especially for arranging my

research assistantship in Singapore in Fall 2016. His advice, both mathematically and

professionally, has been immensely valuable to me.

I’m also very grateful to the various people who taught me the foundation I needed

to make all of this possible; Joseph Miller, Uri Andrews, Mingzhong Cai, Howard Becker,

Arnold Miller, and Robert Dumas, among others. Thanks also to the people who lent me

their time and conversation, including Julia Knight, Noam Greenberg, Sy-David Fried-

man, Dilip Raghavan, and Yang Yue.

Thanks also to my fellow graduate students in Madison and elsewhere, who were happy

to listen to me talk: Ethan, Paul, Tamvana, Ivan, James, Wil, Turbo, among others.

Finally, thanks to my parents for everything they’ve done for me over the years; and

especially to my fiancée Carol, for her continuing enthusiastic support.

iii

Contents

Abstract i

Acknowledgments ii

1 Introduction 1

1.1 α-Recursion and Motivation . 1

1.2 Background . 2

1.3 Notation and Conventions . 4

2 Trees of Countable Width 6

2.1 Introduction . 6

2.2 Separation . 14

2.3 State Systems . 22

2.3.1 Proof of the Theorem . 23

2.3.2 Applications . 27

2.4 Club Approximation . 33

2.5 Structure of Pthin . 44

2.5.1 Jump Inversion . 44

2.5.2 Gaps . 47

2.5.3 Types of Degrees . 50

2.6 Nonisolated Paths . 57

iv

2.6.1 General Results . 57

2.6.2 Kurepa Trees . 57

2.7 Future Directions . 78

3 Cantor-Bendixson Rank 80

3.1 Introduction . 80

3.2 Ranks of Trees . 81

3.3 Ranks of Degrees . 85

3.4 Future Directions . 93

Bibliography 94

1

Chapter 1

Introduction

1.1 α-Recursion and Motivation

The results and discussion to follow are computability-theoretic in motivation and ap-

proach but set-theoretic in nature. The overarching theme in the study of α-recursion in

general and in this work in particular is the question of “true finiteness” and its role in

computability theory; that is to say, the motivating question is:

Question 1.1.1. To what degree do the results of classical computability theory depend

on genuine finiteness of the objects involved, rather than simply “smallness”?

The natural approach to such a question, as in most mathematics, is to replace “finite-

ness” with another sense of “smallness” and examine the consequences. The most direct

route is to simply replace the domain with a larger one; in this work, we will replace ω

with ω1 and “finite” with “countable”, leading to the following question.

Question 1.1.2. To what degree to the results of classical computability theory hold in

the setting of ω1-recursion?

This is, of course, an ongoing project pursued by many mathematicians. In this thesis,

we will concentrate on a single class of classical results.

2

Question 1.1.3. To what degree do Π0
1-classes behave similarly between the settings of

ω1-recursion and ω-recursion?

In the standard setting, the behavior of Π0
1-classes varies depending on whether we con-

sider Π0
1-classes in Cantor space or in Baire space; we will present a plausible analogue to

this distinction in the uncountable setting, and demonstrate that the proposed analogues

to Π0
1-classes in Cantor space behave very differently than in the classical setting.

1.2 Background

Arguably the field of α-recursion began with Kreisel and Sacks [12]; they studied the case

in which α is taken to be the first admissible ordinal beyond ω. It was soon after expanded

upon by Kripke [13], Platek [18], and Sacks [19], among many others. The fine structure

theory developed by Jensen [8] provided the key techniques of the study.

In general, α-recursion is a complex subject; very little that holds at ω holds for all α.

To take an extreme example, S.-D. Friedman [4] showed that when α = ℵω1 the α-Turing

degrees are well-ordered by Turing reducibility above 0′. This result and others suggest

that if a close analogue of ω is desired, α should be taken to be a regular cardinal. For

the purposes of this thesis, we will consider the particular case of α = ω1.

The following definitions are slight rephrasings of those originally set out by Kripke

[13]; definitions specific to this work will be presented in the next section.

Definition 1.2.1. A set is hereditarily countable if it is countable and all of its elements

are hereditarily countable. Let HC be the collection of all hereditarily countable sets.

Throughout this work, we will operate under the set-theoretic assumption that Lω1 = HC.

A first-order formula ϕ is said to be ∆0
0 if it is quantifier-free (for example, x ∈ y)

or every quantifier is bounded (that is, of the form ∃x ∈ y or ∀x ∈ y). A formula is Σ0
1

if it is of the form (∃x)ϕ(x) for ϕ a ∆0
0 formula. This extends to a general hierarchy: a

3

formula is Π0
n if it is the negation of a Σ0

n formula, and a formula is Σ0
n+1 if it has the

form (∃x)ϕ(x) for ϕ a Π0
n formula.

A subset X ⊆ Lω1 is computably enumerable if there exists a Σ0
1 formula ϕ and a

parameter c ∈ Lω1 so that for each x ∈ Lω1, x ∈ X iff ϕ(x, c) is true.

X is computable if both X and Lω1 \X are computably enumerable. In general, a set

is Σ0
n (resp. Π0

n) if it is definable by a Σ0
n (Π0

n) formula; it is ∆0
n if it is both Σ0

n and Π0
n.

Thus X is computable iff X is ∆0
1.

There are many other definitions which are equivalent under the assumption that

Lω1 = HC; perhaps the most compelling one defines a set to be computable if it is

computable by a Turing machine with a tape of length ω1 and permitted to run for any

countable number of stages. In light of this, a useful intuition is that a set is computable

if it is “intuitively” computable by a computer that can hold any hereditarily countable

set in memory and is permitted to run for any countable length of time before halting.

Note that we now have two definitions of “computable”; the standard definition used

in the setting of ω, and the newly defined one in the context of ω1. Henceforth, we will

use computable to refer exclusively to the uncountable setting; on the occasions in which

we need to refer to the more usual definition of computability, we will use phrases such

as “ω-computable” or “the standard setting”.

It is also useful to define a notion of relative computability: X is computable from Y

if it is computable using information in Y . More precisely, if X and its complement can

both be defined by Σ0
1 formulas using Y as a parameter. If X is computable from Y and Y

is also computable from X, we say that they are Turing-equivalent and we denote this

X ≡T Y ; the Turing degree of X, degX, is the set of all sets Turing-equivalent to X.

Definition 1.2.2. Given X ⊆ ω1, let X ′ denote the set of indices for Σ0
1 formulas ϕ with

parameters c ∈ Lω1 so that Lω1 |= ϕ(c). Let X(0) = X, X(α+1) =
(
X(α)

)′
, and for a

countable limit ordinal α let X(α) = {(β, γ) | γ ∈ X(β)}. X(α) for α ≥ ω1 can and will be

4

defined in a later section.

It will shortly become useful to extend the hierarchy noted above to higher-order levels.

Definition 1.2.3. X ⊆ ω1 is Σ1
1 if there exists a first-order formula ϕ with a parameter

c ∈ Lω1 so that x ∈ X ⇐⇒ Lω1 |= (∃Y)ϕ(Y, x, c), where Y ranges over subsets of Lω1.

X is Π1
1 iff ω1 \X is Σ1

1, and X is ∆1
1 if it is both Σ1

1 and Π1
1.

When considering these higher-order quantifiers, another set-theoretic assumption is

relevant: Lω2 = H(ℵ1), where H(ℵ1) is the collection of sets hereditarily of size ≤ ℵ1. For

many of the results of this work, this assumption is not necessary; where it is, it will be

noted as such.

One of the most important facts about ω1-recursion for our purposes is that there is

a computable bijection between ω1 and Lω1 ; we will therefore interchange freely between

the two.

Because we will be working within L, we will be able to make use of the canonical

ordering on L, <L. For a complete definition of this ordering, see [6]; for our purposes,

the only important properties are the following.

• <L is a well-ordering.

• <L� Lω1 is (ω1)-computable.

1.3 Notation and Conventions

Certain notation conventions we will preserve from the standard setting. For countable

ordinals e, Φe or ϕe denotes the eth computable function; for X ⊆ ω1, ΦX
e denotes the eth

computable function with oracle X. A boldface lower-case letter a, b, c, . . . will denote an

ω1-Turing degree unless otherwise noted.

5

By convention, we will use e, i, j for countable ordinals that represent indices of com-

putable functions. n and m will be finite ordinals, and lower-case Greek letters α, β, γ, . . .

will denote ordinals in general (usually countable). The lower-case Greek letters σ, τ, ρ, θ

will usually denote binary strings of countable length, and the symbol _ will be used to

denote concatenation of these. Upper-case Greek letters Γ,∆, . . . will denote ω1-Turing

functionals; Λ will usually denote a set of symbols. Upper-case letters (A,B,C, . . .) will

be used for subsets of ω1 or for requirements (as in a priority argument). T will almost

exclusively refer to a binary tree (defined below).

Φe,s(x) denotes the eth computable function evaluated at x within the first s stages;

the precise interpretation of this is not relevant, but one possible definition would be that

Φe,s(x) is Φe(x) as evaluated over Ls rather than Lω1 , in which case the computation is

said to diverge if no witness to the relevant Σ0
1 formulas exists in Ls.

By convention, when σ is a countable string, Φσ
e is evaluated only up to stage |σ| and

considered to diverge if it requires information past |σ| from the oracle.

Throughout, we will use the ω1 analogue of Church’s thesis freely, and present con-

structions largely informally.

6

Chapter 2

Trees of Countable Width

2.1 Introduction

In this chapter, we will study a particular flavor of Π0
1 class: those arising from trees that

are thin in a particular sense. To begin, we must lay out a number of definitions that are

the direct analogues of the corresponding notions in ω-computability.

Definition 2.1.1. 2<ω1 is the collection of all countable binary strings. For σ, τ ∈ 2<ω1,

σ ≺ τ if σ is a proper initial segment of τ ; likewise, σ ≺ X for X ⊆ ω1 if σ is a (proper)

initial segment of the characteristic function of X. For σ ∈ 2<ω1, |σ| denotes its length:

sup{α + 1 | α ∈ dom(σ)}.

When σ is a string, and α is an ordinal, σα is the string produced by concatenating σ

with itself α times; for example, 0α is the sequence of length α consisting entirely of 0.

A binary tree is a subset of 2<ω1 that is downward-closed under ≺. If T is a binary

tree, then a path through T is a set X ⊆ ω1 so that {σ ∈ 2<ω1 | σ ≺ X} ⊆ T . [T] denotes

the set of paths through T . A path X is isolated if there is an initial segment σ of X so

that X is the only path through T passing through σ. The unique path of a tree T is a

path X so that [T] = {X}.

A binary tree is computable if it is computable as a subset of Lω1. A Π0
1-class is a

7

subset of P(ω1) that can be described as [T] for some computable binary tree T .

In the countable setting, two distinct classes of trees are studied: finitely-branching

trees, which are equivalent to binary trees; and infinitely-branching trees, equivalent to

downward-closed subsets of ω<ω. We could likewise define the latter in this setting,

considering trees that are subsets of ω<ω1
1 ; however, it is evident that there is no difference

between these and binary trees. The principle obstacle is that even in a binary tree, the

set of elements of a particular length (e.g., length ω) may have size ω1, so an ω1-branching

tree may be effectively “modeled” in a binary one. For this reason, we henceforth will

not distinguish between binary trees and ω1-branching trees, and will use the word tree

to refer to either or both of them.

However, most of the results in ω-computability regarding finitely-branching trees

might be considered to depend less on the finiteness of the branching than on the finiteness

of each level of the tree; while these are of course equivalent, their analogues in the setting

of ω1 are not. It seems natural to suppose, then, that the “correct” analogues of binary

or finitely-branching trees in the countable setting might be trees of countable width in

the uncountable setting.

Definition 2.1.2. If T is a tree, T has countable width if |T ∩ 2α| is countable for every

countable α.

It should be noted that this is an imperfect analogue at best - for example, a finitely-

branching tree in the countable setting is permitted to have levels of cardinality unbounded

below ω, while a tree of countable width in our present setting must have levels of cardi-

nality strictly bounded below ω1.

Before moving on to the principal definitions of this chapter, we prove a simple result

that will be useful throughout the chapter.

Proposition 2.1.3. There is a uniformly (partial) computable sequence 〈Ti〉i<ω1 of subsets

of 2<ω1 so that the following conditions hold:

8

(i) Ti is a tree for every i, and

(ii) for every computable tree T , there is an i (uniformly in an index for T) so that

T = Ti.

Proof. For any e, let Te be the subset of 2<ω1 enumerated by Φe, except for the following:

(i) If Φe,s(σ) ↓= 1 and an initial segment of σ has been excluded from Te, then exclude

σ from Te; and

(ii) If Φe,s(σ) ↓= 1 and no initial segment of σ has been excluded from Te, include all

undecided initial segments of σ in Te.

On the other hand, the natural extension of Prop. 2.1.3 to trees of countable width

does not hold; that is, there is no uniformly computable sequence of trees of countable

width which realizes every computable tree of countable width as above.

The primary topic of study in this document is the case of Π0
1-classes comprised of a

single element.

Definition 2.1.4. A Π0
1 singleton is the unique path in a computable tree. A thin Π0

1

singleton is the unique path in a computable tree of countable width.

For ease of notation, we introduce some symbols to represent important classes of

degrees.

Definition 2.1.5. Let P = {deg(D) : D is a Π0
1 singleton}, and Pthin = {deg(D) : D is

a thin Π0
1 singleton}.

A degree in Pthin is called thin.

A degree d is wide if no member of d is contained in any thin Π0
1-class (of any

cardinality).

9

An essential tool in the study of Π0
1-classes in the standard setting is König’s Lemma,

which for our purposes states the following:

Proposition 2.1.6. (König’s Lemma) If T is an infinite, finitely-branching tree, then T

has an infinite branch.

Among its most notable consequences is the following result:

Proposition 2.1.7. (Folklore) If X is an isolated path of an ω-computable finitely-

branching tree T , then X is also ω-computable.

The analogous statement to König’s Lemma in the uncountable setting might be for-

mulated as “A countably-branching uncountable tree has an uncountable path”. However,

the following example demonstrates that this fails:

Proposition 2.1.8. There is a computable binary tree which is uncountable but has no

uncountable path.

Proof. 2≤ω, the set of binary strings of length ≤ ω, suffices.

The triviality of this example suggests a re-formulation: “A countably-branching tree

of height ω1 has an uncountable branch”. This also has an immediate counterexample:

Proposition 2.1.9. There is a computable binary tree with elements of every length but

having no uncountable path.

Proof. Note that there is a computable bijection f : 2ω → ω1. Let T = 2≤ω1 ∪ {σ _ 0α |

σ ∈ 2ω ∧ α ≤ f(σ)}. Then T is the desired tree.

The final, and most plausible, attempt at a rephrasing of König’s Lemma comes from

reinterpreting the original statement as a claim about width instead of branching. That

is to say, we interpret the original Lemma as stating that “An infinite tree in which every

level is finite has an infinite path”. This is a particularly compelling interpretation because

10

the proof of König’s Lemma relies only on a pigeonhole principle argument. This suggests

a new analogue to the Lemma in the uncountable case: An uncountable tree of countable

width has an uncountable path. This notion was originally examined by Aronszajn as

reported by Kurepa [15], leading to the following definition:

Definition 2.1.10. An ω1-Aronszajn tree is a tree of countable width and height ω1 with

no uncountable path. Since κ-Aronszajn trees for κ 6= ω1 are not considered in this work,

we will refer to an ω1-Aronszajn tree as simply an Aronszajn tree.

That is to say, this latest analogue to König’s Lemma states There is no Aronszajn

tree. Before we demonstrate the falsity of this claim, we present another definition that

will be useful:

Definition 2.1.11. An Aronszajn tree T is well-pruned if every element of T has un-

countably many extensions in T .

Lemma 2.1.12. There is a computable well-pruned Aronszajn tree with a computable

uncountable antichain.

Proof. The following is an effectivized version of the construction presented in Kunen’s

Set Theory [14].

We construct the tree T as a subtree of ω<ω1 , ordered by extension. We define a

sequence 〈sα〉α<ω1 of countable injections sα : α → ω so that for β < α the set {γ < β :

sβ(γ) 6= sα(γ)} is finite, and the range of sα is coinfinite in ω. At the same time, we build

a computable set of constraints (β, n) ∈ ω1 × ω for β a limit ordinal; we say sα satisfies

the constraint if α ≤ β or sα(β) 6= n, and otherwise it violates the constraint. We will

ensure the following condition:

(*) If sα violates the constraint (β, n), then α is at most β + ω.

The construction proceeds by induction on α, in three cases: either α is a successor, α

takes the form β + ω for β a limit ordinal, or α is a limit of limit ordinals.

11

The desired antichain will be sα for α in the second case.

Let s0 be the empty function.

Let α = β + 1. By construction, sβ violates at most one constraint (γ, n). If so, let

sα(δ) = sβ(δ) for all δ < β other than γ; otherwise, let sα(δ) = sβ(δ) for all δ < β. If sα is

not yet defined on γ, let sα(γ) be the first m not already in the range of sα other than n.

Either way, let sα(β) be the next m not already in the range of sα.

Let α = β+ω for β a limit ordinal. By construction, sβ violates at most one constraint

(γ, n); if so, we define s∗α(δ) = sβ(δ) for all δ < β other than γ. Otherwise, let s∗α(δ) = sβ(δ)

for all δ < β. Let 〈mi〉i<ω enumerate the complement of the range of s∗α not including n;

by construction, this is infinite. Let 〈δi〉i<ω enumerate the complement of the domain

of s∗α. Let sα = s∗α on the domain of s∗α, and let sα(δi) = m2i for each i. Finally, place the

constraint (β, sα(β)).

Finally, let α be a limit of limit ordinals. Let 〈αi〉i<ω be the <L-least ω-sequence

of limit ordinals cofinal in α. By construction, each sαi violates at most one constraint

(γi, ni). Define a sequence of partial injections s∗αi : αi → ω inductively as follows:

(i) s∗α0
(δ) = sα0(δ) if δ 6= γ0.

(ii) s∗αi+1
(δ) = s∗αi(δ) for δ < αi, and s∗αi+1

(δ) = sαi+1
(δ) for δ ≥ αi and δ 6= γi+1 such

that sαi+1
(δ) is not in the range of s∗αi .

Let s∗α =
⋃
s∗αi . Let βi be the first αi < β < αi+1 so that s∗α(β) is defined. Let 〈δi〉i<ω

enumerate the βi and the complement of the domain of s∗α in α, let 〈mi〉i<ω enumerate

s∗α(βi) and the complement of the range of sα∗ , and define sα as follows:

(a) For β not in the sequence 〈δi〉i<ω, let sα(β) = s∗α(β).

(b) Let sα(δi) = m2j for j least such that m2j 6= sα(δk) for any k < i and no constraint

(δi,m2j) is in place.

12

This completes the construction of the sequence of sα. Let T be the subtree of ω<ω1

consisting of countable injections σ so that {α < |σ| : σ(α) 6= s|σ|(α)} is finite, and let

C = {sβ+ω : β limit}.

Claim 2.1.13. If β < α, then {γ < β : sβ(γ) 6= sα(γ)} is finite.

Proof. By induction on α. Suppose the claim holds for all δ < α.

If α = δ + 1, then sα differs from sδ on at most one point; if the claim holds for δ,

then it holds for α as well.

If δ is a limit and α = δ + ω, then sα differs from sδ on at most one point, so if

β ≤ δ then sα differs from sβ at most finitely often. If δ < β < α, then β = δ + n for

some n and sβ differs from sδ at most finitely often. sα differs from sβ at most finitely

often before δ, and possibly everywhere after δ; but this is still finite.

If α is a limit of limit ordinals, let 〈αi〉i<ω be the cofinal sequence specified in the

construction of sα. Fix β < α, and let i be least so that αi > β. By construction,

sα(β) = sαi(β) except in one of three possible cases: (1) (β, sαi(β)) is the one constraint

violated by sαi ; (2) sαi(β) is in the range of sα∗i−1
; or (3) β = βi−1. Cases (1) and (3)

apply in at most one case each. Only finitely many β fall under case (2), because the

range of s∗αi is a subset of the range of sαi , and sαi+1 differs at most finitely from sαi .

So sα differs from each sαi at most finitely. Since each sαi differs only finitely from sβ for

β < αi, sα satisfies the claim as well.

T is therefore a tree of unbounded height; since it is a subtree of the tree of partial

injections from ω1 to ω, it cannot have an unbounded chain. It only remains to show

that C is the desired antichain.

Claim 2.1.14. C is an antichain.

Proof. For each sα ∈ C, a constraint was placed during the construction of sα of the form

(β, n), where sα(β) = n. By condition (*), all future sα′ satisfy this constraint, and so in

13

particular cannot extend sα.

As a consequence, the classical proof of Prop. 2.1.7 will not carry through to the

uncountable setting; we will need to employ other tools in the effort to characterize the

possible degrees of isolated paths, regardless of the type of tree we consider.

In fact, the only immediate upper bound on the complexity of isolated paths is the

following:

Proposition 2.1.15. The unique path in a computable tree (countable width or otherwise)

is ∆1
1.

Proof. Let T a computable tree, X the unique path through T . Then σ ∈ 2<ω1 is an

initial segment of X iff (∃Y) ((∀n)Y � n ∈ T ∧ σ ≺ Y), or equivalently iff

(∀Y) ((∀n)Y � n ∈ T → σ ≺ Y).

The central result of this work is that, even with the additional constraint of countable

width, this upper bound is optimal:

Theorem 2.1.16. For every ∆1
1 degree d, there is (uniformly in a ∆1

1 index for a repre-

sentative of d) a degree c ≥ d so that c ∈ Pthin.

Theorem 2.1.16, which will be proven in Section 4, guarantees only a member of Pthin

above each ∆1
1 degree; we also present several theorems aimed at characterizing the degrees

that are actually members of Pthin.

Theorem 2.1.17. 0(α) ∈ Pthin for every hyperarithmetic ordinal α.

Theorem 2.1.18. deg O ∈ Pthin, where O is an appropriate analogue of Kleene’s O.

In fact, Theorems 2.1.17 and 2.1.18 can be relativized, subject to a technical condition

that will be presented in Section 3.

14

All of these results present a sharp contrast from the case of ω-recursion, as evidenced

by the Low Basis Theorem of Jockusch and Soare [9]:

Theorem 2.1.19. (Low Basis Theorem)

(ω-computability) Every Π0
1-class has an element of low Turing degree.

In Section 2, we demonstrate that Pthin (P , even restricted to relatively small de-

grees. In Section 3, we prove relativized forms of Theorems 2.1.17 and 2.1.18, and present

the definitions required to express the theorems in full generality. In Section 4, we show

Theorem 2.1.16 by introducing a large class of members of Pthin characterized by a com-

binatorial property. In Section 5, we examine the structure of Pthin in more detail, and

concentrating on results relating to jump inversion and minimal degrees. In Section 6,

we diverge from the theme of isolated paths to consider thin Π0
1-classes with more than

one member; of principal interest will be the Π0
1-classes arising from computable Kurepa

trees, which are thin but have cardinality ℵ2. Finally, in Section 7, we discuss the notable

questions left open by the results of this chapter.

2.2 Separation

In light of the results of the previous section, it is reasonable to ask whether the property

of countable width makes any difference at all in relation to isolated paths. The following

result answers that question in the affirmative:

Theorem 2.2.1. There is a ∆0
2 Π0

1-singleton which is not the degree of any thin Π0
1

singleton.

To prove this result, we require the following lemma.

Lemma 2.2.2. Suppose T is a tree and f : 2<ω → T is an embedding such that for all

x ∈ 2ω, limn<ω f(x � n) ∈ T . Then T does not have countable width.

15

Proof. Suppose T and f are as given in the hypothesis of the lemma. Since the domain

of f is countable, the range of f is likewise countable. Since ω1 is regular, there exists

a countable ordinal α so that |f(σ)| < α for all σ ∈ 2<ω. Then for each x ∈ 2ω,

| limn<ω f(x � n)| = limn<ω |f(x � n)| ≤ α. Since there are uncountably many such x, and

each one yields a different element of T , we have that T ∩2≤α is uncountable. But T ∩2≤α

has only countably many levels, so by the Pigeonhole Principle there is some β < α so

that T ∩ 2β is uncountable. Therefore T does not have countable width.

Proof. (Proof of Theorem 2.2.1)

Fix a recursive enumeration 〈Ti〉i<ω1 of computable trees. Also fix a computable

Aronszajn tree A.

We construct in stages a tree T ⊆ 2<ω1 with a unique path P . T will be
⋃
s Ts, where

each Ts is itself a tree, T ∩ 2<s = Ts ∩ 2<s, and Tt ⊆ Ts whenever t ≤ s. P will be lims Ps,

where each Ps is a branch of Ts.

At any stage s, some strings in Ts may be designated as Aronszajn roots. While σ is

an Aronszajn root, strings will automatically be added to each successive Tt in order to

extend an embedding from A into the subset of Tt extending σ. The effect of this is to

ensure that while σ is designated an Aronszajn root, there will always be an extension

of σ that can be added to Tt, while at the same time refraining from constructing a path

extending σ.

A string σ is considered available at stage s if |σ| ≥ s and every initial segment of σ

is in Ts; this means that σ is permitted to enter Ts+1.

The argument will be a variation on the infinite-injury priority argument frequently

used in ω-computability. Let Λ = {0, 1} ∪ {〈0, n〉 : n < ω} ∪ {〈1, α〉 : α < ω1}; this will

be the set of outcomes. We will pursue the following requirements:

De : P 6= Φe

16

Re,i : If Ti is a tree of countable width, then either ΦP
e is not total, ΠP

e ≤T ∅, or

ΦP
e /∈ [Ti].

Effectively order the De and Re,i requirements as 〈Qj〉j<ω1 in some manner so that

each De and each Re,i appears exactly once as some Qj. For each j < ω1, assign to each

string in Λj a strategy pursuing requirement Qj; call the strategy assigned to σ Q(σ). At

any stage, a given strategy may or may not have been initialized ; once initialized, it has

an outcome taken from Λ.

Q(σ) is strictly higher-priority than Q(τ) iff σ ≺ τ .

The execution path at stage s is the string η(s) ∈ Λ≤s inductively defined as follows:

for any α < ω1, if Q(η(s) � α) has been initialized, then η(s)(α) is its outcome at stage s.

Otherwise, η(s)(α) is not defined. A strategy is called along the execution path at stage s

if it is Q(η(s) � α) for some α < |η(s)|.

At any stage s, a strategy that has been initialized may require attention. The first

strategy (that is, the one with least height) along the execution path that requires atten-

tion is permitted to act. If no strategy along the execution path requires attention, then

Q(η(s)) is initialized.

Every requirement, once initialized, has an anchor in T ; it will be the case that

whenever σ 4 τ , the anchor of Q(τ) extends that of Q(σ).

Throughout the construction, we will maintain the following conditions:

(i) If Q is a strategy along the execution path at stage s, then Ps extends the anchor

of Q.

(ii) If a strategy Q acts to add elements to the tree, then those elements extend the

anchor of Q.

The D Requirements: When initialized at stage s, De sets its anchor to an available

17

extension σ of Ps, puts σ _ 0 and σ _ 1 into Ts+1, designates σ _ 1 as an Aronszajn

root, and sets Ps+1 = σ _ 0. De begins with outcome 0.

Once initialized, De requires attention at stage s if its outcome at stage s is 0 and

Φe,s(|σ|) ↓= 0. When permitted to act, De selects an available extension τ of σ _ 1, sets

Ps+1 = τ , and switches to outcome 1.

Observe that any fixed De strategy will eventually cease to act, because it will act at

most once.

Claim 2.2.3. If Q is a De strategy and lies along the execution path at unboundedly many

stages, and if all higher-priority strategies eventually cease to act, then De is satisfied.

Proof. Suppose otherwise. Then Φe = P . Let σ be the anchor of Q. Then Φe(|σ|) =

P (|σ|). Let s0 be least so that Φe,s0(|σ|) = P (|σ|). Let s1 > s0 be least so that all

strategies of strictly higher priority than Q have ceased to act. If Φe(|σ|) ↓= 1, then Q

will never act at all, and will remain in outcome 0; therefore P (|σ|) = 0, contradicting

our supposition. So Φe(|σ|) ↓= 0. Let s2 > s1 be the least stage at which Q lies along the

execution path. At this stage, Q requires attention, and since no strictly higher-priority

strategy will act, Q must be the first strategy along the execution path which requires

attention. Q is therefore permitted to act, and changes P so that P (|σ|) = 1 and hence

P 6= Φe. By construction, P � (|σ|+ 1) will not change again.

The R Requirements:

Definition 2.2.4. An e-splitting tree is a partial map f : 2<ω → T with the following

properties:

(i) For each σ, τ ∈ dom(f), if σ | τ then Φσ
e | Φτ

e .

(ii) f(σ) ≺ f(τ) iff σ ≺ τ .

18

(iii) If σ ∈ dom(f), then σ _ 0 ∈ dom(f) iff σ _ 1 ∈ dom(f).

An e-splitting tree f is complete if dom(f) = 2<ω. A leaf node of f is σ ∈ dom(f)

with no extensions in dom(f). Note that an e-splitting tree is complete iff it has no leaf

nodes.

When initialized, an Re,i strategy sets its anchor to be an available extension σ of Ps

and includes σ and σ _ 0 in T . It takes outcome 〈0, 0〉 and begins assembling an e-

splitting tree fe,i by taking fe,i(∅) to be σ.

At any stage after initialization, Re,i may be in either of two phases, phase zero and

phase one.

While fe,i is not complete, Re,i remains in phase zero. During phase zero, Re,i is in

some outcome of the form 〈0, n〉 for n ∈ ω. Re,i maintains a string τs so that τs is a

leaf node of fe,i. Re,i requires attention if there exists t, u ≤ s with Pt, Pu < fe,i(τs) and

ΦPt
e,s | ΦPu

e,s. If Re,i is then permitted to act, it sets fe,i(τs _ 0) = Pt and fe,i(τ _ 1) = Pu.

It then takes τs+1 to be the first string (in the standard ordering) that is still a leaf node

of fe,i, sets Ps+1 to be some available extension of fe,i(τs+1), designates Ps an Aronszajn

root, and takes on outcome 〈0, n+ 1〉.

If at any stage there exists a τ ∈ 2ω so that fe,i(τ � n) is defined for every n ∈ ω, then

include limρ≺τ fe,i(ρ) in T and designate it as an Aronszajn root. Note that this must

occur regardless of whether the strategy is permitted to act or even along the execution

path at all.

Once fe,i is complete, Re,i enters phase one, and takes outcome 〈1, 0〉. fe,i induces a

map ge,i : 2ω → 2<ω1 , given by ge,i(σ) = limn<ω fe,i(σ � n); Re,i takes Ps+1 to be the first

available extension of ge,i(σ0), where σ0 is the <L-least member of 2ω, and designates Ps

an Aronszajn root.

While in phase one, Re,i requires attention if it has not yet declared phase one complete

and there is a τ ∈ 2ω such that Φ
ge,i(τ)
e,s /∈ Ti. If permitted to act, Re,i changes its outcome

19

to the outcome 〈1, α〉 with α the index of τ in the standard enumeration of 2ω, sets Ps+1

to the first available extension of ge,i(τ), and designates Ps an Aronszajn root. Once this

has occurred, Re,i declares that phase one is complete.

Claim 2.2.5. For a fixed Re,i strategy η, if all strictly higher-priority requirements even-

tually cease to act, so does η.

Proof. There are two cases: either η remains in phase zero indefinitely or it eventually

enters phase one.

If η remains in phase zero indefinitely, then it may only act countably many times,

because each action adds an element to the domain of the e-splitting tree maintained

by η, and that domain must be a subset of 2<ω. So at some countable stage, η will no

longer act.

If η eventually enters phase one, then it performed a countably infinite number of

actions in phase zero, and at most two actions in phase one (once to advance to phase

one, and once when permitted to act). So η acts at most countably often and therefore

eventually ceases to act.

Claim 2.2.6. If η is an Re,i strategy and lies along the execution path at unboundedly

many stages, and P = lims Ps exists, then η is satisfied.

Proof. Note that, inductively by Claim 2.2.5, all strictly higher-priority strategies eventu-

ally cease to act. Let s0 be a stage large enough that all strictly higher-priority strategies

that will ever act have already finished doing so; note that since changing the outcome

of a strategy requires an action, at this stage η will either always be along the execution

path or will never be. Since η lies along the execution path unboundedly often, the former

case must hold.

There are three possible cases.

(a) η never proceeds to phase one (so remains in phase zero indefinitely).

20

(b) η proceeds to phase one, but never declares it completed.

(c) η eventually declares phase one complete.

In case (a), η does not completely fill out its e-splitting tree f , so there must be

some string τ that eventually becomes a leaf node of f and remains so for the rest of the

construction. Let s1 > s0 be a stage sufficiently large that τ is a leaf node of f . Since τ

remains a leaf node thereafter, η cannot act after stage s1. So η does not require attention

after stage s1; this means that for all t, u > s1, it must be that ΦPt
e and ΦPu

e are always

compatible. Then ΦP
e is either computable or non-total.

In case (b), since η never completes phase one, it must be that either Ti is non-total

or for every σ ∈ 2ω, Φ
ge,i(σ)
e eventually enters Ti. In the latter case, Φ

fe,i(·)
e ∪ Φ

ge,i(·)
e is an

embedding from 2≤ω into Ti, so Ti is not a tree of countable width.

In case (c), the action η took to complete phase one ensures that there is an initial

segment σ of P so that Φσ
e /∈ Ti. So ΦP

e is either non-total or not a path through Ti; in

either case, the requirement is satisfied.

Limit stages: At any limit stage s, take Ps = limt<s Pt if that limit exists. The

outcome of any strategy η at stage s is taken to be the limit of its outcomes at previous

stages, provided that value stabilizes below s. If not, then η is an Re,i strategy that acted

infinitely often in phase zero before stage s (because the De strategies act at most once,

and Re,i strategies in phase one act at most twice). Then, according to the Re,i strategy, η

meets the conditions to transition into phase one at stage s; if η is the first such strategy

along the execution path, permit it to do so.

If limt<s Pt does not exist, include all limit points of the {Pt} sequence in T and

designate them all as Aronszajn roots. By construction, some strategy along the execution

path transitions to phase one at this stage, and specifies a new value of Ps independent

21

of the limit.

Verification:

Claim 2.2.7. P = lims Ps exists and is a path through T .

Proof. By construction, neither D strategies nor R strategies will revisit a previously

abandoned outcome, so once a strategy leaves the execution path it will never be along

the execution path again. Pt � Ps for t > s only if some strategy acted between stages s

and t; since every action precipitates a change of outcome, that means that the execution

path at stage t is not an extension of the execution path at stage s. Furthermore, note

that any strategy η only changes P at points above the length of its anchor, and that

when a strategy is freshly initialized it takes the current value of Ps as its anchor. So

once η changes its outcome at stage s, any further change to Pt � s must be caused by η

or by a strictly higher-priority strategy; since the strategy order is well-founded, and since

each strategy acts only boundedly often, this means that Pt � s eventually stabilizes as t

goes to ω1. Because this holds for all s, lims Ps exists. Furthermore, since every Ps lies

in T , P is a path through T .

Claim 2.2.8. P is the only path through T .

Proof. Let X be a path through T ; we will show that X = P .

Since X is a path, its initial segments cannot have been added solely on the behalf

of Aronszajn roots (that is, only through additions to the tree not made by strategies).

So unboundedly often a strategy must add an initial segment of X to the tree. But each

strategy adds only countably many elements (since each addition involves an action, and

no strategy acts unboundedly often) and therefore unboundedly many distinct strategies

must contribute to X. So unboundedly many strategies are anchored along X, because

every strategy adds only extensions of its anchor. But since abandoned strategies cannot

22

be revisited, this uncountable sequence of strategies must be the strategies along the true

path (that is, strategies that are eventually always along the execution path). But these

strategies are all anchored along P , so arbitrarily long initial segments of P are also initial

segments of X. Therefore X = P .

Claim 2.2.9. P is not computable.

Proof. By Claim 2.2.3, every De requirement is eventually satisfied. So Φe 6= P for

each e.

Claim 2.2.10. P is not Turing-equivalent to the unique path through any computable tree

of countable width.

Proof. By Claim 2.2.6, every Re,i requirement is eventually satisfied. So for every e, i,

if Ti is a computable tree of countable width and ΦP
e is total and noncomputable, then

ΦP
e /∈ [Ti]. So P does not compute any noncomputable path through any computable tree

of countable width. Since P is itself not computable, P cannot be equivalent to any path

through a computable tree of countable width, regardless of uniqueness.

2.3 State Systems

In light of Theorem 2.2.1, constructing a computable tree of countable width in which the

unique path is of a particular degree is nontrivial. In order to determine which degrees

can be represented by these unique paths, it is useful to develop some general machinery

for constructing trees with various properties.

Definition 2.3.1. A system of states is a partial order (S,≤), with S ⊆ Lω1. The system

is computable if both S and ≤ are computable.

23

A filter for (S,≤) is a downward-closed set X ⊆ S so that the elements of X are

pairwise comparable and there is no x ∈ S above every element of X.

A state function is an injective function s : ω1 → S so that s(t) ≤ s(u) only if t ≤ u

and the range of s in X is well-ordered. s is a X-true state function if {t < ω1 : s(t) ∈ X}

is a club in ω1 and the range of s is unbounded in X.

Definition 2.3.2. If P and Q are partially ordered sets, then f : ω1 → P is said to be

smooth over g : ω1 → Q if the following conditions hold:

(i) If f(s) ≤ f(t), then g(s) ≤ g(t).

(ii) If r < s < t is such that f(r) ≤ f(t) and g(s) ≤ g(t), then f(r) ≤ f(s).

The second requirement in Definition 2.3.2 is a technical condition only of use in the

development of the analogue of α-true relations introduced by Montalbán [17] based on

the priority framework of Ash [1]. Nevertheless, we include it here in anticipation of its

future usefulness and because it does not significantly complicate the proof.

Theorem 2.3.3 (State Theorem). Let (S,≤) be a computable system of states, X a filter,

and s : ω1 → S a computable X-true state function. Then there exists a computable tree T

of countable width with a companion map f and unique path Y so that Y ≡T X and f is

smooth over s. Furthermore, this holds with all possible uniformity.

2.3.1 Proof of the Theorem

We construct T as
⋃
s Ts, so that T ∩2<α =

⋃
β<α Tβ∩2<α (so the first α levels are decided

by stage α). We will suppress references to the particular levels of T , and instead refer

simply to “adding σ to T” or “removing σ from T”.

As we build T , we will build f simultaneously; the path Y will be defined as the unique

path which f visits on a closed and unbounded set.

24

Throughout the construction, some nodes will be designated Aronszajn roots ; at most

countably many of these will appear below any fixed height α, but uncountably many

such designations may be present at any stage. While σ is designated an Aronszajn root,

at every stage α > |σ|, extensions of σ will be added to T to copy a fixed computable

Aronszajn tree rooted at σ up to height α.

Definition 2.3.4. Anchoring the stage-s state at σ is to perform the following sequence

of steps.

(i) Include σ in T , if it isn’t already present.

(ii) Add an Aronszajn tree Aσ rooted at σ.

(iii) Designate a computable uncountable antichain Qσ ⊆ Aσ.

(iv) Designate each member of Qσ as an Aronszajn root.

(v) Set f(s) = σ.

At the beginning of the construction, we anchor the stage-0 state at the root node λ. As

a result, we will have defined an Aronszajn tree Aλ rooted at λ and a computable antichain

Qλ ⊆ Aλ, each member of which is designated as an Aronszajn root.

Junking the stage-s state is to perform the following sequence of steps.

(i) Let σ be the first member of Qλ that is still designated as an Aronszajn root.

(ii) Remove the designation of σ as an Aronszajn root.

(iii) Select an extension τ of σ of maximal length up to s.

(iv) Anchor the stage-s state at τ .

Stage s > 0: There are several cases. Let A = {t < s : s(t) ≤ s(s)}, so that A is the

set of previous stages at which the state was compatible with the current state.

25

Case 1: Suppose that A is unbounded below s and limt∈A f(t) exists. Then anchor

the stage-s state at limt∈A f(t).

Case 2: Suppose that A is unbounded below s, but limt∈A f(t) does not exist. Then

junk the stage-s state.

Case 3: Suppose that A is bounded below s and has a maximal element t. Then let

σ be the first member of Qf(t) that is still designated as an Aronszajn root. Remove the

that designation, and select τ ∈ T extending σ of length s. Anchor the stage-s state at τ .

Case 4: Suppose that A is bounded below s but has no maximal element. Then junk

the stage-s state.

Observe that if f(s) 4 f(t), then s(s) ≤ s(t).

Verification:

Claim 2.3.5. T has at least one path which computes X.

Proof. Let C = {t : s(t) ∈ X}. By hypothesis, this is a club. Let α : ω1 → C be the

function enumerating C in order. We show by induction that for every t and every u < t,

f(α(u)) ≺ f(α(t)). The claim is trivial for t = 0.

Suppose t = x+ 1 and the claim holds for x. At stage α(t), the construction proceeds

as follows: A = {y < α(t) : s(y) ≤ s(α(t))} consists entirely of stages with state below

s(α(t)) ∈ X. Since X is a filter and therefore downward closed, s(y) ∈ X for every

y ∈ A. So A is the initial segment of C below α(t), and so by our hypothesis on t has a

maximal element, namely α(x). Then the stage-α(t) state is anchored above α(x), and

by construction f(α(x)) ≺ f(α(t)).

Suppose t is a limit ordinal and the claim holds for every x < t. Again, A = {x < α(t) :

s(x) ≤ s(α(t))} is the initial segment of C below α(t). Since C is a club and t is a limit, A

26

is unbounded below α(t). By the induction hypothesis, the f(x) are comparable for every

x ∈ A, so this stage falls into case 1. Then f(α(t)) = limx∈A f(α(x)) is well-defined.

This completes the induction. Therefore
⋃
t∈C f(t) is a path Y through T . By the

observation above, the only states anchored along Y are members of X, and these are

unbounded in X; so, to compute whether a state x is in X, Y need only wait for a state

to be anchored along it that is either above or incomparable with x.

Claim 2.3.6. T has at most one path.

Proof. Let Z ∈ [T]. Let B be the set of stages at which the current state is anchored

along Z. Observe that, by construction, B is unbounded and s(s) < s(t) for every s, t ∈ B

with s < t.

Suppose that B is not closed. Let t0 < t1 < · · · < ti < · · · be an increasing sequence of

members of B so that t = limi ti /∈ B. At stage t, the state was not anchored at limt f(ti);

since f(ti) ≺ Z for every i, this cannot be because we fell in case 2. Instead we must

fall in case 3 or 4. In either case, limi f(ti) is not added to T , so Z cannot be a path

through T , contradicting our supposition.

Therefore B is a club in ω1. Let C be as specified in the previous claim. Since B

and C are both clubs, they intersect unboundedly often. But then Z and Y intersect

unboundedly often, so Z = Y .

Claim 2.3.7. f is smooth over s.

Proof. Condition (i) in Definition 2.3.2 is clear from the construction. It remains to show

condition (ii).

Suppose that r < s < t are such that f(r) ≤ f(t) and s(s) ≤ s(t). We aim to show

that f(r) ≤ f(s).

Suppose that the claim fails; so, f(r) � f(s). Further suppose, without loss of gener-

ality, that s is least so that this is the case.

27

Observe that since Condition (i) holds, we have that s(r) ≤ s(t). Since S is a tree,

s(s) and s(r) are comparable; since s is order-respecting, s(r) ≤ s(s).

Consider the construction at stage s. Let A = {u < s : s(u) ≤ s(s)}. By the

minimality of s we supposed above, if A is unbounded below s then limu∈A f(u) exists

and extends f(r). So the construction at this stage falls in either Case 1, Case 3, or Case

4.

Case 1: The stage-s state was anchored at limu∈A f(u) < f(r), so f(s) ≥ f(r),

contradicting our assumption.

Case 3: Say A has maximal element u. By the minimality of s, f(u) ≥ f(r); by

construction, f(s) ≥ f(u). This contradicts our assumption.

Case 4: The stage-s state is junked.

So the construction must fall into Case 4 at stage s. But since f(t) ≥ f(r), there must

be a later stage at which this happens; let t0 be least > s so that f(t0) ≥ f(r). By the

same argument as above, we must be in case 4 again at stage t0. But junking anchors a

state at a position incompatible with all previous states except the stage-0 state. Since

f(t0) was the result of junking and f(t0) ≥ f(r), it must be that r = 0. But the stage-0

state was anchored at the root element; f(0) ≤ f(u) for every u. This completes the

contradiction.

2.3.2 Applications

Theorem 2.3.3 gives as largely straightforward consequences a number of lemmas that are

useful to characterizing the members of Pthin. In particular, unique paths of computable

trees of countable width with companion maps are closed under the Turing jump and

under joins that are uniformly computable in such a path. At the end of this section, we

will relate this to the analogue of the hyperarithmetic hierarchy.

28

Lemma 2.3.8. Let T be a computable tree of countable width with unique path X and

companion map f . Then there is, uniformly in an index for T and f , a tree T ′ with a

companion map g and unique path Y ≡T X ′, with g smooth over f .

Proof. Let S be the subset of 2<ω1 × 2<ω1 consisting of elements (σ, τ) with |σ| = |τ |,

where (σ1, τ1) ≤ (σ2, τ2) iff σ1 4 σ2 and τ1 4 τ2. Observe that (S,≤) is a system of states.

Let F = {(σ, τ) ∈ S : σ ≺ X, τ ≺ X ′}. Then F is a filter of S.

Definition 2.3.9. For σ ∈ 2<ω1, σ′ is the sequence τ of length |σ| so that τ(e) = 1 iff

Φσ
e,t(e) ↓ converges for some t < |σ|.

Let s(s) = (f(s), f(s)′). By the properties of the companion map, s is immediately a

state function.

Claim 2.3.10. s is F -true.

Proof. Let t0 < t1 < · · · be an increasing sequence so that s(ti) ∈ F for each i. Let

t = limi ti.

For each i, f(ti) ≺ X. By the properties of the companion map, f(t) = limi f(ti) ≺ X.

Let τ = f(t)′. τ(e) = 1 iff Φ
f(t)
e,t (e) ↓ for some t < |f(t)| = limi |f(ti)|. Equivalently,

there is an i with t < |f(ti)|, or equivalently there is an i so that f(ti)
′(e) = 1. So

f(t)′ = limi f(ti)
′. Therefore s(t) ∈ F .

Therefore {t : s(t) ∈ F} is closed. It remains to show that it is unbounded.

For any α, let h(α) be the least β so that for all e < α, ΦX
e (e) converges by stage β

or not at all. Observe that h is continuous, so it has a club C of fixed points. By the

conditions on the companion map, the set {s : f(s) ≺ X} is a club D. C ∩ D is then

an unbounded subset of ω1 so that for every s ∈ C ∩ D, f(s) ≺ X and f(s)′ ≺ X ′, so

s(s) ∈ F .

By Theorem 2.3.3, then, there is a computable tree of countable width T ′ with a

companion map f ′ and unique path Y so that Y ≡T F . Clearly F ≡T X ′, so Y ≡T X ′.

29

Lemma 2.3.11. Let U be a computable tree of countable width with unique path X and

companion map f . Let F : U → ω1 be a computable function so that for every σ ≺ X,

F (σ) is the index for a computable tree of countable width Tσ with unique path Xσ with

companion map fσ. Then there is a tree T with unique path Y and companion map g so

that Y ≡T X ⊕
⊕

σ≺X Xσ and g is smooth over f and every fσ.

Proof. Let S be the subset of 2<ω1×(2<ω1)<ω1 consisting of elements of the form (σ, 〈τi〉i<α)

so that α = |σ|. Then S is a system of states.

Let G = {(σ, 〈τi〉i<|σ|) : σ ≺ X, ∀iτi ≺ XX�i}. Then G is a filter.

Let s(s) = (f(s), 〈ff(s)�t〉t<s), where ff(s)�t is evaluated at stage s. Then s is a state

function.

Claim 2.3.12. s is G-true.

Proof. Let C = {s : s(s) ∈ G}. We show that C is a club.

Let t0 < t1 < · · · be an ω-sequence of elements of C with limit t. Let s(t) =

(σt, 〈τ ti 〉i<αt). σt = f(t) = limi f(ti) ≺ X, by the properties of the companion map.

Fix i < αt, and let j < ω be such that tj > i. Then τ ti = fX�i(t) = limk fX�i(tk). For

k > j, fX�i(tk) ≺ XX�i, so τ ti ≺ XX�i. So s(t) ∈ G.

C is therefore closed; it remains to show that C is unbounded. f(t) ≺ X on a club D.

For each α, note that fX�α(t) ≺ XX�α on a club Cα. Let C<α =
⋂
β<αCβ. Let h(α) be

the least member of D ∩ C<α. h is continuous, so has a club E of fixed points. E ⊆ C,

so C is unbounded.

The lemma follows by Theorem 2.3.3.

Developing the hyperarithmetic hierarchy in the context of ω1-recursion is somewhat

complicated by the fact that well-ordering is a Π0
1 property; as a result, ∅′ computes more

ordinals than ∅ does. The following definition is due to Greenberg and Turetsky in notes

that are to the author’s knowledge presently unpublished.

30

Definition 2.3.13. We define O as the smallest set satisfying the following conditions,

while simultaneously defining sets Ha for a ∈ O, a rank function | · | : O → ORD, and an

ordering <O on O.

(i) 0 ∈ O, H0 = ∅, and |0| = 0.

(ii) If a ∈ O, then b = 〈succ, a〉 ∈ O. |b| = |a| + 1, Hb = H ′a, and c <O b iff c <O a

or c = a.

(iii) If ai ∈ O and ai <O ai+1 for i < ω, then b = 〈ω, 〈ai〉i<ω〉 ∈ O. Hb =
⊕

i<ωHai

and |b| = supi<ω |a|. c <O b iff there exists an i so that c <O ai.

(iv) Suppose a ∈ O, {e}Ha is total, {e}Ha(i) ∈ O and {e}Ha(i) <O {e}Ha(j) for all

i < j < ω1. Then b = 〈ω1, a, e〉 ∈ O. |b| = supi<ω1
|{e}Ha(i)|, and Hb =

⊕
i<ω1

H{e}Ha (i).

c <O b iff there is an i < ω1 with c <O {e}Ha(i).

A hyperarithmetic ordinal is an ordinal α so that there is a ∈ O with |a| = α.

Proposition 2.3.14. (Greenberg, Turetsky) If a, b ∈ O and |a| = |b|, then Ha ≡T Hb.

Thus 0(α) can be defined as the degree of Ha where a ∈ O and |a| = α.

The above can be relativized in a straightforward manner to any X ⊆ ω1, yielding

a definition of OX , an ordinal hyperarithmetic in X and the degree X(α) for any such

ordinal α.

Corollary 2.3.15. (Theorem 2.1.17) Let X be the unique path in a computable tree of

countable width T with a companion map f , and let α be an ordinal hyperarithmetic in X.

Then, uniformly in indices for T and f and an X-notation for α, there is a computable

tree T̃ of countable width with a companion map f̃ so that the unique path Y of T̃ is

equivalent to X(α).

Proof. By effective induction on α, using Lemma 2.3.8 for successor steps and Lemma

2.3.11 for limit steps.

31

Proposition 2.3.16. (Theorem 2.1.18) Let T be a computable tree of countable width

with unique path X and companion map f . Then there exists, uniformly in an index

for T and f , a computable tree TO with unique path XO and companion map fO so that

XO ≡T OX .

Proof. Let S be the collection of tuples 〈σ, 〈Hi〉σ(i)=1, 〈Di〉i<|σ|〉, where each Hi is a count-

able binary string and each Di a function with domain a countable tree. Order S in the

natural way.

Note that, by Lemmas 2.3.8 and 2.3.11 we have a uniform map a→ (Ta, fa) so that if

a ∈ O, Ta is a tree of countable width with companion map fa and unique path equivalent

to Ha.

Define a map s : ω1 → S so that s(s) = 〈σ, 〈Hi〉σ(i)=1, 〈Di〉i<|σ|〉 as follows.

Let Hi (for each i < |σ|) be fi(s), evaluated at stage s. Define Di by induction as

follows:

(i) Di(λ) = i.

(ii) If Di(τ) = 〈succ, a〉, then Di(τ _ 0) = a.

(iii) If Di(τ) = 〈ω, 〈aj〉j<ω〉, then Di(τ _ n) = an for each n < ω.

(iv) If Di(τ) = 〈ω1, a, e〉, and a < s, then Di(τ _ 0) = a, and for each β < s, if

ΦHa
e,s (β) ↓= c then Di(τ _ β) = c.

Then σ is the string of length s so that σ(i) = 1 iff Di is well-founded.

Let G be the set of elements 〈σ, 〈Gi〉σ(i)=1, 〈Di〉i<|σ|〉 so that σ ≺ O, Gi ≺ Hi for each i,

and Di is defined as above for each i. Note that G is clearly downward-closed, and its

elements are pairwise compatible, so G is a filter in S.

Claim 2.3.17. s is a state function.

32

Proof. The only condition that is not trivial is that the range of s be well-founded. But

this is clear from the fact that the first component has strictly increasing length; any

descending sequence of elements of the range of s would correspond to a descending

sequence of lengths of the first component, and hence to a descending sequence of ordinals.

Claim 2.3.18. s is G-true.

Proof. We show first that the set S = {t : s(t) ∈ G} contains a club, then that it is closed.

For a ∈ O, fa(t) ≺ Xa on a club Ca, by the definition of the companion map. Let

C<a =
⋂
b<a,b∈O Cb, and let C+ = {s : s ∈ C<s}. Note that C+ is closed and unbounded,

and that at stages in C+ all of the approximations to H-sets used by s are correct.

For a /∈ O, there is a first stage in C+ at which this is recognized, either because Da

includes an element of non-notation form or because an infinite branch has appeared in

Da. Observe that if this behaviour is observed at a stage in C+, then a is not in O, because

all of the H-sets corresponding to true notations that were used in computing Da at this

stage were correct. Let w(a) be this first stage. Let C = {s : s ∈ C+ ∧ (∀t < s)w(t) < s}.

This is also a closed and unbounded subset of ω1, and at these stages t, s(t) ∈ G.

To show that S is closed, let t0 < t1 < · · · ∈ S, with t = limi ti. At all of these stages,

all of the approximations to H-sets are correct; in other words, fa(ti) ≺ Xa for a ∈ O,

a < ti. By the conditions on the companion map, fa(t) = limi fa(ti) ≺ Xa. Furthermore,

at each of these stages, the first component is correct; so for each a < t with a /∈ O, there

is a ti > w(a). So t ∈ C as defined above, and therefore C ∈ S.

We then obtain the desired tree by Theorem 2.3.3.

It is evident that similar approaches can push this hierarchy of thin degrees much

further; combining the results of this section, for example, we can define a new O-like

notation system N by adding to the closure conditions of O the additional condition

33

(v) Suppose a ∈ N . Then b = 〈O, a〉 ∈ N . Hb = OHa , and |b| is the least ordinal not

hyperarithmetic in Ha. c <N b iff c <N d for some d ∈ N constructed from Ha using only

conditions (i)-(iv).

By a proof similar to Prop. 2.3.16, we can show that the degrees of paths of computable

trees of countable width with companion maps are (uniformly) closed under the map

X → NX ; and we can repeat this process further. But since this process can evidently

be continued indefinitely, we must look elsewhere for an upper bound on the complexity

of the thin degrees. In the next chapter, we will take a less constructive approach to

building this degrees, culminating in the main theorem of this document.

2.4 Club Approximation

In the previous chapter, the presence of a companion map is critical to the construction

of paths of higher and higher complexity; however, it is straightforward to construct an

example in which a companion map is not possible. However, in a certain sense the

path constructed in this fashion still has a “good” approximating function; it simply

doesn’t obey the precise constraints placed on a companion map. In order to understand

these approximating functions and their role in determining whether or not a path of a

given complexity exists, we present in this chapter several extensions of the notion of a

companion map, and use them to construct unique-path representations of a much larger

class of degrees.

The following definition is well-known but presented here for completeness.

Definition 2.4.1. In an ordered set A, a club is a set C ⊆ A that is closed and unbounded,

in that:

• If a0 < a1 < a2 < . . . is an increasing sequence in C that has an upper bound in A,

then the least upper bound is in C; and

34

• For all a ∈ A, there is a c ∈ C with c > a.

For our purposes, all clubs will be clubs in ω1 with the usual ordering.

Definition 2.4.2. A function f : A→ B, with A and B ordered sets, is order-respecting

if there exists no x, y ∈ A with x < y and f(x) > f(y).

A set X is weakly club-approximable if there exists an order-respecting computable

function f : ω1 → 2<ω1 so that {s : f(s) 4 X} contains a club.

X is strongly club-approximable if there exists an order-respecting computable function

f : ω1 → 2<ω1 so that {s : f(s) 4 X} is a club.

X is continuously club-approximable if there exists a continuous order-respecting com-

putable function f : ω1 → 2<ω1 so that {s : f(s) 4 X} is a club.

If X is weakly (strongly, continuously) club-approximable, then the computable func-

tion f witnessing that classification is a weak (resp. strong, continuous) club-approximation

to X.

Observe that, in principle, these three notions differ widely in complexity. The most

striking example is that the property “A is a club” is a Π0
2 property (A is unbounded

and every countable increasing sequence in A has a limit in A) while the property “A

contains a club” is a strictly Σ1
1 property [?]. It is reasonable to suppose, then, that

the weakly club-approximable sets would comprise a much wider class than the strongly

club-approximable sets, which in turn one would expect to be much more extensive than

the continuously club-approximable sets.

The following is a straightforward consequence of the definitions:

Proposition 2.4.3. The unique path of any tree with a companion map is strongly club-

approximable, and the unique path of any tree with a continuous companion map is con-

tinuously club-approximable.

Theorem 2.4.4. Let X be a strongly club-approximable set. Then degX ∈ Pthin.

35

Proof. Let S = 2<ω1 with the usual ordering; then S is a system of states, and X is a filter

for S.

Fix a strong club approximation f to X. Let s(t) = f(t). Then s is X-true, by the

definition of the companion map. The theorem follows from Theorem 2.3.3.

However, the same cannot be said of weakly club-approximable sets:

Proposition 2.4.5. The weakly club-approximable sets are closed downwards under Tur-

ing reduction.

Proof. Let f be a weak club approximation for X, and let Y = ΦX
e . C = {s : f(s) ≺ X}

contains a club, by hypothesis. For each α, let t(α) be the least stage t so that ΦX
e,t � α ↓;

t(α) is then a continuous function of α, and hence has a club D of fixed points.

Let g(s) = Φ
f(s)
e,s . For s ∈ C∩D, g(s) ≺ Y , so g is a weak club approximation to Y .

A similar result holds of strongly club-approximable sets, though as will be demon-

strated later, the strongly club-approximable sets cannot be downward-closed under Tur-

ing reduction.

Theorem 2.4.6. Let X be a strongly club-approximable set, and let Y ≡T X. Then Y is

strongly club-approximable, uniformly in an index for a strong club-approximation to X

and the reductions between Y and X.

Proof. Fix f a strong club-approximation to X, and let Γ and ∆ be Turing functionals

so that ΓX = Y and ∆Y = X.

Let C be the set of stages s so that the following conditions hold:

(i) Γ
f(s)
s � s ↓,

(ii) ∆Γf(s)

s � s ↓, and

(iii) ∆Γf(s)

s � s = f(s).

36

Let 〈sα〉α<ω1 enumerate the members of C in increasing order, and let g(t) = Γf(st) � st.

Claim 2.4.7. C is unbounded.

Proof. Let C0 be the set of stages s with f(s) ≺ X; by hypothesis, C0 is a club. For

each s, let h(s) be the least stage t at which ΓXt � s ↓. h is continuous, so has a club C1

of fixed points. The elements of C0 ∩ C1 satisfy conditions (i)-(iii), and therefore form a

club inside C.

Claim 2.4.8. g is a strong club approximation to Y .

Proof. g(t) ≺ Y unboundedly often; for t with st ∈ C0 ∩ C1, g(t) ≺ Y .

Let t0 < t1 < · · · be such that g(ti) ≺ Y , and let t = limi ti. For each i, ∆g(ti) = f(sti)

by construction of C. Since g(ti) ≺ Y for each i, f(sti) ≺ X. Since f is a strong club

approximation to f , u = limi sti is such that f(u) ≺ X. u ∈ C, so u = limi sti , and

g(u) ≺ Y .

As a result, we can make the following definition:

Definition 2.4.9. A Turing degree a is strongly club-approximable if either of the fol-

lowing equivalent conditions hold:

(i) a contains a strongly club-approximable set, or

(ii) every member of a is strongly club-approximable.

Likewise, a Turing degree is weakly club-approximable if either it contains a weakly

club-approximable set or, equivalently, it consists entirely of weakly club-approximable sets.

Based on these results and the main theorem of Chapter 2, we can conclude that the

weakly club-approximable and strongly club-approximable degrees are different classes of

degrees:

37

Proposition 2.4.10. There is a ∆0
2 Π0

1-singleton that is weakly club-approximable but not

strongly club-approximable.

Proof. By Theorem 2.2.1, there is a ∆0
2 set X that is a Π0

1 singleton but not a thin

Π0
1 singleton. By Theorem 2.4.4, this set cannot be strongly club-approximable. By

Proposition 2.4.3 and Lemma 2.3.8, ∅′ is weakly club-approximable. By Proposition 2.4.5,

so is X.

Given that every example presented thus far of a degree that cannot be represented

as the unique path in a computable tree of countable width has also failed to be strongly

club-approximable, it is reasonable to ask whether the strongly club-approximable degrees

are exactly the degrees of such paths. The following result answers that question in the

negative, even for relatively low levels of complexity.

Proposition 2.4.11. There is a ∆0
2 degree d ∈ Pthin that is not strongly club-approximable.

Proof. By Theorem 2.4.6, it suffices to construct a computable tree of countable width T

with unique path X so that X is not a strongly club-approximable set.

We construct T in stages as
⋃
Ts, so that level s of the tree will be decided by stage

s + 1. X will be the limit of stage-s guesses Xs. At any stage, there will be at most

countably many elements of Ts designated as Aronszajn roots; extensions will be added

to the tree above these nodes as necessary so that, in the limit, an Aronszajn tree will be

built above each one. This ensures that while σ is designated an Aronszajn root, there

will always be an extension of σ sufficiently long that none of its extensions have yet been

decided.

We prove the claim by bounded injury, satisfying the following requirements, with the

natural priority order:

Re: Φe is not a strong club approximation to X.

38

At any stage s, the highest-priority requirement that has been initialized and requires

attention is permitted to act. If no initialized requirement requires attention, then the

first uninitialized requirement is initialized.

When initialized at stage s, Re fixes σe = Xs, adds σe _ 0 and σe _ 1 to Ts+1,

designates σe _ 1 as an Aronszajn root, and sets Xs+1 = σe _ 0. Re declares itself as in

phase zero, and sets τe = σe _ 1.

While Re is in phase zero, Re requires attention if Φe,s(t) ↓= τ for some new t ≤ s with

|τ | > |σe| and τ 4 Xs. When permitted to act, Re sets Xs+1 to a free extension of τe, sets

τe to Xs, declares Xs an Aronszajn root, and deinitializes all lower-priority requirements.

At a limit stage, if Re was permitted to act unboundedly often, then include both

limits of the Xs assignments made by Re in T , declare both as Aronszajn roots. Re then

requires attention, and when permitted to act it enters phase one and sets Xs to some free

extension of the limit point above σe _ 0 and deinitializes all lower-priority requirements.

Let ue be the current stage.

While Re is in phase one, Re requires attention if Φe,s(ue) ↓= τ with |τ | > |σe| and

τ 4 Xs. When permitted to act, Re sets Xs+1 to some available extension of σe _ 1,

deinitializes all lower-priority requirements, and declares itself satisfied.

This completes the construction. Observe that, unless reinitialized by a higher-priority

requirement, every strategy acts at most ω+ 2 times; ω-many times in phase zero, and at

most twice in phase one.

Claim 2.4.12. For each α, limsXs � α exists and is in T .

Proof. Suppose otherwise. Then there is some β < α so that Xs(β) changes uncountably

often. Each change to Xs must be the result of an action on the part of some require-

ment. Since each requirement acts at most ω + 2 times once its predecessors are done

acting, it must be that an uncountable sequence of requirements change Xs(β). But each

requirement Re causes changes only above |σe|; since Xs is increasing in length and newly

39

initialized requirements take σe = Xs, only countably many requirements can cause a

change at position β.

In fact, it is clear from the above argument that Xs(β) changes at most (ω+2)β-many

times (where the exponentiation here is ordinal exponentiation, not cardinal), so the limit

set X is in fact ω1-c.e.; this is not, however, important for the result we intend to prove.

Claim 2.4.13. X is not strongly club-approximable.

Proof. Suppose that Φe is a strong club-approximation to X. Let s0 be a stage large

enough that Ri has finished acting by stage s0 for all i < e, and suppose that Re is not

already satisfied. Note that it will be the case that Φe(s) 4 Xs for unboundedly many s,

because the initial segments of the Xs must stabilize; Re will therefore get uncountably

many opportunities to act. So Re acts infinitely many times in phase zero, and proceeds

to phase one at stage s1. Φe(s) ≺ X unboundedly often for s < s1, and Φe is a strong

club approximation to X; therefore Φe(s1) ≺ X. But when this occurs, Re changes Xs

to a value incompatible with Φe(s1), and no strategy is able to change it back. This is a

contradiction.

Claim 2.4.14. X is the only path through T .

Proof. Let Y ∈ [T]. Y is a path, so Y is not entirely contained in an Aronszajn tree.

But the only strings that are not contained in Aronszajn trees are those that are initial

segments of Xs uncountably often. Since the initial segments of the Xs stabilize, this can

only happen for strings that are initial segments of X. Then every initial segment of Y

is an initial segment of X, so Y = X.

On the other hand, the weakly club-approximable degrees are very extensive:

40

Theorem 2.4.15. A set X is ∆1
1 if and only if it is weakly club-approximable. Further-

more, this holds with all possible uniformity.

Proof. Suppose X is weakly club-approximable, with weak club approximation f . Then

α ∈ X iff ∃C a club such that α ∈ f(β) for all α < β ∈ C, iff ∀C if C is a club such that

∀β, γ ∈ C(β < γ → f(β) ≺ f(γ)), then ∀α < β ∈ Cα ∈ f(β). These are, respectively, a

Σ1
1 and a Π1

1 definition of X, so X is ∆1
1.

Suppose instead that X is ∆1
1, and ϕ and ψ are first-order formulas of Lω1ω so that

α ∈ X iff ∃Y ϕ(α, Y) iff ∀Zψ(α,Z). Define a function f : ω1 → 2<ω1 as follows:

(1) Suppose that there exists β > α such that the following hold:

(i) Lβ |= V = Lω2 ,

(ii) α = (ω1)Lβ , and

(iii) Lβ |= ∀γ∃Y ϕ(γ, Y) ⇐⇒ ∀Zψ(γ, Z).

Then f(α) = σ ∈ 2<α, where for γ < α, σ(γ) = 1 iff Lβ |= ∃Y ϕ(γ, Y). (Note that this is

independent of the choice of the witnessing β.)

(2) Otherwise, f(α) = 0α.

Let M0 ⊂M1 ⊂ · · · be an increasing continuous ω1-sequence of countable elementary

substructures of Lω2 , and let Mi be the transitive collapse of Mi. Mi |= ZF−+V = L, so

Mi = Lγi for some countable ordinal γi. Let αi = (ω1)Lγi ; by the continuity of the original

sequence, these αi form a club. And f(αi) is always a correct initial segment of X.

As a result of Theorem 2.4.15, the main theorem Theorem 2.1.16 can be proven by

concentrating on weak club-approximations rather than on ∆1
1 definitions of sets.

We now proceed to prove Theorem 2.1.16, for which we will need the following lemma:

Lemma 2.4.16 (Folklore). Fix 〈Cα〉α<ω1 a sequence of clubs. Let D be the diagonal

intersection of the Cα; that is, α ∈ D iff α ∈
⋂
β<αCβ. Then D is a club.

41

Proof. D is unbounded: Fix a countable ordinal δ. Let α0 = δ. For each β, let αβ be the

first member of
⋂
γ<β Cγ greater than αγ for every γ < β. Observe that this sequence is

continuous: for a limit ordinal β, every club Cγ for γ < β contains a tail segment of the

sequence of αγ for γ < β, so every Cγ includes the supremum of that sequence, which

will be αβ. The sequence therefore has a fixed point α = αα. This α is a member of D

greater than δ.

D is closed: Let α0 < α1 < · · · an ω-sequence in D with limit α. Each Cβ for β < α

contains a tail segment of this sequence, so all of the Cβ include α. Therefore α ∈ D.

Theorem 2.4.17. (Theorem 2.1.16)

For every ∆1
1 degree d, there is (uniformly in a ∆1

1 index for a representative of d) a

degree c ≥ d so that c is the degree of the unique path in a computable tree of countable

width.

Proof. We will use Theorems 2.4.15 and 2.4.4, and show instead that every weakly club-

approximable set is computable from a strongly club-approximable set.

Let Y be ∆1
1. Then by Theorem 2.4.15, X is weakly club-approximable. Let f be a

weak club approximation toX. The property “C is a club so that for all α ∈ C, f(α) ≺ X”

is an arithmetic one; the <L-least witness is therefore ∆1
1 (definable by statements of the

form “there exists a well-founded model of V = Lω2 ...” and “for every well-founded model

of V = Lω2 ...”). Let C(X) be that <L-least club. Note that C(X) ≥T X, because C(X)

filters out all of the incorrect “guesses” from f .

Define Cα(X) inductively as follows for countable ordinals α:

(i) C0(X) = C(X),

(ii) Cα+1(X) = Cα(X) ∩ C(Cα(X)), and

(iii) For limit α, Cα(X) =
⋂
β<αC

β(X).

42

Note that for each α, Cα(X) is a set of stages on which the approximations to X and

every Cβ(X) for β < α are simultaneously correct.

Without loss of generality, suppose 0 ∈ C(X).

Let fβ be the weak club approximation to Cβ(X). Note that by the uniformity of

Theorem 2.4.15, and the uniformity in the selection of C(·), the sequence of indices for

the fβ is computable.

Let X∗ =
⊕

α<ω1
Cα(X); for the time being, consider X∗ as a member of 2ω1×ω1 . We

construct a computable function g from ω1 to countably-supported members of 2ω1×ω1 as

follows:

(1) Suppose that the fβ(α) is closed and unbounded below α for every β ≤ α. Then

let g(α) be the function h : α× α→ 2 given by h(β, γ) = fβ(α)(γ).

(2) Otherwise, let g(α) be the function h : α× α→ 2 given by h(β, γ) = 0.

Fix a bijective pairing function 〈·, ·〉 : ω1 × ω1 → ω1 so that 〈0, 0〉 = 0. Let F : ω1 →

2<ω1 be defined as follows:

(1) If 〈β, γ〉 < α for all β, γ < α, then F (α) = σ ∈ 2<α, where σ(〈β, γ〉) = g(α)(β, γ).

(2) Otherwise, F (α) = 0α.

Identify X∗ with its image under 〈·, ·〉.

Claim 2.4.18. F is a strong club approximation to X∗.

Proof. Let A = {α|F (α) ≺ X∗}. We aim to show that A is closed and unbounded.

Let E be the set of α so that 〈β, γ〉 < α for all β, γ < α; note that E is a club.

For each α, let Cα(X)′ be the set of limit points of Cα(X); note that Cα(X)′ is also

a club. Let D be the diagonal intersection of Cα(X)′; that is, β ∈ D iff β ∈ Cα(X)′ for

all α < β. Then D is a club. Note that if β ∈ D then β ∈ Cβ(X)′, because the Cα(X)′

are nested.

43

Let α ∈ D ∩ E. Then α falls under case (1) in the definition of F , so F (α) is the

image of g(α). Since α ∈ D, α also falls under case (1) in the definition of g. So g(α)

is given by h(β, γ) = fβ(α)(γ). But α ∈ Cβ+1(X)′ for each β < α; so α ∈ Cβ+1(X); so

fβ(α) ≺ Cβ(X). Therefore g(α) is a “correct square” of X∗, and hence F (α) is a correct

initial segment of X∗.

Therefore D∩E ⊆ A, so A contains a club; in particular, A is unbounded. It remains

to show that A is closed.

Suppose α0 < α1 < · · · is an increasing ω-sequence in A with limit α. F (αi) ≺ X∗ for

each i. Note that by the simplifying assumptions 0 ∈ C(X) and 〈0, 0〉 = 0, the first bit

of X∗ is 1; so every αi must fall under case (1) in the construction of F . It’s then clear

that α likewise falls under case (1).

Likewise, every αi must fall under case (1) in the definition of g. Fix β < α. By

hypothesis, αi is a limit point of Cβ(X) for all sufficiently large i; so αi ∈ Cβ(X) for

all sufficiently large i. Since the Cβ(X) are nested, αi ∈ Cβ(X) for all i. Cα(X) =⋂
β<αC

β(X), so α is a limit point of Cα(X). So α also falls under case (1).

Since g(αi) is correct for each i, fβ(αi) ≺ Cβ(X) for each β < α and each sufficiently

large i. But α ∈ Cβ+1(X) for each β < α, so fβ(α) ≺ Cβ. Thus g(α) is also correct, so

F (α) ≺ X∗ and α ∈ A.

Therefore X∗ is a strongly club-approximable set computing X. By Theorem 2.4.4, X∗

is Turing-equivalent to a thin Π0
1 singleton; so X is computable from a thin Π0

1 singleton.

44

2.5 Structure of Pthin

2.5.1 Jump Inversion

Theorem 2.5.1. Let A ⊆ ω1 be the unique path of a computable tree of countable width

TA with a companion map fA. Let T be a computable tree of countable width with unique

path X ≥T A′ and companion map f . Then, uniformly in an index for T , f , and the

reductions from X to A′ and A, there is a computable tree of countable width T−1 with

unique path Y ≥T A and companion map g so that Y ′ ≡T Y ⊕ A′ ≡T X.

Proof. For clarity, we prove the claim when A = ∅, and discuss relativization at the end.

We build T−1 in stages as
⋃
s Ts, so that level s will be decided by the end of stage s.

Simultaneously, at stage s g(s) will be decided; we also build a ∆0
2 partial map h : T−1 → T

so that
⋃
α h(Y � α) = X.

We perform the construction on a tree of strategies. Let Λ = ω1 + 1 with the natural

ordering; this is the collection of outcomes for any strategy. The outcomes corresponding

to countable ordinals are designated coding outcomes ; the outcome corresponding to ω1 is

designated the convergence outcome. To each node of the tree Λ<ω1 we assign a strategy

η corresponding to the requirement R|η|, defined below:

Re: Either ΦY
e (e) ↓, or there is an initial segment σ of Y such that h(σ) = X � e.

Strategies at nodes higher in the tree have lower priority.

At any stage s, the execution path δ(s) is the string in Λ<ω1 of length s so that δ(s)(t)

is the outcome at stage s of the strategy assigned to δ(s) � t.

During stage s, if any strategy along the execution path requires attention, then the

highest-priority strategy along the execution path that requires attention is permitted to

act. If no strategy along the execution path requires attention, then the first uninitialized

strategy along the execution path is initialized.

45

At any stage, some strategies may be cancelled. A cancelled strategy does not act or

require attention, and no strategy of strictly lower priority than a cancelled strategy may

be initialized. If the execution path at stage s passes through a cancelled strategy, and

no higher-priority requirement requires attention or is uninitialized, then set g(s + 1) =

g(s) _ 0.

At every stage, if g(s + 1) is not compatible with g(s), then g(s) is designated an

Aronszajn root.

Strategy for Re:

Let η be a strategy pursuing requirement Re. When η is initialized at stage s, set

ση = g(s). Include an Aronszajn tree Aη rooted at g(s), with a computable uncountable

antichain 〈qηi 〉i<ω1 . Designate every qηi as an Aronszajn root, set g(s + 1) = qη0 , set

h(qη0) = f(s) � e, and set η to outcome 0.

If η ever enters its convergence outcome, then it never requires attention from that

point forward.

If η is in a coding outcome, and there is a τ ∈ Ts, τ � ση, so that Φτ
e,s(e) ↓, then η

requires attention. If permitted to act, η switches to its convergence outcome and sets

g(s+ 1) to some extension of τ with length at least s.

If η is in coding outcome α and f(s) � e 6= h(qηα), then η requires attention. If there

is an outcome β which η has previously visited so that h(qηβ) = f(s) � e, then η returns

to outcome β and sets g(s + 1) to a string consistent with the outcomes of all strategies

along the new execution path. If no such β exists, then let β be the first coding outcome

that η has not yet visited. Set h(qηβ) = f(s) � e and g(s + 1) to some extension of qηβ of

sufficient length, and switch η to outcome β.

Limit Stages:

Let s be a limit stage. Let U be the set of limit points of g(t) for t < s. Observe that,

46

since each corresponds to a particular configuration of outcomes, each corresponds to a

particular limit point of f(t) for t < s. Only countably many of these are in T ; include

only the corresponding members of U in T−1. Cancel all limit strategies corresponding

to elements of U not included this way.

Verification:

Claim 2.5.2. There exists P ∈ Λω1 so that {s : δ(s) ≺ P} is a club.

Proof. Let C be the set of stages at which f(s) ≺ X; by hypothesis, this is a club. We

inductively define P and a sequence 〈sα〉α as follows: Let η be the strategy assigned to the

node P � α. If η ever enters its convergence outcome, then P � (α+ 1) = P � α _ ω1 and

sα is the first stage after supβ<α sβ at which η is in its convergence outcome. Otherwise, η

eventually assigns a correct initial segment of X to some outcome γ. Then P � (α+ 1) =

P � α _ γ, and sα is the first stage after supβ<α sβ at which η enters outcome γ.

For limit α, P � α =
⋃
β<α P � β and sα = supβ<α sβ. The map α → sα is then

continuous, so its set of fixed points forms a club.

Let C ′ = {α ∈ C : α = sα}. Then C ′ is a club, and for t ∈ C ′ δ(t) ≺ P . It is evident

by construction that whenever δ(t) ≺ P , t ∈ C ′.

Claim 2.5.3. There is a club C of stages so that for s < t ∈ C, g(s) ≺ g(t). Then

Y =
⋃
s∈C g(s) is a path through T−1.

Proof. The club C is precisely the club of stages s so that δ(s) ≺ P .

Claim 2.5.4. Y is the only path through T−1.

Proof. Let Z be a path through T−1. Z does not fall permanently inside an Aronszajn

tree, so unboundedly often g(s) is an initial segment of Z. Therefore, unboundedly many

strategies η have ση along Z. But it is clear by construction that this can only happen

if these strategies are assigned to compatible strings; in other words, Z corresponds to a

47

path through the tree of strategies that is visited unboundedly often. Call this path P ′.

But then there are unboundedly many coding outcomes along P ′, which together must

code a path through T . The only such path is X, so the coding outcomes of P ′ agree

with the coding outcomes of P . Then by induction, the convergence outcomes must also

match; so P ′ = P , and hence Z = Y .

Claim 2.5.5. Y ′ ≥T X.

Proof. Y ′ clearly computes h, because h is ∆0
2. The domain of h is unbounded along Y .

So Y ′ computes h[Y] = X.

Claim 2.5.6. Y ⊕ ∅′ ≥T Y ′.

Proof. Once a strategy η is initialized, ∅′ is sufficient to determine whether η will enter

its convergence outcome, which occurs if and only if ΦY
e (e) ↓. Y is sufficient to determine

where ση falls.

As a consequence, X ≡T Y ′ ≡T Y ⊕ ∅′.

To relativize, we may interleave T−1 with TA, taking a new tree T−1
A to be {σ ⊕ τ |

σ ∈ T−1 ∧ τ ∈ TA ∧ |σ| = |τ |}, and similarly interleave g and fA to form a corresponding

companion map.

2.5.2 Gaps

Proposition 2.5.7. If X �T ∅ is hyperimmune-free, then X is not strongly club-

approximable, and is therefore not equivalent to the unique path in any computable tree

with a companion map.

Proof. Suppose that X is both hyperimmune-free and strongly club-approximable. Let f

be a computable function witnessing that X is strongly club-approximable; that is, C =

{s : f(s) ≺ X} is a club. Clearly, C ≤T X. Let g ≤T X be the function enumerating the

48

elements of C in order. Because C is a club, g is continuous. Since X is hyperimmune-free,

there is a computable function h ≥ g. Without loss of generality, h is also continuous.

Let x be a fixed point of h with x > ω. x = h(x) ≥ g(x) ≥ x, so this is also a fixed

point of x. Then x ∩ C is a club in x of order type x.

Claim 2.5.8. Let α < ω1, α > ω, and suppose that A1 and A2 are closed and unbounded

subsets of α with order type α. Then A1 ∩ A2 is an unbounded subset of α.

Proof. Let g1 and g2 enumerate the members of A1 and A2 respectively.

g1 ◦ g2 is a continuous function. Its fixed points are in both A1 and A2, and there are

clearly unboundedly many below α.

As a result of the claim, there is only one string σ of length x so that the set {s < x :

f(s) ≺ σ} is a club of order type x, and that σ is X � x. So X is computable.

Definition 2.5.9. A degree is thin if it can be represented as a path through a computable

tree of countable width. A degree is axial if it can be represented as the unique path through

a computable tree of countable width.

a is thinimal above b if a > b and there are no thin degrees c with a ≥ c > b.

Proposition 2.5.10. For any degree a, there exists a degree d so that a < d ≤ a′ and

the thin degrees computable from d are exactly the thin degrees computable from a.

Proof. Fix a representative A ∈ a; for example, the <L-least, if canonicity is desired. We

will construct by forcing with oracle A′ a set G so that D = A⊕G is of the desired degree.

Fix also a standard effective bijection taking ω3
1 to ω1, denoted 〈·, ·, ·〉.

Finally, fix a uniformly A-computable enumeration 〈Ti〉 of A-computable trees (count-

able width or otherwise).

Let σ0 = 〈〉.

Stage s: If s is a limit, let σs = limt<s σt.

Stage s+1 = 〈e+1, a, b〉+1: Let t = 〈e, a, b〉. Take σs = σt _ i, where i 6= {e}A(|σt|).

49

Stage s+ 1 = 〈0, e, i〉+ 1: Let t = 〈0, e, i〉. Search for one of the following:

(i) τ � σt and x ∈ ω1 such that (∀ρ � τ)({e}ρ⊕A(x) ↑;

(ii) τ � σt such that

(∀x ∈ ω1)(∀ρ0, ρ1 � τ)
[(
{e}ρ0⊕A(x) ↓ ∧{e}ρ1⊕A(x) ↓

)
→ {e}ρ0⊕A(x) = {e}ρ1⊕A(x)

]

(iii) τ � σt such that {e}τ⊕A /∈ Ti; or

(iv) an order-preserving map f : 2<ω → 2<ω1 so that {e}f(·)⊕A is an order-preserving

map 2<ω → Ti.

In cases (i)-(iii), take σs+1 = τ . In case (iv), note that {e}f(·)⊕A induces an injection

F : 2ω → 2<ω1 with bounded range. If the range of F is entirely contained in Ti, then

Ti does not have countable width, and we take σs+1 = σs _ 0. Otherwise, let ρ ∈ 2ω be

such that F (ρ) /∈ Ti and take σs+1 = lim f(ρ).

Verification: It is clear that A′ ≥T G, so A′ ≥T A⊕G ≥T A.

Suppose that {e}G⊕A is a path through Ti. This pair was considered at stage s+ 1 =

〈0, e, i〉+1. It is easy to see that one of the four cases was encountered. If the construction

fell into case (i), then {e}G⊕A is not total. In case (ii), {e}G⊕A is A-computable. In case

(iii), {e}G⊕A does not remain in Ti; and in case (iv), either {e}G⊕A does not remain in Ti

or Ti does not have countable width.

Finally, by the other class of stages, G is not computable from A, so G⊕A >T A.

Proposition 2.5.11. Let J be a one-place operation on Turing degrees so that if a ≥ J(0),

then there exists b � J(0) such that J(b) = a.

Then there exists a degree d so that the thin degrees computable from J(d) are exactly

the thin degrees computable from d.

50

Proof. By Prop 2.5.10, there is a degree a with J(0) < a ≤ J(0)′ so that the thin degrees

computable from a are exactly the thin degrees computable from J(0). By the conditions

on J , there exists a degree d � J(0) so that J(d) = a.

Suppose that there were a thin degree c with d ≤ c ≤ a. By the choice of a, c ≤ J(0).

But then d ≤ J(0), contradicting the choice of d.

Thus d is the desired degree.

2.5.3 Types of Degrees

Theorem 2.5.12. There is a computable tree T of countable width with exactly one

path X, so that X has minimal Turing degree.

Proof. Let A be a fixed computable Aronszajn tree.

Let Λ = {S} ∪ ω1. Let T = Λ<ω1 . To each string σ ∈ T we attach a worker ησ. At

any stage s, each worker which has been initialized has an outcome in Λ; let δ(s) be the

maximal string so that δ(s)(i+ 1) is the stage-s outcome of ηδ(s)�i.

Each worker maintains one or more scaffolds, each one corresponding to an outcome

of that worker. The active scaffold at stage s is the one corresponding to the worker’s

outcome at stage s.

Definition 2.5.13. A scaffold is a partial function f : 2<ω1 → 2<ω1 together with a set

S ⊆ 2<ω1 such that the following conditions hold.

(i) dom(f) ⊆ S;

(ii) For σ, τ ∈ dom(f), σ 4 τ iff σ 4 τ ;

(iii) If σ _ i ∈ dom(f), then f(σ _ i)(|f(σ)|) = i; and

(iv) If σ0 ≺ σ1 ≺ · · · is a sequence in dom(f) and σ = limi σi ∈ dom(f), then

f(σ) = limi f(σi).

51

We denote the scaffold (S, f).

For scaffolds (S0, f0) and (S1, f1), say (S0, f0) is a subscaffold of (S1, f1) if ran(f0) ⊆

ran(f1). Observe that there is no restriction on the relationship between S0 and S1.

It will be the case that every scaffold maintained by ησ is a subscaffold of ητ for each

τ ≺ σ. The root worker η〈〉 maintains only one scaffold, and the corresponding function

is the identity; this scaffold will form the final tree T .

At any stage s, a worker ησ may issue a request for any θ ∈ 2<ω1 every initial segment

of which is currently in the range of the active scaffold of every ητ for τ ≺ σ. Provided

that |θ| ≥ s, this request will be honored by every such ητ : ητ will add an assignment to

its active scaffold (possibly adding to the domain of the scaffold) so that θ will be in the

range, and then add to the domain of the scaffold so that the preimage of θ has a copy

of A above it.

Successor workers pursue two sorts of requirements:

De: Φe 6= X

Me: One of the following holds:

(i) (∃x)ΦX
e (x) ↑,

(ii) ΦX
e ≤T ∅, or

(iii) ΦX
e ≥T X.

Divide the countable successor ordinals into two computable unbounded sets D and

M . Workers ησ for |σ| the eth member of D pursue the diagonalization requirement De;

workers ησ for |σ| the eth member of M pursue the minimality requirement Me. Workers

η〈〉 and ησ for σ of limit length behave differently and pursue no requirement.

For ease of notation, when σ is a string of successor length, denote by σ− its immediate

predecessor.

52

For any worker ησ, let (Sσ, fσ) be the currently active scaffold.

Strategy for Limit Workers: η〈〉 does nothing except respond to requests; we

therefore concentrate on ησ for |σ| of limit length.

When initialized at stage s, ησ takes Sσ = A and sets fσ(〈〉) to be the limit of f τ (〈〉)

for τ ≺ σ. It enters outcome 0, and remains there permanently.

At later stages, ησ works to define fσ on progressively higher and higher levels of

Sσ. Limit levels are straightforward: ησ simply defines the function as necessary to

preserve continuity, requesting any strings not already present in the ranges of the previous

scaffolds. At successor levels, suppose ησ has defined fσ(τ) and needs to define fσ(τ _ i).

For each ρ ≺ σ, let θ(ρ) be the element in the domain of fρ so that fρ(θ(ρ)) = fσ(τ). Let

fσ(τ _ i) = lim fρ(θ(ρ) _ i), requesting the string if necessary. This limit exists and has

the property that every fρ has a sequence cofinal along it; so the request is a valid one.

Strategy for Diagonalization Requirements: Let ησ be a successor worker pur-

suing requirement De. When initialized at stage s, ησ looks for θ0 and θ1 in the range

of fσ
−

with length at least s differing at some position α < s. ησ sets Sσ = A, puts

fσ(〈〉) = θ0, and enters outcome 0.

If at some stage t > s, Φe,t(α) ↓= θ0(α), then ησ requires attention. If it receives at-

tention, it deletes its existing scaffold, sets Sσ = A and fσ(〈〉) = θ1, and enters outcome 1.

At any successor stage, ησ considers each leaf node τ of dom(fσ). For each such τ , by

induction there exists θ ∈ dom(fσ
−

) with fσ
−

(θ) = fσ(τ); if θ _ 0, θ _ 1 ∈ dom(fσ
−

),

then ησ takes fσ(τ _ i) = fσ
−

(θ _ i) for each i. Otherwise, it simply waits until the

necessary assignments have been made.

At a limit stage, ησ considers each limit node τ ∈ Sσ so that fσ has been defined

on every initial segment of τ . fσ induces an obvious choice of fσ(τ); if this string is not

already in the range of fσ
−

, then ησ requests it. Regardless, it takes this as the assignment

53

of fσ(τ).

Strategy for Minimality Requirements: Let ησ be a successor worker pursuing

requirement Me. When initialized at stage s, ησ sets Sσ = A and puts fσ(〈〉) some element

of ran(fσ
−

) with length at least s (if none exists, ησ waits until it does). This scaffold is

designated the splitting scaffold ; it will be the active scaffold whenever ησ is in outcome S.

ησ begins in outcome S.

ησ will maintain the condition that if (S, f) is its splitting scaffold and τ0, τ1 ∈ S are

incomparable, then Φ
f(τ0)
e and Φ

f(τ1)
e are incomparable. Call this condition (*).

While still in outcome S, ησ attempts to extend fσ while preserving (*). At a limit

stage, it simply fills in any limit nodes in Sσ, requesting whatever is necessary. At a

successor stage, ησ will attempt to extend each leaf node of dom(fσ) in both directions.

For each leaf τ ∈ dom(fσ), if there exist ρ0, ρ1 ∈ ran(fσ
−

) with length at least s and x < s

so that ρi � fσ(τ) _ i and Φρ0
e (x) ↓6= Φρ1

e (x) ↓, then ησ takes fσ(τ _ i) = ρi. If none

exists, then let ε = fσ(τ). ησ switches to a new ordinal outcome and associates with it a

new scaffold as follows: fσ(〈〉) = θ, where θ is the first extension of ε _ 0 in the range of

fσ
−

(as usual, if none exists, wait until it does); Sσ is the translation of the part of Sσ
−

extending that point.

While in an ordinal outcome, ησ copies the scaffold of ησ− , just like the diagonalization

workers do.

If a splitting pair is found within this new scaffold (that is, ρ0, ρ1 ∈ Sσ with Φρ0
e and

Φρ1
e incomparable) then ησ again switches to a new ordinal outcome and replaces the

current scaffold with a new scaffold, defined the same way as before but rooting at an

extension of ε _ 1.

If a spitting pair is found within this scaffold as well, then between the two sets of

splitting pairs is a pair appropriate for extending the splitting scaffold at τ ; ησ returns to

the S outcome, re-activating the splitting scaffold, and adds those elements.

54

To ensure that the search for strings of sufficient length is successful (that is, that

higher-priority scaffolds are not unexpectedly short) at every stage we allow the active

workers to act in order, beginning from the root. Responses to requests are immediate,

but propagate in the same manner.

This completes the construction.

Claim 2.5.14. For any α, only countably many requests are made for strings of length

< α, and none are requested past stage α.

Proof. Any worker initialized past stage α will, by construction, place its root at a string

of length at least α. Again by construction, no worker ever makes requests that do not

extend its root; therefore, only the workers initialized before stage α will ever request

strings of length less than α.

Let η be such a worker, and suppose that it requests a limit string θ at stage s. In

every case, this request is made as soon as the initial segments are available; that is, it

must be that there was a sequence s0 < s1 < · · · cofinal in s at which η assigned strings in

the domain of its scaffold to initial segments of θ. But by construction a worker can only

make stage-t assignments of length at least t; so these initial segments of θ have lengths

at least s0, s1, Thus θ has length at least s.

Clearly no worker requests uncountably many strings in a single stage; therefore no

individual worker requests uncountably many strings of length < α. Since only countably

many workers can request these strings at all, only countably many such requests are

made.

Claim 2.5.15. The tree T is computable and of countable width.

Proof. This is an immediate consequence of Claim 2.5.14.

Claim 2.5.16. All requests are honored.

55

Proof. Again, this is an immediate consequence of Claim 2.5.14; any request made at

stage s for a string with length at least s is honored, and by the claim no requests not

satisfying this condition are made.

Claim 2.5.17. The set of strings in T that lie along the execution path unboundedly

often forms a path.

Proof. Observe that limit workers (including the root worker) never change outcomes;

diagonalization workers change outcome at most once; and while minimalization workers

may change outcome unboundedly often, the only outcome they may visit unboundedly

often is S. So every worker visits exactly one outcome unboundedly often; the inductive

argument is straightforward.

We call this the true path, and the workers along this path true workers ; their outcomes

that lie along the true path are true outcomes.

Note that the set of strings fσ(〈〉) evaluated during stages at which ησ has its true

outcome exactly defines a path through the tree T ; we call this path X.

Claim 2.5.18. X is the only path through T .

Proof. Suppose for contradiction that Y 6= X is a path through T . Y cannot be “native”

- that is, it must be obtained through uncountably many requests, because otherwise it

would be part of an Aronszajn tree.

No worker makes requests incompatible with its root; it therefore cannot be that the

requests for initial segments of Y are unbounded along the true path. There is therefore a

minimal worker η so that only countably many requests for initial segments of Y are made

above the true outcome of η. Note that η is not a limit worker or the root worker, because

neither class of worker changes outcomes. Note also that η is not a diagonalization worker;

at some stage, a worker pursuing a diagonalization requirement will enter its true outcome

and never leave, so only countably many requests for anything can be made above the

56

other outcome. So η is a minimalization worker. Furthermore, η’s true outcome must

be S - otherwise, the same argument holds as for the diagonalization case.

Since η’s true outcome is not one of the ordinal outcomes, it cannot be that uncount-

ably many requests for initial segments of Y are made above only one of them; so it must

be that an uncountable sequence of ordinal outcomes have at least one request each. The

scaffolds for these outcomes must be rooted at points along Y ; but all of them come from

points at which the attempt to split in the splitting outcome temporarily failed. So all

of these initial segments of Y are in the splitting scaffold - which means uncountably

many requests for initial segments of Y must have been made above the S outcome,

contradicting our assumption on η.

Claim 2.5.19. X is not computable.

Proof. Suppose Φe = X. Let η be the (unique) worker along the true path pursuing

requirement De. When initialized, η selected some pair of strings and an α at which they

differed. At some stage t, Φe,t(α) ↓; at that stage, η switched outcomes if necessary and

directed construction along the string of the pair that did not agree with Φe at α. This

is a contradiction.

Claim 2.5.20. X has minimal Turing degree.

Proof. Suppose that ΦX
e is total but not computable. Let η be the (unique) worker along

the true path pursuing requirement Me. Observe that if the true outcome of η were an

ordinal, ΦX
e would be either partial or computable, because a split would never be found;

ΦX
e (x) could be computed by taking the first computation Φτ

e(x) to converge for τ in the

range of the scaffold of η. So the true outcome of η is S, and therefore in the limit η

constructs a scaffold (U, f) so that if σ and τ are incomparable members of U then Φ
f(σ)
e

and Φ
f(τ)
e disagree somewhere. But then given ΦX

e we can determine a unique branch Y

of U so that Φ
f(Y)
e = ΦX

e ; this branch must be the preimage of Y . Thus ΦX
e ≥T X.

57

So for every e we have that ΦX
e is either partial, computable, or above X; since we

already have that X >T ∅, X is of minimal Turing degree.

2.6 Nonisolated Paths

2.6.1 General Results

Once one has examined the behavior of thin Π0
1-classes containing exactly one element, a

natural follow-up question is what happens to thin Π0
1 classes more generally.

The following basis theorem appeared in a more specialized form in the proof of The-

orem 2.1.16, but is now more directly applicable.

Theorem 2.6.1. Let P be an arithmetic property of sets so that (∃X)P (X). Then (∃X ∈

∆1
1)P (X).

Proof. Let X be <L-least such that P (X) holds. Then

σ ≺ X ⇐⇒ (∃Z)(Z |= ZF− + V = L+ σ ≺ X ∧ Z is well-founded)

and

σ ≺ X ⇐⇒ (∀Z)
(
(Z |= ZF− + V = L+ (∃Y)P (Y) ∧ Z is well-founded)→ Z |= σ ≺ X

)
These are, respectively, Σ1

1 and Π1
1 definitions of X; X is hence ∆1

1.

2.6.2 Kurepa Trees

Throughout this section, we will operate under the additional assumption Lω2 = H(ℵ1).

58

Definition 2.6.2. (Kurepa [15])

A Kurepa tree is a tree T with countable width and |[T]| = ℵ2.

A perfect Kurepa tree is a Kurepa tree K so that K(σ) = {τ ∈ K : τ < σ} is also

Kurepa.

Related is the following definition, due to Jensen [?].

Definition 2.6.3. A ♦+ sequence (in ω1) is a sequence {Aα}α<ω1 of sets so that Aα is a

countable set of subsets of α and, for any X ⊆ ω1, there is a club C ⊆ ω1 so that for all

α ∈ C, X � α and C � α are in Aα.

The proof of the following result is an effectivization of the similar one given by Kunen

[14]. We use the same notation, insofar as possible.

Lemma 2.6.4. There is a computable ♦+-sequence.

Proof. Let ZF − P be the collection of axioms of Zermelo-Frankel set theory without

Choice and Power Set. For each α < ω1, let α∗ be least > α so that Lα∗ |= ZF −P + |α| =

ℵ0. Let Aα = L(α∗) ∩ P(α). This is certainly a computable sequence; we show that it is

also a ♦+ sequence.

Let A ⊆ ω1. By the supposition Lω2 = H(ℵ1), A ∈ Lω2 . For σ < ω1, let MA,σ =

H(Lω2 , {A} ∪ σ) (that is, the set of elements of Lω2 definable using parameters from

{A} ∪ σ). Then MA,σ is a countable elementary substructure of Lω2 including A and the

ordinals < σ. Let C = {σ < ω1 : MA,σ ∩ ω1 = σ}. C is clearly a club in ω1.

Let α ∈ C. The transitive collapse of MA,α is some Lγ; since α = (ω1)Lγ , we have that

α < γ < α∗. Then A ∩ α, which is preserved under the transitive collapse, is a member

of Lα∗ and hence of Aα.

Since Lα∗ |= ZF − P , we can define Ĉ = {σ < α : H(Lγ, {A ∩ α} ∪ σ) ∩ α = σ} in

Lα∗ . Since Ĉ ∈ Lα∗ , it remains to show that Ĉ = C ∩ α. To show that C ∩ α ∈ Aα, it

suffices to show that for σ < α, H(Lγ, {A ∩ α} ∪ σ) ∩ α = σ iff H(Lω2 , {A} ∪ σ) ∩ ω1 = σ.

59

Let ζ < ω1, ζ ∈ H(Lω2 , {A} ∪ σ, and ζ ≥ σ. Then ζ is definable in Lω2 from {A} ∪ σ.

σ < α ∈ C, so ζ < α. Since MA,α is an elementary submodel of Lω2 , ζ is likewise definable

in MA,α. Since the transitive collapse fixes ordinals < α and takes A to A ∩ α, ζ is also

definable in Lγ using parameters in {A ∩ α} ∪ σ, so H(Lγ, {A ∩ α} ∪ σ) ∩ α 6= σ. The

converse is similar.

Lemma 2.6.5. There is a computable perfect Kurepa tree.

Proof. Fix a computable ♦+-sequence 〈Aα〉α∈ω1 so that each Aα is closed under finite

difference, includes the empty set, and satisfies

(∀β < α,A ∈ Aα, B ∈ Bβ)(∃C ∈ Aα) (C � (β + 1) = B _ 1 ∧ C � (α \ (β + 1)) = A � (α \ (β + 1)))

In other words, each Aα is closed under replacing initial segments with elements of Aβ

for β < α.

Let K be the set consisting of the null elements 0α for each α and all pairs (A,C) ∈

2α × 2α such that the following holds:

(i) A,C ∈ Aα;

(ii) For all β ∈ C, A � β, C � β ∈ Aβ; and

(iii) If 〈αi〉i<ω is an increasing sequence in C that is bounded below α, then supαi ∈ C.

In the above conditions, we use the convention that for C ∈ 2α, β ∈ C iff C(β) = 1.

Impose an ordering < on K as follows:

(a) 0α < 0β iff α < β.

(b) 0α < (A,C) iff domA > α.

60

(c) (A0, C0) < (A1, C1) iff A0 ≺ A1 and C0 ≺ C1.

(K,<) is then obviously a computable tree of countable width, and is clearly Kurepa;

it remains to show that it is perfect.

Fix (A,C) ∈ K, and let A ∈ 2ω1 so that A � A. Because 〈Aα〉 is a ♦+-sequence,

there exists a club C so that for every α ∈ C, A � α, C � α ∈ Aα. Take C∗ such that

C∗ � (α + 1) = C _ 1 and C∗(β) = C(β) for β > α + 1. Then, by the closure property

imposed on the ♦+-sequence, C∗ has the same property as C; thus the initial segments

of (A, C∗) form a path in K extending (A,C). Since A was chosen to be an arbitrary

extension of A, it is clear that there are ω2-many such paths.

Proposition 2.6.6. There are ℵ2-many nonthin, nonwide degrees.

Proof. There is a computable Kurepa tree K. K has countable width, so every path in K

is nonwide. K is Kurepa, so K has ω2-many paths; but there are obviously only ℵ1-many

thin degrees, so ℵ2-many of these paths are nonthin.

Definition 2.6.7. A Kurepa degree is a degree d so that

(i) d is thin, but

(ii) If T is a computable tree of countable width and d ∩ [T] 6= ∅, then |[T]| = ℵ2.

Proposition 2.6.8. There exists a thin Π0
1-class consisting entirely of sets of Kurepa

degree.

The proposition is in fact a corollary of the following more powerful theorem:

Theorem 2.6.9. Let K be a computable perfect Kurepa tree. Then there exists, uniformly

in an index for K, a ∆0
3 functional Γ and a computable Kurepa tree T such that the

following holds:

(i) For each X ∈ [K], ΓX ∈ [T];

61

(ii) For each Y ∈ [T], there is exactly one X ∈ [K] so that Y = ΓX ; and

(iii) Every Y ∈ [T] has Kurepa degree.

Proof. We will construct T in stages, so that T =
⋃
s Ts. At the same time, we will define

at each stage a partial map Fs : K → Ts, so that F = lim infs Fs will be the desired Γ.

The tree of strategies:

This will be an argument by a modified form of unbounded injury. Let Λ = {Kurepa,Halt}∪

{〈Div, α〉|α ∈ ω1} ∪ {0, 1}, with the attached ordering Halt < Kurepa < 〈Div, α〉 <

〈Div, β〉 for every α < β; 0 and 1 are not included in the ordering.

Let S be the subtree of Λ<ω1 consisting of those σ with the following properties. For

ease of notation, say an ordinal is even if it is of the form ωβ + n for n even. Let even(σ)

denote the string τ so that τ(ωβ + n) = σ(ωβ + 2n) for all β < ω1 and n < ω; in other

words, even(σ) is the string consisting of the even-indexed entries of σ.

(i) σ(α) ∈ {0, 1} iff n is even, and

(ii) even(σ) ∈ K.

To each node σ of S we attach a strategy ησ. The strategy ησ will attempt to satisfy

the requirement at index |even(σ)| in the priority order outlined below.

The requirements:

The requirements take the form

Re,i,j: For some string σ ∈ T , one of the following holds:

(a) For every X ∈ [T] with σ ≺ X, ΦX
e = Y ∈ [Tj] and ΦY

i = X (in which case Tj will

have ω2-many branches); or

(b) For every X ∈ [T] with σ ≺ X, one of the following holds:

(i) ΦX
e is not total;

62

(ii) ΦX
e /∈ [Tj]; or

(iii) ΦX
e = Y with ΦY

i 6= X.

It should be clear that if we can ensure that (1) every path through T passes through

the σ chosen by at least one Re,i,j strategy for each triple (e, i, j), and (2) every strategy

satisfies its chosen requirement, then the desired properties will hold of [T]. Accordingly,

we call such a σ the satisfaction point of the corresponding requirement.

Fix a standard effective enumeration ψ : ω1 → ω3
1 of triples. We then order the

requirements Rψ(0) < Rψ(1) < · · · .

The preliminaries:

At any stage s, countably many strategies will have been initialized. If a strategy ησ

with |σ| odd (an odd-level strategy) has been initialized, it will have an outcome, which

will be a member of Λ \ {0, 1}.

The execution tree at stage s, δs, is the subtree of S consisting of those σ such that

the following hold:

(i) ησ has been initialized by stage s; and

(ii) for every τ ≺ σ of odd length, σ < τ _ u, where u is the stage-s outcome of ητ .

The true execution tree δ is the subset of S consisting of those σ such that σ ∈ δs for

uncountably many s. Note that δ must be a tree since every δs will be a tree.

Strategy for requirement Re,i,j:

Let ησ be a strategy assigned to requirement Re,i,j. The behavior of ησ varies depend-

ing on whether it is an even-level strategy or an odd-level strategy. Regardless, when

initialized at stage s, ησ is given a string τ ∈ Ts of length at least s; this will be the

anchor point of ησ.

Even-Level Strategies:

63

Definition 2.6.10. Let Kurepa(σ) = {α < |even(σ)| | even(σ)(α) = Kurepa}; that is,

this is the set of indices of strategies along σ that have the Kurepa outcome. A string θ

is σ-coherent if the following holds for every α ∈ Kurepa(σ):

(i) Φθ
e � |θ| ↓, and

(ii) Φρ
i � |θ| ↓= θ where ρ = Φθ

e,

where ψ(α) = 〈e, i, j〉.

Let ησ be an even-level strategy assigned to Re,i,j, and let τ be its anchor point. For

convenience, we drop the subscript σ. Let S = {a|σ _ a ∈ S}; η maintains a partial

map f : S → 2<ω1 with range contained in Ts. When initialized, η immediately builds

Aronszajn trees rooted at τ _ a for a ∈ S, and adds these to Ts. η requires attention at

stage s if domf = ∅ and for every a ∈ S there exists θ � τ _ a with θ ∈ Ts so that θ is

σ-coherent. If permitted to act, η takes f(a) to be the <L-least length-s extension of θ in

Ts and initializes ησ_a with anchor point f(a).

While the require θ have not yet been found, ησ maintains bookmark points θa for each

a ∈ S. Initially, θa = τ _ a. At any stage s, if σ ∈ δs and ησ does not require attention,

then it adds θa _ 0 to Ts for each a, moves each θa to θa _ 0, and adds an Aronszajn

tree rooted at the new θa to Ts.

Suppose σ leaves δs and reenters at some later stage t. Then σ reentered because

some strategy along σ switched from a Div outcome to the Kurepa outcome. Let that

strategy be η. When η returned to outcome Kurepa, it posted a triple 〈k, e, i, x〉 ∈ 2×ω3
1.

ησ chooses its new bookmarks θa depending on the value of k as follows; let θ′a be the

previous value of θa.

k = 0: θa is the <L-least length-s available extension of θ′a such that if (∃θa ≺ θ ∈

Ts)Φθ
e(x) ↓, then Φθa

e (x) ↓.

64

k = 1: θa is the <L-least length-s available extension of θ′a such that if (∃θa ≺ θ ∈

Ts)ΦΦθe
i (x) ↓ then ΦΦθae

i (x) ↓.

Odd-Level Strategies:

Let ησ be an odd-level strategy assigned to Re,i,j, and let τ be its anchor point. Again,

for convenience, we drop the subscript σ. η will work directly to satisfy Re,i,j.

At any stage s, if η is not in outcome Halt, then η requires attention if there exists

ρ � τ , ρ ∈ Ts with either Φρ
e /∈ Tj or Φρ

e = θ and (∃t < s)Φθ
i � t ↓/∈ Ts. If permitted to act,

η changes its anchor to a maximal extension of ρ on Ts and switches to outcome Halt.

Suppose that σ ∈ δs, η currently has outcome Kurepa, and there exists a string ρ � σ

such that the following holds:

(i) ρ ∈ δs,

(ii) ηρ was initialized before stage s with an anchor τρ, and

(iii) For some a ∈ {0, 1}, τρ _ a has no σ-coherent extension in Ts.

Then η requires attention at stage s. If permitted to act, it re-anchors itself at a

maximal extension θ of τρ, switches to the first 〈Div, α〉 outcome it has never used before.

θ is not σ-coherent. Since η has been permitted to act, it must be that θ is σ∗-coherent for

every σ∗ ≺ σ of odd length; otherwise ησ∗ would have acted instead; so either Φθ
e � |θ| ↑ or

Φθ
e = χ and Φχ

i � |θ| ↑. Let α be least so that Φθ
e(α) ↑, and let β be least so that Φχ

i (β) ↑.

Then η asserts one of the following.

(a) If α < |θ|, then η asserts that for every θ′ � θ with θ′ ∈ T , Φθ′
e (α) ↑.

(b) Otherwise, η asserts that for every θ′ � θ with θ′ ∈ T , Φ
Φθ
′
e

i (β) ↑.

We say assertion (a) has been violated if there exists θ′ � θ, θ′ ∈ Ts, so that Φθ′
e (α) ↓.

Likewise, (b) has been violated if there exists θ′ with the same conditions so that Φ
Φθ
′
e

i (β) ↓.

65

Suppose instead that σ ∈ δs, η currently has outcome 〈Div, α〉 for some α, and the

assertion η made when it entered that outcome has been violated. Then η requires at-

tention. If permitted to act, η returns to its original anchor point, returns to the Kurepa

outcome, and posts the tuple 〈k, e, i, x〉, where k = 0 and x = α if η was in case (a) and

k = 1 and x = β otherwise.

If ησ has outcome i, no strategy ητ requires attention for τ 4 σ, and ησ_i has not

yet been initialized, ησ_i is initialized with anchor the <L-least length-s extension of the

anchor of ησ.

Limit Stages:

Let s be a limit stage, and let η be an odd-level strategy. The outcome of η at stage s

is taken to be the lim inf of its outcomes at previous stages. Ts is taken to be
⋃
t<s Tt∪U ,

where U is a (countable) collection of limit nodes consisting of exactly those strings which

are limits of anchor points of strategies on δs along branches of δs with limit in S. Any

limit-level strategy all of whose predecessors have been initialized and are in δs is then

initialized, with anchor equal to the limit of the anchors of its predecessors.

Defining F :

At any stage s, take Fs(σ) to be the anchor point of ηρ, where ρ is the (unique) member

of δs such that even(ρ) = σ.

Construction:

At any stage s, any strategy ησ is permitted to act as long as (1) ησ requires attention,

and (2) ητ does not require attention for any τ ≺ σ.

Verification:

Claim 2.6.11. Let σ ∈ δ have even length. Then ησ eventually initializes ησ_a for each a

such that σ _ a ∈ S.

Proof. Suppose otherwise. Then ησ extends its bookmarks θa unboundedly often; so for

each a, the limit Xa of θa is a branch of length ω1. If ησ never initializes its successors,

66

then at least one of the Xa must have no σ-coherent initial segment. Fix one such a, and

let X = Xa.

For each pair (e, i) so that ησ has a predecessor attached to an Re,i,j requirement

and ησ is above that predecessor’s Kurepa outcome, suppose that ΦX
e is total and that

Φ
ΦXe
i = X. For any j, Y , let fYj (α) be the least s so that ΦY �s

j (β) ↓ for all β < α. Note

that, as long as ΦY
j is total, fYj is continuous, and therefore has a club CY

j of fixed points.

CX
e ∩ C

ΦXe
i is therefore a club.

Let C =
⋂(

CX
e ∩ C

ΦXe
i

)
, where the intersection is taken over all pairs (e, i) meeting

the aforementioned condition. Then C is a countable intersection of clubs, and hence is

itself a club. Let α ∈ C be greater than the length of the anchor of ησ. Then X � α is

σ-coherent.

It must therefore be the case that for some such pair (e, i), either ΦX
e is not total or

Φ
ΦXe
i 6= X. If the latter holds because there is some α with Φ

ΦXe
i � α ↓6= X � α, then the

first strategy corresponding to (e, i) should have used an initial segment of X to move to

a Halt outcome. So either ΦX
e is not total or Φ

ΦXe
i is not total. Then there is an initial

segment θ of X sufficiently long that this is realized; that is, for some x, either Φθ′
e (x) ↑

for every θ ≺ θ′ ≺ X or Φ
Φθ
′
e

i (x) ↑ for every θ ≺ θ′ ≺ X.

At some stage, the first (e, i) strategy below σ will notice this θ and x, and switch to

a divergence outcome. Call this strategy η∗. If σ is to be visited unboundedly often, then

it must be that η∗ eventually returns to its Kurepa outcome, because its assertion was

violated by some extension of θ. But by construction, the bookmark ησ now selects, which

will be an initial segment of X, has the same convergence - contradicting our hypothesis

on X.

Claim 2.6.12. F = lim infs Fs is a ∆0
3 total embedding K → T .

Proof. That F is ∆0
3 is clear from definition.

67

To see that F is total, observe that it is sufficient to show that for every τ ∈ K, some

strategy ησ for even(σ) = τ is eventually initialized. But this is evident by Claim 2.6.11.

Finally, to see that F is an embedding, observe that successor strategies always take

incomparable anchors.

Claim 2.6.13. If σ ∈ δ has odd length, σ _ i ∈ δ for exactly one i, and the following

holds, with τ the liminf of the anchor points of ησ.

(a) If i = Halt, then either Φτ
e /∈ Tj or Φ

Φτe
i |τ ,

(b) If i = 〈Div, α〉, then there is an x so that for every ρ � τ , ρ ∈ T , either Φρ
e(x) ↑

or ΦΦρe
i (x) ↑, and

(c) If i = Kurepa, then F ◦ Φ·e embeds the part of K above even(σ) into Tj.

Proof. By construction, there are three possible cases for the limit behavior of ησ, for

σ ∈ δ.

(1) ησ eventually enters outcome Halt and does not leave.

(2) ησ eventually enters outcome 〈Div, α〉 for some α and does not leave.

(3) ησ visits outcome Kurepa unboundedly often.

Observe that this list is complete, because whenever a 〈Div, α〉 outcome is abandoned,

ησ returns to outcome Kurepa (however briefly).

In case (1), ησ moved to outcome Halt because it encountered a string ρ with either

Φρ
e /∈ Tj or ΦΦρe

i |ρ, and set τ = ρ. There is no occurrence that could cause ησ to give up

this definition, so ησ falls into case (a).

In case (2), when ησ entered outcome 〈Div, α〉 it made one of the following assertions,

for some choice of θ, α, and β:

68

(i) For every θ′ � θ with θ′ ∈ T , Φθ′
e (α) ↑.

(ii) For every θ′ � θ with θ′ ∈ T , Φ
Φθ
′
e

i (β) ↑.

It also set τ = θ. If ησ never leaves this outcome, then whichever assertion it made

was never violated; thus case (b) holds.

In case (3), observe that by Claim 2.6.11, every even-level strategy on δ eventually

initializes its successors. Odd-level strategies have no particular constraints on initializing

their successors, so odd-level strategies always initialize their successors. And limit-level

strategies are initialized when their predecessors are all initialized. So sufficiently many

strategies will be initialized that the part of K above even(σ) embeds into the part of

δ above σ. Note also that for any even-level τ � σ, ητ chooses the anchor points of its

successors to be τ -coherent and hence σ-coherent; in particular, if θ is one of these anchor

points, then Φθ
e � |θ| ↓ and Φ

Φθe
i � |θ| ↓= θ. This latter clause entails that Φθ0

e |Φθ1
e whenever

θ0|θ1 are such strings, so F ◦ Φ·e is an embedding.

Claim 2.6.14. For each σ ∈ K, there is exactly one τ ∈ δ with even(τ) = σ.

Proof. By Claim 2.6.13 and induction on |σ|.

Claim 2.6.15. Every requirement is eventually satisfied, and every path through T even-

tually passes through a satisfaction point of every requirement.

Proof. The latter part of the claim is clear from the construction: if X eventually avoids

the anchor points of strategies that are visited unboundedly often, then X must be con-

tained inside an Aronszajn tree built to bookmark the position of an inactive strategy; but

then X cannot be a path. And the anchor point of a strategy that succeeds at satisfying

its requirement will be a satisfaction point of that requirement.

By Claim 2.6.13, the requirements are satisfied.

Claim 2.6.16. For any X ∈ [K], F [X] has Kurepa degree.

69

Proof. Fix X ∈ [K], U a computable tree of countable width, and F [X] ≡T Y ∈ [U]. Let

e, i such that Φ
F [X]
e = Y and ΦY

i = F [X]. Fix j so that Tj = U .

By Claim 2.6.15, F [X] passes through a satisfaction point τ of the requirement Re,i,j.

One of the following holds:

(a) For every Z � τ in [T], there is a W ∈ [Tj] so that ΦZ
e = W and ΦW

i = Z;

(b) Φ
F [X]
e is not total;

(c) Φ
F [X]
e /∈ [Tj]; or

(d) ΦY
i 6= F [X].

Cases (b) through (d) directly contradict our hypothesis, so it must be that τ falls

under case (a). But F embeds the part of K above some initial segment of X into the part

of T above τ , and K was a perfect Kurepa tree, so that part of K has ω2-many branches.

Therefore there are ω2-many Z satisfying the hypothesis of (a), and hence U = Tj must

have ω2-many branches.

Claim 2.6.17. F ′′[[K]] = [T].

Proof. This is evident from Claim 2.6.15 and the fact that every path in T must pass

through a satisfaction point of every (and hence unboundedly many) requirement.

By Claims 2.6.12, 2.6.16, and 2.6.17, T and F have the desired properties.

It seems evident that the above construction relied very little on the nature of K, and

in fact could be used to show the following instead.

Theorem 2.6.18. Let K be a computable tree of countable width. Then there exists,

uniformly in an index for K, a ∆0
3 functional Γ and a computable tree T of countable

width such that the following holds:

70

(i) For each X ∈ [K], ΓX ∈ [T];

(ii) For each Y ∈ [T], there is exactly one X ∈ [K] so that Y = ΓX ; and

(iii) For every Y ∈ [T] and every computable tree U , if there exists Y ≡T Z ∈ [U]

then there exists a σ ∈ K so that K(σ) = {τ ∈ K : τ < σ} embeds in U . Furthermore,

this embedding is ∆0
3 uniformly in an index for U and the equivalence between Y and Z.

To take an example at random:

Corollary 2.6.19. There exists a thin Π0
1 class of degrees d so that d appears as a path

in a computable tree T only if T has uncountably many ∆0
3 branches.

Proof. Take K to be any computable tree of countable width with uncountably many

computable paths, and apply the theorem.

Theorem 2.6.9 can be combined with Theorem 2.5.12 to produce a Kurepa tree in

which every path has minimal Turing degree.

Theorem 2.6.20. Let K be a computable perfect Kurepa tree. Then there exists a com-

putable tree T of countable width together with a ∆0
3 embedding f : K → T (uniformly in

an index for K) so that the following holds:

• Every branch of T is the f -image of a branch of K, and

• For each X ∈ [K], f [X] ∈ T is of minimal Turing degree.

An immediate corollary is the following:

Corollary 2.6.21. There is a thin Π0
1-class of size ℵ2 consisting entirely of sets of minimal

Turing degree.

71

Proof. (Proof of Theorem)

We mimic the previous proofs involving Kurepa trees and minimal degrees, respec-

tively. The argument will be by a modified form of unbounded injury, merged with a

worker argument.

Let A be a fixed computable Aronszajn tree.

Let Λ = {S} ∪ ω1. Let T = Λ<ω1 . To each string σ ∈ T we attach a worker ησ. At

any stage s, each worker which has been initialized has one or two outcomes from Λ; let

δ(s) be the maximal partial embedding 2<ω1 → T so that δ(s)(σ _ 0) and δ(s)(σ _ 1)

are the leftmost and rightmost immediate extensions of δ(s)(σ) by its stage-s outcomes.

Each worker maintains one or more scaffolds, each one corresponding to an outcome

of that worker. The active scaffold at stage s is the one corresponding to the worker’s

outcome at stage s.

Definition 2.6.22. A scaffold is a partial function f : 2<ω1 → 2<ω1 together with a set

S ⊆ 2<ω1 such that the following conditions hold.

(i) dom(f) ⊆ S;

(ii) For σ, τ ∈ dom(f), σ 4 τ iff σ 4 τ ;

(iii) If σ _ i ∈ dom(f), then f(σ _ i)(|f(σ)|) = i; and

(iv) If σ0 ≺ σ1 ≺ · · · is a sequence in dom(f) and σ = limi σi ∈ dom(f), then

f(σ) = limi f(σi).

We denote the scaffold (S, f).

For scaffolds (S0, f0) and (S1, f1), say (S0, f0) is a subscaffold of (S1, f1) if ran(f0) ⊆

ran(f1). Observe that there is no restriction on the relationship between S0 and S1.

It will be the case that every scaffold maintained by ησ is a subscaffold of ητ for each

τ ≺ σ. The root worker η〈〉 maintains only one scaffold, and the corresponding function

is the identity; this scaffold will form the final tree T .

72

At any stage s, a worker ησ may issue a request for any θ ∈ 2<ω1 every initial segment

of which is currently in the range of the active scaffold of every ητ for τ ≺ σ. Provided

that |θ| ≥ s, this request will be honored by every such ητ : ητ will add an assignment to

its active scaffold (possibly adding to the domain of the scaffold) so that θ will be in the

range, and then add to the domain of the scaffold so that the preimage of θ has a copy

of A above it.

Successor workers pursue two sorts of requirements:

De: Φe 6= X

Me: One of the following holds:

(i) (∃x)ΦX
e (x) ↑,

(ii) ΦX
e ≤T ∅, or

(iii) ΦX
e ≥T X.

Divide the countable successor ordinals into three computable unbounded sets D , M ,

and K . Workers ησ for |σ| the eth member of D pursue the diagonalization requirement

De; workers ησ for |σ| the eth member of M pursue the minimality requirement Me.

Workers ησ for |σ| the eth member of K build an embedding from K into the tree.

Workers η〈〉 and ησ for σ of limit length behave differently and pursue no requirement.

Given σ, let k(σ) be the string obtained from σ by deleting all entries with indices not

in K ; that is, by considering only outcomes of K workers.

For ease of notation, when σ is a string of successor length, denote by σ− its immediate

predecessor.

For any worker ησ, let (Sσ, fσ) be the currently active scaffold.

Strategy for Limit Workers: η〈〉 does nothing except respond to requests; we

therefore concentrate on ησ for |σ| of limit length.

73

A limit worker ησ is initialized at stage s if and only if it isn’t yet initialized, every

direct predecessor is active, and k(σ) ∈ K.

When initialized at stage s, ησ takes Sσ = A and sets fσ(〈〉) to be the limit of f τ (〈〉)

for τ ≺ σ. It enters outcome 0, and remains there permanently.

At later stages, ησ works to define fσ on progressively higher and higher levels of

Sσ. Limit levels are straightforward: ησ simply defines the function as necessary to

preserve continuity, requesting any strings not already present in the ranges of the previous

scaffolds. At successor levels, suppose ησ has defined fσ(τ) and needs to define fσ(τ _ i).

For each ρ ≺ σ, let θ(ρ) be the element in the domain of fρ so that fρ(θ(ρ)) = fσ(τ). Let

fσ(τ _ i) = lim fρ(θ(ρ) _ i), requesting the string if necessary. This limit exists and has

the property that every fρ has a sequence cofinal along it; so the request is a valid one.

Strategy for Diagonalization Requirements: Let ησ be a successor worker pur-

suing requirement De. When initialized at stage s, ησ looks for θ0 and θ1 in the range

of fσ
−

with length at least s differing at some position α < s. ησ sets Sσ = A, puts

fσ(〈〉) = θ0, and enters outcome 0.

If at some stage t > s, Φe,t(α) ↓= θ0(α), then ησ requires attention. If it receives at-

tention, it deletes its existing scaffold, sets Sσ = A and fσ(〈〉) = θ1, and enters outcome 1.

At any successor stage, ησ considers each leaf node τ of dom(fσ). For each such τ , by

induction there exists θ ∈ dom(fσ
−

) with fσ
−

(θ) = fσ(τ); if θ _ 0, θ _ 1 ∈ dom(fσ
−

),

then ησ takes fσ(τ _ i) = fσ
−

(θ _ i) for each i. Otherwise, it simply waits until the

necessary assignments have been made.

At a limit stage, ησ considers each limit node τ ∈ Sσ so that fσ has been defined

on every initial segment of τ . fσ induces an obvious choice of fσ(τ); if this string is not

already in the range of fσ
−

, then ησ requests it. Regardless, it takes this as the assignment

of fσ(τ).

74

Strategy for K Workers: Let ησ be a successor worker with |σ| the eth member

of K . Let τ be the length-e subsequence of σ given by k(σ). For each i ∈ {0, 1} so that

τ _ i ∈ K, ησ activates outcome i. It constructs scaffolds S0 and S1 (the left and right

subscaffolds of its parent scaffold, respectively) and assigns Si to outcome i.

Strategy for Minimality Requirements: Let ησ be a successor worker pursuing

requirement Me. When initialized at stage s, ησ sets Sσ = A and puts fσ(〈〉) some element

of ran(fσ
−

) with length at least s (if none exists, ησ waits until it does). This scaffold is

designated the splitting scaffold ; it will be the active scaffold whenever ησ is in outcome S.

ησ begins in outcome S.

ησ will maintain the condition that if (S, f) is its splitting scaffold and τ0, τ1 ∈ S are

incomparable, then Φ
f(τ0)
e and Φ

f(τ1)
e are incomparable. Call this condition (*).

While still in outcome S, ησ attempts to extend fσ while preserving (*). At a limit

stage, it simply fills in any limit nodes in Sσ, requesting whatever is necessary. At a

successor stage, ησ will attempt to extend each leaf node of dom(fσ) in both directions.

For each leaf τ ∈ dom(fσ), if there exist ρ0, ρ1 ∈ ran(fσ
−

) with length at least s and x < s

so that ρi � fσ(τ) _ i and Φρ0
e (x) ↓6= Φρ1

e (x) ↓, then ησ takes fσ(τ _ i) = ρi. If none

exists, then let ε = fσ(τ). ησ switches to a new ordinal outcome and associates with it a

new scaffold as follows: fσ(〈〉) = θ, where θ is the first extension of ε _ 0 in the range of

fσ
−

(as usual, if none exists, wait until it does); Sσ is the translation of the part of Sσ
−

extending that point.

While in an ordinal outcome, ησ copies the scaffold of ησ− , just like the diagonalization

workers do.

If a splitting pair is found within this new scaffold (that is, ρ0, ρ1 ∈ Sσ with Φρ0
e and

Φρ1
e incomparable) then ησ again switches to a new ordinal outcome and replaces the

current scaffold with a new scaffold, defined the same way as before but rooting at an

extension of ε _ 1.

75

If a spitting pair is found within this scaffold as well, then between the two sets of

splitting pairs is a pair appropriate for extending the splitting scaffold at τ ; ησ returns to

the S outcome, re-activating the splitting scaffold, and adds those elements.

To ensure that the search for strings of sufficient length is successful (that is, that

higher-priority scaffolds are not unexpectedly short) at every stage we allow the active

workers to act in order, beginning from the root. Responses to requests are immediate,

but propagate in the same manner.

This completes the construction.

Claim 2.6.23. For any α, only countably many requests are made for strings of length

< α, and none are requested past stage α.

Proof. Any worker initialized past stage α will, by construction, place its root at a string

of length at least α. Again by construction, no worker ever makes requests that do not

extend its root; therefore, only the workers initialized before stage α will ever request

strings of length less than α.

Let η be such a worker, and suppose that it requests a limit string θ at stage s. In

every case, this request is made as soon as the initial segments are available; that is, it

must be that there was a sequence s0 < s1 < · · · cofinal in s at which η assigned strings in

the domain of its scaffold to initial segments of θ. But by construction a worker can only

make stage-t assignments of length at least t; so these initial segments of θ have lengths

at least s0, s1, Thus θ has length at least s.

Clearly no worker requests uncountably many strings in a single stage; therefore no

individual worker requests uncountably many strings of length < α. Since only countably

many workers can request these strings at all, only countably many such requests are

made.

76

Claim 2.6.24. The tree T is computable and of countable width.

Proof. This is an immediate consequence of Claim 2.6.23.

Claim 2.6.25. All requests are honored.

Proof. Again, this is an immediate consequence of Claim 2.6.23; any request made at

stage s for a string with length at least s is honored, and by the claim no requests not

satisfying this condition are made.

Claim 2.6.26. The set of strings in T that lie along the execution path unboundedly

often forms a path.

Proof. Observe that limit workers (including the root worker) never change outcomes;

diagonalization workers change outcome at most once; and while minimalization workers

may change outcome unboundedly often, the only outcome they may visit unboundedly

often is S. So every worker visits exactly one outcome unboundedly often; the inductive

argument is straightforward.

We call this the true path, and the workers along this path true workers ; their outcomes

that lie along the true path are true outcomes.

Note that the set of strings fσ(〈〉) evaluated for σ with k(σ) ≺ Y , during stages at

which ησ has its true outcome exactly defines a path through the tree T ; we call this path

f [Y].

Claim 2.6.27. The f [Y] are the only paths through T .

Proof. Suppose for contradiction that Y 6= X is a path through T . Y cannot be “native”

- that is, it must be obtained through uncountably many requests, because otherwise it

would be part of an Aronszajn tree.

For the following, consider only σ with k(σ) ≺ Y ; note that this constrains K workers

to one fixed outcome, rendering them irrelevant.

77

No worker makes requests incompatible with its root; it therefore cannot be that the

requests for initial segments of Y are unbounded along the true path. There is therefore a

minimal worker η so that only countably many requests for initial segments of Y are made

above the true outcome of η. Note that η is not a limit worker or the root worker, because

neither class of worker changes outcomes. Note also that η is not a diagonalization worker;

at some stage, a worker pursuing a diagonalization requirement will enter its true outcome

and never leave, so only countably many requests for anything can be made above the

other outcome. So η is a minimalization worker. Furthermore, η’s true outcome must

be S - otherwise, the same argument holds as for the diagonalization case.

Since η’s true outcome is not one of the ordinal outcomes, it cannot be that uncount-

ably many requests for initial segments of Y are made above only one of them; so it must

be that an uncountable sequence of ordinal outcomes have at least one request each. The

scaffolds for these outcomes must be rooted at points along Y ; but all of them come from

points at which the attempt to split in the splitting outcome temporarily failed. So all

of these initial segments of Y are in the splitting scaffold - which means uncountably

many requests for initial segments of Y must have been made above the S outcome,

contradicting our assumption on η.

Claim 2.6.28. Each f [Y] is not computable.

Proof. Suppose Φe = f [Y]. Let η be the (unique) worker along the true path for Y

pursuing requirement De. When initialized, η selected some pair of strings and an α at

which they differed. At some stage t, Φe,t(α) ↓; at that stage, η switched outcomes if

necessary and directed construction along the string of the pair that did not agree with

Φe at α. This is a contradiction.

Claim 2.6.29. Each f [Y] has minimal Turing degree.

Proof. Let X = f [Y].

78

Suppose that ΦX
e is total but not computable. Let η be the (unique) worker along the

true path for Y pursuing requirement Me. Observe that if the true outcome of η were an

ordinal, ΦX
e would be either partial or computable, because a split would never be found;

ΦX
e (x) could be computed by taking the first computation Φτ

e(x) to converge for τ in the

range of the scaffold of η. So the true outcome of η is S, and therefore in the limit η

constructs a scaffold (U, f) so that if σ and τ are incomparable members of U then Φ
f(σ)
e

and Φ
f(τ)
e disagree somewhere. But then given ΦX

e we can determine a unique branch Y

of U so that Φ
f(Y)
e = ΦX

e ; this branch must be the preimage of Y . Thus ΦX
e ≥T X.

So for every e we have that ΦX
e is either partial, computable, or above X; since we

already have that X >T ∅, X is of minimal Turing degree.

2.7 Future Directions

The results of this chapter leave one significant question unanswered.

Question 2.7.1. Is there a degree-theoretic characterization of Pthin? Failing that, is

there a characterization of Pthin that is simpler than the definition in terms of computable

trees of countable width?

An appealing approach might be a positive answer to the following:

Question 2.7.2. Is there a natural extension of the notion of strong club-approximation

that characterizes exactly the members of Pthin?

Such an extension would have to be somehow intermediate between strong and weak

club-approximation, but it is not evident what that intermediate might be.

The work in Section 6 also suggests a sweeping question:

79

Question 2.7.3. For which classes of degrees C is there a computable tree of countable

width whose branches realize exactly the members of C?

Certainly such a C must include a ∆1
1 member, but the results of Section 2 demonstrate

that even if every member of C is ∆0
2 there may be no corresponding tree. At the same

time, the results of Section 6 show that C need not consist entirely or even “mostly” of ∆1
1

degrees; Theorem 2.6.20 in particular demonstrates that C may be large with very little

in its lower cone.

Of further interest to computable structure theorists will be the relationship to the

notion of α-true stages introduced by Montalbán [17] as an elaboration of the priority

system introduced previously by Ash [1]: the results of Sections 3 and 4 illustrate that

there are strong club-approximations to sets of degree 0(α) for every hyperarithmetic α,

which serve the same function as the approximations∇ξ in the notation of [17]. As a result,

the development of Montalbán’s α-true relations and α-true stages will be considerably

simpler in the setting of ω1. Furthermore, since these strong club-approximations extend

considerably further than the hyperarithmetic hierarchy, it is reasonable to suppose that

the techniques of [17] could be adapted to perform priority arguments of very large degree.

80

Chapter 3

Cantor-Bendixson Rank1

3.1 Introduction

The study of the Cantor-Bendixson derivative and the corresponding rank was initiated

by Cantor in 1872, originally as a topological notion regarding subsets of the real line. In

general, the definitions are as follows:

Definition 3.1.1. Let X be a topological space, A ⊆ X closed. A limit point of A is

an x ∈ A such that for any open U containing x, A ∩ (U \ {x}) is nonempty. The

Cantor-Bendixson derivative A′ of A is the set of limit points of A.

The iterated Cantor-Bendixson derivatives of A are defined inductively:

• A(0) = A

• A(α+1) = (Aα)′

• For α a limit ordinal, A(α) =
⋂
β<αA

(β).

The Cantor-Bendixson rank of A is the least ordinal α so that A(α) = A(α+1). The

1The author would like to thank Yang Yue at the National University of Singapore for a series of
excellent conversations that led to the work in this chapter.

81

Cantor-Bendixson rank of a particular x ∈ A is the least ordinal α so that x /∈ A(α+1), or

∞ if there is no such α.

For a computability theorist, the natural application is to subsets of Cantor space,

and in particular to Π0
1-classes, leading to the general question:

Question 3.1.2. Which ordinals are possible as the Cantor-Bendixson rank of a Π0
1-class

(in the sense of ω-computability) and under what conditions? Which ω-Turing degrees

are represented by paths of particular Cantor-Bendixson ranks?

In [2], Cenzer, Clote, Smith, Soare, and Wainer showed that every ω-computable

ordinal can be realized as the Cantor-Bendixson rank of a member of an ω-Π0
1 class, and

put precise bounds on the ω-Turing degree of the member in question. In light of the fact

that the Cantor-Bendixson derivative of an ω-Π0
1 class can be obtained by an arithmetic

operation on the representing tree, this effectively settled the question in the countable

case.

The topology of 2ω1 is in a sense more complicated than 2ω; for example, while 2ω

is compact, 2ω1 is not even Lindelöf. It is perhaps reasonable to expect, then, that the

analogous question to 3.1.2 in the setting of ω1 might have a different answer. In this

chapter, we approach an answer to the analogy of 3.1.2, ending in a result that is similar

to the analogous one in [2]. In Section 2, we consider the ranks of entire Π0
1-classes; in

Section 3, we concentrate on the ranks of individual members of Π0
1-classes. In Section

4, we discuss notable questions left open and possible future directions for this line of

research.

3.2 Ranks of Trees

Definition 3.2.1. For σ ∈ 2<ω1, let [σ] denote the subset of 2ω1 consisting of all extensions

of σ.

82

A subset X ⊂ 2ω1 is clopen if it is
⋃
σ∈Y [σ] for some set Y ⊆ 2α and some countable

ordinal α.

X is closed if it is the intersection of clopen sets. X is open if it is the union of

clopen sets. y ∈ 2ω1 is a limit point of X if every open set containing y intersects X.

Equivalently, y is a limit point of X if it is the limit of an ω1-sequence of members of X

in the lexicographic sense.

X is perfect if it is closed and every point of X is a limit point of X.

The Cantor-Bendixson derivative of X is the set {x ∈ X | x is a limit point of X}.

Definition 3.2.2. X ⊆ 2ω1 is closed if there exists a tree T ⊆ 2<ω1 so that X is the set

of paths through T .

X is perfect if there exists a tree T ⊆ 2<ω1 so that every σ ∈ T extends to at least two

distinct paths of T and X is the set of paths through T .

Given a tree T ⊆ 2<ω1, the Cantor-Bendixson derivative of T is the set of σ ∈ T so

that at least two distinct paths of T pass through σ.

Observe that, unlike the countable case, it is not easy (computable, arithmetic, hyper-

arithmetic, or even ∆1
1) to construct the Cantor-Bendixson derivative of a Π0

1-class in the

sense of ω1-recursion; detecting whether a node of the representing tree should be removed

requires determining whether it has a path passing through it, which is a Σ1
1-complete

task. Thus it is not clear that the rank of a Π0
1-class need even be ∆1

1.

Lemma 3.2.3. The above definitions do not conflict, and if T is a tree witnessing that X

is closed then the Cantor-Bendixson derivative of T is a tree witnessing that the Cantor-

Bendixson derivative of X is closed.

It is worth noting that this is not the only possible definition. Another natural possi-

bility would be to restrict the union in the definition of clopen to countable sets only; in

this case, we must replace tree in the second definition with tree of countable width. For

the purposes of this chapter, we will not consider this alternative definition.

83

Theorem 3.2.4. Suppose that X is presentable as a path of Cantor-Bendixson rank zero

in some computable tree; further suppose that there is a tree T computable in X with

Cantor-Bendixson rank α and empty perfect core. Then there is a computable tree T̂ that

likewise has Cantor-Bendixson rank α and empty perfect core. Furthermore, the rank-α

paths in T̂ are exactly the joins of the rank-α paths in T with X.

Proof. We begin by defining, for a Turing functional Γ and a set Y ⊆ ω1, a tree T (Γ, Y)

with the following properties:

• There is a Y -computable embedding from the tree given by ΓY (as a subset of 2<ω1)

into T (Γ, Y) that induces a Cantor-Bendixson rank-preserving bijection on the branches

of each;

• T (Γ, Y) ∩ 2α is uniformly computable in an index for Γ and Y � α; and

• T (Γ, Y) is total regardless of the totality of ΓY , and is unbounded if ΓY is partial.

We construct T (Γ, Y) as follows, together with the embedding F : ΓY → T (Γ, Y)

required by the first condition. We approximate ΓY at stage α by ΓY �α; computations

with use exceeding α are considered to diverge.

Begin construction by mapping the root of ΓY to the root of T (Γ, Y), and designate

the root of T (Γ, Y) as the root of an Aronszajn tree. At stage α, extend the part of

T (Γ, Y) to continue growing an Aronszajn tree above each existing Aronszajn root. If

σ _ i enters ΓY and F (σ) was previously designated an Aronszajn root, remove that

designation; set F (σ _ i) to be some maximal-length extension of F (σ) in T (Γ, Y). Fix

another maximal-length extension of F (σ), and designate both as Aronszajn roots. At

limit stages, if σ is of limit length and every initial segment is in T (Γ, Y), include σ in

T (Γ, Y) and designate it an Aronszajn root.

For σ ∈ 2<ω1 , let T (Γ, σ) = T (Γ, Y)∩ 2<|σ| for σ ≺ Y ; note that this is independent of

the choice of X.

84

Finally, let X be as named in the statement, and let Γ be a functional so that T = ΓX .

Let U be a computable tree in which the unique path is X. Let T̂ = {σ⊕ τ | σ ∈ U ∧ τ ∈

T (Γ, σ) ∧ |σ| = |τ |}.

Claim 3.2.5. T (Γ, Y) has the desired properties.

Proof. The F : ΓY → T (Γ, Y) is a Y -computable embedding is immediate. That it in-

duces a Cantor-Bendixson rank-preserving bijection on the branches holds simply because

it is an embedding of the trees.

The construction uses only Y � α to construct T (Γ, Y) ∩ 2α, so the second condition

is met.

If ΓY is total, T (Γ, Y) will clearly be total. If ΓY is partial, then for the earliest σ on

which ΓY is not defined, F (σ) or its predecessor will be the root of an Aronszajn subtree;

thus T (Γ, Y) will be both total and unbounded.

Claim 3.2.6. T̂ has the desired properties.

Proof. Every path through T̂ is a join with X, by construction. Let Y = X ⊕ Z be a

path through T̂ . Z, by construction, is a path through T (Γ, X). We therefore have a

map G : T (Γ, X) → T̂ which induces a bijection on paths (which is Cantor-Bendixson

rank-preserving by virtue of being induced by an embedding). By construction, we have

an embedding F : T → T (Γ, X) which induces a similar bijection. F preserves Turing

degree, while G takes Z to X ⊕ Z. The composition G ◦ F then induces a bijection of

paths in T with paths in T̂ , so that the image of each path Z is Turing-equivalent to

X ⊕ Z.

85

3.3 Ranks of Degrees

Theorem 3.3.1. There exists a ∆0
3 degree that can be represented with Cantor-Bendixson

rank 1, but not rank 0.

Proof. We prove the claim by an unbounded injury argument with a tree of strategies.

Strategies alternate by level between the following types:

De: X 6= Φe.

Ci
e: If ΦX

e ∈ [Ti], then Ti has a computable path.

De strategies have two outcomes, 0 and 1. Ci
e strategies have outcomes 0 through ω1,

with the ordering ω1 < 0 < 1 < 2 < · · · . We assume the reader is familiar with the

overall architecture of this style of argument, and with the Aronszajn-root method that

has been extensively used previously.

When initialized at stage s, any strategy η chooses (uniformly) an extension σ of the

active strings of its predecessors that has not yet been excluded from T , and puts σ (and

all necessary initial segments) into T . It then identifies σ _ 1 as active, includes both

σ _ 0 and σ _ 1 in T , designates σ _ 0 the root of an Aronszajn tree, and enters

outcome 0. If η is a C strategy, then η also designates σ _ 1 as its key node.

At any stage s, let Xs denote the union of the active strings of the strategies that are

active at stage s; think of this as an approximation to the final path X.

If η is a diagonalization strategy De, then η waits for Φe(|σ|) ↓= 1. If this occurs, then

η sets σ _ 0 as active and enters outcome 1.

If η is instead a C strategy, then while not in outcome ω1, η waits for ΦXs
e (x) ↓, where x

is least so that this has not already occurred, so that ΦXs
e � (x+ 1) ∈ Ti. If this happens,

η requires attention; when permitted to act, η designates Xs as its new key node, switches

to outcome ω1, and designates σ _ 1 as active. While in outcome ω1, η waits until there

is an x < s so that Φτ
e(x) ↑ for every extension τ of its current key node and at least one

86

complete stage has passed since it entered outcome ω1; when this holds, η designates this

τ as active and switches to its first unused countable outcome. If an extension τ exists

with Φτ
e(x) ↓ for x least so that Φ≺τe (x) ↑, then η takes τ as its new key node but takes

no further action.

When a strategy is inactive, it maintains an Aronszajn tree over its active node and

its key node (if it is a C strategy).

At limit stages, the outcome of a strategy is the leftmost outcome held unboundedly

often, and limits are taken of all relevant variables stored by the strategy.

This completes the construction.

Claim 3.3.2. The path X, defined to be the leftmost path that unboundedly often agrees

with Xs, has the desired degree.

Proof. Suppose that T is a computable tree and Y ≡T X so that Y ∈ [T]. Then T = Ti

for some i and Y = ΦX
e for some e.

Suppose further that T has no computable path. Fix a stage s0 late enough that the

Ci
e strategy along the true path has been initialized; denote this strategy η. Note that

the sequence of key nodes of η is a computable sequence of pairwise-compatible strings

increasing in length, and that their images under Φe are likewise computable, pairwise-

compatible and increasing in length. Since T does not have a computable path, then, this

sequence cannot be unbounded. By construction, the only way this sequence is bounded

is if η eventually enters a countable outcome and never leaves; this means that η never

finds another convergence that remains within the tree and extends the active node of η.

But X extends this node, so ΦX
e either must fail to be total or must land outside of T .

This contradicts the initial supposition, so the claim is proven.

That X is ∆0
3 is readily seen from the definition, so this concludes the proof.

87

Note that in fact the above proof shows something slightly stronger; we label it here

as a “corollary” because it is a corollary of the proof, though not of the theorem.

Corollary 3.3.3. There is a ∆0
3 degree which can be represented with Cantor-Bendixson

rank 1, but does not compute any noncomputable element of rank zero.

In light of the existence of degrees like the one specified in Theorem 3.3.1, we introduce

some additional terminology.

Definition 3.3.4. Say X has proper Cantor-Bendixson rank α if there is a computable

tree in which X has rank α but none in which X has rank < α.

Theorem 3.3.5. Let α be any computable ordinal. Then there is a ∆0
3 degree, uniformly

in a notation for α, which has proper Cantor-Bendixson rank α.

We prove the theorem by way of the following lemma:

Lemma 3.3.6. If α is a computable ordinal, then there is (uniformly in a notation of α)

a computable tree T so that the following conditions hold:

(i) T has Cantor-Bendixson rank α.

(ii) Every path through T is computable.

(iii) T has exactly one path of rank α.

Proof. We prove the lemma by effective transfinite induction on α; the case α = 0 is

trivial.

Suppose that α = β + 1 and the claim holds for β; fix the appropriate Tβ. Let

T = {0γ _ σ | σ ∈ Tβ ∧ γ < ω1}. Then T is the desired tree.

Suppose now that α = limi<ω αi, and the claim holds for each αi. Then let Ti be the

appropriate tree corresponding to αi, and let T = {0γ _ σ | σ ∈ Tf(γ) ∧ γ < ω1}, where f

88

is a fixed computable function f : ω1 → ω so that f−1(n) is unbounded for every n.

Now T is the desired tree.

Finally, suppose that α = limβ<ω1 αβ, and the claim holds for each αβ. Let Tβ be the

appropriate tree corresponding to αβ, and let T = {0γ _ σ | σ ∈ Tγ ∧ γ < ω1}. T is the

desired tree.

Proof. (Proof of Theorem 3.3.5) We prove the theorem by constructing, given (a notation

for) α, a tree T with a distinguished path X, so that X will be of the desired degree and

will have Cantor-Bendixson rank α in [T]. The approach will be to ensure that whenever

X is equivalent to a path through a computable tree T̂ , there will be a series of embeddings

of trees of increasing Cantor-Bendixson rank into the neighborhoods around that point

in T̂ ensuring that the point has Cantor-Bendixson rank at least α.

Given α, fix a computable sequence of computable ordinals 〈αβ | β < ω1〉 so that

α = lim supβ→ω1
αβ + 1; note that the constant sequence αβ = γ will suffice in the event

that α = γ + 1.

Fix computable trees Tαβ corresponding to αβ by the Lemma; also fix an effective

enumeration 〈Te〉e<ω1 of computable trees so that every computable tree appears in this

enumeration unboundedly often.

We prove the theorem by an unbounded injury argument on a tree of strategies. Let

Λ = ω1 +1, endowed with the order ω1 < 0 < 1 < · · · . We operate on the tree of outcomes

Λ<ω1 ; the strategies assigned to each level pursue requirements as follows.

Re,i: If ΦX
e ∈ [Ti], then Tαe computably embeds into the intersection of Ti and the

set of extensions of ΦX
e � e.

We assign limit levels to the least Re,i requirement not yet assigned.

Any strategy η ∈ Λ<ω1 has an anchor point σ ∈ T ; this is a string so that every string

added to T on behalf of η or any strategy extending η will extend σ. The true path is the

89

leftmost element P ∈ Λω1 so that the current sequence of outcomes is unboundedly often

an initial segment of P ; X will be the limit of the anchor points of the strategies along

P , and hence will be ∆0
3.

When a strategy η directs construction along a string σ, it requires that all strategies

extending η choose anchor points that extend σ.

When initialized, an Re,i strategy anchors itself at a string σ ∈ T and includes both

σ _ 0 and σ _ 1 in the tree. It begins in outcome ω1, and directs construction along

σ _ 0, designating σ _ 1 an Aronszajn root. It begins building an embedding F : Tαe →

T by setting F (〈〉) = σ _ 1. At each stage following, while the strategy is in outcome ω1,

it extends the embedding if possible to include the next string in Tαe of minimal length

not yet in the domain of F , so that Φe ◦F is a partial embedding of Tαe into Ti. In order

to accomplish this, it may add a necessary string to T at each stage. Note that if this

process continues indefinitely, then Φe ◦ F will be a total embedding of Tαe into Ti.

While in outcome ω1, we say an Re,i strategy requires attention at stage s if either of

the following hold:

(i) For the first τ in the domain of F , there is no way to extend F to τ _ 0, τ _ 1 so

that Φe ◦ F remains an embedding into Ti, or

(ii) For the first string of τ of limit length that is in Tαe , not in the domain of F , and

every proper initial segment of which is in the domain of F , there is no way to extend F

to τ so that Φe ◦ F remains an embedding into Ti.

In either case, the Re,i strategy deactivates all strategies extending its present outcome

and changes its outcome to its first unused countable ordinal outcome. In case (i), it

directs construction to extend F (τ). In case (ii), it directs construction to extend F (≺

τ) = supρ≺τ F (ρ).

Regardless, the Re,i strategy may require attention again if the condition that caused it

to leave outcome ω1 ceases to hold, in which case it returns to outcome ω1 and designates

90

all maximal-length nodes deactivated this way as Aronszajn roots. The extensions to F

which prompted the change are incorporated into F .

Finally, let X be the limit of the sequence of anchor strings of the strategies falling

along the leftmost path P in Λ<ω1 that was visited unboundedly often during the con-

struction.

This completes the construction; it remains to verify that the tree T and the path X

are as desired.

Claim 3.3.7. Every requirement is satisfied.

Proof. Let Re,i be a requirement, η a strategy along the true path pursuing that require-

ment; by induction, suppose that all higher-priority requirements are satisfied.

Suppose that ΦX
e ∈ [Ti] (otherwise the satisfaction of Re,i is vacuous). If η never

requires attention, then at every stage during which it is active it will be able to add to

the embedding F it is building so that Φe ◦ F will be an embedding into Ti; in the limit,

Φe ◦ F will be a (computable) embedding of Tαe into Ti, and Re,i will be satisfied. If,

instead, η eventually requires attention, then this was because Φe(F (τ)) failed to be in

Ti for some particular τ ; η then directed construction along F (τ), guaranteeing (as long

as Φe(F (τ)) continued to fail to be in Ti) that ΦX
e would extend Φ

(
eF (τ)) /∈ Ti. This

contradicts our initial supposition, so Re,i is satisfied.

Claim 3.3.8. The true path is the only path in the tree of strategies that is visited un-

boundedly often.

Proof. It suffices to show that for each strategy, there is at most one outcome that is

visited unboundedly often.

Let η be a strategy that is itself visited unboundedly often (otherwise, the result is

trivial). Let σ be the anchor point of η.

91

η is pursuing the requirement Re,i for some e and some i. By construction, if η ever

leaves a particular countable outcome, then it will not return; therefore, if η visits outcome

α unboundedly often, then either α = ω1 or η enters outcome α and remains there for

the remainder of the construction. In either case, η visits only one outcome unboundedly

often.

Since every strategy pursues one of these two requirements, this completes the con-

struction.

Claim 3.3.9. Every path in T other than X has Cantor-Bendixson rank < α in T .

Proof. Let Y 6= X be a path in T , and let σ be the maximal string so that σ ≺ Y and

σ ≺ X. By construction, σ is the anchor node of some strategy η along the true path.

Let Re,i be the requirement pursued by η.

There are then two possibilities: either η is successful in defining an embedding F :

Tαe → T above σ _ 1, or it is not. If η is successful, then all of the paths extending

σ _ 1 are computable images of paths in Tαe ; so Y is contained in a clopen subset of [T]

with Cantor-Bendixson rank αe < α, and therefore itself has Cantor-Bendixson rank less

than α.

If η is unsuccessful, then eventually the construction will be directed along some

extension of σ _ 1. Then σ _ 1 ≺ X, contradicting our choice of Y .

Claim 3.3.10. X has Cantor-Bendixson rank α in [T].

Proof. T is a computable tree, and is therefore Ti for some index i. Fix β < α. Let e be an

index for the identity functional (i.e., ΦA
e = A for any oracle A) so that β < αe. Certainly

ΦX
e = X, and X ∈ [Ti]; so by the satisfaction of the requirement Re,i, Tαe computably

embeds into Ti ∩ [X � e]. Since [Tαe] has Cantor-Bendixson rank αe > β, it must be that

[Ti] ∩ [X � e] has Cantor-Bendixson rank greater than β. But by construction, there are

unboundedly many i so that Ti = T ; so unboundedly many neighborhoods about X have

92

elements of Cantor-Bendixson rank at least β. Therefore X has Cantor-Bendixson rank

at least β.

Since X is the only element of [T] that may not have Cantor-Bendixson rank < α, X

must therefore have Cantor-Bendixson rank exactly α in X.

Claim 3.3.11. X has proper Cantor-Bendixson rank α.

Proof. Suppose that T̂ is a computable tree and Y ≡T X so that Y has Cantor-Bendixson

rank β < α in [T̂]. Since T̂ is computable, there exists an i so that Ti = T̂ . Fix e so that

ΦX
e = Y ; by the Padding Lemma, there are unboundedly many of these.

By the satisfaction of the requirement Re,i, Tαe computably embeds into Ti ∩{τ | τ <

Y � e}. Because each Tαe has Cantor-Bendixson rank αe, Y is therefore the sole member of

the intersection of a decreasing sequence of neighborhoods with Cantor-Bendixson ranks

cofinal in α; thus Y itself has Cantor-Bendixson rank at least α.

This completes the proof of Theorem 3.3.5.

Corollary 3.3.12. Let α be an ordinal computable from the unique path X of a tree T .

Then there exists (uniformly in an X-notation for α) a set Y ≤T X ′′ with proper Cantor-

Bendixson rank α.

Proof. By Theorem 3.3.5 relativized to X, there exists a Z ≤T X ′′ which has Cantor-

Bendixson rank α in some X-computable tree U , and never has rank less than α in any

computable tree. It is further evident that we can choose Z so that X <T Z. By Theorem

3.2.4, there is a computable tree Û so that the paths of Û are in one-to-one rank-preserving

correspondence with those of U , and furthermore that the image of any path P in U under

this correspondence is equivalent to P ⊕X. Since Z >T X, Z ⊕X ≡T Z, so the image

of Z is of the same degree as Z. Z therefore has proper Cantor-Bendixson rank α.

93

Corollary 3.3.13. Let α be any ∆1
1 ordinal. Then there exists a set X with proper Cantor-

Bendixson rank α. Furthermore, both a ∆1
1-code for X and an index for a computable tree

witnessing the rank of X may be found uniformly in a ∆1
1-code for a presentation of α.

Proof. This is an immediate consequence of the previous result, together with Theorem

2.1.16.

3.4 Future Directions

The immediate question that presents itself regarding the results of Sections 2 and 3 is

whether these results are sharp. In particular:

Question 3.4.1. Is there a set with properly ∆1
2 Cantor-Bendixson rank?

94

Bibliography

[1] C. J. Ash. “Recursive labelling systems and stability of recursive structures in hy-

perarithmetical degrees.” Trans. Amer. Math. Soc., 298(2):497-514, 1986.

[2] D. Cenzer, P. Clote, R. Smith, R. Soare, and S. Wainer, “Members of countable Π0
1

classes.” Annals of Pure and Applied Logic. 31 (1986), 145-163.

[3] C-T. Chong. Techniques of admissible recursion theory. (1984)

[4] S. D. Friedman. “Negative Solutions to Post’s Problem, II.” The Annals of Mathe-

matics, Second Series, Vol. 113, No. 1 (Jan. 1981), pp. 25-43

[5] A. Fröhlich and J. C. Shepherdson. “Effective procedures in field theory.” Philos.

Trans. Roy. Soc. London. Ser. A., 248:407-432 (1956)

[6] Kurt Gödel. “The consistency of the Axiom of Choice and of the Generalized Con-

tinuum Hypothesis.” Proceedings of the National Academy of Sciences of the United

States of America. National Academy of Sciences. 24 (12): 556-557 (1938)

[7] N. Greenberg and J. Knight. “Computable structure theory using admissible recur-

sion theory on ω1.” Effective mathematics of the uncountable, Lecture notes in logic,

ASL-Cambridge (2013)

[8] Björn R. Jensen. “The fine structure of the constructible hierarchy.” Annals of Math-

ematical Logic 4.3:229-308 (1972)

95

[9] Carl G. Jockusch, Jr. and Robert I. Soare. “Π0
1 classes and degrees of theories.”

Transactions of the American Mathematical Society. 173:33-56 (1972)

[10] R. Johnston and D. Raghavan. “Admissible recursion theory and descriptive set

theory”, to appear.

[11] G. Kreisel. “Analysis of Cantor-Bendixson theorem by means of the analytic

hierarchy.” Bulletin de l’Académie Polonaise des Sciences, Série des sciences

mathématiques, astronomiques et physiques, vol. 7 (1959), pp. 621-626

[12] G. Kreisel and Gerald E. Sacks. “Metarecursive sets.” Journal of Symbolic Logic

30(3):318-338. (1965)

[13] S. Kripke. “Transfinite recursion on admissible ordinals.” Journal of Symbolic Logic,

29:161-162. (1964)

[14] K. Kunen. Set theory. Studies in Logic. 34. London: College Publications. (2011)

[15] Kurepa, G. “Ensembles ordonnés et ramifiés.” Publ. math. Univ. Belgrade, 4:1-138,

(1935)

[16] Donald A. Martin and John R. Steel. “A Proof of Projective Determinacy.” Journal

of the American Mathematical Society. 2 (1): 71-125 (1989)

[17] Montalbán, A. “Priority arguments via true stages.” Journal of Symbolic Logic. 79

(2014), 1001-1019

[18] Richard A. Platek. Foundations of recursion theory. Thesis (Ph.D.) - Stanford Uni-

versity. (1966)

[19] Gerald E. Sacks. Higher recursion theory. Perspectives in Mathematical Logic.

Springer-Verlag, Berlin (1990)

96

[20] Richard A. Shore, α-recursion theory. In Handbook of mathematical logic, Part C,

pages 525-815. Studies in Logic and the Foundations of Math., Vol. 90. North-

Holland, Amsterdam (1977)

[21] M. Souslin, “Sur une définition des ensembles mesurables B sans nombres transfinis”,

Comptes Rendus Acad. Sci. Paris, 164:88-91 (1917)

