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Abstract

In Chapter 1, we introduce a notion of universality for subgroups of Polish groups that
has both algebraic and topological aspects. More precisely, given a class C of subgroups
of a topological group I', we say that a subgroup H € C is a universal C subgroup of T’
if every subgroup K € C is a continuous homomorphic preimage of H. Such subgroups
may be regarded as complete members of C with respect to a natural pre-order on the
set of subgroups of I'. In Chapter 2, we show that for any Polish group I, the countable
power I'Y has a universal analytic subgroup. Moreover, if I' is locally compact, then
[ also contains universal K, and compactly generated subgroups. We prove a weaker
version of this in the non-locally compact case and provide an example showing that this
result cannot readily be improved. Additionally, we show that many standard Banach
spaces (viewed as additive topological groups) have universal analytic, K, and compactly
generated subgroups. As an aside, we explore the relationship between the classes of K,
and compactly generated subgroups and give conditions under which the two coincide.

In Chapter 3, we study universal dense and co-null sets for the classes of G5 and F,
sets, respectively. Specifically, one says that A C X x Y is a universal dense Gs for'Y
(resp. co-null F,) if the vertical cross-sections A, are exactly the dense Gy (resp. co-
null F,) subsets of Y. We discuss the relatioship between selection theorems for the
product space X x Y and the existence of such universal sets. In the process, we refine

a selection theorem of Debs and Saint-Raymond [2]. These results relate to a question

of R. D. Mauldin [11].
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Chapter 1

Introduction

1.1 Introducing universal subgroups

The study of definable equivalence relations on Polish spaces has been one of the major
threads of descriptive set theory for the past thirty years. In many cases, important
equivalence relations arise from algebraic or combinatorial properties of the underlying
Polish spaces. A common situation is that of a coset equivalence relation on a Polish

group I'. If H C T is a subgroup, one defines the equivalence relation Ey by
rEpy < y 'z € H.

Viewed as a subset of I' x I, Elg has the same topological complexity (Borel, analytic,
etc...) as H and its equivalence classes are the left cosets of H. To give a concrete

example, consider the equivalence relation Ey on 2¥, defined by
xEyy < (V*°n)(xz(n) =y(n)).

Identifying 2¢ with the Polish group Z%, one recognizes £y as the coset equivalence

relation of the subgroup
Fin ={z € Z5 : (V*n)(z(n) = 0)}.

Given equivalence relations E, F' on a space X, one often asks whether or not there



exists a definable map f : X — X reducing F to F), i.e., such that

(Vz,y)(zEy <= f(z)Ff(y)).

In this situation, “definable” is usually (though not always) interpreted to mean Baire-
or Borel-measurable. (In the case that a Borel reduction exists, one writes £ <g F'.)
Returning to the setting of groups, suppose that H, K C I' are subgroups of a Polish

group I' and ¢ : I' = I' is a group homomorphism such that
(Vz)(zr € H <= ¢(z) € K).

This in turn gives a reduction of Ey to Ef since, by the properties of group homomor-
phisms,

(Vo,y)(y 'z € H < ¢(y) '¢(z) € K).

As mentioned above, one is generally interested in reducing maps which are at least
Baire-measurable. Recall, however, that Baire-measurable homomorphisms of Polish
groups are automatically continuous (Theorem 9.10 in [9].) Taken together, these ob-

servations motivate the following definition.

Definition 1.1. Let I'; A be Polish groups. Suppose that H C I" and K C A are
subgroups. We say that H is group-homomorphism reducible to K if, and only if, there

exists a continuous homomorphism ¢ : I' — A such that ¢ '(K) = H. We write

H<, K.

As mentioned above,



In fact, many Borel reductions among coset equivalence relations derive from correspond-
ing group-homomorphism reductions. Each of the Borel reductions Ey < Fi, Es, Ej3

arises in this way. We give details of these reductions in the following example.

Example 1.2. Recall from above that Ej is the coset equivalence relation of the sub-

group Fin C Z§. Consider the equivalence relations E;, Ey and Ej3, where
o 2By <= (Vn)((2)n = (Y)n),
o rFyy <— Zx(n#y(n) n+r1 < 00, and
o rF3y <— (V°°n)(()nFEo(y)n)-

We use the notation (z), to indicate the nth sequence coded by =z, ie., (z),(k) =
x({(n, k)), where (-, ) is a fixed pairing function. Notice that E;, Fy and FEj are, respec-

tively, the coset equivalence relations of the subgroups
o Hy={xe€Zy: (V°n)((x),=0)},

o Hy={x€Z: Zm(n#on%l < 00}, and

o Hy={xeZs: (¥v°n)((x), € Hy)}.

A map witnessing the reduction Fy <g F» is

In other words, ¢ copies the nth bit of = to a block of 2™ bits of ¢(x). Observe that ¢
is actually a continuous group homomorphism of Z§ and Fin = ¢~ '(H), i.e., Fin <, H.

(This follows since each nonzero bit of = increases > {

)

:¢(x)(n) # 0} by more than

1
n+1

N



The reductions Fy <p Ej, E5 may be witnessed by the map ¢ : Z§ — Z%, where

Observe that ¢ is a continuous endomorphism of Z§ and Hy = ¢~ '(H;) = ¢ ' (Hj3).

Thus v also witnesses Hy <, H;, H3.

In general, however, the converse of (1.1) is false. Consider the following situation:
suppose that H, K are normal subgroups of a group I' and H <, K, via ¢. The
map ¢ induces an injective homomorphism ¢ : I'/H — I'/K, defined by @(ry(x)) =
i (p(x)), where gy and 7 are the quotient maps onto I'/H and I'/K, respectively.

This observation justifies the following two examples.

Example 1.3. Let

Hy ={z € Z* : (¥n)(x(n) is divisible by 2)}
and

H; ={xz € Z" : (¥n)(xz(n) is divisible by 3)}.

Note that Z*/Hy = Z4 and Z*/Hy = Z§. Thus Hy £, H3 and H3 %, Hs, since there
are no injective homomorphisms Z3 — 7§, or vice versa.

On the other hand, Fy, <g Ep, via the map f : Z* — Z* given by

0 if z(n) is even,
f(@)(n) =
1 if z(n) is odd,

for each n € w. Similarly, Ey, <p Epy,.



Example 1.4. In [13], Christian Rosendal showed that the coset equivalence relation
of the subgroup

B={xez:3M)Vn)(Jx(n)] < M)}

is a Borel-complete K, equivalence relation. In particular, Ey <g Ejg, for each K,
subgroup of Z“. There are, however, K, subgroups which are not group-homomorphism

reducible to B. For example,
2B ={xz € B: (Vn)(z(n) is even)} £, B,
since Z* /2B has elements of order 2 and Z“/B has no elements of finite order.

Our work on <, was motivated in part by the last example. In particular we wondered
if there would be an analog of Rosendal’s theorem for group-homomorphism reductions.
In other words, are there <,-complete K, subgroups?

Naturally, one can ask this question for classes besides K,. This suggests the follow-

ing definition.

Definition 1.5. Let I'; A be Polish groups and C a class of subgroups of I'. We say that
a subgroup K of A is universal for subgroups of I' in C if, and only if, for each subgroup
H CT,with H € C, we have H <; K.

In the case that I' = A and K € C, we simply say that K is a universal C subgroup

of T.

In this context, the simplest classes to study are those of compactly generated, K,
and analytic subgroups. A key property shared by each of these three classes is that
membership of a subgroup H in each class is determined by the nature of a generating

set for H.



1.2 Results on universal subgroups

Our main results concern the existence of universal compactly generated, K, and ana-
lytic subgroups in the countable powers and products of various Polish groups.

The following is our principal result for K, subgroups:

Theorem (2.9). Let (I';)new be a sequence of locally compact Polish groups, each term
of which occurs infinitely often (up to isomorphism.) Then ], 'y has both universal

compactly generated and K, subgroups.

Although stated for products, Theorem 2.9 implies that the countable power of any
locally compact group has universal K, and compactly generated subgroups, e.g. Z3,
Z7¢, RY, Q¥ (with the discrete topology on Q) and T% (where T is the unit circle in C.)

For the case of groups which are not locally compact, we have the following “approx-

imation” of the last theorem:

Theorem (2.16). If T' is a Polish group, then there is an F, subgroup of I'* which is

unwversal for K, subgroups of T'“.

In particular, S¢ (and S. itself) have “universal F, subgroups for K,.” In Sec-
tion 2.4, we show that S% has no universal compactly generated or K, subgroups. This
suggests that Theorems 2.9 and 2.16 may be “best possible” results for the class of K,
subgroups.

Turning to analytic subgroups, there is no similar demarcation between the locally
compact and non-locally compact cases. We have the following theorem for arbitrary

Polish groups:



Theorem (2.32). Let I' be a Polish group. There exists a universal analytic subgroup

of T¥.
Applying this result to a universal Polish group, e.g. H([0,1]*), we obtain

Corollary (2.33). If G is universal Polish group, there is an analytic subgroup Hy C G,
such that H <4 Hy, for each analytic subgroup H of any Polish group I'. Moreover, the

reduction “H <, Hy” is witnessed by an injective map.

In Section 2.6 we apply the theorems above to some standard Banach and Hilbert
spaces, viewed as complete topological groups. In particular, we are able to obtain
universal subgroups as in Theorem 2.9 and 2.32 in certain Banach spaces and powers of
Banach spaces.

Section 2.2.1 is a brief detour exploring the relationship between K, and compactly

generated subgroups. We obtain the following result:

Theorem (2.4). Suppose that T' is countable discrete group. Every K, subgroup of '

is compactly generated if, and only if, every subgroup of I is finitely generated.

In particular, every K, subgroup of the countable power of a finite group is compactly
generated. Likewise, in Z“.

In Section 2.7, we apply the methods of Theorems 2.9 and 2.32 to demonstrate the
existence of complete F, and analytic ideals with respect to a weak form of Rudin-Keisler

reduction.



1.3 Further questions

Given the results outlined in the last section, certain questions naturally present them-

selves. In the first place:

Question 1.6. Are there classes of subgroups besides those of K,, compactly generated

and analytic subgroups which admit universal subgroups?

For instace, 3} seems a natural candidate as it is closed under existential quantifi-
cation over the reals (as the class of analytic sets is). Other classes of interest are those
of co-analytic, closed and F, subgroups.

Based on Corollary 2.33, one can ask if there is an analog for K, or compactly

generated subgroups:

Question 1.7. Is there a K, (or compactly generated) subgroup of a universal Polish
group G of which every K, (resp. compactly generated) subgroup of every Polish group

s a continuous homomorphic preimage?

Given the nature of the proof that S, has neither a universal K, subgroup nor a
universal compactly generated subgroup, we conjecture that any Polish group I' into
which S, embeds will have no universal K, or compactly generated subgroup. If this
is the case, then the answer to the last question is negative.

Turning to the relationship between the classes of K, and compactly generated sub-
groups, we would like to develop a characterization of those Polish groups I' in which

the two classes conincide. We also are interested in the following question:

Question 1.8. Suppose that every K, subgroup of I' is compactly generated. Is this also

true in the countable power 'Y ?



Regarding this question, Arnold Miller has shown that every K, subgroup of R¥ is
compactly generated. This result is of interest in part because it does not fit in with the
scheme of Theorem 2.4, since R is not discrete.

Along similar lines to the last question, we can ask if the property of having all K,

subgroups compactly generated is productive.

Question 1.9. Suppose that 'y and 'y are Polish groups in which every K, subgroup

1s compactly generated. Is the same true in I'y x 'y ?

All of these questions can also be formulated for arbitrary topological groups.

1.4 Selection theorems

Chapter 3 takes up the study of a somewhat different type of universal object. Specif-
ically, suppose that X,Y are Polish spaces, that C is a class of subsets of Y and that
A C X xY is such that

C={A, :z e X},

where A, = {y € Y : (z,y) € A}. In this case, A is said to be a universal set for
C. One referes to X as as the parameter space and regards X as “coding” subsets of
Y in C. Although we shall provide details in Chapter 3, it known that, for any Polish
space Y, there is a G5 set A C w* X Y which is universal for dense Gy subsets of Y,
i.e., the vertical sections A, are exactly the dense G5 subsets of Y. It follows from
results in G. Debs’ and J. Saint-Raymond’s paper [2] that there is a negative correlation
between the existence of universal dense G; sets with parameter space X and certain

types of selection theorems for product spaces involving X. In particular, Debs and
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Saint-Raymond show that if A C w“ X Y is a universal dense G for Y, then A does not
contain a Borel selector, i.e., a Borel-measurable injection f :w* — Y such that f C A
(viewing the graph of f as a subset of w* x Y').

The starting point for this investigation was the following question, posed by Mauldin

in [11].

Question 1.10. Suppose that B C [0,1] x [0, 1] is Borel with all vertical sections B,
comeager or all B, are co-null. Does B contain the graph of a Borel injection f : [0,1] —

0,1

By embedding a universal dense G set in [0, 1] x [0, 1] (as a A9 set), Debs and Saint-
Raymond demonstrated that there are Borel subsets of [0,1] x [0,1], with comeager
sections, which do not contain Borel injections. Mauldin and S. Graf answered this
question in case of co-null sections in their paper [6]. In the context of transition kernels,
Mauldin and Graf describe a Borel subset of [0,1] x [0, 1] which has a vertical sections
co-null, but which does not contain the graph of a Borel injection. In Chapter 3, we
present an example of such a subset of the unit square, based on a universal co-null F,
set.

Although the answer to Mauldin’s question was ultimately negative, Debs and Saint-
Raymond proved the following positive result for products of Polish spaces where the

“horizontal” factor is compact:

Theorem 1.11 (Debs, Saint-Raymond). Suppose that X is a compact space, Y is a
perfect Polish space and H C X XY is a Gs set such that all vertical sections H, are
comeager. Then H contains the graph of of a Borel injection. If X is zero dimensional,

then this Borel map will actually be continuous. Furthermore, the range of this map can
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be made meager.

Note that by the counterexample described above, the assumption that H be Gy
cannot be weakened to the assumption that H is AJ. In fact, the Debs’ and Saint-
Raymond’s counterexample is the union of a G set and an F, set, both with comeager
sections. Thus Theorem 1.11 is not even true for F, sets, as otherwise this would give
a selection function for their counterexample. (In fact, Debs and Saint-Raymond prove
their result for Borel sets with dense Gs sections, but they reduce this to the above
theorem by a reflection argument.)

Given Debs’” and Saint-Raymond’s result that a universal dense G set cannot contain
a Borel selector, it follows that, for perfect Y and compact X, there isno A C X xY
which is a universal dense G set for Y.

In Chapter 3, we begin by proving a refinement of Theorem 1.11 in the case of Polish
product spaces X XY, where X is compact and of finite covering dimension. Specifically,
we wished to preserve the continuity of the selector from the zero-dimensional case.

Unfortunately, as the following example demonstrates, this is not possible.

Example 1.12. Let H be [0, 1]> minus the union of all lines with slope 1 and rational
x-intercepts. The G set H has all cross-sections comeager (actually co-countable). By
the Intermediate Value Theorem, H does not contain the graph of a continuous function,

injective or otherwise.

We noticed, however, that for G5 subsets of [0,1]?, with comeager sections, it was
possible to find selectors, which, though not actually functions, were closed sets, with
disjoint vertical sections of cardinality not more than 2. Given that functions with

closed graphs are continuous, we felt that “closed” was an appropriate surrogate for
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“continuous.” This led us to Theorem 3.1, the main result of Chapter 3. Before giving

the statement of this theorem, we mention the following definitions from general topology

which may be found in §50 of [12].

1. An open cover U of a topological space X has order k iff there is a point of X
which appears in k£ members of &/ and no element of X appears in more than &

members of U

2. An open cover V of a topological space X refines another cover U iff for each

V €V thereis U € U such that V C U.

3. A topological space X has covering dimension d if every open cover of X is refined
by an open cover of order d 4+ 1 and furthermore, d is the smallest number for

which this is true.

The following is our main selection result:

Theorem (3.1). Suppose that X and Y are Polish spaces where Y is pefect and X
1s compact with finite covering dimension d. Let G C X X Y be a Gy set such that
each vertical section G, is dense. Then G contains a closed set F' such that each F is
nonempty, with cardinality at most d + 1 and, for distinct x,x’ € X, F, and F, are

disjoint. Moreover, range(F) = |J,cx Fu is perfect and nowhere dense.

Note that the property of having disjoint vertical sections is equivalent to injectivity
for sets which are the graphs of functions. Thus, in the zero-dimensional case, our result

and that of Debs and Saint-Raymond are the same.
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Finally, we will discuss results relating to universal sets. We show, in particular, that

for Polish spaces X and Y, with Y perfect, the following hold:

1. If X is compact, then X X Y contains no universal set for non-empty open subsets

of Y.

2. If X is o-compact, then X x Y contains no universal dense open or dense Gy set
for Y. (As mentioned above, the latter is a consequence of either our or Debs’ and

Saint-Raymond’s selection results.)

3. If @ > 2 and X is uncountable, then X X Y contains universal dense and comeager

30 and II2 sets.

1.5 Preliminaries and notation

The definitions and notation we use are standard and essentially identical to those in

the references [9], [8] and [1]. We recall some key points below.

General notation. If z is any sequence, we let z(n) denote the nth term (or bit)
of x. We denote the length n initial segment of x by x [ n. If I C w is the interval

{k,k+1,...,k+ m}, then z | I denotes the finite sequence
(x(k),z(k+1),...,2(k+m)).

For a set A of sequences, we let A | n denote the set {x [ n:z € A},
For finite sequences s,t, st denotes the concatenation of s and t. If ¢ is the length

1 sequence (a), for some a € X, we simply write s”a, for s"t.
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If X is any set and a € X, a" denotes the finite sequence (a,...,a) € X™ and a the
infinite sequence (a,a,...) € X*.

If T'C X<¥is a tree, then [T denotes the set {z € X“ : (Vn)(x [ n € T)} and, for
each s € X<% T, denotes {t € T:t C sV s Ct}.

For a, 8 € w¥, we write a < 3 to mean that (Vi)(a(i) < 8(7)). Similarly, if s, € w*,
s <t means that s(i) < t(i), for each i < k.

Finally, if A is a subset of a topological space X, A denotes the (topological) closure

of A.

Algebra and topology. A Polish space is a separable space whose topology is com-
patible with a complete metric. A topological group is a topological space I' equipped
with a group operation and an inverse map, such that the group operation is continuous
as a function I'> — I" and the inverse map is continuous as a function I' — I". Hence a
Polish group is a topological group, the topology of which is Polish.

Except when working with specific groups, we will always use multiplicative notation
for group operations.

It is useful to have the notion of a group word. An n-ary group word W is a func-
tion taking n symbols as input and combining these symbols using multiplication and

! is a ternary group word. For an n-ary group

inverses. For example, W(a,b,c) = b~ lac™
word W and a topological group I', note that »V induces a continuous function I'* — T.
When there is no ambiguity, we will sometimes write W for W(ay, ..., a,).

For A C T, we let W[A] denote the set

W(xy,...,xn) 21, 2y € A}
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We let (A) denote the subgroup generated by A, i.e., the smallest (with respect to con-

tainment) subgroup of I' which contains A. Equivalently,
(A) = U{W[A] : W is a group word}.

For subsets A, B of a group I" and g € I, we let AB denote the set {ab:a € A& b e
B}, gA denote {ga : a € A} and A7 denote {a! : a € A}. Likewise, define A + B and
—A, in the case of additive groups.

In Section 2.6, we will discuss examples involving topological vector spaces, i.e., topo-
logical spaces equipped with continuous addition, additive inverse and scalar multipli-
cation operations. A Banach space is a topological vector space, the topology of which
is induced by a complete norm. A Hilbert space is a Banach space, the norm of which
is induced by an inner product. Note that a separable Banach space is a Polish group
under its addition operation.

Other relevant notions and examples of Banach spaces will be introduced as appro-

priate in Section 2.6.
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Chapter 2

Universal subgroups

2.1 A universal closed subgroup of Z“

The following is our simplest result. Although it does not fit into the scheme outlined
in Section 1.2, it provides an example of the type of “coding” we will use to produce

universal subgroups.
Theorem 2.1. There is a universal closed subgroup of Z.*.

Proof. ZF is a free, finitely-generated, Abelian group. Hence all of its subgroup are also
finitely generated (see Theorem 7.3 in [10]). In particular, there are only countably
many subgroups of Z*. Enumerate them as GE, G¥,.... For each n,k, let I*¥ C w be an
interval of length k, such that that {I* : n, k € w} partition w.

Define a closed subgroup G of Z* by
r€G < (Vk,n)(z | IF € GF).

We will show that G is a universal closed subgroup. Let H be an arbitrary closed
subgroup of Z*. We show that H <, G.
Let T be a pruned tree on Z such that H = [T]. Note that, because T is pruned,

T NZF is a subgroup of Z*, for each k. Given k, let n; be such that T NZ* = G,’ﬁk.
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Define a continuous group homomorphism ¢ : Z* — Z“ by

x [k if n=ny,
0F otherwise.

For x € Z* and y = p(z), we have

v H < (Vk)(x [ keTnZk
= (Yh)(y I I, € Gy,)
= (Vkn)(y I I} € Gy)

— o(z) € G.

The third ¢ <=’ follows from the fact that, if n # ny, then y | I¥ = 0¥ € G%. This

shows that H <, G. O

If T is a finite group, then there are only finitely many subgroups of I'*, for each k.

Thus we have the following corollary to the proof of Theorem 2.1.

Corollary 2.2. IfT" s a finite group, then I'“ has a universal closed subgroup.

2.2 K, subgroups

In this section we study the relationship between K, and compactly generated subgroups
(Section 2.2.1) and produce universal K, and compactly generated subgroups in the
direct product of any sequence of locally compact Polish groups, with infinitely often

repeated factors (Section 2.2.2).
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2.2.1 K, vs. compactly generated subgroups

A compactly generated subgroup will always be K,. Examples of such subgroups in Z%

are

B = {z : z is bounded}

(generated by the set of all 0-1 sequences) and
Fin = {z : (V**n)(xz(n) = 0)}

(generated by the set of 0-1 sequences with at most one nonzero bit).
In some cases, the classes of K, and compactly generated subgroups coincide. The
following two theorems give a sufficient condition for this to be the case. In particular,

they imply that every K, subgroup of Z“ is compactly generated.

Theorem 2.3. For a Polish group I, every K, subgroup of I' is compactly generated if,

and only if, every countable subgroup of I' is compactly generated.®

Proof. The “only if” part follows from the fact that every countable subgroup is K.

For the “if” part, suppose that H = J,, K,, is a K, subgroup of I'. Let Uy D U; D ...
be a neighborhood base at the identity element 1 € I', with the additional property that
each Un+1 C U,,. For each n

{zUyq1:x € K}

covers K,,. By compactness, there exists a finite set S,, C K,, such that

{zUps1 :x € S}

LFor countable subgroups, note that compactly generated is not the same as finitely generated,
e.g. Q C R is generated by {+ :n € w} U{0}, but is not finitely generated.
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still covers K,,. Now let

K= | 2 ((@Un) N K,).

ZGSH

First note that, as the finite union of translates of compact sets, K is compact. Also,
K;CHand1leK; CU, CU,. Furthermore, K, C (K;US,). Let K* =J, K;.
Then K* C H and

H=(K"Ul JS.).

We claim that K* is compact. Indeed, suppose that zg, z1,... € K*. If there is n
such that z; € K, for infinitely many j, then (z;);e, has a subsequential limit in K, by
compactness. On the other hand, suppose that there are only finitely many z; in each
K. Let ng <ny <...and jo,j1,... be such that for each k, z;, € K, . Then for each
k, z;, € Uy,. Hence z;, -1 € K*, as k — oo.

Let S C H be the subgroup generated by | J,, S, (a countable subgroup). By assump-
tion, S is compactly generated. Therefore, take a compact set C' C S with S = (C).

Then H will be generated by the compact set K* U C. O

Theorem 2.4. Suppose that I' is countable discrete group. Every K, subgroup of I'* is

compactly generated if, and only if, every subgroup of I' is finitely generated.

Proof. First suppose that there is a subgroup H of I" which is not finitely generated.
Then H* = {a:a € H} is a K, subgroup of I'¥ with no compact generating set.
Suppose now that every subgroup of I' is finitely generated. We will show that every
K, subgroup of I'¥ is compactly generated. By the previous theorem, it suffices to show
that every countable subgroup of I'“ is compactly generated. Fix a countable subgroup

C = {x1,x9,...}. Foreach n,let C,, ={r € C:x [ n=1"}.
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Claim 1. For each n, there is a finite set F;,, C (), such that if x € C,,, then there exists

a group word W in the elements of F, such that - W™ € C,4;.

Proof of claim. For each C,, there is a finite set F,, C C,, such that {z(n) : x € F,}
generates {z(n) : x € C,}, since the latter is a subgroup of I".

This implies that, for each x € C,, there is a group word W in the elements of F}, such
that z(n) = W(n). Hence z(n) - W~'(n) = 1. On the other hand, x [ n =W [ n = 1",
since x, W € C,. Thus

W (n+1)=1""

In other words, z - W~! € C,,,1. This proves the claim.

Claim 2. For each n there exists z,, € C,, and a group word W, in the elements of

FyU...UF,_q such that z,, = z,, - W,,.

Proof of claim. The argument is a finite induction. Let W, ¢ be a group word in the
elements of Fy, as in Claim 1, such that z, - W,;l € Cy. Set xp1 = 2, - W;}) Now
let W, 1 be a group word in the elements of F; such that z,,; - W, } € (5 and define
Tpo = Tp1- Wy, i In general, we obtain z,,; € C; and group words W,, ; in the elements
of F; such @, ;41 = p; - W;g € Ciyq.

Let 2,, =, and W, = Wy, 5—1 - ... - Wiy 0. Observe that W, is a group word in the

elements of FoU...UF,_ 1, 2, € C,, and x,, = T,, - W, as desired.

Claim 2 implies that each z, is in the subgroup generated by z, together with

Fyu...UF,_{. Thus the set

C=J{z.} uF)

n

generates C.
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It remains to check that C is compact. For each n, observe that there are only
finitely many elements z € C such that z(n) # 1, since all such elements are contained
in {Z; :i <n}UFyU...UF,. Thus every infinite sequence of distinct elements of C
must converge to 1. This implies that every infinite sequence in C' is either eventually

constant or has a subsequence converging to 1. O
We enumerate a couple of direct consequences.

1. Every K, subgroup of Z* is compactly generated. (Since every subgroup of Z is

singly generated.)
2. If I is a finite group, then every K, subgroup of I'“ is compactly generated.

For a Polish group I', even if there are non-compactly generated K, subgroups, we
can still ask whether or not every K, subgroup is group-homomorphism reducible to a

compactly generated one. The following two examples illustrate the range of possibilities.

Example 2.5. Let S = @ Z be the direct sum of countably many copies of Z. Unlike
Z, the countable group S is not finitely generated. Thus, with the discrete topology, S
is K, but not compactly generated. (In a discrete space, compact is the same as finite.)

By extension, not all K, subgroups of S“ will be compactly generated. For example,
{z € S¥ : xis a constant sequence}. On the other hand, we will see that every K,
subgroup is group-homomorphism reducible to a compactly generated one. We begin
by showing that S“ homomorphically embeds in Z“. Let ¢, : S — Z be the projection

map onto the nth coordinate. Define ¢ : S¥ — Z by

P(x)((m,n)) = @n(x(m)),
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where (-,-) : w? +— w is a fixed bijection. The map v is a continuous injective homo-

morphism whose range is the ITJ subgroup
{y e 2% - (Ym)(v>*n)((x((m, n)) = 0)}.

Now let H C S“ be any K, subgroup. The image ¢)(H) C Z* is also K, (because
¢ is continuous) hence compactly generated by Theorem 2.4. Say ¥(H) = (K). Let
i:Z¥ — S“ be the natural “inclusion” map. Then i(K) C S“ is compact and H =

(i o)7L ((i(K))), because i o ¢ is injective.

For our next example, we introduce some terminology. Suppose that H is a subgroup
of an Abelian group I' (with additive notation) and z € H. We say that = is divisible
in H to mean that for each n € w, there exists y € H such that x = ny. Note that for
subgroups Hy, Hy, C T, if ¢ : T' — T is a group homomorphism such that ¢~!(H,) = H;

and x € H; is divisible in Hy, then p(x) € Hy is divisible in Hy.

Example 2.6. Consider the group Q of rational numbers with the discrete topology. We
will see that there are K, subgroups of Q“ that are not group-homomorphism reducible
to any compactly generated subgroup.

We first claim that there are no nonzero divisible elements in a compactly generated
subgroup of Q“. Indeed, suppose that, on the contrary, H is generated by the compact
set K and there is a nonzero element x € H, with x divisible in H. Let m € w be such
that x(m) # 0. Let

A={y(m):y e K}.

Note that, since x is divisible in H, z(m) will be divisible in (A) C Q. As K is compact

and we have given QQ the discrete topology, A must be finite. Therefore, let k € Z be
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such that ka € Z, for each a € A. This implies that, for any b € (A), we also have
kb € Z. Let n be large enough that £z(m) ¢ Z. Thus Lz(m) ¢ (A), contradicting the
divisibility of z(m) in (A).

We now exhibit a K, subgroup which is not group-homomorphism reducible to any

compactly generated subgroup. Consider the subgroup
Fin = {z € Q¥ : (V*n)(xz(n) =0)}.

Fin is K, and every element of Fin is divisible in Fin. Suppose that ¢ : Q¥ — Q% is a
continuous homomorphism and H is a subgroup such ¢~*(H) = Fin. In the first place,
we have that ker ¢ C Fin. Note, however, that ker ¢ # Fin, since then we would have
¢ = 0 because Fin is dense in Q“. Hence there exists z € Fin with ¢(z) # 0. Since x
is divisible in Fin, we have that ¢(z) is divisible in H and nonzero. Thus H cannot be

compactly generated, by the comments above.

2.2.2 Universal subgroups

The main result of this section is Theorem 2.9, which states that a product ], ., I's of
locally compact Polish groups, each factor of which occurs infinitely often, has universal

compactly generated and K, subgroups.

The case of Z¢

The following theorem and its corollary prove Theorem 2.9 in the case of Z* and serve

to illustrate the main ideas of Theorem 2.9 in a more straightforward setting.

Theorem 2.7. There is a universal compactly generated subgroup of 7.
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Proof. We essentially construct a <j,-complete compact subset of Z*.

For each m € w, let Ak A% ... list all finite subsets of Z*F which contain 0¥ and are
such that —A% = A%, Let IF (k,j € w) partition w, with each I¥ an interval of length k.
Define K, C Z* by

z € Ky < (Vk,j)(z | I} € A%).

Note that Ky is compact and —K, = K. Consider (Kj) (the subgroup generated by
Ky). We show that (Kj) is universal for compactly generated subgroups of Z*.
Suppose that (K) is any compactly generated subgroup. With no loss of generality,
we assume that —K = K and 0 € K. There is a pruned tree T on Z such that K = [T].
Since K is compact, all levels of T"must be finite. For each k, choose 7(k) € w such that

Ak

=10 ZF. Define a homomorphism ¢ : Z¥ — Z* by

1k it j=7(k),

0% otherwise.
Observe that ¢! (Ky) = K. The following claim will complete the proof of this theorem.
Claim. ¢ '((Kjy)) = (K).
Proof of claim. Suppose that x € (K), with x1,..., 2, € K such that z = x1+. ..+ z,,.
(Note that, since —K = K, all elements of (K) are finite sums of elements of K.) Then
o(x1), ..., o(xy) € Ky and hence p(z) = o(x1) + ... + @(x,) € (Ko).

Suppose, on the other hand, that ¢(x) € (Ky), with y1,...,y, € Kp such that

o) =y1+ ...+ Ym. (Again, because —Ky = K, (Kj) is the set of finite sums of

members of Ky.) We want xq,...,2,, € K with x =21 + ... + x,,.

For each i < m, let vF = y; | ]f(k). Since each y; € Ky, the definition of K implies
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that each

v e ALy =TNZ"
Hence (because T is pruned) there exists ¥ € K such that

8 k= ok

7

By the compactness of K, we may iteratively (for ¢ < m) take convergent subse-
quences of (2¥)ie,, to obtain a common subsequence kg < k; < ... such that, for each
1< m, (xf")n@ is convergent, with limit z; € K. Finally, fix p and let k, > p be large

enough that a:f" | p=ux; | p, for each © < m. Thus

rlp=> v Ip

1<p

= Z ¥ 1p  (because k, > p)
i<p

= Z T [ p
1<p

As p was arbitrary, we have z = > .. x; € (K). This completes the proof. O

i<m
Corollary 2.8. There is a universal K, subgroup of Z*.

Proof. Since every K, subgroup of Z“ is compactly generated by Theorem 2.4, Theo-

rem 2.7 actually gives a universal K, subgroup of Z“. O]

Statement of main result

The following is our main existence theorem for universal K, and compactly generated

subgroups.

Theorem 2.9. Let (I'))new be a sequence of locally compact Polish groups, each term

of which occurs infinitely often (up to isomorphism). We have the following:
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1. 1L, T has a universal compactly generated subgroup.
2. 11, Tn has a universal K, subgroup.

Note that if every K, subgroup of [] I', is reducible to a compactly generated
subgroup, then (1) of Theorem 2.9 implies (2). On the other hand, in Section 2.2.1 we
saw examples of K, subgroups of Polish groups (of the form under consideration) which
do not reduce to compactly generated subgroups. In such cases, (1) and (2) remain
distinct results.

A corollary of Theorem 2.9:

Corollary 2.10. IfT" is locally compact, then I'* has universal compactly generated and

K, subgroups.

For most of the examples we consider in Section 2.6, we will only use the statement
of Corollary 2.10.

Our key lemma in the proof of Theorem 2.9 is a restricted, but refined, version
of Theorem 2.9(1). (Recall that for an m-ary group word W, we define W[K]| =

W(z1,...,xm) 21, .., T € A})

Lemma 2.11. Let I' be a locally compact Polish group with identity element 1. There
erists a compact set Ky C I'Y with 1 € Ky and the property that for each compact
K CTI¥, with 1 € K, there is a continuous group homomorphism ¢ : I — T such

that, for each group word W,
v~ (WIK)) = WIK].

In particular, (Ky) is a universal compactly generated subgroup of I'.
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Basic notions
We begin with some notation and facts we will use in the proof of Lemma 2.11. From
now on, fix a locally compact Polish group I', with identity element 1.

The following lemma gives a neighborhood base at 1 with the specific properties we

require.
Lemma 2.12. There is a neighborhood base {Uy} at 1 such that
1. Fach Uy has compact closure.
2.U2U; D ...
3. For each k, U,;l = Uy.
4. For each k >0, UU, C Uy_;.

Proof. We construct the U, inductively. Let V5 O V43 D ... 2 1 be any “nested”
neighborhood base at 1, such that V is compact. (Such V; exist since I' is locally
compact.) Let Uy = V4. Suppose that Uy O ... O U are given with the desired
properties. By the continuity of the group operation, there is a neighborhood V' of 1 such
that VV C V,NU,. By the continuity of the map (z,y) — z ™'y, there is a neighborhood

W of 1 such that W'W C V. Let Uy y = W 'W. Then (Ugy1) ™! = Uiyt and

(Ups1Ug41) CVV C Uy

]

Fix a neighborhood base {Uy}, as in the lemma above. For a,b € T, write a = b (“a

k-approximates b”) if, and only if, a=*b € U}. Note that, by the properties of the Uy,
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2. a~,b < b=, a

.ar,brp,c = a1 ¢

4. (a=pb& kK <k) = ampb

5. lim, a, = a < (Vk)(¥*n)(a, ~ a).

If z,y € I'¥ (or I'?), we will write z = y to indicate that z(i) ~ y(i), for each i € w

(or i < p). Item 5 above implies that for x,z, € I'¥
lirrln T, =2 <= (Vp,k)(V>°n)(x, [ prp x| D) (2.1)
Also note that, for each k£ and fixed ag € T, the set
{a €T :ap = a}

is compact.

Fix a countable dense set D C I', with 1 € D. Let n < w be the cardinality of D,
and # : D <— n be a bijection, with #1 = 0.

For z € T¥ and k € w, we define a sequence 3% € D* (which we call the least k-

approximation of ) as follows: for each 7, let a; € D be the element with #a; least such

that a; ~ x(i). Define ¥ € D¥ by
(Vi) (B (i) = as).
Given a closed set K C I and k € w, let

B.={BFk:2zeK}.
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Since K is closed, (2.1) above implies that x € K if, and only if, (Vk)(8% | k € By,). We

have the following fact.

Lemma 2.13. If K C ¥ is compact, then {8%(n) : x € K} is finite, for each k,n € w.

In particular, each By is finite.

Proof. Since K is compact, so is the set A = {z(n) : © € K} C I'. There is thus
a finite set F,, C D such that, for each x € K, there is an a € F,, with z(n) = a.
As BF(n) is the #-least element of D which k-approximates z(n), we conclude that
#8%(n) < max{#a: a € F,}, for each x € K. Hence {8%(n) : z € K} is finite.

This implies that each By, is finite, since By, €[], Fn- O

Proof of Lemma 2.11

Fix a locally compact group I' and let D, #, =~ be defined as above for I'. For each

k€ w,let Ak, A¥ ... C DF be such that, for each k, j, we have
° A? is finite.
o 1F e AL
e For each finite A C D*, with 1* € A, there exists j such that A = A¥.

Let I jk (for k,j € w) be intervals partitioning w such that each I j’“ has length k. Define
KO Q I« by

€ Ky < (Vk,j)(Bue A (ury x| IF).

Note that Ky is compact since “u ~, = [ I J’“ ” defines a compact subset of I'* and the

existential quantifier is over a finite set. We shall show that (K{) has the property that
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for any compact K C I'“, containing 1, there is a continuous homomorphism ¢ : I'* — T'¥
with

o (WIK]) = WIK],

for each group word W.

Let K be an arbitrary compact subset of I'*, with 1 € K. For each k, let
B.={p"1k:2ec K}

be as above. As we remarked in Lemma 2.13, the compactness of K implies that each
By is finite. Since 1 is its own least k-approximation, each B, contains 1¥. For each

k € w, we may therefore choose 7(k) € w such that
A%y = By
Define a continuous group homomorphism ¢ : I'¥ — I'Y by
x|k if j =7(k),

1k otherwise.

Fix an m-ary group word W. The following two claims will complete the proof.
Claim 1. z € W[K| = p(z) € W[K,].

Proof of claim. Since ¢ is a group homomorphism, it will suffice to show that z € K —

¢(x) € Ky. Suppose that x € K. For each k, let

Hence ug =~y x [ k = ¢(x) | If(k). On the other hand, if j # 7(k), then o(z) [ IF = 1% €

A;?. Putting these together, we see that

(Vk,§)(Fu € AP)(u =k () | I7).

J
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Thus ¢(x) € Ky. This completes the claim.

Claim 2. ¢(z) € W[K)] = =z € W[K].

Proof of claim. Let y1,...,ym € Ko be such that o(z) = W(y1,...,ym). We will find
T1, ..., Ty € K such that x = W(xy, ..., 2,,) and conclude that z € W[K].

For each k, 1, let

and let u¥ € A’j(k) = By be such that uf a2, vF. By the definition of By, there exist
7% € K such that uf ~, z¥ | k, for each k and i < m. Since K is compact, we may take
ko < ki <...and zq,...,2, € K with limna:f” = x;, for each i < m.

Let zF = v#~1. We claim that

ok
hfbn "= .

Indeed, fix p,r € w and let M be large enough that whenever k, > M, we have

kn

Z;

[~y T | T

The existence of M follows from (2.1), since lim, 2¥» = x,, We may assume that

M > r,p+ 2 and so if k, > M, we have

Hence zf” ['r =, a; [ r, foral k, > M. As p,r were arbitrary, we conclude (again, by

(2.1)) that 2 — 2; as n — oo.



32

We may now finish the claim. Observe that for fixed r and each k, > r, we have

Taking the limit as n — oo and using the fact that ¥V induces a continuous function

I' — I'" we conclude that
zlr=W(xy,...,xn) [T

Since r was arbitrary, x = W(z1,...,x,) € W[K]. This completes the proof. ]

Proof of main result

We first prove (1) of Theorem 2.9 and then prove (2) from (1).

Proof of Theorem 2.9(1). Let (I';)new be a sequence of locally compact Polish groups,
with each term occuring infinitely often up to isomorphism. This implies that [], I', =
IL, (T x ... xTI'w) =], I'*. It will therefore suffice to show that there is a compactly
generated subgroup of [ (I'§ x ... x I'¥) which is universal for compactly generated
subgroups of [ T'%.

For each n, note that I'y x ... x I'Y = (I'g x ... x I';,))“. As the direct product of
finitely many locally compact groups, I'y x ... x I',, itself is locally compact. Therefore
take compact sets K,, CT% x ... x I'¥ with 1 € K,,, as in Lemma 2.11, such that, for
any compact K CT% x ... x I'¥ with 1 € K, there is a continuous endomorphism ¢ of

% x ... x I'¥ such that ¢~ *(W[K,]) = W[K], for each group word W.
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Define a compact set Ko C [[, (I x ... x I'¥) by
e Ky <= (Vn)(&(n) € K,,)

We will show that (K) is universal for compactly generated subgroups of [, I'“. In-
deed, fix an arbitrary compactly generated subgroup (K) C [[, I'¥. We may assume
that 1 € K. For each n, Lemma 2.11 gives an endomorphism ¢,, of T¥ x ... x I'¥ such
that

o WKL) = WK | (n+ 1)) = WK] | (n+ 1), (2.2)
for each group word W. (Recall here that K | (n+1) ={z | (n+1) : 2 € K} C
Ly x ... xTv)
Define a continuous homomorphism ¢ : [[, I'Y — [[ (I'§ x ... xI'¥) by
p(x)(n) = en(z [ (n+1)),
for each n. The following claim will complete the proof.
Claim. ¢ '((K)) = (K).
Proof of claim. 1t suffices to show that, for each group word W,
v (W[K]) = WIK]. (2.3)
Fix a group word W. Armed with (2.2) and the fact that W[K] is compact, we have
reWIK] < (Vn)(z | (n+1) e WIK] | (n+1))
<~ (Vn)(on(z | (n+1)) € WI[K,)])
> (Yn)(p(x)(n) € WIK,])

— p(z) € W[K].
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The third “ <= 7 follows from the definition of p(z)(n) as ¢,(z [ (n+ 1)). This

completes the proof. O

Remark. In the proof above, (2.3) and the definition of K, imply that the statement of
Lemma 2.11 holds for [] T, i.e., 1 € Ky and, for each compact K C [] T, containing
1, there is a continuous homomorphism ¢ : [[, T, = [[,, T'n with o '(W[K]) = W[K],
for each group word W.

Considering the group word Wy(a) = @ and noting that (K) = [ J,,, W[K], we obtain

the following corollary to the proof of Theorem 2.9(1).

Corollary 2.14. Suppose (I';)new are as above. There exists a compact set Ko C [[, T'y,
such that 1 € Ky and for each compact K C [[, Ty, with 1 € K, there is a continuous

group homomorphism ¢ : [, 'y = [, T such that
¢ H(Ko) =K and ¢ '((Ko)) = (K).
We will use this in the next proof.

Proof of Theorem 2.9(2). Fix a sequence (I';)nen of locally compact Polish groups, as
above. For each n, let D,, C I',, be a countable dense set, containing the identity element
1, € I',. For each n, fix an enumeration {zg,z7,...} of D,, with zj = 1,,, and fix a
neighborhood U,, 3 1,,, with U,, compact.

For each n and x € [], I, define 2* € w* by

x*(n) = min{i : (z7)'z(n) € U, },

)

for each n € w. Define u* € w™ analogously, for u € [],_, I';. Observe that, by the

<n

argument of Lemma 2.13, if K C [[ T, is compact, then {z* : € K} has compact
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closure in w*. Conversely, since each U, is compact, it follows that

{mEHFn:x*Sa}
n
is compact, for each o € w*.
For notational reasons, we will consider the group

A= H (F() X ... X F|s|_1).

new
sEw<w

Note that n is a “dummy” index, serving only to produce infinitely many copies of the
term inside the product. For the sake of clarity, we remark that {(n,s) € Iox...xT_1,
for each n,s and £ € A.

Since each I',, is isomorphic to infinitely many other I',,, we have A = [ T',. To
prove our theorem, it will therefore suffice to produce a K, subgroup of A which is
universal for K, subgroups of [, I',.

Let Ky C Hn I',, be as in Corollary 2.14. For each n, define
A, ={eA:(Vn' >n)(Vsew)(&nN,s)e Ky I |s])}

For each n, the subgroup (A,) is F,. This follows from the fact that each A, is the
direct product of a compact set with factors of the form I'g x ... x I'.
Define the set

A={eeA:(v°n,s)(&(n,s)" <s)}

It follows that A is K, and hence (A) is as well. Let

HO = <A> N U<An>
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and note that, since the term (J, (A4,) is an increasing union of subgroups, Hy itself is a
subgroup of A. As the intersection of an F, set with a K, set, Hy is K,. We will show
that Hy is universal for K, subgroups of [] TI',.

Let B = |J,, B, be an arbitrary K, subgroup of [[, I',, with each B,, compact and

1€ By C B; C.... Take continuous endomorphisms 1), of L, T such that

Uy (Ko) = By and ¢, ((Ko)) = (By),

for each n. Each ,,(B,) is compact. As noted above, this implies that the closure of
{z* : x € ¢,,(B,)} is compact in w*. Thus we may choose «,, € w* such that each

o, is increasing, ap < a; < ... and z* < ap, for each € |, ., ¥w(B,). Define

Y[, Tn — A by

wn(x) 'p if s = Qptp [ p,
U(x)(n, s) =
(Lo,...,1-1) otherwise,
for each n € w and s € w<* with p = |s|. It remains to show that v~ (Hy) = B.

Claim 1. If ¢(x) € Hy, then z € B.

Proof of claim. Let n be such that ¢(x) € (A4,), with W a group word such that

P(z) € W[A,]. For each p, if s = ay4p | p, we have

Yu() [ p=1p(z)(n,s)
€ {&(n,s) : £ € WA, ]}
= W[Ko fp]

= W[Ko] [ p
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and hence 1, (z) € W[Kj), since the latter is closed. (As the continuous image of a
compact set, W[Kj| is compact.) This implies that v, (x) € (Ky) and, since 1, reduces

(B,) to (Kjy), we conclude that x € (B,) C B.

Claim 2. If x € B, then ¥(z) € H,.
Proof of claim. Suppose that € B, say x € B,,,. We first verify that ¢(x) € A,,. Fix
n > mng and s € w<, with p = |s|. If s # a4, [ p, then ¢¥(z)(n,s) = (1o,...,1,1) €

Ky | p, since 1 € Ky. On the other hand, if s = a1, | p, then

U(x)(n,s) = ¢u(z) [ p € Ko I p,

since ¥, (B,,) € ¥, (B,) C Ky, by assumption. As n > ng and s were arbitrary, we see

that ¥(z) € Ap,.

It remains to see that ¢ (z) € (A). Naturally, it suffices to prove that i(z) € A. We

must show that, for all but finitely many n, s,

(W (x)(n,8))" < s (2.4)

Fix n,s with p = |s|. If s # a4, | p, then (2.4) follows, since ¢ (x)(n,s) = (1o, ..., 1,-1)
and (1g,...,1,1)* = 0. If s = au4p, [ p and n+p > ng, then (¢, ())* < @,4p, since

x € B,, C B, and n <n+ p. Hence

(Y(x)(n,s))" = ¥n(x)" [ p
< Qnip [P

=S

and (2.4) holds for n, s. We see that (2.4) only fails when n+|s| < ng and s = ay, 1 [ |s].

There are only finitely many such pairs n, s.
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We have shown that () € A and hence v(x) € AN A,, C Hy. This completes the

proof. O

2.3 Universal F, subgroups for K,

Theorem 2.9 gives a universal K, subgroup of I'Y whenever I'¥ is locally compact. If I’
is arbitrary, we can still prove that there is an F,, subgroup of I' which is universal for
K, subgroups of I'Y (Theorem 2.16 below). We prove this result as a consequence of
Theorem 2.17, which gives the result of Theorem 2.16 in the case that I" is the isometry
group of a Polish metric space. Theorem 2.16 will then follow via a theorem of Gao and
Kechris [4] which states that every Polish group is isomorphic to the isometry group of
a Polish metric space.

In Section 2.4, we will show that S% does not have a universal K, subgroup, implying
that the results in this section cannot, in general, be improved.

We will first prove a special case which will indicate the general methods used in the

proof of Theorem 2.17.

2.3.1 The case of S,

Recall that S, is the group of permutations of w, regarded as a topological subspace of

the Baire space. Hence there is a basis of clopen neighborhoods of the form

Ulu)={f € Sx:uC f}

where u : w — w is a finite partial injection. The group operation of S, is composition.

A compatible metric is d(f, g) = HLH + m;ﬂ, where n is least such that f(n) # g(n) and



39

m is least such that f=1(m) # g~1(m).
Note that S, may be regarded as the isometry group of the discrete space w, with

the metric d such that d(m,n) =1 <= m # n.

Theorem 2.15. There is an F, subgroup of So, which is universal for K, subgroups of

Seo-

Proof. 1t will be enough to show that S contains an F, subgroup which is universal for
K, subgroups of S, since S is isomorphic to a closed subgroup of S,,. (For example,

if Ao, Ay,... C w are disjoint infinite sets. Then S¥ is isomorphic to the subgroup

{f € 5o s (Vn)(f(An) = An)}.)

We will indicate elements of S with bold letters, e.g. f,g. For f,g € S2, fg
denotes the “product” of f and g, i.e., fg(n) = f(n) o g(n), for each n.

We introduce some terminology /notation. Suppose that u : w — w is a finite partial
injection. We say that u is n-long if n C dom(u) and n C ran(u). Also, if u,v : w — w
are partial functions, then v o u denotes the composite function defined on the largest
domain that makes sense, namely {n : u(n) € dom(v)}.

Let wi = w<“\ {(0)} and take (-, ) : w X W¥ <> w to be a fixed bijection.

We fix a family {A, : s € wi¥} of finite sets of finite partial injections on w, such

that
o If |s| =1, then Ay > id,, for some n > 0.
o If u € A, then u™! € A, also.

e For each i € w, A,~; O Ag and if u,v € A, then vou € A ;.
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o If A D A, issuch that vowu € A, for each u,v € A,, and u=! € A, for each u € A,

then there exists i such that A = A,~;.

For the third property, we permit the composition v ou to be the empty function. Also,
the first and third properties together imply that each A, contains id,,, for some n > 0.

Define an G C S% to be the set of f € S¢ such that
(In > 0)(Ym, s)(m,|s| >n = (Fu € Agp)(u C f((m,s)))).

Notice that, because each A, is finite, the innermost condition in the definition of G

defines a clopen set. Hence G is F.
Claim. G is a subgroup of S.

Proof of claim. It follows from the properties of the A; that G contains id = (id, id, . . .)
and is closed under taking inverses.

Suppose that f,g € G, witnessed by n as in the definition of G. Fix m,s with
m,|s| > n+1. Let u,v € Ay, with u C f((m,s)) and v C g((m,s)). Then uov €
Agi(nt1) and

uov C f((m,s)og((m,s)) = (fg)((m,s)).

We see that fg € G.

This shows that G is a subgroup and finishes the claim.

Fix a K, subgroup H C S. We show how to reduce H to G. Let Ky C K; C ... be
compact sets such that H = |J,, K,,, id € Ky, and, for each n and f,g € K,,, fog € K, 11
and f~1,¢7! € K,,.

Since the K, are compact in S, they are also compact in w®. We therefore take

increasing functions h,, : w — w such that, for each f € K,, f(k) < h,(k), for every
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k € w. Since Ky C K; C ..., we may assume that ho(k) < hi(k) < ..., for each k € w.
For m > n, define a™ = (h,,)™"(m), where (h)* denotes h composed with itself, k times.

Observe that, if u,v : w — w are finite functions with u, v, =, v~! bounded by
(hm)™ and u,v are a!"-long, then u o v will be a! ;-long.

We define finite sets K" that “approximate” H. These will be such that K" will
only be defined for n < m, and each K" will be a set of a]_, -long finite injections on
w.

Let KF" be the (finite) set of a/"-long finite initial segments of members of K. Observe

that f* has the following properties.
L. {U(u) :u e K} covers K.
2. Ifuw e K, then v C f for some f € K.
3. If u e K, then u™! € K.

4. If u € KF', then w,u™" are bounded by hg, in particular, they are bounded by

(o)™
5. If u € K, then u € a;-long.

The third property follows since Ky is closed under taking inverses and, if u is k-long,
for some k, then so is u~!.

-long initial segments of members

Given ', with n < m, let K" | the set of a;,_,

of K, 11, together with all u o v, for u,v € K.

Thus each K" has the following properties.

L {U(u) :uw e K} covers K.
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2. If we K7, then u C f for some f € K,,.
3. ffue K™, then u™! € K.

4. Ifu,v € K", then uov € K.

n—1

5. If w € K™, then u,u~! are bounded by (h, o ... o hg), in particular, they are

bounded by (h,,)™.
6. If w € K7, then w is at least a]’_, -long.

Each of these properties is verified by induction. The first, third and fourth properties
follow from the definition of K.

The second property follows from the fact that, if u € K", then either w is an initial
segment of some f € K, or u = wowv, for some w,v € K" ;. In the latter case, assuming
that the second property above holds for K" ;, we have gq, 9o € K,,—1 such that v C ¢;
and w C ¢go. Hence wowv C gy 09y € K,,.

The fifth property follows since, if u,v are bounded by some function h : w — w,

then v o u is bounded by h o h.

The sixth property holds automatically for each v € K7 that is an a]._, -long initial

m

segment of some f € K,,. If u = wow, for some w,v € K" |, then by properties 5 and 6

for K" |, we conclude that w o v is at least a/_, -long. (See the comment following the

definition of a]".)

We now make the following claim.

Claim. For eachn € wand f € Sy, f € K, if, and only if, for each m > n, there exists

ue K with w C f.
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Proof of claim. “Only if” follows from the fact that, for each m > n, {U(u) : v € '}
covers K,.
For the “if” part, suppose that f € S, and n € w are such that, for each m > n,

there exists u,, € K* with u,, C f. By the properties of the K", we know that

U () N K, # 0. Take f, D upy, with f,,, € K,,. Then, because each w,, is a’-long, f, fu
and f~1, f-1 agree on an initial segment of length at least a™. Note that a™ > m — oo

as m — oo. Hence f,, — f and so f € K,,, because K, is closed. This proves the claim.

We now define a reduction of H to G. Choose «,, € w® such that for each n,

Aapimery) = K3t Let ¢ 2 Soo = 53, be given by

f if s C ayp,

p(S({m, 5)) =

id  otherwise.

We want to see that ¢~ '(G) = H. Suppose f € H, say f € K,. Write g = o(f).
By the claim above, for each m > n, there exists u € K" = Aq,,1(n+1) such that v C f.
Hence, for s C a,, with m,|s| > (n + 1), we have g((m,s)) D u, for some u € A,. If
s ¢ Oy, then g((m,s)) = id. Again, however, there is u € A, such that u C g, s, since
A, always contains idg, for some k > 0. We see that g € G.

If g = ¢(f) € G, then there exists n > 0, such that for each m > n, there is

u € Aa,,in = Kty with u C g((m, s)) = f. Thus, by the second claim f € K,,_;. O

2.3.2 Arbitrary countable powers

The following theorem is based on Theorem 2.15 and is our most general result of this

type.
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Theorem 2.16. If I' is a Polish group, then there is an F, subgroup of I'Y which is

unwversal for K, subgroups of I'“.

As mentioned above, we will show in the next section that this result cannot be
improved to give a universal K, subgroup of an arbitrary countable power. In particular,
we show that S¥ does not have a universal K, subgroup. We do not yet know if there
is a larger class of Polish groups I' such that I'¥ has no universal K, subgroup.

We will obtain Theorem 2.16 as a consequence of the following.

Theorem 2.17. For any Polish space X with compatible metric d, there is an F, sub-

group of Iso(X, d)¥ which is universal for K, subgroups of Iso(X,d).
Before proving Theorem 2.17, we show that it implies Theorem 2.16.

Proof of Theorem 2.16. Let I' be any Polish group. By Theorem 3.1(i) in [4], there is
a Polish space X, with metric d such that T = Iso(X,d). Theorem 2.17 implies that
there is an F, subgroup of Iso(X, d)* which is universal for K, subgroups of Iso(X, d).
Bearing in mind

Iso(X,d) =2 T¥ = (T'*)* = Iso(X, d)*,
it follows that I'“ itself has an F, subgroup which is universal for K, subgroups of

. [l

It is worth mentioning the following corollary of Theorem 2.16. Recall that a Polish

group G is universal if every Polish group is isomorphic to a closed subgroup of G.

Corollary 2.18. If G is a universal Polish group, then there is an F, subgroup Hy C G
such that, for any K, subgroup H of a Polish group T', there is a continuous injective

group homomorphism ¢ : T — G such that H = ¢~ (Hy).
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Proof. Let G be a universal Polish group and Hy, C G an F, subgroup which universal
for K, subgroups of G¥. By the universality of G, we may identify H, with an F,
subgroup Hy € G. Observe that, since G itself is isomorphic to a closed subgroup of
G“, Hy is universal for K, subgroups of G.

Fix any Polish group I' and H C T, a K, subgroup. Let 7 : I' — G be an isomorphic
embedding. Note that w(H) is a K, subgroup of G and hence there is a continuous
homomorpism ¢ : G — G such that ¢~ '(Hy) = 7(H). Inspecting the proof of Theo-
rem 2.17 below, it will become apparent that ¢ can be chosen to be injective. Since 7

is injective, it follows that (¢ o m)™1(Hy) = H. O

It is a theorem of V. V. Uspenskii (Theorem 9.18 in [9]) that there are universal Polish

groups. In particular, the homeomorphism group of the Hilbert cube is a universal Polish

group.

2.3.3 Preliminary notions

Before giving the proof of Theorem 2.17, we recall some basic facts about isometry

groups and introduce terminology we will use in the proof of Theorem 2.17.

Topology on Iso(X,d)

Fix a Polish space X and suppose that d is a compatible complete metric on X. Through-
out, we will assume for simplicity that X is infinite. In the case that |X| = n, there
is a subgroup H (depending on d) of S, such that Iso(X,d) = H. The statement of
Theorem 2.17 for (X, d) then follows from Theorem 2.9, since S, is finite and hence

compact.
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Recall that the Polish topology on Iso(X,d) is that of pointwise convergence. This
is the weakest topology making all point evaluation maps continuous. By properties of
isometries, the topology on Iso(X,d) is equivalent to the topology of pointwise conver-
gence with respect to any fixed countable dense set. Thus, for each countable dense set

@ C X, there is topological basis for Iso(X, d) consisting of open sets of the form

U(u,e) ={f €Iso(X,d) : (Vp € dom(u))(d(f(p),u(p)) <e)},

where u : () — () is a finite partial function.

We let U(u, ) denote the closure of U (u, ). Note that

U(u,e) C{f €Iso(X,d) : (Vp € dom(u))(d(f(p),u(p)) <)}

For the rest of this section, fix a countable dense set () C X and a bijection # :
Q) <— w. Also, fix a compatible complete metric d on X and and simply write Iso(X)

for Iso(X, d).

Least s-approximations

We introduce a notion of e-approximations for isometries on X. These will enable us to
work with isometries much as we would work with permutations of a discrete set. For
simplicity, we will assume at this stage that X has no isolated points.

Given f € Iso(X), and a bijection a : @ +— @, we say that « is an e-approxzimation
of f if, and only if, for each p € Q, d(f(p), a(p)) < e. It follows that if u C « is a finite
subfunction, then f € U(u,¢).

We describe a “minimal” (with respect to #) way of defining such an «. For f €
Iso(X) and fixed ¢ > 0, we will construct an e-approximation of f as a union of finite

injections u,, : Q — Q.
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We begin with ug. Let pg € @ have #p, = 0 and let ¢o € @ be #-least such
that d(f(po),q) < e. Let g be #-least with ¢, # qo and pj # po #-least such
that d(f~'(q}),py) < e. (Hence d(q), f(py)) < e.) Note that such a pj # py ex-
ists since f~!(qo) is not isolated and hence there are infinitely many a € @Q such that
a(f (), a) < 2.2

Take uo = {(po, 90), (Po, 4)}-

Now suppose that the finite injection u, : QQ — @) is given. We show how to define
Upt1. Let p be the #-least element of @ \ dom(u,) and let ¢ ¢ ran(u,) be #-least
with d(f(p),q) < e. Again such a ¢ will always exist because f(p) is not isolated in
X. Let ¢ be the #-least element of @ \ ran(u,) U {¢} and let p’ ¢ dom(u,) U {p} be
#-least with d(f~1(¢'),p') < e. Once again, we us the fact that X is perfect. Now take
Unt1 = un U{(p,q), (¥, 4)}-

We call o = J,, up, the least e-approzimation of f. It follows from the construction
above that « is a permutation of @) and for each p € Q, d(f(p), a(p)) < e.

We call u,, as above the nth partial e-approximation of f.

In the case that X has isolated points, we modify the construction of the least e-
approximation of f € Iso(X) as follows: let Q be the (necessarily countable) set of
isolated points of X. As Q is dense, Q D Q. As an isometry, f is also a homeomorphism
and hence permutes ). Thus we can carry out the construction above in the closed
subspace X \ Q and then take the union of o : Q \ Q <— Q \ Q (obtained as above)
with f | Q. This will be the least s-approximation of f.

We give some properties of e-approximations.

2If f=1(q() is isolated, the risk is that f~!(gf)) = po and there are no a € Q\{po} with d(f~1(gf),a) <
€.
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1. If a,8 : Q +— @ are e-approximations of f, g respectively, then § o « is a 2e-

approximation of g o f.

1

2. If o is an e-approximation of f, then a~! is an e-approximation of f~!.

3. The least e-approximation of id is id | Q.

Compact subsets of Iso(X)

Let K C Iso(X) be a compact set. For ¢ > 0, we will consider the set of least e-

approximations of members of K.

Lemma 2.19. For fixed € > 0, there exists an increasing function v : w — w such that
for each f € K, if a : Q — Q is the least e-approximation of f, then #a(p), #a~(p) <

v(#p), for each p € Q. In this case, we say « is bounded by 7.

Proof. As above, let Q C @ be the set of isolated points of X. Observe that
{(f1Q:fekK}

is a compact subset of Sym(Q) = S... For p € Q, we let y(#p) = max{#f(¢)+#f(q) :
f e K & #q < #p}. We may therefore ignore any isolated points of X and prove the
lemma in the case that X is perfect, since the above remarks indicate how to define
v(#p) for p € Q.

Let us therefore assume that X is perfect. Each f € Iso(X) determines its sequence
of partial e-approximations (u,)ne,. To prove the lemma, it will be enough to show
that, as f ranges over K, there are only finitely many possibilities for u,, i.e., for each

n the set

S, ={u: (3f € K)(u is the nth partial e-approximation of f)}
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is finite. We prove this by induction on n.

For n = 0, recall the definition of uy: we let py € @ have #p, = 0. By the
compactness of K, there exists a finite set F' C () such that for each f € K, there is
some b € F such that d(f(pg),b) < e. In particular, gy as in the definition of ug must
have #qo < max{#b : b € F'}. Thus the set of ¢ €  which occur as ¢y in the definition
of ug, for some f € K, is a finite set. Suppose now that gy has been specified. We let ¢,
be the #-least element of @ \ {qo}. As with ¢, for f varying in K, only finitely many
different values will arise for p) as the #-least element of Q\ {po} with d(f~'(q}), p) < €.

Suppose we are given that S, is finite. Fix one of the finitely many u, € S,,. Let
p ¢ dom(u,) be #-least. As above, the compactness of K implies that there are only
finitely many ¢ € @ \ ran(u,) as in the construction of w,1, for some f € K. Again,
given ¢, the choice of ¢’ is determined and there are only finitely many possible p’ for a
given ¢'. Thus, having fixed w,,, there are only finitely many possible u,,1, as f ranges

over K. This implies that S,,1; is finite. O

Combinatorics of finite injections on ()

For a finite injection u : ) — @, we say that u is m-long if, and only if, for each p € @,
if #p < m, then p € dom(u),ran(u). (Note that for any f € Iso(X) and € > 0, the nth
partial e-approximation of f is at least n-long.)

Suppose that u,v : Q — @ are finite injections and v : w — w is increasing such

that, for each p € Q,

#u(p), #v(p), #u™ ' (p), #v ' (p) < v(#»),

whenever the quantities on the left are defined. Again, we say u,v are bounded by ~.
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Lemma 2.20. If u,v,v are as above with u,v bounded by vy and u,v are v(m)-long for

some m, then v o u will be at least m-long. (The domain of vow is {p € Q : u(p) €

dom(v)}.)

Proof. Fix p € @ with #p < m. We want to see that p € dom(v o u),ran(v o u). The
first statement follows from the fact that, since u is bounded by =, #u(p) < v(#p) and
hence u(p) € dom(v), since v is y(m)-long. The second statement follows by applying

the same reasoning to u~! o v, O

K, subgroups of Iso(X)

Let H = |J,, K,, be a subgroup of Iso(X), with each K, compact and id € K. By the
continuity of the group operations, we may assume that, for each n, if f,g € K,,, then
gt e K,and go f € K, 1. For each n, k, let 7,1 be as in Lemma 2.19 such that if
f € K, and « is the least %—approximation of f, then a,a™! are bounded by 7, ;. With
no loss of generality, vo, < 71 < ..., for each k. Now let

27times

——N—
6n,k =Tnk©---OUnk-

For each n, k and 7 > n, let

i times
A\

(n,k)

a; " = 5nk 0...00,k(n).

7k)

Observe that, by Lemma 2.20, if u, v are bounded by 9, , and are az(»" -long, then vou

will be agﬁ’lk)—long. Also note that agn’k) — 00 as n,k,i — 00.
For ¢« < n, we will define finite sets Bfl’k of finite partial injections on () that will

“approximate” the K.
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Let B, be the set of all u,u™", such that u is the a"M¢h partial Z-approximation

of some f € Kj.
Given i < n and B}, we define B! to be the set of all v o u, where u,v € B .

together with the set of all w,w™! for which there exists f € K,,; such that w is the

(n,k)

a, ;. ,-st partial %—approximation of f.

The following properties are consequences of the definition of B;Lk

1. id,, € B! ,, where m = ™"

n,k’ n—71 .
2. ueB,, = u'eb,.
3.i<n&uveB, = vouecB}.

In the first item, id,,, deonotes id restricted to the set of p € ) with #p < m. Note that
the first property follows from the fact that each K, contains id and, for every e, the

least e-approximation of id is id [ Q.

Lemma 2.21. Ifu € B! ,, then u is bounded by 6, x.

n,k’

Proof. Each u € BA,C is obtained as a composite of at most ¢ partial %—approximations
of members of K;, with j < 7. In particular, since the 7, are increasing and each
Yik < Vj+1k, We know that each u is bounded by 7, (the composite of v; ; with itself i

times). The lemma follows since 7}, < 0, if @ < 7. O
Lemma 2.22. For each n,k,i, if u € B}, then u is at least agﬁ?)-long.

Proof. This follows by induction. The ¢ = 0 case follows from the definition of B?l’,c. If

u € Bi*! then either u is the '™

P n_;.1-st partial e-approximation of an f € K,,;; (in which

case we are done) or u = w o v, for some w,v € B;Lk In this case, the claim still holds:
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since w,v are bounded by 9, (Lemma 2.21) and, by assumption, are a{™®

i

-long, we

(n’
n—

may conclude that u = wowv is a lfll—long, by the observation following the definition

(n.k) O

7

of a
Lemma 2.23. For each k,n and i <n, if u € B}, then U(u,2'/k) N K; # (.

Proof. Again, the proof is by induction. The ¢ = 0 case is a consequence of the choice
of Bg’ » as a set of partial %-approximations of elements of K. Suppose that the lemma
holds for i < n. Let u € ijkl. If uw is a partial %—approximation of an element of K1,
then there is nothing to prove. On the other hand, if u = w o v, for some w,v € Bz,k,
let f € U(v,2'/k)NK; and g € U(w,2/k) N K; be as given by the induction hypothesis.
Note that go f € K, and thus it will suffice to show that go f € U(u, 2" /k). Indeed,

fix p € dom(u) and observe the following:

d((g o f)(p), (wew)(p)) <d(g(f(p),g(v(p))) + d(g(v(p)), w(v(p)))

Equality in the second line follows from the fact that g is an isometry. Since p € dom(u)

was arbitrary, this shows that go f € U(u, 27 /k). ]

Lemma 2.24. For each i and f € Iso(X), f € K; if, and only if, for each n,k with

n > i, there exists u € By, ;. such that f € U(u,2'/k).

Proof. The ‘only if’ half of the statement follows from the fact that each sz,k contains

a partial %—approximation of f.
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For the ‘if’ part, let u, € B;,k be such that f € H(umk,T/k’). Let vy, = ugy. By

Lemma 2.23, there exists f, € K; such that fi € U(vg,2'/k). We show that fr, — f

pointwise on (). Fix p € . Since each vy, is a,(f_’l:)—long (Lemma 2.22) there exists K

such that for each k > K, p € dom(vg). For each k > K, we have

d(fe(p), f(p)) < d(fe(p), vi(p)) + d(vk(p), f(p))

~ k k

— 0,

as k — oo. Thus fr — f and we conclude that f € K, since K; is closed. n

2.3.4 The proof

We are now equipped to prove Theorem 2.17.

Proof of Theorem 2.17. We will define an F,, subgroup of Iso(X)“ which is universal for
K, subgroups of Iso(X). Let wi¥ = w<¥\ {(0)}. Fix a family {4, : s € w$¥}, where

each A, is a finite set of finite injections on () and, for each s, we have
e If |s| =1, then Ay > id,, for some n > 0.
o Ifuc A, then u™! € A,.
e Foreachi € w, A;~; O Ay and if u,v € A,, thenvou € A,-;.

o If A D A, is finite, satisfies the second property above and is such that, for each

u,v € Ag, vou € A, then there exists i € w such that A = A,~,.

The first and third items together imply that each A, contains id,,, for some n > 0.
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Let (-,-,-) : (w X w X w¥) <— w be a fixed bijection. Define Hy C Iso(X)“ as
follows: for F € Iso(X)“, let F € Hy if, and only if, there exists n > 0 such that, for

each m,k € w and s € w$* with m,[s| > n
(u € Agp)(F((m, k, 8)) € U(u, 2" /k)). (2.5)

Observe that Hy is F, since the formula above defines a finite union of closed sets, i.e.,

a closed set. Our first step is to check that Hy is a subgroup.
Claim. Hj is a subgroup.

Proof of claim. Tt follows from the properties of the A, that H, contains id and is closed
under taking inverses. Suppose that F,G € Hy. Let n be as in the definition of H,
witnessing the membership of F and G. (Note that we can assume that the same n
witnesses the membership of both F and G, by taking the maximum of their respective
n’s.) Fix m,k,s with m,|s| > n + 1. Write f = F((m, k, s)) and g = G((m, k, s)). Let
u,v € Ay}, be such that f € U(u, 2"t /k) and g € U(v, 2"~ /k). Fix p € dom(vowu) and

observe the following:

d(g(f(p)),v(u(p))) < d(g(f(p)), 9(u(p))) + d(g(u(p)), v(u(p)))
<R 2nlk
=2"/k.
Since p was arbitrary, go f € U(v ou,2"/k). Since m, k, s were arbitrary, we conclude

that G - F € Hy, witnessed by n + 1. This proves the claim.

Claim. Hj is universal for K, subgroups of Iso(X).

Proof of claim. Let H = |, K,, be an arbitrary K, subgroup of Iso(X). We may

assume that id € Ky C K; C ..., that each K,, contains the inverses of its members and
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if f,g € K, then go f € K, ;1. For each n,m, k, let B} | be defined for the compact sets
K, as in the paragraph preceeding Lemma 2.21 above. Comparing the three properties
of the B}, , enumerated there with the properties of the A, we recognize that, for each

pair m, k, there exists &, € w® such that

BZm,k = A&m,k [(n+1)s

for each n. We can now define a continuous homomorphism reducing H to Hy. Define
¢ : Iso(X) — Iso(X)“ by letting

f if s C SmJg,
p(f)((m, k,s)) =

id otherwise.

for each triple m, k, s.

First of all, suppose f € H. Say f € K,. To check that ¢(f) € Hy, fix m, k, s with
m,|s| > n+1. Let g = o(f)((m, k,s)). If s & &nx, then g = id and statement (2.5) in
the definition of Hy holds for m, &, s. Suppose now that s C &, . In this case, g = f.
Since Agjny1) = B:fuw Lemma 2.24 above implies that there exists u € Agjpn41) such
that g = f € U(u,2"/k). Again, we see that (2.5) holds. Thus o(f) € Hy, witnessed by
n+ 1.

Now assume that ¢(f) € Hy, witnessed by n > 0. We will see that f € K,,_;. For
each m,k and s C &k, o(f)((m, k,s)) = f and if m, |s| > n, there exists u € Ay}, =

ngkl such that f € U(u,2"'/k). Thus Lemma 2.24 implies that f € K,_;.

This completes the proof. n



o6

2.4 The example of S

In this section we prove that there is a countable power with no universal K, subgroup.
In particular, we show that S% has no universal K, subgroup. This suggests that
Theorem 2.9 cannot readily be expanded to a larger class of Polish groups. In some
sense, the example of S, also serves as a complement to Theorem 2.16, again suggesting
that this may be a “best possible” result.

We state the main result of this section:

Theorem 2.25. Their is no K, subgroup of S< which is universal for compactly gen-

erated subgroups of SZ..

This theorem shows (in a strong way) that S¢ has neither universal compactly
generated nor universal K, subgroups. Since S% embeds in S, and vice versa, it will
be enough to prove Theorem 2.25 for S..

Recall that the topology on S, is generated by the basic clopen sets
U(s) ={s € Sx :s5C f},

where s : w — w is a finite injection. Hence the sets U(id | n) form a neighborhood basis
at the identity. Becuase we will refer to these open sets several times in what follows,
we write U,, for U(id [ n).

The fundamental elements of S, are cycles. We use the notation [ay,...,a,] for

n-cycles and [...,a_1,ag,aq,...| for co-cycles. For m € Sy, we let

supp(m) = {n:7(n) #n} = {n: 7" (n) #n}.

For any f € w* (viewed as a function w — w) we write f? for the p-fold composite
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of f with itself, e.g. f?2 = fo f. We will use this notation both for permutations of w as
well as arbitrary functions on w.

For each a € w¥, define

Ko={f€S8x:f [ <a}

where “f < «” signifies that, for each n € w, f(n) < a(n). Note that each K, is
compact in So, and that every compact subset of S, is contained in some K,. Suppose
that H =, K, is a K, subset of S, with each K, compact. To show that H is not
universal for compactly generated subgroups of S, it will suffice to find a compact set
K C S, such that no homomorphic image of K is contained in H. For this, it is enough

to assume that each K, has the form Kpg,, for some 3, € w”. We therefore show:

Theorem 2.26. Given [y, B1,... € w¥, there exists a € w¥ such that, for each contin-

uous injective group homomorphism ® : Se, — S, we have ®(K,) € U, Kg, .
We require a few lemmas.

Lemma 2.27. If ® is a continuous endomorphism of Sy, and ker(®) # S, then ® is

mjective.

Proof. Since ® is continuous, ker(®) is a closed normal subgroup of S,,. On the other
hand, it is well-known that the only normal subgroups of S, are {id}, the infinite
alternating group, the group of finite support permutations and S, itself. Of these,

only {id} and S, are closed. O

Noting that every K, subgroup of S, is a proper subgroup, Lemma 2.27 implies
that a group-homomorphism reduction between K, subgroups of S, must be injective.

(This follows from the fact that, if A = ¢~'(B), then kerp C A.)
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Lemma 2.28. Suppose that o € w* is such that (¥n)(a(n) >n). If f € K, and s C f

1s a finite injection, then there is a finite support permutation m € K, such that s C 7.

Proof. Let S be the set of cycles o C f such that supp(o) intersects the domain or range
of s. Since s is a finite function, § is a finite set of disjoint cycles. For each oco-cycle
7 € S, we will define a finite cycle 7* € K|, such that 7* agrees with 7 on dom(s)Uran(s).
Write 7 as

[. ..Q_1,00,07, .. ]

Let ng,ny € Z be such that ng < n; and if a; € dom(s) U ran(s), for some i, then
no < i < ny. By taking ny large enough, we may assume that a,, > a,,. Let m < ng
be large enough that a,, < a,, and a,,—1 > a,,. (Note that we have strict inequalities

since 7 is an oo-cycle and hence all a; are distinct.) Define

*

(e [ R

We will verify that 7* € K,, i.e., 7%, (7*)~! are both bounded by .. Since T C f € K,,
we know that 7,771 are bounded by . Hence we need only check that a,, < a(a,,) and

Ay < afay, ), since 7* agrees with 7, except at a,,. That a,, < a(a,,) follows from
Upy < U1 =T am) < alan).

(We are using the fact that 77! < a.) On the other hand, a,, < a(a,,) follows from the
fact that

A < Ay < aay,),

by our assumption that (Vn)(a(n) > n).
We may now define the desired 7 as in the statement of the lemma: let m be the

product of all finite cycles in S together with all 7, for co-cycles 7 € S. O]
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Lemma 2.29. If ¢ is a continuous endomorphism of Sy and «, 3,, € w* are such that
(Vn)(a(n) > n), ®(K,) €U, Ks,, and {8, : m € w} is closed under composition, then

there exist n,m € w such that
dU,NK,) C Kg,,.

Proof. The following claim is the core of the proof.

Claim. There exists a finite support permutation 7 € K, and m € w such that

dU(T)NK,) C Kg,,.

Proof of claim. Let C be the compact set ®(K,). Applying the Baire Category Theorem
to C, it follows that exists m € w such that Kz, N C is non-meager relative to C'. As
Kpg,, is closed, this implies that there exists a nonempty open set V C S, such that
VNC CKg,. Let U = 71 (V). Since U N K, # 0, there is a finite injection s : w — w
with U(s) CU and U(s)N K, # 0. Lemma 2.28 thus yields a finite support permutation

7w € K, such that U(m) CU. Hence
QUTNK,) CPUNK,) C(VNC)C Kg,.
This completes the claim.

Suppose that m,m are as in the claim, such that ®(U(r) N K,) C Kg,. If n is
an upper bound for the support of 7, then 7 = id. Note that each permutation in
U(m) N K, has the form 7o f, for some f € K,, with supp(f) disjoint from supp(rw).

With this in mind, fix an arbitrary = o f € U(mw) N K, and observe that

ﬂ_n!—loﬂ_of:f
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and hence ®(f) is the composite of n! elements of Kj, , since ®(m), ®(mwo f) € Kg,,. On
the other hand, any composite of n! elements of Kg,, is bounded by the n!-fold composite
of B, with itself. As we assumed that {5,, : m € w} is closed under composition, we

conclude that ®(U,NK,) C Kj,, for an appropriate r € w. This completes the proof. [

Lemma 2.30. Given increasing B,, € w®, there exists a € w“ such that, for each
n,m € w, there is no continuous injective group homomorphism ® of S, with ®(U, N

K,) CKg,.

Proof. For the sake of the present proof, if f € S, we define a chain of roots of length
n for f to be a sequence fy,..., [, € Sy such that f, = f and fj2 = fj—1, for each
1<j<n

Suppose that f € K, is a product of disjoint k-cycles, for some k > 2. If n € supp(f)
(i.e., f(n) # n), then f has no chain of roots in K,, of length greater than a(n). This
follows from the fact that, were fy,..., f, a chain of roots of length p > a(n), then at
least one f; is not a member of K, as fy(n),..., fp(n) are all distinct. Recall here that
“square-roots” of products of cycles are obtained by interleaving terms of distinct cycles.

For example,

Jo= [Oa 1] [2’ 3] [47 5] [67 7]
f1=10,2,1,3][4,6,5,7]
fo=10,4,2,6,1,5,3,7]

is a chain of roots for fy, of length 2.

Let a € w* be such that, for each k € w, the permutation

fe=[kE+1][k+2,k+3]...
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has a chain of roots in K, of length at least

max(B; " (k) + 1.

We may further assume that (Vk)(a(k) > k + 2).

Suppose, towards a contradiction, that ® is a continuous endomorphism of S, with
U, N K,) C Kg,, for some o € w* and m,n € w. For simplicity, write 3,, = 5. Let
a € w be least such that ®([n,n+ 1,7+ 2])(a) # a.

For each k£ > n + 2, we have that
O([n,n+1,k]) = ®([n+2,k]) o ®([n,n+ 1,n+2]) o ®([n+ 2, k]).
Observe that
n+2kl=Mn+2n+3][n+3,n+4]...[k—1Lkl[k—2k—1]...[n+2,n+ 3]

and hence [n + 2, k] is a product of fewer than 2k members of K, since each [j, 7 + 1]
is in K. Thus ®([n + 2,k]) is a product of fewer than 2k members of K. (Since each
®([j,7 + 1]) € Kg, for each j > n.) In particular, ®([n + 2,k]) is bounded by 3?*,
the 2k-fold composite of § with itself. (This follows in part from the fact that § was

assumed to be increasing.) Hence we have
®([n + 2, k)7 (a) = ([n +2,k)(a) < 5*(a)

and thus there exists by € supp(®([n,n + 1,k])) with by < 8%(a).

As noted above, the choice of o guarantees that each [j,j + 1] € K,. Hence
kk+1][k+2,k+3]... € K,

and thus

h=o(kk+1][k+2,k+3]...) € Kg.
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Observe now that

O(n,n+ 1,k k+1][k+2,k+3][k+4,k+5]...) (%)
=O([n,n+ 1,k [k, k+1][k+2,k+3]...)
=®(n,n+ 1,k) o ®([k,k+ 1] [k +2,k+3]...)

=®(n,n+1,k])oh

As can be seen from the line marked (x), this permutation has order 4, while ®([n,n +
1, k]) has order 3. Thus supp(h) must intersect each orbit of ®([n,n+1, k), as otherwise
the permutation above will contain a 3-cycle and not be of order 4. In particular, supp(h)
contains an element of the orbit of by under ®([n,n + 1, k]). This implies that supp(h)
contains an element b; < 3% (a). We now conclude that h has no chain of roots in Kj, of
length greater than B(b;) < 8**1(a). (Again, we are using the fact that 3 is increasing
to obtain this inequality.)

On the other hand, if £ > m, a, then
F41(a) < BU (k) = B () < max(B41 (k)
and |k, k+ 1] [k + 2,k + 3| ... has a chain of roots in K, of length at least
g

max(8;" (k) + 1.

This is a contradiction since ¢ maps K, into K3 and, being a homomorphism, must

preserve chains of roots. O]
We may now complete the proof of Theorem 2.26.

Proof of Theorem 2.26. Suppose that Sy, f1,... € w* are given. With no loss of general-

ity, we may assume that {3, : m € w} is closed under compositions and that each 3, is
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strictly increasing. (Making these assumptions only enlarges the K, set |, Kg,,. Also,
these two assumptions do not conflict as the composite of increasing functions remains
increasing. )

Let @ € w be as in Lemma 2.30, for {f,, : m € w}. Here we may assume that
a(n) > n, for each n. If there is a continuous endomorphism ® of S, such that ®(K,) C
U,, K5,., then Lemma 2.29 yields m,n such that ®(U,, N K,) C Kg,,. This contradicts

the properties of a. O

2.5 Universal analytic subgroups

2.5.1 The case of Z¥

Theorem 2.32 below gives a universal analytic subgroup of the countable power of any

Polish group. In this section we consider a special case.
Theorem 2.31. There is a universal analytic subgroup of Z*.

Proof. The proof is similar in spirit to that of Theorem 2.7.
For s € w<¥, let A3, A5, ... list all finite subsets of Z*l that contain the zero sequence
0lsl. For each s, j, let I7 C w be an interval of length |s| such that, taken together, the

I? partition w. Define an analytic set A9 C Z* by
€A = (Faecw’)(Vs,j)((s = (alls]) = z[I; € Aj)).

Let Hy = (Ap) be the subgroup generated by Ay. As the class of analytic sets is closed
under continuous images and countable unions, we have that Hj is also analytic. We

will show that Hj is universal for analytic subgroups of Z“.
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Fix an analytic subgroup H C Z*. Let S C (Z X w)<¥ be a tree such that H = p[S].
For u € Z<¥, let u* be the sequence defined by u*(i) = |u(i)|. Likewise, define x*, for
x € 1~

We define a new tree T' C (Z x w)<“ by
T ={(u,s+u*): (3t <s)((u,t) € S)FU{(085): 5wl

Claim 1. p[T] = p[S].

Proof of claim. If (z,a) € [S], then (z,a + z*) € [T]. Hence p[S] C p[T]. On the
other hand, suppose that (z,a) € [T]. If z = 0, then = € p[S], since p[S] is a subgroup.
If x # 0, then, for each k, there exists ¢, € w* such that t; + (z | k)* < a | k and
(x | k,tx) € S. By compactness (the t; are all bounded by «) there exist k1 < ko < ...
and 8 < a such that t;, — 3, as i — oo. Thus (z [ k,5 | k) € S, for all k. In other

words, (x,3) € [S] and hence x € p[S]. This proves the claim.

For s € w<¥, let T, denote the set {u € Z<“ : (u,s) € T'}. The tree T has the

property that, for sg, s; € w* with sy < s,
T.,NZF C T, NZ" (2.6)

Observe that each T, N ZF! contains 0 and is finite (since u € Ty N Z! implies
u* < s). Thus, for each s € w<*, we may take 7(s) € w such that Aj(s) =T, NZlH.

Define a continuous homomorphism ¢ : Z* — Z* by

xk if j = 71(s),
p(z) [ I} =
& otherwise,

for s € w<¥ with k = |s| and j € w. The following two claims will complete the proof.
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Claim 2. If x € H, then ¢(x) € Ay and hence ¢(x) € Hy.

Proof of claim. Let x € H and o € w* be such that (x,«) € [T]. Fix k and s € w”. If

s > (a [ k), then

€ T NZF
CT.NZ* (by (2.6))

= Az

If j # 7(s), then @(x) [ I} = 0% € AS. We see that p(z) € Ay, witnessed by a. This

finishes the claim.

Claim 3. If p(z) € Hy, then z € H.

Proof of claim. Since ¢(x) € Hy, there are yi,...,y, € Ay and a group word W such
that o(z) = W(y1,...,Ym)-

Let oy, ..., € w*” be such that y; [ I7 € A3, for each i < m, each s > (a; [ [s])
and each j. (This is the definition of membership in Aj.) Let o = oy + ... + . If
s €whand s > (o | k), then also s > (a; [ k) and so y; | I} € AS. Write I; = If(tfrk),

Ay = A2, and define

uf = (yi | Ir). (2.7)

For each k,i, we have u¥ € A, = T, NZ*. Since u* < «a | |ul, for each u € T,, we

have that Ty, is finite branching and hence there are kg < k; < ... and x; € [T,] such
that uf" — x;, as n — oo, for each i < m.

Finally, we check that x = W(xy,...,z,). Fix p and let k, > p be such that
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Since p was arbitrary, we see that x = W(xy,...,2,,) and so x € H, since H is a

subgroup. This completes the claim and finishes the proof. O

2.5.2 Arbitrary countable powers

The following is our main result on the existence of universal analytic subgroups.

Theorem 2.32. Let I' be a Polish group. There exists a universal analytic subgroup of

.

As with Theorem 2.16, applying this result to a universal Polish group yields the

following corollary.

Corollary 2.33. If G us universal Polish group, there is an analytic subgroup Hy C G,
such that for each analytic subgroup H of a Polish group I' there is a continuous injective

group homomorphism ¢ : T — G such that H = o' (Hy).

Again, the injectivity of ¢ follows from an inspection of the proof of Theorem 2.32.
Before proving Theorem 2.32, we will introduce some notation reminiscent of that in

the proofs of Theorems 2.9 and 2.17.
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Basic notions

Fix a Polish group I' with identity element 1, a compatible complete metric d and a
countable dense set D C T' such that 1 € D. Let n be the cardinality of D (either a
finite number or w). Let # : D <— n be a bijection such that #1 = 0. If g € D¥ (or
D<¥), define 8* € n* (or n<¥) to be the sequence with 3*(i) = #3(i). For u,v € I'*,
write u ~ v to indicate that d(u(i),v(i)) < 2~V for each i < k.

For x € ', we the define a sequence [, € D* by letting (5,(i) be the #-least element
a € D such that d(x,a) < 270+). We call 8, the D-approzimation of z. It follows
that 8,(i) — z, as i — oco. Notice that 8y =1 = (1,1,...). With the notation above,

Be |k~ a2k = (x,...,2), for each k.

Analytic subgroups

Fix an analytic subgroup H of I'. Let F' : w¥ — T be a continuous map with H = ran(F).
With no loss of generality, F'(0) = 1. Otherwise, we could replace F' with the function
a— (F(0)'F(a)).

For s € w<¥, with k = |s|, define
Po=(J{F() : [t =k &t <sh)n{e: (B [ k)" < s}
This Suslin scheme is very similar the one in Theorem 25.13 of [9] and the next claim is
more or less verbatim from its proof. (Recall that [t] = {a € w¥ : t C a}.)
Claim. H = A,P,.

Proof of claim. Observe that H C AP, since if + = F(«), then © € (), Py, with

v =a+(8;)*. Tosee that H DO AP, fix v € A P,, with o € w* such that x € (), Pajn.
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By definition of the P, there are «,, € w* such that, for each n, we have o, [n <« [ n
and F(ay,) = x. By compactness, there is a subsequential limit 7 < « of (@, )new. The

continuity of F' implies that x = F(a,,) = F(v). Hence x € H, as desired.

Now let

By ={B, [ k:z € P,).

Each B, is a finite subset of D¥ such that u* < s, for every u € B,. We state the key

properties of the B, as a lemma.
Lemma 2.34. For each s € w<* with k = |s|, we have the following:
1. 1% € B,.
2. Ift € wF and s < t, then B, C B.
3. If m < k, then By | m C Bgyy,.
4. If u € By, then d(u(i),u(i + 1)) < 27, for each i < k — 1.

Proof. We prove each statement in turn.

1. Since F(0) = 1, we have that 1 € P,, for each s. This implies that 1¥ € B,
because 3, = 1.

2. It follows from the definition of P, that P, C P,, whenever s < t. Thus also
B, C By, if s <t.

3. Suppose that u € B,. Let © € P, be such that u = 8, | k. From the definition of
the P;, we see that Pj},, 2 P, and hence x € Pyp,,. Thus u | m = 3, | m € By, and

therefore By [ m C Byyy,.
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4. Let x € H be such that w =, | k. For each i < k — 1,

d(u(i),u(@+ 1)) < d(u(i),z) + d(z,u(i + 1))
< 9+ 4 9—(+2)

< 27"
Il

Lemma 2.35. For x € I, we have x € H if, and only if, there exist a« € w*, v € DY

such that v | k € By, for each k, and limy, y(k) exists and equals x.

Proof. For the ‘only if” part, suppose that € H, with z € (), Py Let v = 8,. Then
for each k, we have 7y | k € B,y and limy v(k) = z, since d(y(k), z) < 2-¢+1).

For the ‘if’ part, suppose @ € w* and v € D* are such that (Vk)(y | k € Bay) and
limy y(k) = x.

For each k, let z;, € P, be such that v [ k = 3;, | k. By the definition of the P,
there exist oy € w* such that a; [ k < a [ k and x; = F(ag). By compactness, there is

a convergent subsequence (g, Jnew Of (k)rew, With limit § < a.
Claim. F(6) = x and hence z € H.

Proof of claim. Fix € > 0. Let i be such that 27° < /3 and d(vy(i),z) < /3. Since
27" < /3, it follows from the definition of D-approximations that d(zx, 8., (i) < €/3, for
each k. By the continuity of F', we may choose k,, > i such that d(F (), F(ag,)) < /3.
Since F(ay) = xy, this is equivalent to d(F(J),xr,) < /3. Also observe that, since

kn > 1, we have (i) = B,,, (i) and hence d(x,,(i)) < /3, by our choice of i. We now
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conclude that

d(F(0), ) < d(F(9), zx,) + d(zk,, V(i) + d(v(i), )
< 3¢/3

= E.

Since € was arbitrary, we must have F(0) = x. O

Proof of Theorem 2.32

We will prove that, given a Polish group I', there is an analytic subgroup of I' which
is universal for analytic subgroups of I'. If T is itself a countable power, then we have
[' = I'¥ and the statement of the theorem follows.

Let D, # and ~ be as above for I', with n = |D|.

We begin by defining the desired universal subgroup. For each k and s € w*, let
Aj, A3, ... enumerate all finite subsets of D* that contain 1*. For s € w<* and j € w,
let I} C w be an interval of length |s|, such that the I$ partition w. Define Ay C I'“ to

be the set of all £ € I'“ such that

(FJa € w*) (3B €D¥)(Vs, j.k)(k=|s| &s>alk

— BILeA and B ~ETT).

Let Hy be the subgroup generated by Aj.
We now show that Hj is a universal analytic subgroup. Fix an arbitrary analytic
subgroup H C I" and let F, P, and By, for s € w<¥, be defined as above for H. For

each s € w=, choose 7(s) € w such that B, = A7 ). Let ¢ : I' = I'* be the continuous
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group homomorphism such that for each s, with & = |s|, and j € w,
x if j =7(s),
1% otherwise.
We will show that ¢ ~!(Hy) = H.
Claim 1. If x € H, then ¥(z) € Ay and hence (z) € Hy.
Proof of claim. Given x € H, there is o € w* such that « € (), Paji. Define § € D* by
BTk ifj=r(s),
1% otherwise,

for each s € w<* of length k and j € w.

We will see that o and S witness the membership of ¥)(x) in Ag. Indeed, fix s € w<*
with k = |s|. If j # 7(s), then 8 | I} = 1¥ and ¢(x) = 1*. Hence 3 | I} € A$ and
B 115 ~(x) [ I;. Now assume s > [ k and j = 7(s). By the definition of £,,

BIL =01k ~ 2 =) L.
Also, since x € P, i, we have 3, [ k € By, and so

B1I =6 1 k€ Buy C By = A3

The containment “B,;, € B,” is a consequence of s > « [ k. It now follows that

¥(x) € Ap, by definition.

It remains to show that x € H, whenever ¢(x) € Hy. Suppose 1(x) € Hy. There

must be 7y, ..., 9, € Ag and an m-ary group word W such that

V() =W, m)
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Let aq,...,q,, € w* and f,...,0, € D* be as in the definition of Agy, witnessing
the membership of 7y,...,m, in Ag. Note that we may replace all of the «;’s with
a=a;+ ...+, and «, §; will still witness n; € Ay, for each i < m.

For simplicity, we write [, = If‘(r(f[k) and Ay = A:([im)- Recall that Ay = By, by our
choice of 7(a [ k).

Let u¥ = 8; | I. The definition of Ay implies that u¥ € A, and
ui ~ | I,

for each k. Since uf € Ay, = Bap, we also have (uf)* < a | k, by the definition of Byy.

1

Define v¥ = uf~1. Recall that #1 = 0, and so (7¥)* < a.

By the compactness of {6 € n¥ : § < a},* we iteratively choose subsequences of the
(Y¥)kew to obtain kg < k1 < ... and 7; € D* such that, for each i < m, (v;)* < « and
(%kp)* — (75)*, as p = oo. By taking a further subsequence of the k,, we may assume

that k, > p and

v lp=9%"1p, (2.8)
for each + < m and p € w. Note that ’yfp [p= ufp | p, since k, > p.
Claim 2. For each i, the sequence ~; is Cauchy.

Proof of claim. Since ) 27" < oo, it will suffice to show that d(v;(n),y;(n+1)) <277,

for each n. If n is fixed and p > n + 2, then, by (2.8),
il (n+2)=7" 1 (n+2) =" [ (n+2).

Since ufp € Bk, , Lemma 2.34(4) implies that d(v;(n),vi(n + 1)) < 27", as desired.

30f course, if n < w, then n* itself is compact.
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Since the metric d is complete, it follows from Claim 2 that there are zq,...,x,, € I’
such that lim, 7;(n) = x;, for each i < m. Combining this with the fact that, for each

p, we have
k
Yi I p=u;" | p € Ba, | p € Bap,

we conclude from Lemma 2.35 that each x; € H. Note that the statement “By, [ p C

B,,” follows from Lemma 2.34(3).
Claim 3. x = W(xy,...,2,,) and hence x € H.

Proof of claim. Let n, be the (p — 1)-st element of the interval I . (Note that I, has
length k, > p.) Recall that uf ~ n; | Iy, for each k,i. Hence d(uf” (p—1),mi(n,)) <277

and, since u;*(p — 1) = v(p — 1), we have
A (ny), i) < dlm(ny), " (p = 1)) + d(w” (p = 1), 2:)
<27+ d(vi(p— 1), m),

for each ¢ < m. Since lim, v;(p — 1) = x;, we conclude that n;(n,) — z;, as p — oo.
By the continuity of the group operations, the group word W induces a continuous

function I'™ — I". Thus

W (ng), ... ,nm(ny)) = W(z1, ..., Tm),

as p — 0o. On the other hand,

r = W(nl(np)7 s 777771(”1)))

is constant, for all p. This implies that, in fact,

W(m(%% s vnm(np)) = W<x1a <o 7xm)7

for each p. Thus x = W(xy,...,x,,), completing the claim and proof. O]
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2.6 Examples

The following observation enables us to apply our main results in a somewhat broader

setting.

Proposition 2.36. Suppose that I'; A are topological groups and C is a class of subgroups
that is closed under continuous homomorphic images. Suppose that A has a universal
subgroup for C and I' — A — I', where “—7 denotes continuous homomorphism em-

bedding. Then ' has a universal subgroup for C.

Remark. The classes of compactly generated, K, and analytic subgroups are all closed

under continuous homomorphic images.

Proof of Proposition 2.36. Let T 2+ A %% T be continuous injective group homo-
morphisms. Let H C A be a universal C subgroup of A. To see that H = W(H)
is a universal C subgroup of I', observe that if K C I" and K € C, then ¢p(K) € C

and hence ¢(K) = 0~(H), for some continuous endomorphism 6 of A. Thus we have

K = (¢po0op) (H), becuase o, are injective. O

2.6.1 Basic examples

The following examples are direct applications of Proposition 2.36.

Example 2.37. By Theorem 2.32, S¥ has a universal analytic subgroup. Note that S
embeds isomorphically in S% and, in fact, S¢ embeds in S, as well: if Ay, A,... are

disjoint infinite subsets of w, then S is isomorphic to the closed subgroup

{f € 5o : (Vn)(f(An) = An)}

Proposition 2.36 thus gives a universal analytic subgroup of S..
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Example 2.38. Let ¢y C R* be the subgroup
{z € R¥ : limz(n) = 0}.

Recall that ¢ is a separable Banach space (hence a Polish group) when equipped with
the sup-norm (denoted by ||-||sup). Let C be either the class of compactly generated or
K, subgroups. Since cg is nowhere locally compact, Theorem 2.9 does not immediately
give universal a C subgroup of ¢§. (Theorem 2.32 still applies, of course.) Nonetheless,
we shall see that c§ has a universal C subgroup.

Observe that the Banach space topology on ¢ refines the subspace topology inherited
from R¥: suppose U = Iyx...xI;_1xR" is a basic open set in R¥ (where Iy, ..., [, CR
are bounded open intervals) and zo € U N¢y. Let € > 0 be small enough that, for each

n < k, the open interval (zo(n) — €, z0(n) + €) is contained in I,,. If
B={z€cy: |z —xollsup <},

then B is open in ¢y and x € B C U Ncy. Hence U N ¢y is open with respect to

the Banach space topology on c¢y. This implies that the inclusion map ¢y — R¥ is a

continuous homomorphic embedding and hence so is the inclusion c¢f — R**“ = R¥.
To apply Proposition 2.36, we also need to check that R“ — c. This embedding is

witnessed by the map ¢ : R“ — ¢ where

By Proposition 2.36 we conclude that c§ has a universal C subgroup, since R“ does.

By similar arguments using the fact that the Banach space topologies of P, (> ¢ C

R“ refine their subspace topologies, we can also conclude that the groups (€°)«, (£>°)¥
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and ¢ contain universal subgroups for the classes compactly generated, K, and analytic
subgroups. The case of (£>°)“ is interesting because £*° (with the sup-norm) is complete,
but not separable. Theorem 2.32 does not even apply to (¢*°)“, but Proposition 2.36
still enables us to conclude that (£°°)* contains a universal analytic subgroup.*

It is also worth mentioning the case of /2. Since ¢ is a separable Hilbert space and,
by Corollary 5.5 in [1], all separable Hilbert spaces (over R) are isomorphic, we have
that all separable Hilbert spaces are isomorphic to £2. The comments above thus imply

the following.

Proposition 2.39. The countable power of every separable Hilbert space (over R) con-

tains uniwersal K,, compactly generated and analytic subgroups.

Remark. The arguments above apply equally to C in place of R. (I.e., C* also has
universal subgroups in our three classes.) Thus the proposition above applies to complex

Hilbert spaces as well.

The following example shows the existence of universal subgroups in another non-

separable topological group.

Example 2.40. Let S be a separable space and C(S) be the additive group of continuous
real-valued functions on S, with the topology of uniform convergence. The group C(S5)

is metrizable, but not separable if S is not compact. A compatible metric is

p(f,g) = sup{min{|f(z) — g(z)|, 1} : v € S}.

The distance function p is the so-called “uniform metric” on C'(5).?

“Definitions of the Banach spaces ¢, £*° and ¢ may be found in Conway’s book [1].
®See p. 266 in Munkres’ book [12].
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Let A C S be a countable dense set. Consider the Polish group R#, equipped with

the product topology, i.e., R* = R¥. The map 1 : C(S) — R* defined by

f=fTA

is a group homomorphism. To see that 1) is continuous it suffices to check that ~1(U)
is open when U is a basic neighborhood of 0. Given a basic neighborhood U > 0, we

may assume that, for some finite set F' C A and € > 0,

U={zcR": (Va€ F)(Jz(a)| < &)}.
Let F={f e C(S): (Vae F)(f(a) =0)} and take

V=1|J{geCS) :n(fg) <c}
feF

As the union of open sets, V is open in C(S) and ¢~ (U) = V. Also, ¢ is injective
because A is dense and thus f [ A =g [ A implies f = g. It follows that C'(S)“ embeds
in RA** =~ R¥ as well, via a continuous group homomorphism.

Finally, note that R embeds in C'(S)* via the map ¢ : R¥ — C(S)%, where ¢(x)(n)
is the constant function f = x(n). Proposition 2.36 now lets us conclude that C'(S)¥
contains universal compactly generated, K, and analytic subgroups. If S is such that
wx S~ S (for example, if S = w®) then C(5)* = C(5) and thus C(S) itself contains

universal subgroups for each of these classes.

As noted on page 79 in [9], every separable Banach space is isomorphic to a closed
subspace of C'(2¥). Since C'(2¥) = C(w x 2¥), this implies that the countable power
of any Banach space is isomorphic to a closed subgroup of C'(w x 2¢). By the previous

example, we therefore have
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Proposition 2.41. Let C be one of the classes of compactly generated, K, or analytic
subgroups. There is a subgroup Hy C C(w x 2¥), with Hy € C, such that for any
separable Banach space B and any subgroup H C B in C, there is a continuous group

homomorphism ¢ : B* — C(w X 2¢) such that H = o' (Hy).
The next example relates directly to Theorem 2.9.

Example 2.42. Let (I';,),ew be a sequence of locally compact Polish groups. Consider
P, I'n with the subspace topology from [] I',. Although separable, the direct sum
@, ', is, in general, not Polishable.

The product [],I'¥ is isomorphic to a closed subgroup of (@, I';)“. Furthermore,

(6P,,I'»)* is isomorphic the the ITJ subgroup

{&: (vh)(v*n)(E(n)(k) = 1)}

of [[,I'%. Theorem 2.9 and 2.32 together with Proposition 19 therefore imply that

(B, I'n)“ has universal compactly generated, K, and analytic subgroups.

2.6.2 Separable Banach spaces

In this section we show that every separable infinite-dimensional Banach space with an
unconditional basis (we give the definition below) has universal compactly generated, K,

and analytic subgroups. The key facts will be Proposition 2.36 along with the following.

Theorem 2.43. The Banach space ¢y has

6To see this with I';, = R™, suppose that T is a Polishing topology on €, R". By the Baire Category
Theorem, there is an n such that R™ is 7-non-meager in ), R™. Being a subgroup, R" is thus open in
@, R", by Pettis’ theorem. This gives a contradiction to separability, since R™ has uncountable index

in @, R™.
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A. a universal compactly generated subgroup,
B. a universal K, subgroup and
C. a uniwersal analytic subgroup.

In each case, we obtain the desired universal subgroup of ¢y by “shrinking” an ap-
propriate universal subgroup of R“. Note that we could also prove these facts directly

by modifying the proofs of Theorems 2.9 and 2.32. We begin with a lemma.

Lemma 2.44. Suppose o : w — RY is such that lim, a(n) = 0. If ' C ¢ is closed and

lz(n)| < a(n), for each x € F and n € w, then F is compact in cy.

Proof. Suppose that (x;);c. is a sequence of elements of F'. Let g, i1, . . . be a subsequence
such that (z;, (k))new is convergent, for each k € w. Such a subsequence may be obtained
by succesively choosing subsequences to guarantee that (x; (j))neo is Cauchy for all
Jj < k and taking (i,)ne. to be a pseudo-intersection of these subsequences. Let x € cq
be given by x(k) = lim,, z;,(k), for each k. Note that |x(k)| < a(k), for each k € w.

To see that ||z;, — z||sup — 0, as n — o0, fix € > 0 and let ky be large enough that
la(k)| < 5, for each k > ko. Let ng be large enough that |z;, (k) — x(k)| < €, for each

n > ng and k < ko. It follows that ||x;, — z||sup < €, for each n > ny. O

Proof of A. Let (K) C R“ be a universal compactly generated subgroup of R. (Such
a subgroup exists by Theorem 2.9(1).) With no loss of generality, we assume that the
compact set K contains 0. Let {I,, : n,p € w} be intervals partitioning w such that

each I, , has length n. Define K’ C R¥ by

re K < (Vn,p)(z | L, € (1/np)K | n).
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Where (1/np)K | n denotes the set of scalar multiples by (1/np) of elements of K [ n.
It follows from Lemma 2.44 that K’ is compact in cg.

We will show that (K’ N ¢g) is a universal compactly generated subgroup of cy.
Indeed, fix an arbitrary compact A C c¢y. Since A is also compact in R¥, there is a
continuous group homomorphism ¢ : R* — R* such that (A) = o' ((K))."

For each n € w, let 7(n) € w\ {0} be such that, for every x € [—1,1]* and i < n,
we have |p(x)(i)] < 7(n). (Such 7(n) exist by the compactness of [—1,1]* and the
continuity of ¢.) Define ¢ : R¥ — R¥ by

(1/np)p(x) In  if p=7(n)?
¢<x) [ Inp=

0™ otherwise

Claim 1. ¢(co) C co.

Proof of claim. Note that all continuous group homomorphisms of R are automatically
linear, hence ® is linear. Thus, to prove the claim, it will suffice to show that ¢(z) € ¢y,
for all x € ¢y with ||z]|sup < 1. Fix such an = and an € > 0. For i € w, ¢(z)(i) # 0 only

if i € I, 7(n)2, for some n. For i € I, ;(,)2, we have

[¢(2)(i)] < (1/n7(n)*) max|o(z)(j)]

j<n

< 1/nt(n)

Thus |¢(x)(z)] > € only if i € I,, ;(n)2 and 1/n7(n) > . There are only finitely many

such <.

Claim 2. For each z € ¢y, we have x € (A) <= ¢(z) € (K’ Ncy).

7As noted earlier the Banach space topology of ¢ refines the subspace topology inherited from R¥
and hence compactness is “preserved upwards.”
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Proof of claim. To prove the claim, it will suffice to show that ¢ (z) € (K’ N¢y) <=
p(z) € (K), since we already have z € (A) <= ¢(z) € (K).

Fix a group word W,

p(x) e WIK] < (Vn)(p(z) [ n € WIK] [ n)
= (Vn)((2) | Inrmp € (1/n7(n)?)(WIK] | n))

< Y(x) e W[K'].

The first and last “ <= " use the fact that W[K] is closed (since K is compact). As W

was arbitrary, this completes the claim and proof. O

Proof of B. Let H = |J,, K,, be a universal K, subgroup of R¥, as given by Theo-

rem 2.9(1). We may assume that
(0 € Ky) and (Vn)(—K,, = K,, and K,, + K,, C K, 11). (2.9)

Let {I,,, : m,p € w} be a family of intervals partitioning w such that each I,,, has

length m. Define K] C R by
re K, < (Ym,p)(x | I, € (1/mp)K, | m)

and let H' = |J K. Again, Lemma 2.44 implies that each K], is compact in ¢g. Observe
that (2.9) holds for the K/ as well. In particular, H' is a subgroup of R¥. We will show
that H' N cq is in fact a universal K, subgroup of cy.

Let A = |J,, An be an arbitrary K, subgroup of cy. Again, A is still K, in R¥.
Hence there is a continuous homomorphism ¢ : R¥ — R* such that ¢ '(H) = A. Let

7(m) € w\ {0} be such that, for each z € [—1,1]* and i < m, we have |¢(x)(i)| < 7(m).
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Define ¢ : R¥ — RY by

(x) | Ly = (L/mp)e(z) I m if p=7(m)?,

o™ otherwise.

As in proof of part A, it follows that 1)(cy) C cg. Finally, to see that ¢y~ '(H') = A, it

will suffice to show that
(Vz € co)(Vn)(¢(x) € K, < ¢(x) € K,,).
To see this, observe that, for each n,

b(x) € K, = (Fm)((@) [ L sy € (Lmr(m)2)K, [ m
— (Im)(p(x) [ m e K, | m)

= ¢(x) € K,.
[

Proof of C. Let H C R* be a universal analytic subgroup of R¥, as given by Theo-
rem 2.32. Let F': w* — RY be continuous with H = ran(F) and let Py = |J{F([t]) :
lt| = |s| At < s}. The proof of Theorem 25.13 in [9] shows that H = A,P; and, for
each o € w¥, the set P, = [, Pan is compact. Take {[,, : s € w<¥,p € w} to be a
set of intervals partitioning w such that each I, has length |s|. Let # : w<“ <> w be a

bijection and define H' C R¥ by
ve H' = (3a)(Vs = a | |s)(¥p)(x | Lo € (1/p#s)P, | Js]).

We will show that (H' N ¢p) is a universal analytic subgroup of ¢y. Fix an analytic

subgroup A C ¢p. As A is analytic in R, there is a continuous homomorphism ¢ :
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R“ — R such that ¢~ '(H) = A. As before, let 7(n) € w\ {0} be such that, for each

x € [—1,1] and i < n, we have |p(z)(i)| < 7(n). Define ¢ : R¥ — R“ by

() [ Iy = (1/p#s)e(z) | s] if p=7(|s])?,

0lsl otherwise.

Again, it follows that 1(cq) C co.

To check that A = ¢~'({H' Ncy)) it will be enough to check that
(Vo € co)((x) € (H'Y <= o(z) € H). (2.10)
For the “ <=7 part of (2.10), suppose that ¢(x) € P,. Then

(Vn)(p(x) € Parn) = (Vn)(p(z) [ n € Pa [ n)
= (Vs> als))(e(@) [ s| € P |s])

= (z) € H', witnessed by «,

since ¢(z) | Lyp = (1/p#ts)e(x) [ |s].

For the “ = ” half of (2.10), suppose that ¢(x) € (H'Ncy). Say W is a group word
and Y1, . .., Ym € H'Ncg are such that ¥(z) = W(y1, ..., ym). We may assume that there
is a single o witnessing the membership of 41, ..., 4, in H', i.e., for each i < m, p,n € w
and s > « [ n, we have y; | I, € (1/p#s)Ps [ n. We will see that p(z) € W[P,]. For
notational simplicity, let I, denote the interval I, ;)2 and r, denote 1/n7(n)?. By
definition, ¥ (z) | I, = (1/r,)p(z) | n. For each n and i < m, let o/, € w* be such that

o In<alnand F(ab) | n=r,y; | I,. Hence



84

By compactness, take ng < n; < ... and «; < « such that, for each ¢ < m, we have
lim, o, = ;. Finally, we will see that p(z) = W(F (), ..., F(a,)) and conclude that

(x) € H. Fix ¢ € w and observe that, for each n, > ¢,

=W(F(a1),...,F(anm)) [ L.

The second equality is obtained by taking the limit as p — oco. As ¢ was arbitrary, we

have the desired result and conclude the proof. O

We now proceed to the main result of this section. The following definition may be

found at the beginning of [5].

Definition 2.45. Let B be an infinite-dimensional Banach space (over R). An uncon-

ditional basis for B is a set {e, }new C B such that

1. each e, is a unit vector,

2. for each x € B, there is a unique sequence ag,a,... € R with x = > _ a,e,

necw

(convergence in norm) and

3. any permutation of {e, },e, still has the previous property.

The following fact (also mentioned in [5]) gives a useful property of unconditional

bases.

Proposition 2.46 ([5], Theorem 1). If {e, }new i an unconditional basis for a Banach

space B, then there is a constant C' such that for each x =5 _ ane, € B and (€,)new €

new

[—1,1]“, we have

| > euan
new

< CH > anen
new
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The following lemma is consequence of this proposition.

Lemma 2.47. If5 is an infinite-dimensional Banach space with an unconditional basis,

then B and ¢y are mutually embeddable, as topological groups.

Proof. Let {e,}ne, be an unconditional basis for B, with C' as in the previous proposi-
tion.

We first show that B embeds in cy. Define ¢ : B — ¢y by ©(>_, anen) = (an)new-
Since the sum ) ane, is convergent, it is, in particular Cauchy and hence the norm of
the nth term converges to 0. It follows that ¢ maps 8 into ¢;. We must now see that
© is continuous. Since ¢ is linear, it will suffice to show that ¢ is continuous at the zero
element of B. Fix x = Zn ape, € B. For each n, let ¢, = 1 and ¢, = 0, for k # n, and

observe that

anl = llaneall = || - 2nan| < Cllal
new

Thus [|¢(2)|lsup < C||z||, showing that ¢ is continuous at 0 € B.
We now wish to embed ¢y into 8. Define ¥ : ¢g — B by ¥((an)new) = D, 5%€n-

Since (ay)new is a bounded sequence, this latter sum is always well-defined. To see that

1 is continuous, observe that, if ||(an)new||lsup < 1, then by Proposition 2.46

SC’HZ%% .
n

Thus v is a bounded linear map and hence continuous. O

[((@nne)ll = || g2en

Combining this lemma with Proposition 2.36, we obtain the following theorem.

Theorem 2.48. Let B be an infinite-dimensional Banach space with an unconditional

basis. Then B has universal compactly generated, K, and analytic subgroups.



86

Remark. To put this theorem in context, recall that (among many others) all ¢# spaces
(1 < p < o0) have unconditional bases. (On the other hand, Per Enflo [3] and later
Gowers-Maurey [5] showed that there exist separable Banach spaces with no uncondi-
tional bases.)

The following serves as an addendum to the last theorem.

Theorem 2.49. The following Banach spaces (viewed as topological groups) have uni-

versal compactly generated, K, and analytic subgroups:
1. 0>,
2. C(X), if X is infinite, Polish and compact, and
3. Co(X), if X is infinite, Polish and locally compact.

Remark. In general, the spaces listed in this theorem may not have unconditional bases

(£°° is not even separable) and so Theorem 2.48 does not necessarily apply.

Proof of Theorem 2.49. In each case, we will apply Proposition 2.36 and Theorem 2.43.
1. The embedding cq < ¢*° is via the inclusion map, while /> < ¢y is by means of
the map (an)new — ((1/n)an)new-
2. Let {x,}nen be a discrete sequence of distinct points in X. For each n, let
fn € C(X) have sup-norm 1 and be such that f,(z,) = 1 and f,(zx) = 0, if & # n.
Such functions exist by the Tietze Extension Theorem. Then ¢y embeds in C(X) via

the map z +— Y (z(n)/2") fn.

Let {yn}new be a countable dense subset of X. Then C(X) embeds in ¢y via the

map f — ((1/1)f(Yn))new-

3. Use the same functions as in 2. O
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2.6.3 A negative example

The following example gives our only instances of perfect Polish groups without universal
subgroups in any of the three classes we consider. The key fact is that any nontrivial
group homomorphism of R™ is in fact an automorphism. At this point, we do not know
if there are Polish groups which have no universal analytic subgroups and do not have

this property.

Example 2.50. By Theorem 2.9 there is a universal K, subgroup of R¥. On the
other hand, we shall see that there is no universal K, subgroup of R", for n € w.
First, if p : R” — R™ is a continuous group homomorphism, then ¢ is automatically
a linear transformation. To see this, observe that, since ¢ is a group homomorphism,
one can show that ¢(qr) = gp(r), for any ¢ € Q and r € R™. One then concludes that
p(ar) = ap(r), for any a € R, by the density of Q in R and the continuity of .

Towards a contradiction, suppose that Hy C R"™ is a universal K, subgroup of R".
Let A, B C R be nontrivial K, subgroups such that A is countable and B is uncountable.
Let

A:{(a;l,...,xn)ER”:xlefl&xg:xg:...:xn:O}

and

B:{(aﬁl,...,l'n)GRn:ZL'lGé&xzzx?’:“.:xnzo}‘

A and B are K, subgroups of R™ that contain no linear (over R) subspaces of R”
other than {0"}. Let @4, pp be continuous endomorphisms of R" reducing A, B to
Hy. As ¢4 and pp are actually linear transformations, ker ¢4 and ker ¢p are linear

subspaces of R™. Since ¢4 and g are reductions between subgroups, we must have that
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ker o4 C A and ker pg C B, in particular, both kernels are trivial. Hence ¢4 and ¢p
are actually automorphisms. Thus A and B have the same cardinality, a contradiction.
By the same reasoning, there are no universal compactly generated or analytic sub-

groups of R™.

2.7 An application to ideals

Recall that an ideal on w is a set Z C P(w) that is closed under finite unions and closed
downwards (i.e., if z C y € Z, then z € Z). Also recall that P(w) becomes a Polish

group when equipped with the addition operation

rAy=(z\y)U(y\z).

In particular, every ideal is a subgroup of P(w), since z Ay C x Uy, for z,y C w.

By identifying each x C w with its characteristic function, one can regard (P(w), A)
as (Z4,+). With this identification, the relation z C y agrees with the pointwise x < y.
We use the latter when dealing with Z§ to avoid confusion with the “C” (extension)
relation on Z3*.

In this section, we study the following weak form of Rudin-Keisler reduction.

Definition 2.51. For ideals Z, J on w, we write Z <}, J if, and only if, there is a
subset A C w and a function 8 : A — w such that r € Z <= B }(z) € J, for each

xrCw?b

Theorems 2.54 and 2.55 will use the methods of our earlier results to show that there

are <{-complete F, and analytic ideals. In a personal communication, Michael Hrusék

8We use the notation §§K as a parallel with <gp versus §§B. See pp. 41-42 in [8] for definitions.
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has informed us that, though unpublished, the former result is already known to him.”

The only difference between <, and the usual Rudin-Keisler order is that the
reducing map in the case of gEK need not be defined on all of w. As with Rudin-Keisler
reduction, if Z <{, J and J is an ideal, then Z is an ideal as well. We call a map 3 as

in the definition above a weak RK-reduction. Observe that the map
r s B (x)

defines a continuous homomorphism of P(w) (equivalently, of Z4'). This implies that,
for ideals Z, 7, if Z <{x J, then automatically Z <, J.
Before proceeding, we verify that <, is indeed weaker than <gx. Consider the

following example.

Example 2.52. For x C w, let
Fin(z) = {y € P(w) : y is finite and y C z}.

With this notation, the ideal Fin is Fin(w). If  is infinite, then any bijection 8 : z +— w
witnesses Fin <{f; Fin(z). On the other hand, if z # w, then Fin £rx Fin(z). To see
this, suppose otherwise and let 3 : w — w be such for each y C w, y € Fin <= B7(y) €
Fin(z). Let a € w\ z and let b = B(a). We have {b} € Fin, but 371({b}) ¢ Fin(z), since
a€ p1{b}) and a ¢ =.

We also remark on the fact that <, is weaker than Sf.[K.

Example 2.53. Consider H = {),{0,1}} and the ideal Fin. Both are subgroups of

9See Proposition 5.4 of [7] for a similar result.
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(P(w), ) and H <, Fin, via the map ¢ : P(w) — P(w) defined by

0 if 0,1 € x or both 0,1 ¢ =z,
p(z) =
w otherwise.

It is easier to see that this is a group homomorphism by viewing P(w) as Z%. With this

identification, ¢ is given by

for all z € Z§ and n € w.

On the other hand, we cannot have H <3y Fin, since this would imply that H is an

ideal.

The next two theorems establish the existence of the §§K—complete ideals mentioned

above.
Theorem 2.54. There is a §§K-complete F, ideal in Z5 .

Remark on F, ideals. Since every ideal on w is a subgroup of the compact group Zg,
Theorem 2.4 implies that every F, (i.e., K,) ideal is compactly generated. Since the
downward closure of a compact set is also compact, we conclude that every F, ideal on

w is the set of finite unions of elements of a downward closed compact subset of P(w).
Proof of Theorem 2.5j. For k € w and s € w<¥, let A* be subsets of Z5 such that
e Each A* is closed downward, i.e., u <v € A* = u € A~

o [ AC Z’g’ is closed downward and A O A’;, then there exists 7 such that A = A’;Ai.
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For each k, j, let I ]k’ be an interval in w of length k, such that the I Jk partition w. Define
A CZ§ by

r€A < (3n)(Vk,s)(s| >n = x| IFc A").

Observe that A is F, and hence so is the ideal Z;, generated by A. Note that A is
already closed downward and thus Z; is the set of finite unions of elements of A. We
will show that Z, is §§K—complete among Fj, ideals.

Let Z = |, F,, be an arbitrary F,, ideal. We may assume that Fy C F; C ... and
that each F), is closed downward. (Since the downward closure of a closed set is also

closed.) For each k, choose ay, € w* such that for each n,
_ Ak
Fo k= Ag,

Let S = I*. We will define a weak RK-reduction 8 : S — w which will witness

sCay
T <tk Zo. For each I¥, with s C ay, if i is the jth element of I¥, we set 3(i) = j. We
can re-write the map x — B7!(z) in a way that will be easier to work with. Observe

that

x|k if s C ay,
B a) 117 =

0k otherwise.

The following two claims will complete the proof.
Claim 1. If x € Z, then 8~ !(z) € Zy.

Proof of claim. Suppose that x € Z, with x € F,,,. This implies that, for each k£ and
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s C ag, with n = |s| > ng, we have

If s ¢ ay, then 371(z) | IF = 0F € A% since A is closed downwards. Putting these two

cases together, we see that
(Vk,5)(|s| = ng = B7'(x) | I € AD).
Hence 87 !(x) € A C Zy. This proves our first claim.

Claim 2. If 37!(x) € Zy, then z € .

Proof of claim. Suppose that 37(z) € Zy and yi,...,ym € A are such that 371(z) =
y1U...Uyy,. We will find x4,...,2,, € Z such that x = xy U ... Ux,,. Let n be such
that for each i < m,

(VE,s)(|s| = n = wi [ I} € AY).

Let v} = y; | 1§ . For each k and all i < m, v} € A% |, = F, | k. Hence there exists
zk € F, such that vf = ¥ | k. By repeated use of the compactness of Z$, we choose a

subsequence kg < k1 < ... and z; € F,, such that, for each i <m

.k
lim z;” = z;.
p—o0

To check that z = 2, U ... U z,,, observe that, for each fixed ¢ and p with &k, > ¢, we
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have

=@ u. uak) e
Taking the limit as p — oo, we see that
[ l=(r1U...Uzxy) [ L.

Since ¢ was arbitrary, we must have x = x; U ... U z,,. This shows that x € Z and

completes the proof. O
Theorem 2.55. There exists a <f;,-complete analytic ideal in Z .

Notation. As in the proof of Theorem 2.31, if T is a tree on 2 X w and s € W<, we let

T, denote the set {u € Z<“ : (u,s) € T'}.

Lemma 2.56. Suppose that L is an analytic ideal in Z%. There exists a tree T' on 2 X w

such that
1. T =p[T].
2. If s,t € W* and s <t, then T, C T;.
3. For each s € W*, ifu<wv e T,NZE, thenu e T,NZE.

Proof. Let S be any tree on 2 X w such that Z = p[S|. Define T by

(u,8) €T <= (F(v,t) e S)(v>u &t <5s).
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It follows that T satisfies properties 2 and 3. We must verify Z = p[T']. That Z C p[T
derives from the inclusion S C T'. For the other direction of containment, suppose that
(z,a) € [T]. By definition, there exist pairs (ug, sp) € SN (2 x w)* such that up >z [ k
and s, < « | k, for each k.

By compactness, there exist y € Z3, 8 < o and kg < ky; < ... such that s, —  and
uy, — y, as n — oo. It follows that (y, ) € [S] and x < y. Thus z € Z, since Z is an

ideal. ]
Proof of Theorem 2.55. For s € w=* with k = |s| and j € w let A% C Z§ be such that
o If u<ve A3, then u € A5 (A3 is closed downwards.)
e For any A C Z& which is closed downwards, there exists j such that A = As.

Let If be intervals, partitioning w, such that each I7 has length equal to |s|. Define an

analytic set Ay C Z§ by
re€A = (Faecw’)(Vs,j,k)k=1s|&s>alk = z ]I A

Since each Aj is closed downward, if # <y € Ay, then x € Ay. Thus, taking Zy to be

the ideal generated by Ag, we note that Z, is the set of finite unions of members of Ajg.

We will show that Z, is <fi-complete for analytic ideals. To this end, fix an analytic

ideal Z C Z%. Let T be a tree on 2 X w as in Lemma 2.56, with p[T] = Z. By item 3 of

Lemma 2.56, we may choose, for each k and s € w”*, a 7(s) € w such that Ai(s) =T,NZk.
We will now define a weak Rudin-Keisler reduction of Z to Z;. Let

S= U I

EISASE
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This will be the domain of our reducing map. Define 5 : S — w by (i) = p, if i is the

pth element of Ij(s), for some s. Note that the map x — S71(x) is given by

x|k if 7 =17(s),
0k otherwise,

for each s € w* and j € w. The following two claims will verify that 8 witnesses
Claim 1. If z € Z, then 87! (z) € Zy.

Proof of claim. Tt will suffice to show that z € T = [~ '(x) € Ay, since Ay C Ty.
Assuming x € Z, let @ € w* be such that (z,a) € [T]. We will see that o witnesses
B~ (z) € Ay. Indeed, fix s € w*, with s > « | k and consider S~ 1(x) | I I j # 7(s),
then S~(x) | I = 0k e As, since A is closed downward. On the other hand, if j = 7(s),

then

CT.,NZk (since s > a [ k)

This proves the claim.

Claim 2. If 8~ !(x) € Iy, then = € Z.

Proof of claim. Given that 37!(z) € Zy, we take yi, ...,y € Ay be such that f7!(x) =
Y1 U...Uy,. For each 1 < m, let a; € w* be as in the definition of Ay, witnessing the

membership of y; in Ag. It follows from the definition of Ay that « = ay + ...+ a,, also
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witnesses the membership of ¥y, ..., ¥y, in Ag. For each k, write I}, = If(f[k), A = Af(rs "
and let

Uf =i | I
Note that u¥ € Ay = T, | k. By compactness, there exist kg < k; < ...and zy,...,2,, €
[T,,] such that, for each i < m, we have uf" — z;, as n — oo.

Finally, we check that x = ;U ... U x,,. Observe that for each p € w and k,, > p

large enough that (Vi < m)(u" | p = 2, | p), we have

zlp=(6""(2) I Ix,) I'p
:ulf”U...Uuk" [p

m

=xU...Uz, | p.

Since p was arbitrary, we conclude that x = z; U ... Uz, and hence x € Z, since ideals

are closed under finite unions. This completes the proof. O]
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Chapter 3

Selectors and universal sets

3.1 A selection theorem

Recall from Chapter 1 the definition of covering dimension:

1. An open cover U of a topological space X has order k iff there is a point of X
which appears in £ members of &/ and no element of X appears in more than k

members of U

2. An open cover V of a topological space X refines another cover U iff for each

V €V thereis U € U such that V C U.

3. A topological space X has covering dimension d if every open cover of X is refined
by an open cover of order d + 1 and furthermore, d is the smallest number for

which this is true.

We state the main result of this chapter. As mentioned in the introduction, this
refines work of Debs and Saint-Raymond, in the case of compact spaces of finite covering

dimension.

Theorem 3.1. Suppose that X and Y are Polish spaces where Y is pefect and X is
compact with finite covering dimension d. Let G C X XY be a Gs set such that each

vertical section GG, is dense. Then G contains a closed set F' such that each F, 1is
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nonempty, with cardinality at most d + 1 and, for distinct x,x’ € X, F, and F, are

disjoint. Moreover, range(F) = J,cx Fr is perfect and nowhere dense.

Lemma 3.2. Let X and Y be Polish and € > 0 be fized. Suppose that U C X XY 1is
open with each U, dense, that Ay X By C X XY is an open rectangle and that V CY is
a fized open set. Then there exist families of open sets A C P(X) and B C P(Y) such

that
1. Ay =JA
2. For each A € A and B € B, diam(A),diam(B) < ¢
3. For each A€ Aand Be B, AC Ay and B C B,
4. For each A € A there exists B € B such that A x B C U

Proof. Since each U, is dense, each U, N B # () and so we may choose, for each = € Ay,
open sets A, and B, such that + € A, and A, x B, C U. By shrinking the B, as
appropriate, we may ensure that each B, has diameter less than . Let A = {A, : x €

A} and B={B, : v € Ap}. O

Proof of Theorem 3.1. By assumption, X has finite covering dimension, let d = dim(X).
Let G C X XY be a Gs set such that each G, is dense. Let Uy, Uy, ... be dense open

sets such that G = () . U,. Finally, let {Vj, Vi,...} be a countable topological basis

new
for X.
We will construct a finite branching tree T C w<* and open sets A, C X and B, C Y

(for s € T') such that the following hold:

1. For each s € T Nw", As; and By have diameter < 1/(n + 1)
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2. For each n € w, {As: s € TNw"} covers X and has order at most d + 1
3. For each n € w, {Bs: s € T Nw"} have disjoint closures
4. If s,t € T with s Ct, then A, D A, and B, D B,
5. For each s € TNw", Ay x B, C U,
6. For each n € w, V;, \ U eppun Bs # 0

The construction is inductive. First of all, we let Ay, = X and By = Y. Suppose
now that we have constructed T'Nw" and Ag and By for all s € T'Nw", satisfying the
conditions above.

Apply Lemma 3.2 separately to each A; x B (s € T'Nw™) and combine the resulting

covers to obtain families of open sets A C P(X) and B C P(Y') such that
o A covers X
e For cach A € A and B € B, diam(A),diam(B) < 1/(n+ 1)

e For each A € A, there exists s € TNw" and B € B such that A x B C (As X

Bs) N Un+1

Because X is compact, there is a finite subcover Ay,..., A; € A of X, which (by
passing to a refinement) we may assume to have order at most d + 1. We now select k
appropriate elements of B and (possibly shrinking them in the process) obtain open sets

By, ..., B; CY, having disjoint closures, such that for each : =0,...,k
e There exists a (unique) s € T'Nw" such that A; x B; C (As X By) N Upyy

e By,..., B} do not cover V,, N B,
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o {Ag,...,A;} has order at most d + 1 as a cover of X

Note that the disjointness of distinct B,’s (for s € T Nw™) together with the second
condition above ensure that property 6 will be satisfied.

We can now continue our construction of 7. For each i, A; and B; will be assigned
as Ay, and B,~,, for some m iff s is the unique element of T'Nw™ such that A; x B; C
(As X Bs) N U,+1. Note that there may be some Ay x B which do not get assigned any
successors and for a given s € TNw", Ay is not necessarily covered by {A,~,, : s"m € T'}.

Now define

F = ﬂU{ZSXES:SETﬁw”}.

new

Observe that F'is closed and, by property 5 above, F' C G. Properties 1 and 6 guarantee
that range(F') is perfect and nowhere dense. We make the following three additional

claims and conclude proof of this theorem.
A. Foreachz € X, F, # ()
B. For distinct z, 2’ € X, F, and F}, are disjoint
C. Foreachz € X, |F,| <d+1

Let us say that o € [T] “leads to (z,y)” iff {(z,y)} = N,eo Aain X Bam. Note
that this intersection will allways be a singleton since the A, and B, have vanishing
diameter and are strongly nested (condition 4). Note that for a given y € Y, by condi-

tion 3, there is at most one pair «, z, with @ € [T] and = € X, such that « leads to (z, ).

A. This claim holds because, for each n € w, {As: s € TNw"} covers X and hence,

for each each z € X there exists o € [T] and y € Y such that « leads to (z,y).
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B. Suppose that «, 5 € [T], are such that « leads to (z,y) and § leads to (z/,y).
If  # 2/, then o # 8 and y # ¥/, since for some n € w By, and Bgp, have disjoint

closures (by condition 3.) Claim B follows from this.

C. Suppose that, on the contrary, there exist x € X and distinct yg, ...,y € Y with
k> dand (z,y;) € F, for each i = 0,...,k. Let ap,...,ax € [T] be such that each o
leads to (x;,y;). The «; are all distinct and so there exists n € w such that the a; [ n are
all distinct. We now have a contradiction, since x appears in each A}y, i.e., in more

than d + 1 of the A, for s € T Nw". n

This theorem implies Theorem 1.11 in the case that X has finite covering dimension.

Corollary 3.3. Suppose that X, Y and G are as in the statement of the theorem above,
then there exists a Borel injection f : X — Y such that the graph of f is contained in
G.

Proof. Let F' C G be as obtained from Theorem 3.1. By the Lusin-Novikov Uniformiza-
tion Theorem (Theorem 18.10 in [9]), F' has a Borel uniformizing function f. The

function f is one-to-one because all of the vertical sections of F' are disjoint. O

Corollary 3.4. Suppose that X is a o-compact Polish space with finite covering dimen-
sion and Y is any uncountable Polish space. If G C X XY is a Gy set such that each

G, is dense, then there is a Borel injection f C G with meager range.

Proof. Let Ko, K1,... C X be compact such that X = _ K,. Let Uy, Uy,... CY be

new

disjoint open sets. For each n, apply Corollary 3.3 to G N (K,, x U,) to obtain Borel
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injections f, : K, — U, such that, for each n, f,, C G and range(f,,) is nowhere dense.
Define f: X — Y by
fo(z) if € Ky,

fz) =
fn+1(l’) if x c Kn+1 \ Kn

Observe that f is a one-to-one Borel map with meager range and f C G. O

3.2 Examples

Theorem 3.1 guarantees that if H C X x Y is a dense G5 such that all H, are dense,
then there is a closed set F' C H such that all F, are nonempty, but have cardinality
< dim(X) + 1. The examples below show that this upper bound of dim(X) + 1 cannot
be improved.

The following fact is standard.

Lemma 3.5. Suppose that X and Y are compact Polish spaces such that X is zero-
dimensional and Y has covering dimension d. Then there is no continuous surjection

f X — Y which is better than (d + 1)-to-one. (i.e., there is some y € Y such that

[T )l =d+1.)

Proof. Supose otherwise. Say f: X — Y is a continuous surjection and for each y € Y,
|/~ (y)| < d, where d is the dimension of Y. Let I be any open cover of Y. We will show
that U has an order d refinement, contradicting the assumption that Y has dimension
d. By compactness, we may assume that U/ is finite. Let V = {f~1(U) : U € U}. Since

Y is an open cover of X it has a refinement V', consisting of disjoint clopen sets. Let
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K ={f(V):V eV} Observe that K is a finite cover of Y, consisting of closed sets,
with the property that no point of Y occurs in more that d distinct members of .

List K as {Kj,...,K,} and note that Ky is disjoint from the intersection of any
distinct Fy, ..., Fy € K (with each F; # Kj). Hence there exists an open set U D K| such
that U is disjoint from FyN...NF,. Repeatedly shrink U to obtain an open set Uy O K
such that U, is disjoint from every the intersection of every sequence of d distinct
members of K which are different from Ky. Replace K with Ky = {Ugy, K1,..., K,}.
Through the same process, obtain U; D K such that U, is disjoint from the intersection
of any d distinct members of Ky. Take Ky = {Ug, Uy, Ko, ..., K,}.

Proceeding in this way, we obtain K, = {Uy,...,U,}, where Uy,...,U, form an
order d open cover of Y and for each i, K; C U;. Note that since each member of IC was
contained in some member of the original cover U, we may assume (by intersecting with
an appropriate member of U) that each U; is contained in some member of &. We have

now obtained our desired contradiction. O

Example 3.6. Let G, C [0,1]" x [0, 1] be a G set such that each vertical and horizontal
section is dense, but G,, is zero-dimensional in its subspace topology. (This could be
achieved by letting G, be [0, 1]"™! minus a countable collection of hyperplanes.) Hence,
by Theorem 3.1, there exists a closed F' C G, such that for all x € [0,1]", F, # 0.
Suppose F' could be chosen such that for each x € [0,1], |F,| < n. Let p: [0,1]" %[0, 1] —
[0,1]™ be the projection map. Consider the restriction p [ F': F' — [0,1]". The map
p | F' is a continuous surjection and is n-to-one or better. This contradicts the lemma

above.

The following example shows that no analogue of Theorem 3.1 can be proved in the
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case that X is not of finite covering dimension.

Example 3.7. We can combine the G,, to produce an analogous example in [0, 1]* %[0, 1].
For each n € w, let G, = {(£,y) € [0,1]* x [0,1] : (¢ | n,y) € G,,}. Again, all vertical
and horizontal sections of Gn are dense and Gn itself is Gs.

If F C Gn is such for each & € [0,1]¥, F¢ is nonempty, then there must be some
¢ such that [F¢| > n. Otherwise, we could fix § € [0,1]* and define F’' = {(x,y) €
[0,1]™ x [0,1] : (x"&,y) € F}. Then F' C G, and for each z € [0,1]", |F}| < n, a
contradiction.

Now take G = [ én and note that GG is G5 with all vertical and horizontal sections

new

dense. If F C G is a closed set such that, for each § € [0,1]*, F¢ # (), then there there

is no finite bound on the cardinality of F¢.

3.3 An example for measure

As mentioned in the introduction, we prove the following theorem of Graf and Mauldin

using the example of a universal co-null F), set.

Theorem 3.8 (Graf, Mauldin). There is a Borel set B C [0,1] x [0,1] such that each

B, and B, s co-null, but B does not contain the graph of a Borel injection.

3.3.1 A universal co-null F, set

We begin with a coding of co-null F, sets which is quite similar to a standard coding of
dense Gy sets. Recall that a set A C X x Y is universal for a class C of subsets of Y if,

for each B € C, there exists x € X such that A, = B.
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Let Y be any Polish space with an associated o-finite Borel measure p. We will
describe an F, set F' C 2¥ x Y which is universal for the co-null F, subsets of Y. It
turns out to be easier to accomplish this by first coding null G5 sets and then taking
compliments. Let {V,, : n € w} be a basis for the topology of Y.

Fix € > 0, for x € 2¥ define

U: = J(Vaiztn)=1& > p(Vi) <e.
2Rt

Observe that, for each z € 2¥ u(U:) < e. Every open set U C Y, with pu(U) < ¢
appears as U, for some x € 2¥. Also note that U® = {(z,y) : y € UZ} is itself an open
set.

Suppose now that H = [ _ V, is a null G5 set. Then u(V,) — 0 as n — oo.

ncw
Hence there is a subsequence ko, k1, ... such that, for each i, u(Vy,) < 1/i. Therefore,
by replacing V,, with Vo N ... NV}, , we may assume that p(V;,) < 1/n, for each n. Thus

we may code null Gy sets by taking

Gy = ﬂ U(?ﬁ)nﬂ'
new
The set G = {(x,y) : y € G, } is G5 and universal for null G5 sets. If FF =2 x Y \ G,
then F' is universal for co-null F, sets.

Remark. It follows from the definition of G that each vertical section F, of F' is

co-null. That each horizontal section F¥ is co-null follows from the next lemma.
Lemma 3.9. lin%,u({:c U #0}) =0
e—

Proof. Let 8 > 0 be arbitrary. Choose k such that 2% < 8 and € > 0 such that
Vo, - .., Vi all have measure greater than €. Then for each x € 2¥, U; is nonempty only

if # | k=0 Thus A({x : U # 0}) < 27% < B. This proves the lemma. O
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3.3.2 The proof

We begin with a lemma:

Lemma 3.10. Suppose that F C X XY is universal for co-null F, sets. If f: X =Y

is such that f C F, then range(f) is not a null set.

Proof. Suppose otherwise. Say f C F' has null range. Hence Y \ range (f) is co-null and
thus contains a co-null F, set. Let z € X be such that F, = Y \range (f). We now have
a contradiction, since f(x) € F, by the assumption that f C F, but F, Nrange (f) = 0,

by choice of x. O

Proof of Theorem 3.8. Let F' be the universal co-null F, set decribed above.

Note that, in this coding, the F} set coded by x € 2“ is unaffected by the value of
(x)o. This lets us obtain ¢ many disjoint perfect sets P, (for z € 2¥) such that each null
Gy is coded by a real in every P, by taking P, = {x : (x)o = z}.

Suppose that f C F' is a Borel injection. For each z € 2¥, f(P,) must be non-null,
by Lemma 3.10. The images f(P,) are then ¢ many disjoint non-null Borel (and hence
measurable) sets. This contradicts the o-finiteness of p. This proves that F does not
contain the graph of a Borel injection.

We complete the proof by taking an embedding ¢ : 2 — [0, 1] of the Cantor space
into the unit interval. Let F' C 2 x [0, 1], be a universal co-null F, set as described

above and define

B ={(e(x),y): (z,y) € F} U{(a,y) : a & range(p) Ay € [0,1]}.

Observe that B is 39 and does not contain the graph of a Borel injection. Indeed,

suppose on the contrary that f C B is a Borel injection. Define g : 2¥ — [0,1] by
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g(z) = f(e(x)). We have ¢ C F and g is injective, a contradiction. O

3.4 Universal sets

We derive a few more results using the methods and theorems above. We remind the

reader of the definition of a universal set.

Definition 3.11. U C X x Y is universal for a class C of subsets of YV if, and only if,

for each A € C, there is x € X such that U, = A
The following is a related notion.

Definition 3.12. U C X x Y is semi-universal for a class C of subsets of Y if, and only

if, for each A € C, there is x € X such that U, C A
Note that a universal set for a class C is also semi-universal for C.

Lemma 3.13. Suppose that X,Y are Polish spaces with X compact. If U C X XY 1is
an open set such with each U, # (0, then there is a finite set F C Y such that for all

reX, FNU, #0

Proof. For each z € X, let U(x) C X and V(z) C Y be open sets such that = €
U(z) x V(z) C U. By compactness, there is a finite family of the U(z)’s, say Uy, ..., U,

which cover X. Let Vg, ...V, be the corresponding V' (z)’s. Then

Uy xVou...uU, xV, CU.

Pick any elements yq, . . ., yn, with each y; € V;. Taking F = {yo, ..., y,} we have a finite

set which meets each vertical section U, of U. O
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Theorem 3.14. If XY are Polish with X compact, there is no open set U C X XY

which is semi-universal for nonempty open sets and such that each U, is nonempty.

Proof. Suppose on the contrary that U is such a semi-universal set. Since each U, is
nonempty, Lemma 3.13 implies that there is a finite set I’ such that for all z € X,
FNU,#0. Let V=Y \ F and observe that V is a nonempty open set which does not

contain any of the U,, since it is disjoint from F. This contradicts semi-universality. [
The following lemma will yield a similar result for the class of dense open sets.

Lemma 3.15. Suppose that X,Y are Polish spaces with X o-compact and Y perfect.
If U C X XY 1is an open set with each U, dense, then there exists a countable, closed

nowhere dense set C CY such that, for each v € X, CNU, # 0.

Proof. Let Ay, Ay, ... be compact, with X =, A,. Take y,, — y, distinct elements of
Y. Let By, B1,... €Y be open such that for each n, y, € B,. Also, choose the B,, to

have disjoint closures and have the property that
diam({y} UB,UB,;1U...) = 0 asn — oo.

Since each U, is dense, B, N U, # (), for each x € A,,. By Lemma 3.13 there are finite
sets F,, C B, such that for each x € A,,, F,, NU, # (). Now take

c=(JF)U iy

new

By our choice of the B, y is the only limit point of C' and since C' is a countable closed

set, it is nowhere dense. It is clear that C' N U, # 0, for each z € X. O

Theorem 3.16. If XY are Polish with X o-compact, there is no semi-universal dense

open set U C X X Y.
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Proof. As in the proof of Theorem 3.14, we suppose that there was such a semi-universal

set U. By Lemma 3.15 there is a closed nowhere dense set C' which intersects each U,.

Then V =Y \ C is open dense and for each x € X, U, € V. n

Theorems 3.14 and 3.16 also imply that there are no corresponding universal sets

either.

Our next result concerns universal dense Gy sets. It is known that one can parame-
terize the dense G5 subsets of a second countable space with w*. As it turns out, it is

not possible to use 2 or even w X 2¥ instead.

Theorem 3.17. Suppose that X is a o-compact Polish space and Y is an uncountable
Polish space. There is no Gy set G C X XY such that G is semi-universal for dense Gy

subsets of Y.

Lemma 3.18. Suppose that G C X xX Y s semi-universal for dense Gs subsets of Y

and f: X =Y is any map with f C G. The range of f must be non-meager.

Proof. Suppose otherwise. Let A =Y \ range(f) and note that A is comeager. Hence
there exists * € X such that G, C A. By assumption that f C G we must have
f(z) € G;. On the other hand, G, is disjoint from range(f), by our choice of x. This is

a contradiction. ]

Proof of Theorem 5.17. Suppose otherwise, say G is such a semi-universal set. Let ¢ :

w x 2 — X be a continuous, open surjection. Define G' C (w x 2¥) x Y by

G ={(&y): (v(&),y) € G}.
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G' is a G set and is semi-universal for dense G subsets of Y. By Corollary 3.4, there
is a Borel injection f : w x 2¢ — Y such that f C G’ and range(f) is meager. This

contradicts Lemma 3.18. ]

Although we used Corollary 3.4, we did not require that X have finite covering
dimension in the statement of the Theorem 3.17

Analogous results do not hold for higher ranked Borel classes.

Lemma 3.19. Suppose that Y is a Polish space. There is an F, set C' C w* XY which

1s universal for countable dense subsets of Y

Proof. For each z € w¥, we can code a countable dense set as follows: Let n — s, be an

<“and ¢ : w* — Y a continuous surjection. The set coded by z will

enumeration of w
be C, = {¢(s,"(2),) : n € w}. Note that for all z, C, is dense and that every countable
dense set may be represented in this way. Also note that C' = {(z,y) : y € C,} is F,,

since y € C, iff there exists n € w such that y = ¢(s,”(x),) O

Theorem 3.20. For each o > 3 and Polish space Y, there exists a universal IO

(resp. X2) set A C 2¥ x Y for dense (resp. comeager) I1° (resp. 32 ) subsets of Y.

Proof. We give the proof for IT2. The proof for the 39 case is exactly the same.
Comeager set case. Let G C w® x Y be universal for dense G5 subsets of Y. Note
that w“ embeds in 2 homeomorphically as a Gs set. We may therefore map G to a Gs
set G' C 2¥ x Y such that every dense Gy subset of Y appears as G’, for some = € 2,
but for an F, set of x’s, G/, is empty. By making the empty sections of G’ all of YV, we
replace G’ with a AY set G* such that every vertical section of G* is a dense G5 and

every dense (G5 appears as one of the vertical sections of G*.
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Now let A C 2% x Y be a universal IT? set (Theorem 22.3 in Kechris) and define B*
by

szx7y> - GZ U Ay.

Then B* is TI2 and universal for comeager IT? subsets of Y.

Dense set case. Let A C 2* X Y be universal for II subsets of Y and let C' be as
obtained in Lemma 3.19.

As above, C' embeds in 2¥ x Y as a AY set C” such that all vertical section of C” are
either countable dense or empty. Replacing each of the empty sections with all of Y, we

obtain another AY set C*.

Define A* by
Ay = Cr UA,.
A* is TI? and is universal for dense IT? sets. [

Note that we could have used any perfect Polish space X as the coding space in the

theorem above, since 2 would embed in X as a closed set.

3.5 Appendix

To the best of our knowledge, [2] has not been translated. For the sake of completeness,
we therefore give a version of Debs’ and Saint-Raymond’s proof of Theorem 1.11 and
their example, answering the category version of Mauldin’s original question about the

existence of Borel selectors.

Proof of Theorem 1.11. Suppose that G C X XY is as in the statement of the Theorem.

Let Uy D Uy D ... be dense open sets such that G =), . U, and let {V,, : n € w} be a

new
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topological basis for Y. We will construct inductively a finite branching tree T' C w<¥
and for each s € T, sets A; C X (a difference of open sets) and B; C Y (an open set)

such that the following hold
1. As=UH{Asmm i sm e T}
2. diam(Ay),diam(B,) < 1/(|s| + 1)
3. For each s,t € T, if s C t, then B, C B,
4. For each s,t € T, if s L t, then A;,N A, =0 and B,N B; = ()
5. Ay x By C U and Vg \ By # 0

To start the induction, we let Ay = X and By = Y. Suppose now that we have
defined the first n levels of T" and corresponding A, and B, satisfying items 1-5 above.
For each s € T'Nw", we carry out the following construction. For convenience, write
A=A, and B = B,. For each z € Z, there exist open sets A, C X and B, C Y such

that
e diam(A,),diam(B,) < 1/(n+2)

e r €A,

o Az XE:{: g Un+1

The A,’s cover A. By compactness, there is a finite subcover Ag,..., A,. Let

By, ..., B, be the corresponding B,’s. For each i, let A, = (AN A;)\ (AgU...UA;_).
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(Let Ay = AN Ap.) The A} are differences of open sets. For each i = 0,...,n, we will
put s7i € T and let A,~; = Al

Now shrink By, ..., B, to B, ..., B, so that B,, ..., B, are all disjoint and for each
i, Voi1 \ B, # 0. Let By; = B!

For each n € w, let

Fn:U{ASXES:SETﬁw"}

and define f =) _ F,. We have that f C G and f is the graph of a Borel injection

new
with closed, nowhere dense range.
Note that if X had been zero-dimensional, then we could have taken the A, to be

clopen and, consequently, each F, would have been closed and f would be continuous.

O

Theorem 3.21. There is a A set B C [0,1]?, such that all vertical and horizontal

sections of B are comeager and B does not contain the graph of a Borel injection.

First we desribe a coding of dense Gy sets. Fix an enumeration {s, : n € w} of
w<“. Fix a Polish space Y and let ¢ : w¥ — Y be a continuous, open surjection. Define
U Cw¥ XY as follows: for each z € w* the vertical section U, of U is the open dense

set

U ¢ ([sns2m)).

necw

Note that U itself is open and universal for dense open subsets of Y. We code dense Gy

sets by setting

G = [ Uwyoss-

new

Let G = {(z,y) : y € G} and observe that G is a universal dense Gy set for Y.
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We make the observation that G, is unaffected by (x)y. Take P, = {z € w* : (z)o =
z}, for z € w¥. The P, are pairwise disjoint closed sets and, for each z, G N (P, x Y)
is still universal for dense G subset of Y — a given dense G subset of Y is coded by a

real in each P.,.

Lemma 3.22. I[f G C w¥ XY is a uniwversal dense Gs set as described above, then G

does not contain the graph of a Borel injection.

Proof. Suppose that f : w* — Y is a Borel injection with f C G. For each z, we must
have that f(P,) is non-meager, by Lemma 3.18. Also note that each f(P,) has the
Property of Baire, since the P, are closed and f is Borel. We now have a contradiction,
since the sets f(P,) are all disjoint (by the injectivity of f) and there cannot be ¢ many

disjoint non-meager sets with the Property of Baire in a Polish space. O
We now finish the proof of Theorem 3.21

Proof of Theorem 3.21. Let G C w* x [0,1] be a universal dense as described above.

Take ¢ : w* — [0, 1] to be a continuous embedding of w* as a G subset of [0, 1]. Define

A={(p(x),y): (z,y) € G} U{(a,y) : a ¢ range(p) Ay € [0,1]}.
Then A is AY and does not contain the graph of a Borel injection f : [0,1] — [0, 1].

Otherwise, ¢ o f would be a Borel injection contained in G. O

Remark. We can see that each GY is comeager by noting that, for a given y € Y,
{x e w1y € Uy,} is a dense open set, for each n € w. Hence
G'={zew  yeqG,}
= ﬂ{x cewryeUy,}t

new

must be comeager.
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