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Abstract

Enumeration reducibility was introduced by Friedberg and Rogers in 1959 as a

positive reducibility between sets. The enumeration degrees provide a wider con-

text in which to view the Turing degrees by allowing us to use any set as an oracle

instead of just total functions. However, in spite of the fact that there are several

applications of enumeration reducibility in computable mathematics, until recently

relatively little research had been done in this area.

In Chapter 2 of my thesis, I show that the ∀∃∀-fragment of the first order

theory of the Σ0
2-enumeration degrees is undecidable. I then show how this result

actually demonstrates that the ∀∃∀-theory of any substructure of the enumeration

degrees which contains the ∆0
2-degrees is undecidable. In Chapter 3, I present

current research that Andrea Sorbi and I are engaged in, in regards to classifying

properties of non-splitting Σ0
2-degrees. In particular I give proofs that there is a

properly Σ0
2-enumeration degree and that every ∆0

2-enumeration degree bounds a

non-splitting ∆0
2-degree.

Advisor: Prof. Steffen Lempp



ii

Acknowledgements

I am grateful to Steffen Lempp, my thesis advisor, for all the time, effort, and

patience that he put in on my behalf. His insight and suggestions have been of

great worth to me, both in and out of my research. I am especially grateful for his

help in getting me back in school after my two-year leave of absence and for offering

me a research assistantship so I could study for a year with him in Germany.

I am also grateful to Andrea Sorbi for funding a visit to Siena, Italy that allowed

me to do research with him, and for the friendship that has grown from our research

contact. Hopefully we will be able to go running together in the mountains again.

I would like to thank Todd Hammond for introducing me to mathematical

logic, to Mirna Dzamonja for getting me excited about Computability Theory, and

to Jerome Keisler, Ken Kunen, Arnie Miller, and Patrick Speissegger for teaching

interesting logic classes. I would like to thank all of the wonderful teachers over the

years who have encouraged my interest in mathematics, especially Patty Av3ery

and Slade Skipper. Thanks also go to Eric Bach, Joel Robbin, and Mary Ellen

Rudin for help they have given and for serving on my defense committee.

I am very appreciative for my parents and sister, for the support and love they

have given me over the past 31 years.

The most appreciation, however, goes to my wonderful wife, Joy, for always

being there for me. I could not have made it without her encouragement and

unconditional love.



iii

Contents

Abstract i

Acknowledgements ii

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Enumeration Reducibility . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 The Σ0
2-Enumeration Degrees . . . . . . . . . . . . . . . . . . . . . 6

1.4 Decidability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Technical Details and Definitions . . . . . . . . . . . . . . . . . . . 10

2 The ∀∃∀-Theory of the Σ0
2-Enumeration Degrees is Undecidable 12

2.1 The Theorems and the Algebraic

Component of the Proof . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 The Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 The Intuition for the Strategies . . . . . . . . . . . . . . . . . . . . 21

2.4 The Tree of Strategies . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 The Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6 The Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Non-Splitting Enumeration Degrees 45

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Non-splitting Degrees . . . . . . . . . . . . . . . . . . . . . . . . . . 46



iv

3.3 A Low Non-Splitting Degree . . . . . . . . . . . . . . . . . . . . . . 58

3.4 A properly Σ0
2-Non-splitting Degree . . . . . . . . . . . . . . . . . . 59

3.5 Bounding Non-splitting Degrees . . . . . . . . . . . . . . . . . . . . 60

Bibliography 78



1

Chapter 1

Introduction

1.1 Background

Enumeration reducibility was first introduced by Friedberg and Rogers [FR59]

in 1959. Since this time, there has been a steady increase in the interest and

study of enumeration degrees. Informally, a set A is enumeration reducible to a

set B, written A ≤e B, if there is an effective procedure to enumerate A given any

enumeration of B. At first, this definition seems to be somewhat weaker than that

of Turing reducibility, where a set A is Turing reducible to a set B (A ≤T B) if

there is an effective procedure to decide the characteristic function of A given the

characteristic function of B. On the other hand, enumeration reducibility can be

viewed as an extension of Turing reducibility in the following manner. First, for

any function ϕ, define

graph(ϕ) = {〈x, y〉 : ϕ(x) = y} .

Then, for total functions f and g, it is immediate that f ≤T g if and only if

graph(f) ≤e graph(g). While Turing reducibility is restricted to total functions,

there is no such constraint on enumeration reducibility as the functions f and g are

allowed to range over partial functions as well. From this, we may view enumera-

tion reducibility as providing a wider context than Turing reducibility. In fact, the
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Turing degrees are isomorphic to a substructure of the enumeration degrees called

the total degrees. A total degree is an enumeration degree that contains a total

function.

The restriction of enumeration reducibility to partial functions coincides with

Kleene’s [Kle52] definition of reducibility between partial functions, and they both

give rise to what is called the partial degrees. By allowing enumeration reducibility

to range over all subsets of the natural numbers (and not just partial functions),

the induced degree structure does not change since all sets A are enumeration

equivalent to a partial function, namely {〈x, 1〉 : x ∈ A}. Thus, the partial degrees

are isomorphic to the enumeration degrees, even though we allow the oracle of our

computation to be any set instead of restricting it to partial functions.

Aside from providing a wider context in which to view the Turing degrees and an

alternate formulation for the partial degrees, several other natural uses of the enu-

meration reducibility have been found in other areas of computable mathematics.

For example, Ash, Knight, Manasse, and Slaman [AKMS89] used it for analysis of

types in effective model theory, and Ziegler [Zie80] (cf. [HS88]) used used a variant

of enumeration reducibility in the study of existentially closed groups. More re-

cently, in computable analysis, while examining reducibilities between continuous

functions, Miller [Mil04] introduced the continuous degrees and showed that these

degrees may be viewed as a proper substructure of the enumeration degrees which

properly contains the total degrees. Another application comes from Feferman’s

Theorem [Fef57] which states that every truth table degree contains a first order

theory. Case [Cas71] has pointed out that since the truth table reduction used in

the proof is essentially enumeration reducibility, and that a theory is axiomatizable
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if and only if it is effectively enumerable (Craig [Cra53]), the enumeration degrees

may be thought of as degrees of nonaxiomatizability. Lastly, Scott [Sco75] and

Cooper [Coo90] have shown how enumeration operators can be used to provide a

countable version of the graph model for λ-calculus.

Comprehensive summaries of additional results in, and uses of, the enumeration

degrees can be found in [Coo90] and [Sor97]. In the following sections of this

chapter, we highlight the main definitions and theorems that are pertinent to the

main results of this thesis.

1.2 Enumeration Reducibility

Intuitively, we say that a set A is enumeration reducible to a set B if there is an

effective procedure to enumerate A given any enumeration of B. More formally,

given a computably enumerable functional Φ, we define

ΦB = {x : ∃〈x, F 〉 ∈ Φ & F ⊆ B & F is finite}

where we identify the finite set F with a natural number (its canonical index) and

〈·, ·〉 is a computable bijection from pairs of natural numbers to natural numbers.

We say that A is enumeration reducible to B, A ≤e B, if there is a computably

enumerable functional Φ such that A = ΦB. The relation ≤e is a pre-order on

the powerset of natural numbers and, as such, generates an equivalence relation,

denoted ≡e, on the powerset of the natural numbers. By dege(A), we denote the

equivalence class, or degree, of the set A. The least enumeration degree, 0e, is the

set of c.e. sets since trivially, A ≤e ∅ for every c.e. set A. The enumeration degrees

form an upper semi-lattice where we define a ∨ b = dege(A⊕ B) with A ∈ a and
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B ∈ b. Case [Cas71] proved that there are pairs of enumeration degrees that do

not have a meet by showing that every countable non-principal ideal has an exact

pair. An exact pair for an ideal I is a pair of incomparable degrees a and b such

that x ∈ I if and only if x ≤ a and x ≤ b. Thus, if a and b have a meet, say m,

then m must be the greatest element of I, making I principal.

Rogers [Rog67] defined a computable embedding of the Turing degrees into the

enumeration degrees via the function ι : ι(degT (A)) 7→ dege(χ(A)), where χ(A) is

the characteristic function of A. If A ≤T B, it follows that χ(A) ≤e χ(B). This is

because, by definition, a Turing operator has access to the characteristic function

of a set, while an enumeration operator only has access to the members of the set.

By replacing a set with its characteristic function, all of the negative information

(e.g. x /∈ A) that the Turing functional has access to has been replaced by positive

information (e.g. A(x) = 0). We call the image of the Turing degrees under this

embedding the total degrees since every degree in the range of ι contains a total

function, namely χ(A) for some A, and all total degrees are in the range of ι.

At this point, it is useful to note that χ(A) ≡e A⊕ A, and so from now on we

will use the convention that ι(A) = A⊕A (and so dege(ι(A)) is a total degree). One

way in which this fact is useful is that we can use it to show that the c.e. Turing

degrees are isomorphic to the Π0
1-enumeration degrees. Let A be a c.e. set. Then

ι(A) = A ⊕ A ≡e A, a Π0
1-set. This also shows us that dege(K) is the greatest

Π0
1-degree.

McEvoy [McE85] defined a jump operation on the enumeration degrees that was

later expanded by Cooper [Coo84]. For every set A, define KA =
{
x : x ∈ ΦA

x

}
where Φx is the xth enumeration operator in some fixed computable ordering. We
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then define A′ = KA ⊕KA. (The reason that we do not define A′ = KA as in the

Turing degrees is that KA ≡e A. Also, we do not define A′ = KA since it is not

always the case that KA ≥e A.) The enumeration jump has the same properties as

the Turing Jump: A ≤e B ⇒ A′ ≤e B
′ and A <e J(A). Another useful property

of the enumeration jump is that it commutes with ι, i.e. ι(a′) = ι(a)′. A corollary

of this is that the jump of every enumeration degree is a total degree.

In 1955, Medvedev [Med55] showed the existence of a quasi-minimal degree,

a non-total degree with dze as the only total degree less than it, proving that

the total degrees are a proper substructure of the enumeration degrees. In 1971,

Gutteridge [Gut71] extended this result by proving that there are no minimal enu-

meration degrees, thus proving that the Turing degrees and enumeration degrees

have distinct elementary theories.

Gutteridge’s result, while showing the enumeration degrees are downwards

dense, left open the question of whether the entire structure is dense. Cooper

[Coo84] (see also [LS92]) proved that the degrees below 0′e are dense and later

proved that the degrees below 0
(6)
e are not dense [Coo90]. Finally, Slaman and

Woodin [SW97] proved that the degrees below 0′′e are not dense by constructing a

pair of properly Π0
2-degrees a and b such that b is a minimal cover over a. This re-

sult is the best possible since the degrees below 0′e coincide with the Σ0
2-enumeration

degrees, and every Σ0
2-enumeration degree contains only Σ0

2-sets [Coo84].
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1.3 The Σ0
2-Enumeration Degrees

After proving that the Σ0
2-enumeration degrees are dense and form an ideal be-

low 0′e, Cooper noted that these properties are similar to those of the c.e. Turing

degrees (which form a dense ideal below 0′) and asked if these two degree structures

were elementarily equivalent. In her thesis, Ahmad [Ahm89] showed that this is

not the case by proving that the diamond lattice embeds into the Σ0
1-enumeration

degrees preserving 0 and 1 (cf. [Ahm91]) and that there are non-splitting Σ0
2-

enumeration degrees (cf. [AL98]). These results stand in sharp contrast to Lach-

lan’s [Lac66] Non-Diamond Theorem, and Sacks’ [Sac63] Splitting Theorem for the

c.e. Turing degrees.

Lachlan’s Non-Diamond Theorem states that the diamond lattice cannot be

embedded into the computably enumerable (c.e.) Turing degrees preserving 0

and 1, i.e. if two c.e. degrees nontrivially join to 0′ then there is a non-zero degree

that lies below both of them. When a lattice is embedded into another partial

order preserving 0 and 1, the lattice is embedded so that all meets and joins are

preserved, and the least and greatest elements of the lattice are mapped respec-

tively to the least and greatest elements of the partial order. To date, there is no

complete classification of what finite lattices can be embedded into the c.e. Turing

degrees preserving 0 and 1. However, by extending Ahmad’s Diamond Theorem,

Lempp and Sorbi [LS02] proved that every finite lattice is embeddable into the

Σ0
2-enumeration degrees preserving 0 and 1.

A non-splitting degree is a degree that is not the non-trivial join of two lesser

degrees. Sacks’ Splitting Theorem states that any non-trivial c.e. Turing degree is
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the join of two incomparable c.e. degrees. In the ∆0
2-Turing degrees, any minimal

degree is trivially non-splitting. However, Ahmad’s non-splitting result is interest-

ing since she constructed a non-splitting degree in a dense partial order. What is

even more interesting is that using non-splitting degrees, we can construct what is

known as an Ahmad pair [Ahm89] (cf. [AL98]). An Ahmad pair consists of two

incomparable Σ0
2-enumeration degrees a and b such that if x < a then x < b.

This condition implies that a must be non-splitting.

The density of the Σ0
2-enumeration degrees, the classification of which finite

lattices embed into the Σ0
2-enumeration degrees preserving 0 and 1, and the exis-

tence of Ahmad pairs are very important results in determining the decidability of

the ∀∃-theory of the Σ0
2-enumeration degrees, which is still an open question.

1.4 Decidability

Questions dealing with the decidability of theories have been of primary interest

to computability theorists. The main goal of these questions is to determine if the

theory for some fixed algebraic structure is decidable and, if not, at what level

of quantifier alternations does undecidability occur. For example, Lerman and

Shore [LS88] demonstrated that the ∀∃-theory in the language of reducibility of

the ∆0
2-Turing degrees is decidable, and Schmerl (cf. [Ler83]) has shown that the

∀∃∀-theory is undecidable. In the c.e. Turing degrees, Lempp, Nies, and Slaman

[LNS98] have shown that the ∀∃∀-theory in the language of reducibility is unde-

cidable, while it is still an open question as to whether the ∀∃-theory is decidable

or not.
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Similar questions are being investigated regarding the enumeration degrees and

several of its substructures. The usual technique to show that a theory of a partic-

ular algebraic structure is undecidable is to embed, in a uniform manner, another

class of algebraic structures, which is known to have a hereditarily undecidable the-

ory, into the structure in question. By using this technique, Slaman and Woodin

[SW97] were able to embed all finite graphs into the Σ0
2-enumeration degrees in

such a way that the first order theory of finite graphs was then interpretable in the

theory of the Σ0
2-enumeration degrees. Since the theory of finite graphs is hered-

itarily undecidable (cf. [Nie96]), this implies that the first order theory of the

Σ0
2-enumeration degrees is undecidable. (Actually, as we will show in Chapter 2, a

little more work shows that they proved that the ∀∃∀∃∀-fragment of the first order

theory is undecidable.)

The usual technique to show that a theory fragment is decidable is to re-

duce sentences in the theory fragment to questions that are algebraic in nature.

For example, since the Π0
1-enumeration degrees are computably isomorphic to the

c.e. Turing degrees, any theorem in the c.e. Turing degrees is true in the Π0
1-

enumeration degrees. Furthermore, since any finite partial order can be embedded

into the c.e. Turing degrees, it follows that any finite partial order can be em-

bedded into the Σ0
2-enumeration degrees. (The same result could be obtained by

applying the lattice embedding theorem of Lempp and Sorbi [LS02].) A ∃-sentence

describes a finite partial order. Thus, a ∃-sentence is true if and only if it describes

a consistent partial order.

In Chapter 2, we improve on the result of Slaman and Woodin by showing

that the ∀∃∀-theory of the Σ0
2-enumeration degrees is undecidable by showing
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that every finite bi-partite graph can be effectively embedded into this structure.

This leaves open the question as to whether the ∀∃-theory is decidable. The

construction is performed in such a way that it is also shown that the ∀∃∀-theory

of any substructure of the enumeration degrees which contains the ∆0
2-enumeration

degrees is undecidable.

The decidability of the ∀∃-theory of a partial order can be rephrased in purely

algebraic terms as follows.

1.4.1 Question. Is it possible to effectively decide if, given finite posets P ⊆

Q0, . . . ,Qn for some n ≥ 0, any embedding of P into the Σ0
2-enumeration degrees

can be extended to the embedding of some Qi? (The choice of i may depend on

the embedding of P .)

Lempp, Slaman, and Sorbi [LSS] solved a major subproblem of this question

known as the Extension of Embeddings problem. The Extension of Embeddings

problem is the same as above, only setting n = 0. Their proof relies heavily on the

facts that we outlined in 1.3 (i.e. density, Ahmad pairs, and lattice embeddings).

In chapter 3, we present an overview of the current research that the author is

engaged in with Andrea Sorbi in gaining a better understanding of the algebraic

properties of non-splitting degrees. It is hoped that a better understanding of

these properties will help us in our efforts to determine if the ∀∃-theory fragment

is decidable. In chapter 3, a direct construction of a non-splitting degree on a tree

of strategies is presented, and then the construction is modified in several ways to

show the existence of non-splitting properly Σ0
2-degrees, low non-splitting degrees,

and that every non-trivial ∆0
2degree bounds a non-splitting degree.
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The last result is interesting since it shows that the embedding ι maps every

non-trivial principal generated by a c.e. Turing degree an ideal in the enumeration

degrees whose elementary theory is different.

1.5 Technical Details and Definitions

We recall that a Σ0
2-approximation 〈Bs〉s∈ω to a set B is a computable sequence of

computable sets such that x ∈ B ⇒ limsBs(x) = 1.

1.5.1 Definition. Given a Σ0
2-approximation 〈Bs〉s∈ω, we say that the stage s is

thin if Bs ⊆ B, and we say that the approximation is good if it contains infinitely

many thin stages.

1.5.2 Lemma. Given a computable Σ0
2-approximation 〈Bs〉s∈ω to a set B, there

is a good Σ0
2-approximation 〈B′

s〉s∈ω, uniform in the index of 〈Bs〉s∈ω, such that B′
s

is finite for all s.

Proof. See Lachlan and Shore [LS92].

Throughout this paper we always assume that all Σ0
2-approximations are good,

as guaranteed by the lemma.

1.5.3 Notation. When we refer to the least finite set with a certain property

we are referring to the finite set with least canonical index that has the specified

property.

1.5.4 Definition. Given a Σ0
2-approximation 〈Xs〉s∈ω to a set X, an element x,

and a stage s, we define a(X;x, s), the age of x in X at stage s, to be the least
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stage sx ≤ s + 1 such that for all stages t, if sx ≤ t ≤ s then x ∈ Xt. If Z is

a finite set, then we define a(X;Z, s), the age of Z in X at the stage s, to be

max {a(X; z, s) : z ∈ Z}. Given Σ0
2-approximations 〈Xs〉s∈ω and 〈Ys〉s∈ω to sets X

and Y respectively, the least oldest element in X − Y at the stage s is the least

element x ∈ Xs − Ys such that for all y ∈ Xs − Ys, a(X, x, s) ≤ a(X, y, s), and the

least oldest subset of X − Y at the stage s is the least F ⊆ Xs − Ys such that for

all G ⊂ Xs − Ys, a(X,F, s) ≤ a(X,G, s).

1.5.5 Definition. Fix an enumeration operator Ψ and a Σ0
2-set B. For any

x ∈ ΨBs
s and stage s, we define the use of x at stage s, u(x, s), to be the least

oldest F ⊆ Bs such that x ∈ ΨF
s . If x /∈ ΨBs

s , then u(x, s) is undefined.

We define ΨB[0] = ∅ and for s > 0, we define

ΨB[s] =
{
x ∈ ΨBs

s : u(x, s) = u(x, s− 1)
}
.

1.5.6 Lemma. The sequence 〈ΨB[s]〉s∈ω is a Σ0
2-approximation to ΨB.

Proof. x ∈ ΨB if and only if lims u(x, s) exists.

We use the standard notation and terminology of strings which can be found

in [Soa87]. In particular, given strings α and β, we use α ⊆ β (α ⊂ β) to denote

that β extends (properly extends) α. We say α is to the left of β (α <L β) if α

is lexicographically less than β but α 6⊆ β. Furthermore, by α ≤ β we denote

non-strict lexicographical ordering (α <L β or α ⊆ β), and by α < β we denote

strict lexicographical ordering (α ≤ β and α 6= β).



12

Chapter 2

The ∀∃∀-Theory of the

Σ0
2-Enumeration Degrees is

Undecidable

2.1 The Theorems and the Algebraic

Component of the Proof

This section and the next closely follow Lempp, Nies and Slaman [LNS98]. Our

main result is

2.1.1 Theorem. The ∀∃∀-theory of the Σ0
2-enumeration degrees in the language

of partial orderings is undecidable.

We recall that a set of first order sentences S is hereditarily undecidable if there

is no computable set of sentences separating S and S ∩ V where V is the set of all

valid sentences in the language of S. The proof of Theorem 2.1.1 uses the following

theorem:

2.1.2 Theorem. [Nie96] The ∃∀- (and hence the ∀∃∀-) theory of the finite
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bipartite graphs with nonempty left and right domains in the language of one

binary relation, but without equality, is hereditarily undecidable.

We will use Theorem 2.1.2 to prove Theorem 2.1.1 via the Nies Transfer Lemma.

Before we state this lemma, we need to define what it means for one class of

structures to be elementarily definable in another class of structures.

2.1.3 Definition. A Σk-formula is a prenex formula that begins with an ∃-

quantifier and contains k − 1 quantifier alternations. A Πk-formula is a prenex

formula that begins with a ∀-quantifier and contains k− 1 quantifier alternations.

2.1.4 Definition. Let LC and LD be finite relational languages not necessarily

containing equality.

1. A Σk-scheme s for LC and LD consists of a Σk-formula ϕU(x; y) (in the

language LD), and for each m-ary relation symbol R ∈ LC, two Σk-formulas

ϕR(x0, . . . , xm−1; y) and ϕ¬R(x0, . . . , xm−1; y) (again in LD).

2. For a Σk-scheme s, we define a Πk+1-formula α(p), called a correctness condi-

tion, for a list of parameters p, as the conjunction of the following formulas:

(a) (coding the universe) {x : ϕU(x, p)} 6= ∅, and

(b) (coding the relations) for each m-ary relation symbol R in the lan-

guage LC, the set

{(x0, . . . , xm−1) : ∀i < m(ϕU(xi, p))} is the disjoint union of the two sets

{(x0, . . . , xm−1) : ϕR(x0, . . . , xm−1, p)} and

{(x0, . . . , xm−1) : ϕ¬R(x0, . . . , xm−1, p)}.
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3. Define a formula ϕeq(C)(x, y) as the conjunction of all formulas ∀z(R(x, z) ↔

R(y, z)) where R ranges over all relations R ∈ LC and over all permutations

of the arguments of R. (The purpose of this formula is to redefine equality

if the language contains equality.) For an LC-structure C, define the induced

quotient structure C/eq(C) in the obvious way. Similarly define a formula

ϕeq(D)(x, y) and a quotient structure D/eq(D), using the relations R ∈ LD.

4. A class C of relational structures, in the language LC, is Σk-elementarily

definable with parameters in a class of relational structures D, in the lan-

guage LD, if there is a Σk-scheme s such that for each structure C ∈ C, there

is a structure D ∈ D and a finite set of parameters p ∈ D satisfying the

following:

(a) (correctness condition) D � α(p), and

(b) (coding the structure) C/eq(C) ∼= C̃/eq(C̃), where C̃ is the substructure

of D defined by C̃ = {x : ϕU(x; p)}, and for each m-ary relation symbol

R ∈ LC, the relation R̃ on C̃ is defined by

R̃ = {(x0, . . . , xm−1) : ϕR(x0, . . . , xm−1; p)} .

We state two more theorems that are needed to prove our main result.

2.1.5 Theorem (Nies Transfer Lemma [Nie96]). Fix k ≥ 1 and r ≥ 2.

Suppose a class of structures C is Σk-elementarily definable with parameters in

a class of structures D (in finite relational languages LC and LD, respectively).

Then the hereditary undecidability of the Πr+1-theory of C implies the hereditary

undecidability of the Πr+k-theory of D.



15

2.1.6 Theorem. The class of finite bipartite graphs with nonempty left and

right domains in the language of one binary relation, but without equality, is

∃-elementarily definable, with parameters, in the partial ordering S of the Σ0
2-

enumeration degrees (i.e. in the class {S}).

The balance of this chapter after the current section is dedicated to proving

Theorem 2.1.6. The presented construction considers only the cases when the sizes

of the left and right domains are both greater than or equal to two. This is done

to simplify the construction but in no way affects the result since the ∃∀-theory of

this subclass of structures is also undecidable. The construction is easily modified

to accommodate all finite bipartite graphs with non-empty left and right domains;

however, the extra technical details that come with this addition obfuscate the

finer points of what is happening.

As a side note, we mention that the method of coding finite bipartite graphs was

used in [LN95] to establish the undecidability of the ∀∃∀∃-theory of the enumerable

wtt-degrees and in [LNS98] to establish the undecidability of the ∀∃∀-theory of the

computably enumerable Turing degrees.

Proof of Theorem 2.1.1. Apply the Nies Transfer Lemma (setting k = 1 by Theo-

rem 2.1.6 and r = 2 by Theorem 2.1.2) in order to obtain the hereditary undecid-

ability of the ∀∃∀-theory of the Σ0
2-enumeration degrees.

We will perform the construction in such a way as to show the following corol-

lary:
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2.1.7 Corollary. The ∀∃∀-theory of the ∆0
2-enumeration degrees in the lan-

guage of partial orderings is undecidable.

Proof. The proof of Theorem 2.1.6 actually shows that the class of finite bipartite

graphs with nonempty left and right domains in the language without equality

is ∃-elementarily definable in the partial ordering of the Σ0
2-enumeration degrees

using ∆0
2-degrees as parameters. Since the ∆0

2-degrees are a proper subclass of

the Σ0
2-degrees, we are able to restrict all quantifiers in the defined ∃-scheme to

∆0
2-degrees.

Once we have shown that both the ∆0
2- and Σ0

2-enumeration degrees are unde-

cidable, by an extension of the above argument, we get the following corollary:

2.1.8 Corollary. If M is a substructure of the enumeration degrees which

contains the ∆0
2-degrees then the ∀∃∀-theory of M is undecidable.

2.2 The Requirements

In this section we will introduce the requirements that need to be satisfied to prove

the main theorem and justify how their satisfaction implies the desired result. We

begin with a definition.

2.2.1 Definition. Let I be a computable subset of ω. We say that the set of

degrees {ai : i ∈ ω} is independent if for every j ∈ I, aj 6≤
∨

i∈I−{j} ai.

Fix a finite bipartite graph with nonempty left domain L = {0, 1, . . . , n},

nonempty right domain R =
{
0̃, 1̃, . . . , ñ

}
and edge relation E ⊆ L×R.
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We code the left domain using a ∃-formula ψ(x; a, b, c). We will represent each

vertex i ∈ L by a difference of two intervals [ai, a) − [c,0′e] of Σ0
2-degrees (0′e is

defined later) where the following properties hold:

(2.1) a =
∨

i∈L ai;

(2.2) for all i, j ∈ L, if i 6= j then c ≤ ai ∨ aj;

(2.3) for all i ∈ L, c 6≤ ai;

(2.4) the degrees a0, . . . , an are independent; and

(2.5) there exists a Σ0
2-enumeration degree b incomparable with each ai and a,

such that ∀x ≤ a(x 6≤ b ⇔ ∃i ≤ n(ai ≤ x)).

The ∃- (in fact quantifier free) formula ψ(x; a, b, c) used to code the left domain

is now chosen to be

x ≤ a & x 6≤ b & x 6≥ c.

In the course of the construction, we build Σ0
2-sets A0, . . . , An, A, B, and C,

and set ai = dege(Ai) for all i ∈ L, a = dege(A), b = dege(B) and c = dege(C).

(Even though we build these sets as Σ0
2-sets, we will actually construct them using

∆0
2-approximations.) We now outline the requirements that these sets need to

meet in order to satisfy the above properties.

To ensure (2.1) and (2.2), for all i, j ∈ L with i 6= j, we construct enumeration

operators Θi,j to meet the global requirements:

J : A =
⊕

i∈LAi =def {〈x, i〉 : x ∈ Ai},

Pi,j : C = Θ
Ai⊕Aj

i,j if i 6= j.
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We ensure (2.3) and (2.4) by requiring for all enumeration operators Ξ and Ψ,

and all i ∈ L:

NΞ,i : C 6= ΞAi and

IΨ,i : Ai 6= Ψ
L

j 6=i Aj .

Finally, in order to ensure (2.5), we require that for all enumeration operators Φ

and Ω and for all j ∈ L:

SΩ : ∃Γ(ΩA = ΓB) or ∃∆, i ∈ L(Ai = ∆ΩA
),

TΦ,j : Aj 6= ΦB,

where Γ and ∆ are enumeration operators built by us that depend on Ω and j. We

mention here that the requirements SΩ and T Φ,j generalize a theorem of Ahmad.

In [AL98] she constructs what is known as an Ahmad pair: two Σ0
2-enumeration

degrees a and b such that a 6≤ b but for all degrees c < a, c ≤ b.

The right domain is coded in a similar manner using Σ0
2-sets Ã0̃, . . . , Ãñ, Ã, B̃

and C̃, and requirements J̃ , P̃ı̃,̃, ÑΞ,̃ı, ĨΨ,̃ı, S̃Ω and T̃Φ,̃. The ∃-formula ϕU(x; y)

required by Definition 2.1.4 can now be chosen as ψ(x; a,b, c) ∨ ψ(x; ã, b̃, c̃).

The reason that we use an ambiguous representation of the vertices is that

we need a ∃-formula to define the universe. We could represent the left domain

by the minimal degrees satisfying ψ(x; a,b, c), i.e. {a0, . . . , an}, but this would

be a ∀-formula and hence only imply that the ∀∃∀∃-theory of S is undecidable.

Given a degree x that satisfies ψ(x; a,b, c), properties (2.1) - (2.4) allow us to

unambiguously recover the vertex that this degree represents.

In defining a copy of the edge relation E(·, ·), we need to make sure that

the formulas ϕE(x, x̃, y) and ϕ¬E(x, x̃, y) do not depend on the particular pair
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of degrees that are chosen to represent the vertices. To accomplish this, we build

two more Σ0
2-enumeration degrees e0 and e1 satisfying for all i ∈ L and ı̃ ∈ R:

(2.6) E(i, ı̃) iff e0 ≤ ai ∨ ãı̃ iff e1 6≤ ai ∨ ãı̃, and

(2.7) ¬E(i, ı̃) iff e0 6≤ ai ∨ ãı̃ iff e1 ≤ ai ∨ ãı̃.

The ∃-formula ϕE(x, x̃, e0, e1) required by Definition 2.1.4 can now be chosen

as:

(∃x1 ≤ x)(∃x̃1 ≤ x̃)(∃z)(ψ(x1, a, b, c) & ψ(x̃1, ã, b̃, c̃) & z ≥ x1 & z ≥ x̃1 & e1 6≤ z)

The choice of the ∃-formula for ϕ¬E(x, x̃, e0, e1) is similar (the only difference

is that e1 has been replaced by e0):

(∃x1 ≤ x)(∃x̃1 ≤ x̃)(∃z)(ψ(x1, a, b, c) & ψ(x̃1, ã, b̃, c̃) & z ≥ x1 & z ≥ x̃1 & e0 6≤ z)

To ensure the equivalences dictated by (2.6) and (2.7), we build Σ0
2-sets E0

and E1, setting e0 = dege(E0) and e1 = dege(E1), and meeting for each enumera-

tion operator Υ, each i ∈ L, and each ı̃ ∈ R, the following requirements:

E0
i,̃ı : E(i, ı̃) ⇒ E0 = ΛAi⊕Ãı̃

0,i,̃ı ,

F1
Υ,i,̃ı : E(i, ı̃) ⇒ E1 6= ΥAi⊕Ãı̃ ,

E1
i,̃ı : not E(i, ı̃) ⇒ E1 = ΛAi⊕Ãı̃

1,i,̃ı ,

F0
Υ,i,̃ı : not E(i, ı̃) ⇒ E0 6= ΥAi⊕Ãı̃ .

where Λ0,i,̃ı and Λ1,i,̃ı are enumeration operators built by us.

It is clear that the above requirements establish conditions (2.1) - (2.7) and

that the formulas ϕU , ϕE, and ϕ¬E establish Theorem 2.1.6.
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Finally, in order to show Corollary 2.1.7, we add an additional requirement

which when met ensures that A and Ã are low. The following definitions, theorems,

and lemma motivate the requirement that we use:

2.2.2 Definition. [Coo87], [McE85] Given a set A ⊂ ω, we define

• KA =
{
x : x ∈ ΦA

x

}
, where Φx is the xth enumeration operator under some

fixed computable listing;

• the jump of A to be A′ =def KA ⊕KA; and

• a′ = dege(A
′) where a = dege(A).

Cooper and McEvoy show that the jump operator in the enumeration degrees

has the same properties as the jump operator in the Turing degrees. Namely,

A ≤e B ⇒ A′ ≤ eB′ and A <e A
′.

2.2.3 Theorem. [McE85] 0′e = dege(∅′) = dege(K) where K denotes the

compliment to the halting problem.

2.2.4 Theorem. [Coo87] 0′e is the maximal Σ0
2-enumeration degree. i.e. A ≤e K

if and only if A is Σ0
2.

2.2.5 Definition. An enumeration degree a is low if a′ = 0′e. A set is low if its

enumeration degree is low.

2.2.6 Lemma. [MC85] A set A is low if and only if there exists a Σ0
2- or

∆0
2-approximation to A such that for all enumeration operators Φ and all x,

lims ΦA[s](x) exists.
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Thus, satisfying the requirement

LΠ,x : ∃∞s
(
x ∈ ΠA⊕Ã[s]

)
⇒ x ∈ ΠA⊕Ã

for all enumeration operators Π and all x ∈ ω will guarantee that A and Ã are

both low, as well as Ai and Ãı̃ for all i ∈ L and ı̃ ∈ R. We construct B and B̃ in

such a way that the lowness of A and Ã guarantees that B, B̃, C, C̃, E0, and E1

are ∆0
2.

2.3 The Intuition for the Strategies

We briefly outline the strategies used to meet the above requirements. The key part

of the construction, and the part that makes it a 0′′′ construction, is the interplay

between the S- and the T -strategies. We will first explain this interaction and then

add the J -, P-, N - and I-strategies. In describing the interaction between the S-

and T - strategies, their action in the actual construction, and in their verification,

we closely follow the construction of Lempp, Slaman, and Sorbi [LSS]. Since

the strategies for the left and the right domains are the same, in what follows, we

initially only describe the strategies that are necessary for building the left domain.

We then add the E j-, F j-, and L-strategies, which are the strategies that define

the relationship between the left and right domains.

The S-requirement

This strategy will try to build Γ while lower priority T -requirements try to de-

stroy Γ and build ∆. The strategy is as follows:
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1. Pick the least element x ∈ ΩA that has no coding number bx.

2. Pick a coding number bx for x larger than any number seen so far in the

construction.

3. Enumerate bx into B and the axiom 〈x, Fx〉 into Γ where Fx is the finite

set composed of bx and all current killing points for this strategy (picked by

lower priority T -requirements).

4. For all x ∈ ΩA − ΓB, with bx defined, enumerate bx into B.

5. For all x ∈ ΓB − ΩA, extract bx from B.

Without interference from lower priority T -requirements, it is clear that S

successfully builds Γ.

The T -requirement

The strategy of the T -requirement varies markedly depending on whether or not

there is an active S-requirement above it on the tree of strategies. Hence, we will

slowly work up to the full strategy (action below several active higher priority

S-requirements) in three stages.

One T -requirement in isolation

In isolation, the T -requirement follows the basic Friedberg-Muchnik strategy as

follows: A witness a is chosen from a stream (defined below) of available witnesses

and enumerated into the set Aj. When, if ever, the element a enters ΦB, the

strategy will extract a from Aj while restraining B. Since there is no active higher
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priority S-requirement, we do not have to worry about a B-correction, in response

to this extraction, that may injure our computation.

One T -requirement below one S-requirement

The case where one T -strategy is below one S-strategy is somewhat more compli-

cated. The strategy proceeds as above and tries to find a number a ∈ ΦB which

can be extracted from Aj while still maintaining ΓB ⊆ ΩA and a ∈ ΦB. If such a

number is ever found, the strategy will diagonalize and stop. If no such number

is found, a stream of elements will be generated such that the removal of any one

of these elements from Aj causes numbers to leave B. We then restrict all future

changes of Aj to elements from this stream. This will put us in a position to meet

the S-requirement via the second alternative, at the expense of failing to achieve

the T -requirement, by destroying Γ and building a ∆ which allows us to calculate

ΦA from B.

More precisely, the T -strategy proceeds as follows:

1. Pick a fresh killing point q for Γ. Put q into B and require all future Γ-axioms

〈x, Fx〉 to include q in the oracle set Fx.

2. Pick a fresh witness z and put z into Aj.

3. Wait for z ∈ ΦB via some axiom 〈z, F 〉 at some future stage s.

4. Extract z from Aj and allow the S-strategy to correct B (possibly injuring

ΦB(z)).
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5. From now on, if ever ΓB[s] ⊆ ΦA (while z 6∈ Aj), then cancel all action

between stage s and now, restrain F ⊆ B, and stop. (In this case, we call

the computation ΦB(z) Γ-cleared.)

6. While waiting for Step 5 to apply, put z into the stream S; restrict all future

changes in Aj � s to numbers in S; extract q from B; add the axiom 〈z,ΓB[s]〉

in ∆; add axioms 〈z′, ∅〉 to ∆ for all z′ < s with z′ ∈ Aj[s] − S; and restart

at Step 1 with a fresh killing point q.

The possible outcomes of the above T -strategy are as follows:

(A) Wait forever at Step 3: Then z ∈ Aj−ΦB, and Γ is not affected since q ∈ B.

(B) Stop eventually at Step 5: Then z ∈ ΦB − Aj, and Γ is not affected since

z ∈ B.

(C) Looping between Step 1 and Step 6 infinitely often: Then the T -requirement

may not be satisfied by the action of this strategy. Additionally, ΓB will

be finite since all killing points are eventually extracted from B, and all

but finitely many Γ-axioms 〈x, F 〉 contain one of these killing points in F .

However, Aj = ∆ΩA
can be seen to hold as follows: For all z 6∈ S, the Aj-

restraint from Step 6 guarantees that z ∈ Aj if and only if z ∈ ∆ΦA
, so we

restrict our attention to elements z ∈ S. If z ∈ Aj (and was enumerated

into S at stage sz) then ΩA[sz] ⊆ ΩA (assuming that no other strategies

remove numbers in A[sz] from A, and so no number from ΩA[sz], the set ΩA

measured immediately before the extraction of z from Aj, can leave ΩA),

implying that z ∈ ∆ΩA
. Conversely, if z ∈ ∆ΩA

, then ΓB[sz] ⊆ ΩA, and since
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Step 5 never applies, we must have that z ∈ Aj.

One T -requirement below several S-requirements

In this case, the T -strategy is basically a nested version of the previous strategy:

If we generate only a finite number of witnesses, or if we find a witness which

is Γ-cleared for all Γ’s above, then we diagonalize finitarily. Otherwise, we find

the lowest priority S-requirement such that infinitely many witnesses are not Γ-

cleared for its Γ. We will then use these witnesses to form a stream from which

lower priority strategies will have to work.

In addition to the finitary outcomes, we now have i0 many infinitary outcomes

(where i0 is the number of Γ’s that our strategy has to deal with). More details

on this interaction will be given in the formal construction.

One T -requirement below another T -requirement

Assume that we have one T -requirement G below another T -requirement Ĝ. If G

assumes finite outcome (A) or (B) for Ĝ, then G will act as described above.

Otherwise, G assumes the infinite outcome (C) of Ĝ. In this case, G assumes

that ΓB is finite and, in fact, will only be able to act at stages in which Ĝ has

extracted the latest killing point q from B. Thus, G can now act as if in isolation,

the restriction being that it can only use witnesses in the stream defined by Ĝ,

so as to keep ∆ correct. Note that when G puts a number z into, or extracts a

number z from, the set Aj at a stage s, all numbers greater than z are removed

from the stream and dumped into Ai since their assumption about ΩA may now be

incorrect. When a number z is dumped into a set Z, z is permanently enumerated
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into Z, and for any functional ∆ that is being built, with Z = ∆X , the axiom

〈z, ∅〉 is enumerated into ∆.

The J -requirement

The J -strategy is a global strategy and operates by defining 〈x, i〉 ∈ A if and only

if x ∈ Ai.

The N - and P-requirements

The N -strategy is a standard Friedberg-Muchnik strategy and acts like the T -

strategy in isolation. The strategy will choose a new coding number c from the

stream and enumerate c into C. When, if ever, the element c enters ΞAi , the

strategy will extract c from C while restraining Ai.

The P-strategy is a global strategy and works in conjunction with the N -

strategies. Whenever some NΞ,i-strategy enumerates an element c into C, the

P-strategy chooses coding numbers aj (for j ∈ L) from the stream, enumerates aj

into Aj, and enumerates the axiom 〈c, {aj} ⊕ {ak}〉 into Θj,k (for j 6= k). If ever c

is extracted from C, then aj is extracted from Aj for all j 6= i.

The I-requirements

The I-requirement is a standard Friedberg-Muchnik strategy and acts like the T -

strategy in isolation. The strategy will enumerate a new coding number a, chosen

from the stream of available witnesses, into the set Ai. When, if ever, the element a

enters Ψ
L

j 6=i Aj , the strategy will extract a from Ai while restraining
⊕

j 6=iAj.
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The E0-, F0-, F1-, and E1-requirements

In this section, we describe the action of the strategies that define the edge re-

lationship between the vertices in L and those in R. For the same reason that

we only described the strategies that deal with the left domain, here we will only

describe the action of the F0- and E0-strategies in that the F1- and E1-strategies

have the same behavior.

The F0-strategy

We assume that i ∈ L, ı̃ ∈ R, and ¬E(i, ı̃). Like the T -requirement, this is a

standard Friedberg-Muchnik strategy and acts just like a T -strategy in isolation.

The strategy will enumerate a new coding number e, larger than any number seen

so far in the construction, and not from the stream, into the set E0. When, if ever,

the element e enters ΥAi⊕Ãı̃ , the strategy extracts e from E0 while restraining

Ai ⊕ Ãı̃.

The E0-strategy

This is a global strategy which works in conjunction with the F0-strategies, and

builds an enumeration functional Ξ0,i,̃ı for every i ∈ L and ı̃ ∈ R with E(i, ı̃).

Whenever an element e is enumerated into E0, for every i ∈ L and ı̃ ∈ R, new

coding numbers ai and ãı̃ are chosen from the stream, and the axiom 〈e, {ai}⊕{ãı̃}〉

is enumerated into Ξ0,i,̃ı. If e is ever extracted from E0 by some F0
Υ,j,̃-strategy, the

E0-strategy extracts those ai from Ai and ãı̃ from Ãı̃ with i 6= j and ı̃ 6= ̃.
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The L-strategy

The action of the lowness strategy is similar to the Friedberg-Muchnik strategy,

however it picks no coding numbers and only restrains A ⊕ Ã. Specifically, the

strategy waits for x to enter ΦA⊕Ã and when, if ever, this happens, restrains A⊕ Ã

by restraining all set Ai and Ãı̃ for i ∈ L and ı̃ ∈ R.

2.4 The Tree of Strategies

For the sake of simplifying notation, in what follows we will refer to the F0- and F1-

requirements as F -requirements, the I- and Ĩ-requirements as I-requirements, the

S- and S̃-requirements as S-requirements, etc. Fix an arbitrary effective priority

ordering {Re}e∈ω of all N -, I-, S-, T -, F -, and L-requirements. The J -, P- and

E-requirements will not be put on the tree of strategies since they are handled

globally. Furthermore, we only put an F -requirement into the priority ordering if

its assumption about the edge relationship is true.

We define Σ = {stop <∞0 <∞1 <∞2 < · · · < wait < so} as our set of out-

comes. (“so” stands for “S’s outcome”.) We define T ⊂ Σ<ω and refer to it as

our tree of strategies. Each node of T will be associated with, and thus identified

with, a strategy.

We assign requirements to nodes on T by induction as follows: The empty node

is assigned to requirement R0, and no requirement is active or satisfied along the

empty node. Given an assignment to a node α ∈ T, we distinguish cases depending

on the requirement R assigned to α:

Case 1: R is an S-requirement: Then call R active along α_〈so〉 via α. For



29

all other requirements R′, call R′ active or satisfied along α_〈so〉 via β ⊂ α if and

only if it is so along α. Assign to α_〈so〉 the highest priority requirement that is

neither active nor satisfied along α_〈so〉.

Case 2: R is an N -, I-, F -, or L-requirement. Then for o ∈ {stop,wait},

call R satisfied along α_〈o〉 via α; and for all other requirements R′, call R′ active

or satisfied along α_〈o〉 via β ⊂ α if and only if it is so along α. Assign to α_〈o〉

(for o ∈ {stop,wait}) the highest priority requirement that is neither active nor

satisfied along α_〈wait〉.

Case 3: R is a T -requirement. Let β0 ⊂ · · · ⊂ βi0−1 be all the strategies

β ⊂ α such that some S-requirement is active along α via βi. We denote by

S i the S-requirement for βi. (Here we allow i0 = 0, in which circumstance this

case is handled the same way as Case 2.) Then, for o ∈ {stop,wait}, call R

satisfied along α_〈o〉 via α; and for all other requirements R′, call R′ active or

satisfied along α_〈o〉 via β ⊂ α if and only if it is so along α. If i0 > 0, fix

i ∈ [0, i0). Call S i satisfied along α_〈∞i〉 via βi and call any Sj requirement,

for j ∈ (i, i0), neither active nor satisfied along α_〈∞i〉; any other requirement

is active or satisfied along α_〈∞i〉 via β ⊂ α if and only if it is so along α.

For any outcome o ∈ {stop,wait} ∪ {∞i : i ∈ [0, i0)}, assign to α_〈o〉 the highest

priority requirement neither active nor satisfied along α_〈o〉. (The intuition is

that under the finitary outcomes 〈stop〉 and 〈wait〉, the T -requirement is assumed

to be satisfied finitarily by diagonalization; whereas under outcome 〈∞i〉, the S i-

requirement, while previously satisfied via an enumeration operator Γi, is now

assumed to be satisfied by α constructing an enumeration operator ∆i, while all

Sj-requirements active via some strategy between βi and α are assumed to be
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injured.)

The tree of strategies T is now the set of all nodes α ∈ Σ<ω to which require-

ments have been assigned.

2.5 The Construction

The construction proceeds in stages s ∈ ω. Before beginning, we give some con-

ventions and definitions.

When we initialize a strategy, we make all the parameters undefined and make

the stream S(α) of α empty.

The stream S(∅) of the root node ∅ of our tree of strategies at any stage s is

[0, s). The streams S(α) for α 6= ∅ are defined during the construction.

A strategy will be eligible to act if it is along the current approximation fs ∈ T

to the true path f ∈ [T] of the construction. At a stage s, if α ⊆ fs, s is called an

α-stage.

At an α-stage s, a number z in the stream S(α) is suitable for α if, for every

set X in {A,A0, . . . , An} ∪
{
Ã, Ã0̃, . . . , Ãñ

}
,

1. z is not currently in use for X by any strategy (i.e., z is not the current

witness or coding number targeted for X by any strategy that has not been

initialized since z has been picked).

2. z has not been dumped into X.

3. z is greater than |α| or any stage at which any β ⊇ α has changed any set,

picked any number, or extended any enumeration operator.
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4. z is greater than any stage which any β ⊂ α with finitary outcome 〈wait〉

or 〈stop〉 along α has first taken on this outcome since its last initialization.

5. z is greater than z′ many numbers in S which are not in use for X by any

β ⊆ α where z′ is the greater of the last number in use by α and the most

recent stage at which α was initialized.

During the course of the construction, all parameters are assumed to remain

unchanged unless specified otherwise.

At the end of each stage s, we will dump certain elements into their respective

target sets and initialize certain strategies as described below under Ending the

stage s.

We now proceed with the construction.

Stage 0: Initialize all α ∈ T.

Stage s > 0: Each stage s is composed of substages t ≤ s such that some

strategy α ∈ T, with |α| = t, acts at substage t of stage s and decides which

strategy will act at substage t+1 or whether to end the stage. If during a substage,

there are no suitable numbers in the stream for that strategy, we end the current

stage and continue with stage s + 1. The longest strategy eligible to act during

a stage s is called the current approximation to the true path at stage s and is

denoted fs.

Substage t of stage s: Suppose a strategy α of length t is eligible to act at this

substage. We distinguish cases depending on the requirement R assigned to α.

Case 1: R is an SΩ-requirement: For the least oldest z ∈ ΩA − ΓB choose a

new coding number bz, if it is not already defined, larger than any number seen so



32

far in the construction. Enumerate bz into B and the axiom 〈z, F 〉 into Γ, where

the oracle set F contains bz and all the current killing points q for Γ defined by

T -strategies β ⊇ α_〈so〉. For any z′ ∈ ΓB − ΩA, remove bz′ from B. End the

substage by letting α_〈so〉 be eligible to act next and set the stream S(α_〈so〉) =

S(α)∩ [s0, s), where s0 is the most recent stage less than or equal to s at which α

was initialized.

Case 2: R is an LΠ,x-requirement: Pick the first subcase which applies:

Case 2.1: x 6∈ ΠA⊕Ã: Let α_〈wait〉 be eligible to act next and set the stream

S(α_〈wait〉) = S(α) ∩ [s0, s), where s0 is the most recent stage ≤ s at which α

was initialized.

Case 2.2: x ∈ ΠA⊕Ã: Let α_〈stop〉 be eligible to act next and set the stream

S(α_〈wait〉) = S(α) ∩ [s0, s), where s0 is the greater of the most recent stage

≤ s when α was initialized and the least stage s′ ≤ s such that α was active and

x ∈ ΠA⊕Ã[s1] for all s′ ≤ s1 ≤ s.

Case 3: R is an NΞ,i-requirement: Pick the first subcase which applies.

Case 3.1: α has not been eligible to act since its most recent initialization or

some coding number aj, for j ∈ L, is not defined: For each j ∈ L with aj undefined,

choose a new distinct coding number aj that is suitable for α and end the current

stage.

Case 3.2: All coding numbers aj, for j ∈ L, are defined but the coding number c

is not defined: Choose c larger than any number seen so far in the construction.

Enumerate c into C, aj into Aj for all j ∈ L, the axioms 〈c, {aj} ⊕ {ak}〉 into Θj,k

for all j, k with j 6= k, and end the current stage.

Case 3.3: The coding number c is defined and c 6∈ ΞAi : Let α_〈wait〉 be
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eligible to act next and set the stream S(α_〈wait〉) = [s0, s) where s0 is the stage

at which c was chosen.

Case 3.4: The coding number c is defined and c ∈ C ∩ ΞAi : Then α stops the

strategy by extracting c from C, all aj from Aj with (aj 6= ai), and ending the

current stage.

Case 3.5: The coding number c is defined and c ∈ ΞAi − C: Let α_〈stop〉 be

eligible to act next and set the stream S(α_〈stop〉) = [s0, s), where s0 is the stage

at which α stopped.

Case 4: R is an IΨ,i- requirement: Pick the first subcase which applies.

Case 4.1: α has not been eligible to act since its most recent initialization or

the coding number ai is undefined: Choose a coding number ai suitable for α,

enumerate ai into Ai, and end the current stage.

Case 4.2: ai is defined and ai 6∈ Ψ
L

j 6=i Aj : Let α_〈wait〉 be eligible to act next

and set the stream S(α_〈wait〉) = [s0, s), where s0 is the stage at which ai was

chosen.

Case 4.3: ai is defined and ai ∈ Ai ∩ Ψ
L

j 6=i Aj : Then α stops the strategy by

extracting ai from Ai, and ending the current stage.

Case 4.4: ai is defined and ai ∈ Ψ
L

j 6=i Aj −Ai: Let α_〈stop〉 be eligible to act

next and set the stream S(α_〈stop〉) = [s0, s), where s0 is the stage at which α

stopped.

Case 5: R is an F j
Υ,i,̃ı-requirement: Pick the first subcase which applies.

Case 5.1: α has not been eligible to act since its most recent initialization or

some coding number ak, for k ∈ L, or ãk̃, for k̃ ∈ R, is not defined: For each

k ∈ L with ak undefined, and k̃ ∈ R with ãk̃ undefined, choose new distinct coding
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numbers ak and ãk̃ that are suitable for α and end the current stage.

Case 5.2: All coding numbers ak, for k ∈ L and ãk̃ for k̃ ∈ R are defined but

the coding number ej is not defined: Choose ej larger than any number seen so far

in the construction. For all k ∈ L and k̃ ∈ R, enumerate ak into Ak, ej into Ej,

and the axioms 〈ej, {ak} ⊕ {ãk̃}〉 into Λj,k,k̃. End the current stage.

Case 5.3: The coding number ej is defined and ej 6∈ ΥAi⊕Ãı̃ : Let α_〈wait〉 be

eligible to act next and set the stream S(α_〈wait〉) = [s0, s) where s0 is the stage

at which ej was chosen.

Case 5.4: The coding number ej is defined and ej ∈ Ej ∩ΥAi⊕Ãı̃ : Then α stops

the strategy by extracting ej from Ej, every ak from Ak for k 6= i, every ãk̃ from Ãk̃

for k̃ 6= ı̃, and ending the current stage.

Case 5.5: The coding number ej is defined and ej ∈ ΥAi⊕Ãı̃−Ej: Let α_〈stop〉

be eligible to act next and set the stream S(α_〈stop〉) = [s0, s), where s0 is the

stage at which α stopped.

Case 6: R is a TΦ,j-requirement: Let β0 ⊂ β1 ⊂ · · · ⊂ βi0−1 ⊂ α be all the

strategies such that some S i is active along α via βi (allowing i0 = 0). For every

i < i0, and for every x that has been dumped into Aj, enumerate the axiom 〈x, ∅〉

into ∆i. (In the following subcases, the enumeration operators Ωi and Γi are those

of βi, for i ∈ [0, i0).)

Pick the first case which applies.

Case 6.1: α has not been eligible to act since its most recent initialization: For

each i ∈ [0, i0), pick killing points qi larger that any number seen so far in the

construction and enumerate qi into B. End the current stage s.

Case 6.2: α has current killing points but the witness zi0 is undefined: Choose
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zi0 suitable for α, add zi0 to Aj, initialize all strategies β ⊇ α_〈wait〉, and end the

current stage.

Case 6.3: zi0 is defined and zi0 6∈ ΦB: End the substage by letting α_〈wait〉 be

eligible to act next and setting the stream S(α_〈wait〉) = S(α) ∩ [s0, s) where s0

is the stage at which zi0 was chosen.

Case 6.4: α has stopped (as defined below) and has not been initialized since

then: End the substage by letting α_〈stop〉 be eligible to act next and setting the

stream S(α_〈stop〉) = S(α) ∩ [s0, s), where s0 is the stage at α stopped.

Case 6.5: Otherwise zi0 ∈ Aj ∩ ΦB: We call zi0 a realized witness. We now

distinguish two subcases.

Case 6.5.1 i0 = 0: Then α stops by extracting zi0 from Aj and ending the

current stage s.

Case 6.5.2 Otherwise i0 > 0: Then α stops as follows:

2.5.1 Definition. For i ∈ [0, i0), call z Γi-cleared if

ΓB
i [sz] ⊆ Ω

A−{〈z,j〉}
i ,

where sz is the stage at which z became a realized witness of α.

α first extracts zi0 from Aj. We then have further subcases depending on

whether we have a witness which is “fully Γ-cleared.”

Case 6.5.2.1 Some witness z ∈ S(α) (current or former uncancelled, picked

since α’s most recent initialization) is Γi-cleared for all i ∈ [0, i0): Then α stops

by removing z from Aj (if necessary), adding B[sz] into B, setting zi0 = z as its

current witness and ending the current stage s.
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Case 6.5.2.2 Otherwise: We will now define the streams associated with α’s

infinitary outcomes. We will use zi to denote the least element of the stream

S(α_〈∞i〉).

α acts as follows: Fix the least i < i0 for which there is a current or former

uncancelled witness z (minimal for this i, picked since α’s most recent initialization)

such that:

z 6∈ S(α_〈∞i〉)

z is Γk-cleared for all k ∈ (i, i0), and

z > max {zk : k ≤ i and zk currently defined}.

(Here we set max(∅) = −1. Note that the above condition holds trivially for z = zi0

and i = i0 − 1, so z as defined above must exist.)

Then α

1. extracts qk (for each k ∈ [i, i0)) from B;

2. picks new qk (for each k ∈ [i, i0)) larger than any number seen so far in the

construction and enumerates them into B;

3. cancels ∆k for all k ∈ (i, i0);

4. cancels all (former or current) witnesses z′ 6= z of α with z′ 6∈ S(α_〈∞k〉),

for all k ∈ (i, i0] makes zk undefined, and sets S(α_〈∞k〉) = ∅;

5. adds z to S(α_〈∞i〉) and sets zi = z if zi is currently undefined;

6. adds the axiom 〈z,ΓB
i [sz]〉 into ∆i;

7. adds axioms 〈z′, ∅〉 into ∆i for all zi < z′ < max(S(α_〈∞i〉)) with z′ ∈

Aj − S(α_〈∞i〉); and

8. ends the substage by letting α_〈∞i〉 be eligible to act next.
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Ending the stage s: If the stage s ended at Case 3.4, 4.3, 5.4, 6.5.1 or 6.5.2.1,

let zi be the number extracted by the strategy fs from Ai. For every β ⊆ fs, if β

is a TΦ,i-requirement then for every x ∈ S(β), if x > zi, dump x into Ai.

For every α >L fs, if α is an E j

i,̃i
-strategy, and α’s diagonalization witness ej

is defined, enumerate ej into Ej and the axiom 〈ej, ∅〉 into Λj,k,k̃, for all k ∈ L

and k̃ ∈ R. If α is a PΞ,i-requirement and α’s diagonalization witness c is defined,

enumerate c into C and the axiom 〈c, ∅〉 into Θj,k for all j, k ∈ L. Initialize every

strategy α >L fs.

2.6 The Verification

Let f = lim infs fs be the true path of the construction, defined more precisely by

induction by

f(n) = lim inf
{s:f�n⊂fs}

fs(n).

2.6.1 Lemma. (Tree Lemma)

(i) Each α ⊂ f is initialized at most finitely often.

(ii) For each strategy α ⊂ f , the stream S(α) is an infinite set. No number can

leave S(α) unless α is initialized. For every X ∈ {A,A0, . . . , An}∪
{
Ã, Ã0̃, . . . , Ãñ

}
and every stage s, there are an α-stage t > s and a number z > s such that z is

suitable for α to enumerate into X at stage t.

(iii) The true path f is an infinite path through T.

(iv) For any requirement Re = SΩ or T Φ,j, there is a strategy α ⊂ f such that

the requirement is active via α along all sufficiently long β ⊂ f , or is satisfied via α

along all β with α ⊂ β ⊂ f . (In particular, for any requirement Re, there is a
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longest strategy assigned to Re along f .)

Proof. (i) Proceed by induction on α and note that the only time a strategy is

initialized is when it is to the left of the true path or in Case 6.2, which can only

happen finitely often.

(ii) Proceed by induction on |α| and note for the last part of (ii) that any

number just entering S(α) is suitable for α at that stage.

(iii) A stage s is ended before substage s only under Cases 3.1, 3.2, 3.4, 4.1,

4.3, 5.1, 5.2, 5.4, 6.1, 6.2, or 6.5.1. By (ii), we cannot stop cofinitely often at 3.1,

4.1, 5.1 or 6.2 due to lack of suitable numbers.

(iv) By an easy induction argument on e.

We now verify the satisfaction of the requirements.

2.6.2 Lemma. (J -Lemma) The J -requirement is satisfied.

Proof. Immediate from the definition of A.

2.6.3 Lemma. (I- Lemma) All I-requirements are satisfied.

Proof. Fix a requirement IΨ,i. By the Tree Lemma (Lemma 2.6.1(iv)), there is an

I-strategy α ⊂ f such that IΨ,i is satisfied along all β with α ⊂ β ⊂ f . Then

α_〈o〉 ⊂ f for o ∈ {stop,wait}.

By the construction, the fact that α is eventually no longer initialized, and the

Tree Lemma (Lemma 2.6.1(ii)), α eventually has a fixed diagonalization witness.

Call this witness z.
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If α_〈wait〉 ⊂ f then z ∈ Ai −Ψ
L

j 6=i Aj by the construction, thus the require-

ment IΨ,i is clearly satisfied.

Otherwise α_〈stop〉 ⊂ f , so α stops at some stage s, and z ∈ Ψ
L

j 6=i Aj [s]−Ai.

We will show that no set changes at any number < sz (where sz is the stage ≤ s

at which z became a realized witness) by considering all possible strategies β.

Case A: β <L α: Then β is no longer eligible to act after stage s (or else α

would be initialized and lose its witness).

Case B : β > α_〈stop〉: The first time β is eligible to act after α stops is the

first time β is eligible to act after being initialized: Thus β cannot change
⊕

j 6=iAj

at any number that would injure Ψ
L

j 6=i Aj .

Case C : β_〈o〉 ⊆ α_〈stop〉 for some o ∈ {stop,wait}: Then β cannot change⊕
j 6=iAj without initializing α.

Case D : β_〈∞i〉 ⊆ α for some i ∈ ω: Then z was put by β into the stream

of β_〈∞i〉, and at stage s, β adds a number > z into the stream of β_〈∞i〉. At

the first β-stage s′ > s, β picks a coding number z′ which is too large to injure

Ψ
L

j 6=i Aj [z], and after stage s, β does not change
⊕

j 6=iAj at a number less than z′.

So β cannot injure Ψ
L

j 6=i Aj(z) after stage s.

Case E : β_〈so〉 ⊆ α is an S-requirement: Then β never extracts any elements

from
⊕

j 6=iAj.

2.6.4 Lemma. (L-Lemma) All L-requirements are satisfied.

Proof. The proof that LΠ,x-requirements are satisfied is similar to the proof of

Lemma 2.6.3.
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2.6.5 Lemma. (N - and P-Lemma) All N - and P-requirements are satisfied.

Proof. Fix a requirement NΞ,i. The proof that NΞ,i is satisfied is similar to the

proof of Lemma 2.6.3 with the additional case that when, if ever, NΞ,i extracts c

from C, the P-requirements will extract aj from Aj for all j ∈ L− {i}. However,

it is immediate that this action does not injure the ΞAi(c) computation.

Fix a requirement Pi,j and fix some element c that was targeted to enter C

by some NΞ,k-strategy α at, say, stage s. If α was ever initialized at some stage

s0 > s, then by the action at the end of stage s0, c is enumerated into C and the

axiom 〈c, ∅〉 into Θi,j. In addition, c will never be chosen again as a diagonalization

number by any other N -strategy.

Assume that α was never initialized after stage s. We have two cases to consider.

Case 1: c ∈ C: At some stage s1 ≥ s we enumerated the axiom 〈c, {ai}⊕{aj}〉

into Θi,j, the elements ai into Ai, aj into Aj, and c into C. Since α was not

initialized after stage s1, no other strategy could extract either ai from Ai or aj

from Aj without initializing α, and hence c ∈ Θ
Ai⊕Aj

i,j .

Case 2: c 6∈ C: We have two subcases to consider.

Case 2a: c was never enumerated into C by α: By Lemma 2.6.1(ii), we must

have α <L fs1 for all stages s1 > s, and hence no axiom of the form 〈c, {ai}⊕{aj}〉

was enumerated into Θi,j. Therefore c 6∈ Θ
Ai⊕Aj

i,j .

Case 2b: Otherwise: This case is similar to Case 1. At some stage s1 ≥ s we

enumerate the axiom 〈c, {ai} ⊕ {aj}〉 into Θi,j, the elements ai into Ai, aj into Aj

and c into C. Then, at some later stage s2 > s1, c is extracted from C by α, and

so ai is extracted from Ai or aj from Aj. Since α was not initialized after stage s2,
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and by Lemma 2.6.1(ii), no other strategy could enumerate either ai back into Ai

or aj back into Aj, and hence c 6∈ Θ
Ai⊕Aj

i,j .

2.6.6 Lemma. (E- and F -Lemma) All E- and F -requirements are satisfied.

Proof. The proof that all E j
i,̃ı- and F j

Υ,i,̃ı-requirements are satisfied is similar to the

proof of Lemma 2.6.5.

2.6.7 Lemma. (T -Lemma) All T -requirements are satisfied.

Proof. Fix a requirement T Φ,j. The proof that TΦ,j is satisfied is similar to the

proof of Lemma 2.6.3. The difference is in how we handle Case E.

Case E : β_〈so〉 ⊆ α and β’s S-requirement is active along α via β: Then α

stops via Case 6.5.2.1 of the construction where β = βi for some βi mentioned in

Case 6.5.2.2. Thus z is Γi-cleared, i.e.,

ΓB
i [sz] ⊆ Ω

A−{〈z,j〉}
i ,

where sz is the stage at which z became a realized witness of α. By the action at

stage s (the stage when TΦ,j stops),

ΓB
i [s] ⊆ ΩA

i [s],

so any later Γi-correction by β will only involve Γi-axioms defined after stage sz,

and thus will change any set only on numbers > sz.

To complete this lemma, we add an additional case.

Case F: β_〈so〉 ⊆ α and β’s S-requirement is not active along α via β: Then

some α′ with β ⊂ α′ ⊂ α kills β’s enumeration operator Γ. Therefore

ΓB
i [sz] ⊆ ΩA

i [sz]
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by the action of β at stage sz. Any later Γ-correction performed by β will only

involve Γ-axioms defined after stage sz, and hence will change any set only on

numbers > sz.

2.6.8 Lemma. (S-Lemma) All S-requirements are satisfied.

Proof. Fix a requirement SΩ. By the Tree Lemma (Lemma 2.6.1(iv)), there is a

longest SΩ-strategy β ⊂ f . Again by the Tree Lemma (Lemma 2.6.1(iv)), we may

now distinguish two cases:

Case 1: SΩ is active via β along all α with β ⊂ α ⊂ f : Suppose that β is no

longer initialized after, say, stage s0.

For the sake of a contradiction, assume first that there is some z ∈ ΩA − ΓB.

Choose z0 to be the least oldest such z with age sz. Fix s1 ≥ s0, sz such that no

T -strategy with killing point ≤ z (for this Γ) executes Step (i) of Case 6.5.2.2 of

the construction. Then by the first β-expansionary stage ≥ s1, β will permanently

put z into ΓB by Case 1 of the construction.

If z ∈ ΓB, then by Γ-correction of β under Case 1 of the construction, z ∈ ΩA.

Case 2: There is a T Φ,j-strategy α ⊂ f such that SΩ is satisfied via α along

all ξ with β ⊂ ξ ⊂ f : Then β is α’s strategy βi, α
_〈∞i〉 ⊂ f , and we need to

show that ∆ΩA

i = Aj (for the enumeration operator ∆i built by α after α’s last

initialization and after α cancels ∆i for the last time).

We show that Aj =∗ ∆ΩA

i by distinguishing two cases for arguments z ≥ zi

of ∆ΩA

i :

Case 2a: z 6∈ S(α_〈∞i〉): Then, once z < max(S(α_〈∞i〉[s]), no strategy can

remove z from Aj (and so by (7) of Case 6.5.2.2 of the construction, z ∈ Aj if
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and only if z ∈ ∆ΩA

i ). To see this, note that only strategies ξ ⊂ α with infinitary

outcome along α can possibly change Aj(z) (by the usual initialization argument).

But, after stage s, any such ξ cannot put z into the stream of any strategy ζ ⊃ ξ.

If ξ is a T - or I-strategy, it will no longer remove z as a realized witness, and it will

not remove z for Γ-correction (as in Case 4.3 or Case 6.5.1 of the construction)

since ξ does not stop (as Case 4.3 or Case 6.5.1 does not apply). If ξ is an S-

strategy, then ξ does not remove numbers from Aj.

Case 2b: x ∈ S(α_〈∞i〉): We first observe that

z ∈ Aj ⇔ 〈z, j〉 ∈ A, (2.1)

z ∈ ∆ΩA

i ⇔ ΓB
i ⊆ ΩA, and (2.2)

ΓB
i [sz] 6⊆ ΩA−{〈z,j〉} (2.3)

by meeting the J -requirement, the definition of ∆i, and the fact that α does not

stop, respectively.

Thus, if z 6∈ Aj, by (1.1) and (1.3) we have ΓB
i [sz] 6⊆ ΩA, which by (1.2), gives

us z 6∈ ∆ΩA
.

On the other hand, if z ∈ Aj, then by (1), 〈z, j〉 ∈ A so it follows that

ΓB
i [sz] ⊆ ΩA∪{〈z,j〉}[sz] ⊆ ΩA

and we have z ∈ ∆ΩA

i .

2.6.9 Lemma. The sets B, B̃, C, C̃, E0, and E1 are ∆0
2.

Proof. We prove that B is ∆0
2. The proof for B̃ is similar. In the construction, only

under Case 1 and Case 6.5.2.2 do we enumerate elements into or extract elements

from B.
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Fix an element z and an enumeration operator Π. By Lemma 2.6.4, the limit

lims ΠA(z)[s] converges. Hence, any SΠ-strategy that chooses a coding number cz

for z under Case 1 will enumerate cz into and extract cz from B a finite number of

times. Furthermore, we choose our coding numbers cz in such a way that if ever

SΠ is reset, no other strategy will enumerate cz into B.

Under Case 6.5.2.2, a killing point can be enumerated into and extracted from B

at most once. Like in the previous case, we choose new killing points in such a way

that no killing point, once cancelled, will ever be used again by another strategy.

Therefore B is ∆0
2.

By Lemma 2.6.4, A⊕ Ã is low and by Lemma 2.6.5, C, C̃ ≤e Ã⊕A. Therefore

both C and C̃ are ∆0
2. An element x may be enumerated into Ej at most once

by Case 5.2 of the construction and extracted at most once by Case 5.4. The

only other time that x may be enumerated into Ej is when it is dumped in due

to initialization. This may happen at most once and after this, x will never be

extracted from Ej. Therefore both E0 and E1 are ∆0
2.

This completes the proof of the theorem.
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Chapter 3

Non-Splitting Enumeration

Degrees

3.1 Introduction

A non-zero degree a is non-splitting if whenever a = b ∨ c then a = b or a = c.

It has been shown that every c.e. Turing degree splits as the non-trivial join of

two smaller c.e. Turing degrees [Sac63]. On the other hand a minimal ∆0
2-Turing

degree is trivially non-splitting.

In her thesis, Ahmad [Ahm89] (cf. [AL98]) constructed a non-splitting Σ0
2-

enumeration degree. This result is interesting since, unlike the ∆0
2-Turing degrees,

the Σ0
2-enumeration degrees are dense, and furthermore, the existence of non-

splitting degrees allows us to construct Ahmad pairs, as discussed in Chapter 2.

As of yet, no direct construction of a non-splitting degree using a tree of strate-

gies has been published in the literature. In this section we present such a con-

struction. We then present current research that Andrea Sorbi and the author are

engaged in regarding non-splitting degrees by showing how to modify this proof in

order to construct a low non-splitting degree, a properly Σ0
2-non-splitting degree,

and finally to demonstrate that every non-trivial ∆0
2-degree bounds a non-splitting
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degree.

3.2 Non-splitting Degrees

3.2.1 Theorem ([Ahm89] (cf. [AL98])). There exists a non-zero non-

splitting enumeration degree.

In order to prove this theorem, we build a Σ0
2-set A in stages, meeting for all

enumeration functionals Φ, Ψ, Ω0, and Ω1 the following requirements:

NΦ : A 6= Φ,

SΨ,Ω0,Ω1 : A = ΨΩA
0 ⊕ΩA

1 ⇒ ∃Γ0,Γ1

[
A =∗ Γ

ΩA
0

0 or A =∗ Γ
ΩA

1
1

]
.

Here Γ0 and Γ1 are enumeration operators built by us and local only to the

strategy by which they are built. Upon satisfaction of the requirements, it follows

that dege(A) is non-splitting.

During the course of the construction, for each strategy on the tree, a stream

of elements will be enumerated from which the strategy will be required to pick its

witnesses. These streams will be enumerated in such a way as to guarantee that

every strategy which is on the true path will have an infinite number of witnesses

from which to choose coding locations.

We now present the strategies.

The Strategy for NΦ

The N -requirement follows the basic Friedberg-Muchnik strategy as follows. The

least witness a that is not dumped into A is chosen from a stream (defined below)
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of available witnesses and enumerated into the set A. When, if ever, the element

a enters Φ, the strategy will extract a from A, dump all elements y > a from the

stream into A, and stop.

The Strategy for SΨ,Ω0,Ω1

Our description of this strategy operates under the assumption that A = ΨΩA
0 ⊕ΩA

1 ,

since if otherwise, the requirement is trivially met. The strategy attempts to build

two enumeration functionals Γ0 and Γ1 such that, if the above assumption is true,

either A =∗ Γ
ΩA

0
0 or A =∗ Γ

ΩA
1

1 .

At each stage of the construction, the stream Q of available witnesses for the

S-strategy will be partitioned into four sets Qw, Q0, Q1, and Q6=. The set Qw will

be the set of elements x for which we are currently waiting to see if an extraction x

from A will cause x to leave ΨΩA
0 ⊕ΩA

1 . The sets Qi will be the elements x for which

we have x ∈ A if and only if x ∈ Γ
ΩA

i
i . Finally, Q6= will consist of the members

of the stream Q that entered after a successful diagonalization of A with ΨΩA
0 ⊕ΩA

1 .

A particular witness may be in only one set at a time and may move from Qw

to Q0 to Q1 to Q6=, possibly skipping a set in the sequence, but will never be

allowed to move backwards through the sequence. We explain how this process is

accomplished.

As potential witnesses are enumerated into the stream of the S-strategy, they

will first be placed in Qw. The streams of lower priority strategies which assume

that the length of agreement between A and ΨΩA
0 ⊕ΩA

1 is finite will be restricted to

elements of Qw. If we ever see an element x ∈ Qw with x ∈ A ∩ ΨΩA
0 ⊕ΩA

1 , we will
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dump all Qw − {x} into A and extract x from A. We now have several cases to

consider in determining what action to take.

If, when we extract x from A, x leaves ΨΩA
0 ⊕ΩA

1 then we enumerate the axioms

〈x,ΩA∪{x}
i 〉 into Γi for i ≤ 1 and the element x into Q0. Assume that at some later

stage, x is re-enumerated into A. After this, any element that is moved from Qw

into Q0 will have enumerated Γ0 and Γ1 axioms under the assumption x ∈ A. Thus,

if x is ever extracted from A, these latter axioms may give incorrect computations.

Hence, whenever x is extracted from A, we will dump almost all of the elements of

the stream that are larger than x into A. This gives us the following strategy: From

now on, each time we see x /∈ A and x /∈ Γ
ΩA

0
0 we dumpQw∪{y ∈ Q0 : y > x} intoA.

If we ever see x /∈ A and x ∈ Γ
ΩA

0
0 , then we dump all elements of (Qw ∪Q0)− {x}

into A, and enumerate x into Q1. From this point on, we monitor x and whenever

we see x leave A, we dump all of Qw ∪Q0 ∪ {y ∈ Q1 : y > x} into A.

If during this process, we ever see an element x ∈ Qw ∪ Q0 ∪ Q1 with x ∈

ΨΩA
0 ⊕ΩA

1 −A, then we have successfully diagonalized and may stop the strategy by

dumping all elements of (Qw ∪Q0 ∪Q1)−{x} into A. At subsequent stages when

this strategy is active, all new witnesses that enter the stream Q are enumerated

into Q6= and we only allow lower priority strategies that assume A 6= ΨΩA
0 ⊕ΩA

1 to

act. The streams of these strategies are restricted to elements of Q6=. Strictly

speaking, handling of this case is not needed in order to successfully meet the

requirement, but it helps to simplify the bookkeeping.

Whenever an element x is dumped into A, we enumerate x into A and enumer-

ate the axiom 〈x, ∅〉 into Γ0 and Γ1.
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Justification of the strategy. Assume that A = ΨΩA
0 ⊕ΩA

1 , and in addition, as-

sume that the N -requirements are met and, as such, A is not c.e. During the

construction, we construct A in such a way as to guarantee that it is ∆0
2.

If only a finite number of elements have been enumerated into Q1, then the

above two assumptions give us that Q0 must contain an infinite number of elements

that are not dumped into A. Choose x ∈ Q0 such that x was not dumped into A.

When x was enumerated into Q0, say at stage s, an axiom of the form 〈x,ΩA∪{x}
0 [s]〉

was enumerated into Γ0. Since x was not dumped into A, we know that after the

stage at which x entered the stream of the N -strategy, no element less than x was

extracted from A since otherwise, x would have been dumped into A. In addition,

when x was initially enumerated into Q0, all elements of Qw − {x}, at that stage,

were dumped into A. Therefore A[s] ⊂ A, and so if x ∈ A ⇒ x ∈ Γ
ΩA

0
0 . Similarly,

since x /∈ Q1 we know that x /∈ A ⇒ x /∈ Γ
ΩA

0
0 . Thus A =∗ Γ

ΩA
0

0 , the only possible

disagreement occurring on the finite set Q1.

Otherwise, Q1 must contain an infinite number of elements that are not dumped

into A. Similar reasoning as above gives us that x ∈ A ⇒ x ∈ Γ
ΩA

1
1 . At the

stage x was enumerated into Q1, x was extracted from A, but we still had x ∈

Γ
ΩA

0
0 . Thus, by dumping all of the elements of (Q1 ∪ Qw) − {x} into A we force

x ∈ Γ
ΩA

0
0 permanently. If we ever saw x /∈ A and x ∈ Γ

ΩA
1

1 , then by dumping

(Q1 ∪Q0 ∪Qw)−{x} into A we force x ∈ Γ
ΩA

1
1 permanently. However, this implies

that x ∈ ΦΩA
0 ⊕ΩA

1 permanently, and so by restraining x /∈ A, we force a permanent

disagreement, contradicting our assumption. Hence, we conclude that A = Γ
ΩA

1
1 .
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The Tree of Strategies

Fix an arbitrary effective priority ordering {Re}e∈ω of all N - and S-requirements.

We define Σ = {stop < γ1 < γ0 < wait} to be our set of outcomes. We define

T ⊂ Σ<ω and refer to it as our tree of strategies. Each node α ∈ T will be

associated with, and thus identified with, the requirement R|α|.

We assign requirements to nodes on T by induction as follows: The empty node

is defined to be in T and assigned to requirement R0. Given an assignment to a

node α ∈ T, we distinguish cases depending on the requirement R assigned to α:

Case 1: R is an S-requirement: Define α_〈o〉 ∈ T for all o ∈ Σ.

Case 2: R is an N -requirement: Define α_〈stop〉 and α_〈wait〉 ∈ T.

The Construction

The construction proceeds in stages s ∈ ω. First, we give some conventions and

definitions.

When we initialize a strategy, we undefine all parameters, redefine all local

enumeration operators to be empty, dump S(α)−F into A (where F is a finite set

that we do not want to be dumped into A), and set S(α) = ∅. The stream S(∅)

of the root node ∅ of our tree of strategies at any stage s is [0, s). The streams

S(α) for α 6= ∅ are defined during the construction. A strategy will be eligible to

act if it is along the current approximation fs ∈ T to the true path f ∈ [T] of the

construction. At a stage s, if α ⊆ fs, we will call s an α-stage.

At an α-stage s, we call a number z in the stream S(α) suitable for α if

1. z is not currently in use for A by any strategy (i.e., z is not the current
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witness or coding number targeted for A by any strategy that has not been

initialized since z has been picked).

2. z has not been dumped into A.

3. z is greater than |α| or any stage at which any β ⊇ α has changed any set,

picked any number, or extended any enumeration operator.

4. z is greater than any stage sβ since which any β ⊂ α with finitary outcome

〈wait〉 or 〈stop〉 along α has first taken on this outcome.

During the course of the construction, all parameters are assumed to remain

unchanged unless specified otherwise. At the end of each stage s, we will dump

certain elements into A and initialize certain strategies as described below under

Ending the stage s.

We now proceed with the construction.

Stage 0: Initialize all α ∈ T.

Stage s > 0: Each stage s is composed of substages t ≤ s such that some

strategy α ∈ T, with |α| = t, acts at substage t of stage s and decides which

strategy will act at substage t + 1 or whether to end the stage. The longest

strategy eligible to act during a stage s is called the current approximation to the

true path at stage s and is denoted fs.

Substage t of stage s: Suppose a strategy α of length t is eligible to act at this

substage. We distinguish cases depending on the requirement R assigned to α.

Choose the first case which applies.

Case 1: α is an NΦ-requirement: Pick the first subcase which applies.
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Case 1.1: α has not been eligible to act since its most recent initialization or

has no coding number z defined: Pick z to be the least suitable witness from S(α).

If no such z is available, end the current stage. Otherwise, enumerate z into A and

end the current substage and let α_〈wait〉 be eligible to act next.

Case 1.2: The coding number z is defined and z ∈ A − Φ: Set the stream

S(α_〈wait〉) = [s0, s) ∩ S(α) where s0 is the stage at which z was chosen by α.

End the current substage and let α_〈wait〉 be eligible to act next.

Case 1.3: The coding number z is defined and z ∈ A ∩ Φ: Extract z from A,

dump S(α)− {z} into A, and enumerate z into F . End the current substage and

let S(α_〈stop〉) be eligible to act next.

Case 1.4: The coding number z is defined and z ∈ Φ − A: Set the stream

S(α_〈stop〉) = [s0, s)∩S(α) where s0 is the stage at which z was extracted from A

by α. End the current substage and let α_〈stop〉 be eligible to act next.

Case 2: α is an SΨ,Ω0,Ω1-requirement: Let s0 be the most recent stage at which

α was eligible to act. If α is not stopped, enumerate S(α)∩[s0, s) into S(α_〈wait〉).

Otherwise, enumerate S(α)∩ [s0, s) into S(α_〈stop〉). Pick the first subcase which

applies.

Case 2.1: α has stopped since its most recent initialization: End the current

substage and let α_〈stop〉 be eligible to act next.

Case 2.2: There is an element z ∈ S(α), which has not been dumped into A,

such that z ∈ ΦΩ
A−{z}
0 ⊕Ω

A−{z}
1 : Let z0 be the least such z. Stop the strategy by

extracting z0 from A, if necessary, dumping S(α)−{z0} into A, and enumerate z0

into F . End the current substage and let α_〈stop〉 be eligible to act next.

Case 2.3: There is an element z ∈ S(α_〈γ1〉) such that z /∈ A but z ∈ A[s1]
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where s1 is the last stage at which α was active: Let z0 be the least such z, dump

S(α)∩(z0, s) into A, and enumerate z0 into F . End the current stage and continue

with stage s+ 1.

Case 2.4: There is an element z ∈ S(α_〈γ0〉) such that z /∈ A but z ∈

Γ
ΩA

0
0 : Let z0 be the least such z, dump (S(α_〈γ0〉) ∪ S(α_〈wait〉))− {z0} into A,

enumerate z0 into S(α_〈γ1〉), and enumerate z0 into F . End the current substage

and let α_〈γ1〉 be eligible to act next.

Case 2.5: There is an element z ∈ S(α_〈γ0〉) such that z /∈ A but z ∈ A[s0]

where s0 is the last stage at which α was active: Let z0 be the least such z, dump

S(α)∩(z0, s) into A, and enumerate z0 into F . End the current stage and continue

with stage s+ 1.

Case 2.6: There is a z ∈ S(α_〈wait〉) that has not been dumped into A, with

z ∈ ΨΩ
A∪{z}
0 ⊕Ω

A∪{z}
1 and z /∈ ΨΩ

A−{z}
0 ⊕Ω

A−{z}
1 : Let z0 be the least such z. Enumerate

the axioms 〈z0,Ω
A∪{z0}
0 〉 into Γ0 and 〈z0,Ω

A∪{z0}
1 〉 into Γ1, extract z0 from A if

necessary, dump S(α_〈wait〉) − {z0} into A, and enumerate z0 into F . End the

current substage and let α_〈γ0〉 be eligible to act next.

Case 2.7: Otherwise: End the current substage and let α_〈wait〉 be eligible to

act next.

Ending the stage s: Initialize every β >L fs. If δ > fs is an N -strategy and has

a defined coding number which has been dumped into A, initialize every β ≥ δ.

Set F = ∅ (Where F is a set of elements that were not dumped into A).



54

The Verification

Let f = lim infs fs be the true path of the construction, defined more precisely by

induction by

f(n) = lim inf
{s:f�n⊂fs}

fs(n).

3.2.2 Lemma. i. Once an element is dumped into A, it is never removed

from A.

ii. {As} is a ∆0
2-approximation to A.

Proof. i. By the definition of a suitable witness, no N -strategy may use a

dumped element as a coding location. A witness of an N -strategy is dumped

into A only when the strategy is initialized, so the next time it is active, it

will choose a new, suitable witness. By the restriction on Case 2.2, an S-

requirement can never extract a dumped element.

ii. Let z be an element that was not dumped into A. By the definition of

suitable, if z was picked as a coding location by an N -requirement β, then

z ≥ |β|. In addition, during the construction a particular element may be

picked as a coding location by a particular N -strategy at most once. This

implies that each N -strategy β with |β| ≤ z, may enumerate z into and

extract z from A at most once.

If β is an S-requirement, with |β| ≤ z then β may never enumerate z into A,

and may extract z from A only in Cases 2.2 and 2.6. Due to the way elements

are moved through the streams of β’s possible outcomes, it is clear that β

may extract z from A at most once for Case 2.2 and at most once for Case
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2.6.

Since T is a finitely branching tree, there are only finitely many nodes of

level ≤ z, and so z may be enumerated into A at most finitely many times.

3.2.3 Lemma. (Tree Lemma)

i. For every α ⊂ f , S(α) is infinite, and there are infinitely many elements of

S(α) which are not dumped into A.

ii. f is infinite.

Proof. i. Elements are dumped into A only when an element of lesser is ex-

tracted from A under Cases 1.3, 2.2, 2.3, 2.4, 2.5, and 2.6. Furthermore,

when elements are dumped into A, there is always at least one element that

is not dumped into A which is less than the dumped elements.

Let z0 ∈ S(α) be the least element that is not dumped into A. Since A

is ∆0
2, let s0 be the least stage such that A(z0; s) = A(z0) for all s ≥ s0.

After stage s0, no elements will be dumped into A due to z0 being extracted

from A. By induction, we can define the infinite sequence 〈zi : i ∈ ω〉 where

zi+1 is the least element ≥ si not dumped into A (after stage si).

ii. A stage s ends prematurely during the construction only in Cases 1.1, 1.3,

and 2.5 of the construction. Let s0 be the least stage after which α is never

initialized. If α is an N -strategy, by part i, after stage s0, α can end a

stage prematurely only a finite number of times under Case 1.1, and under
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Case 1.3 only once. If α is an S-requirement, since A is ∆0
2, after stage s0,

a particular element may cause α to end a stage prematurely only a finite

number of times under Case 2.5 after which one of the other cases will act.

Hence, α cannot end cofinitely many stages.

3.2.4 Lemma. Every strategy α ∈ f meets its requirement.

Proof. Let s0 be the least stage after which α is never initialized.

Case 1 : α is an N -requirement: Since S(α) is infinite, and contains an infinite

number of elements that are not dumped into A, at some stage s1 ≥ s0, α chooses

a suitable diagonalization witness z and enumerates z into A. If ever z enters Φ, α

will extract z from Φ.

We show that no other strategy can destroy α’s A-computation. Once α

chooses z as a diagonalization witness, no strategy β <L α is active after stage s0,

and z is not in the stream of any strategy β > α after stage s1. No N -strategy

β ⊂ α can use z as a witness by our definition of suitable, so z cannot be enu-

merated into A by any other strategy after stage s1. If some β ⊂ α extracts z

from A after stage s1, then α will be initialized by this action, contradicting our

assumption about s0.

Case 2 : α is an S-requirement: Let α_〈o〉 ⊂ f , and let s0 be least such that

α_〈o〉 is never initialized after stage s0.

If 〈o〉 = 〈stop〉 then the α executed Case 2.2 at some stage s1 ≥ s0 on behalf of

some diagonalization witness z. No β <L α can remove elements from the Ψ-use

of z since they are not active after stage s0. After stage s1, all the elements of
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S(β) for β >L α or β ⊃ α are greater than s1 and, hence, no such β can remove

an element from the Ψ-use of z. If after stage s1, a strategy β ⊂ α removes an

element ≤ s1 from A, then it did so under Cases 1.3, 2.2, or 2.4 which would cause

α to be initialized and thus A 6= ΨΩA
0 ⊕ΩA

1 .

Assume that 〈o〉 = 〈wait〉. In this case, α takes on the outcomes 〈γ0〉 and

〈γ1〉 only finitely often, so say that after stage s1 ≥ s0, whenever α is active,

then α takes on outcome 〈wait〉. By Lemma 3.2.3.i, after stage s1, S(α_〈wait〉)

contains infinitely many elements that are not dumped into A. Since after stage

s0, α never takes on the outcomes 〈stop〉, 〈γ1〉 or 〈γ0〉, we must have that for all

z ∈ S(α_〈wait〉), if z is not dumped into A then z ∈ A ⇒ z /∈ ΨΩA
0 ⊕ΩA

1 . This

implies that ∀z ∈ S(α_〈wait〉), z /∈ ΨΩA
1 ⊕ΩA

2 . This then implies that ΨΩA
0 ⊕ΩA

1 is

c.e., but by Case 1, A is not c.e, so A 6= ΨΩA
0 ⊕ΩA

1 .

Thus, if A = ΨΩA
0 ⊕ΩA

1 then α_〈γi〉 ⊂ f for some i ≤ 1. Let s1 ≥ s0 be

least such that after stage s1, α
_〈γi〉 is never initialized. Choose z ∈ S(α) to

be an element which is not dumped into A. Let s2 ≥ s1 be the stage at which

Case 2.6 of the construction is applied on behalf of z. The strategy first tries to

ensure that A(z) = Γ
ΩA

0
0 (z) by enumerating the axioms 〈z,ΩA∪{z}

0 [s1]〉 into Γ0 and

〈z,ΩA∪{z}
1 [s1]〉 into Γ1, and dumping all elements of S(α_〈wait〉)− {z} into A.

At no stage greater than s2 may any strategy to the left of α act since this would

initialize α. In addition, the elements of the stream of any strategy to the right

of α are larger than z. So, if at a later stage s3 > s2, we have A[s3] � z * A[s2] � z,

then some strategy β ⊇ α extracted an element y < z from A via Case 1.3, 2.2,

or 2.6. However, this action would cause α to be initialized. Therefore, for all

t ≥ s0, A[s0] � z ⊆ A[t] � z ⊆ A � z, and it follows that ΩA
0 [s0] ⊆ Ω

A∪{z}
0 and
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ΩA
1 [s1] ⊆ Ω

A∪{z}
1 . Hence, z ∈ A implies z ∈ Γ

ΩA
0

0 , z ∈ Γ
ΩA

1
1 , and z ∈ ΨΩA

0 ⊕ΩA
1 .

It remains to show that if z /∈ A then z /∈ Γ
ΩA

i
i . Assume otherwise. Let s4 > s2

be the least stage at which α is active and z /∈ A[s4] and z ∈ Γ
ΩA

i
i [s4]. If i = 0,

then at stage s4 Case 2.4 applies, and z would be enumerated into S(α_〈γ1〉)

causing α_〈γ0〉 to be initialized. If i = 1, then the dumping action that occurred

by Case 2.4 on behalf of z ensures that z ∈ Γ
ΩA

0
0 . Since z ∈ Γ

ΩA
0

0 and z ∈ Γ
ΩA

1
1 then

z ∈ ΨΩA
0 ⊕ΩA

1 , but this would imply that α would execute Case 2.2 on behalf of z

and take on the outcome of 〈stop〉, thus initializing α_〈γ1〉.

3.3 A Low Non-Splitting Degree

3.3.1 Theorem. ([Ahm89] (cf. [AL98])) There exists a low non-splitting enu-

meration degree.

We modify Theorem 3.2.1 by adding the following lowness requirement:

Lx,Φ : ∃∞s(x ∈ ΦA[s]) ⇒ x ∈ ΦA.

Naive Strategy for Lx,Φ

This procedure guarantees lowness of A. Denote the stream associated with

this strategy on the tree as S.

1. Wait for x ∈ ΦA∪S.

2. Dump S into A and stop.

The behavior of this strategy is similar to that of the N -requirements. The

two possible outcomes on the tree are 〈wait〉 if the strategy waits at Step 1 forever

and 〈stop〉 if the strategy finally stops at Step 2.
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Verification (sketch) Let α ⊂ f be an L-strategy, and s0 be the least stage

such that α is never initialized after s0. If x never enters ΦA∪S then the requirement

is met. Assume that at some stage s1 > s0, x enters ΦA∪S. Then α dumps S

into A and takes on the outcome 〈stop〉. No strategy to the left of α can destroy

this computation since none is active after stage s0. No strategy to the right of,

or below, α can destroy the computation since all coding locations chosen before

stage s1 are dumped into A, and all chosen after are larger than the use. If a

strategy above α extracts an element from the use, then this would cause α to be

initialized, contradicting our assumption.

3.4 A properly Σ0
2-Non-splitting Degree

3.4.1 Theorem. There exists a properly Σ0
2-non-splitting enumeration degree.

Proof. In the proof of Theorem 3.2.1, replace the requirement NΦ by the following

requirement:

NB,Φ,Ψ : B = ΦA and A = ΨB ⇒ ∃x ∈ B(limsBs(x) ↑).

Strategy for NB,Φ,Ψ [CC88]

1. Choose a suitable witness x from the stream S(α) and enumerate x into A.

2. Wait for x ∈ ΨB via some minimal finite set D ⊆ B such that x ∈ ΨD and

D ⊆ ΦA. Once this happens, dump S(α)− {x} into A.

3. Remove x from A (possibly allowing D * ΦA).

4. Wait for x /∈ ΨB.
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5. Enumerate x into A (forcing D ⊆ ΦA).

6. Wait for x ∈ ΨB and D ⊆ B.

7. Go to Step 3.

Verification (sketch) We will have two outcomes for this strategy: x ∈ A,

which will correspond to Steps 2 and 6 of the strategy, and x /∈ A, which corre-

sponds to Step 4. The first time we move to Step 3, we dump S(α)− {x} into A,

forcing D ⊆ ΦA whenever x ∈ A. Thus, if B = ΦA and A = ΨB, then we loop

through Step 7 infinitely often. Due to fact that D is finite, each time we loop

through Step 7, some element of D has left B at Step 4 and re-entered B at Step 6.

Thus we know that for some d ∈ D, limsBs(d) ↑, and so 〈Bs〉 is a Σ0
2-approximation

to B. Since this is true for every B ≡e A, A must be properly Σ0
2.

The S-strategy is modified by dumping only those elements into A which had

axioms enumerated into the Γi while x was an element of A. Since the membership

of x in A is changed only when α takes on one of the 〈γi〉 outcomes, we guarantee

that infinitely elements of S(α_〈γi〉) are not dumped into A by this action.

With these modifications we immediately see that the S-strategies still meet

their requirements, and the set constructed is non-splitting.

3.5 Bounding Non-splitting Degrees

3.5.1 Theorem. The non-splitting degrees are downwards dense in the ∆0
2-

enumeration degrees. i.e. every ∆0
2-enumeration degree bounds a non-splitting

∆0
2-enumeration degree.
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Given a ∆0
2-approximation 〈As〉 to a set A, we construct in stages an enumer-

ation operator Θ meeting the following requirements:

R : B = ΘA

SΨ,Ω0,Ω1 : B = ΨΩB
0 ⊕ΩB

1 ⇒ ∃Γ0,Γ1[B =∗ Γ
ΩB

0
0 or B =∗ Γ

ΩB
1

1 ] or ∃Λ[A = Λ],

NΦ : B = Φ ⇒ ∃∆(A = ∆).

Here ∆, Γ0, Γ1, and Λ are enumeration operators built by us and local to

only the strategy by which they are built. The set B is ∆0
2 and thus by setting

b = dege(B), we prove the theorem.

Naive Strategy for NΦ

This is a modified Friedberg permitting strategy.

1. Set n = 0.

2. Choose a number cn larger than any number seen so far in the construction.

3. While cn /∈ Φ, enumerate 〈cn, A � cn〉 into Θ.

4. When cn enters Φ, stop enumerating axioms, enumerate
⋂
{D : 〈cn, D〉 ∈ Θ}

into ∆, return to Step 2 and start cycle n+ 1.

5. From now on, while cn /∈ B, halt all processing for all m > n.

6. When cn re-enters B, resume processing for all m > n.

Analysis of the NΦ-strategy:

During the course of the construction, the axioms 〈cn, A � cn〉 will be enumer-

ated in such a way so as to guarantee that as each cycle n of the strategy passes
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through Step 4, we have
⋂
{D : 〈cm, D〉 ∈ Θ} ⊆

⋂
{D : 〈cn, D〉 ∈ Θ} for allm < n.

Since A is ∆0
2 and the cn are strictly increasing, this will allow us to conclude that

if we choose infinitely many cn, and all of them are eventually in B, then A = ∆.

By assumption, however, this cannot happen since A is not c.e. Therefore, there

is a least n for which we either wait forever at Step 3, which yields cn ∈ B − Φ,

or we return to Step 5 infinitely often, which yields cn ∈ Φ − B. Since the use of

each each axiom defined for each cn contains only elements less than cn, it follows

that B is ∆0
2. Therefore, in the latter case we will eventually wait forever at Step 5.

Naive Strategy for SΨ,Ω0,Ω1

This strategy will build two enumeration operators Γ0 and Γ1 such that if B =

ΨΩB
0 ⊕ΩB

1 , then either B =∗ Γ
ΩB

0
0 or B =∗ Γ

ΩB
1

1 . For this strategy, we partition

the stream Q into streams QW , Q0, Q1, and QS, and an additional set D. The

stream QW is the set of elements x on which the strategy is waiting to see if ever

B(x) = ΨΩB
0 ⊕ΩB

1 (x) = 1. The streams Qi, for i ≤ 1, are the sets of elements that

witness B = Γ
ΩB

i
i (assuming that B = ΨΩB

0 ⊕ΩB
1 ). The set D is a set of elements

that may be used to diagonalize B against ΨΩB
0 ⊕ΩB

1 . Finally, the stream QS is

the set of elements which believe that we have successfully diagonalized B against

ΨΩB
0 ⊕ΩB

1 using an element of D.

As the strategy proceeds, elements may move from QW to Q0 to Q1 to D,

or directly into QS, but never in any other order. Each time an element moves

between streams, we will dump all elements from the streams through which it

has already moved into B so as to preserve any Γi-computation that we may see.
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When we dump an element y into B, we enumerate the axiom 〈y, ∅〉 into Θ.

The basic strategy is as follows:

1. Set n = 0.

2. Wait for an x ∈ QW such that B(x) = ΨΩB
0 ⊕ΩB

1 (x) = 1 and x is not dumped

into B. Let xn be the least such x. While we are waiting at this step,

enumerate any new elements of the stream Q into QW .

3. Extract xn from QW , dump QW − {xn} into B, and enumerate xn into Q0.

4. Enumerate the axiom 〈xn,Ω
B
i 〉 into Γi for i ≤ 1.

5. Begin cycle n+ 1 starting at Step 2.

6. If xn /∈ B and xn /∈ Γ
ΩB

0
0 , cancel all cycles m > n, dump {y ∈ Q0 : y > xn} ∪

QW into B, and begin cycle n+ 1 starting at Step 2. Remain with this cycle

at Step 6.

7. Otherwise, if xn /∈ B and xn ∈ Γ
ΩB

0
0 , cancel all cycles m > n, extract xn from

Q0, dump (QW ∪Q0)− {xn} into B, enumerate xn into Q1, and begin cycle

n+ 1 starting at Step 2. Go on to Step 8 with this cycle.

8. If xn /∈ B and xn /∈ Γ
ΩB

1
1 , cancel all cycles m > n, dump {y ∈ Q1 : y > xn} ∪

Q0 ∪QW into B, and begin cycle n+ 1 starting at Step 2. Remain with this

cycle at Step 8.

9. Otherwise, if xn /∈ B and xn ∈ Γ
ΩB

1
1 , cancel all cycles m > n, extract xn

from Q1, dump (QW ∪ Q0 ∪ Q1) − {xn} into B. Enumerate xn into D and⋂
{D : 〈xn, D〉 ∈ Θ} into Λ. Go on to Step 10 with this cycle.
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10. From now on, if xn /∈ B, do the following: Let m0 be least such that for all

m ≥ m0, if xm is defined then xm /∈ D. Cancel all cycles m ≥ m0, dump

QW ∪Q0∪Q1 into B, and enumerate any new elements of Q into QS. When

xn re-enters B, begin cycle m0 starting at Step 2.

Analysis and outcomes of the SΨ,Ω0,Ω1-strategy:

The dumping action that occurs when an element moves from stream to stream

ensures that, via the Γi-axioms that are enumerated in Step 4, we have x ∈ B ⇒

x ∈ Γ
ΩB

i
i for i ≤ 1. This can bee seen to hold as follows. If x is dumped into B

then we just enumerate the axiom 〈x, ∅〉 into Γ. If x is not dumped into B, assume

that Γi-axioms for x are enumerated at stage s. After stage s, no element less

than x leaves B since otherwise, x would have been dumped into B. Furthermore,

at stage s, we dump all elements which are currently in some stream and greater

than x into B, giving B[s]− {x} ⊆ B.

If at some stage s′ > s, we see x ∈ Γ
ΩB

0
0 [s′] − B[s′], then the dumping action

that occurs at stage s ensures that B[s′]−{x} ⊆ B and thus x ∈ Γ
ΩB

0
0 permanently.

Therefore, assuming that x is not enumerated into D, we have x ∈ B ⇔ x ∈ Γ
ΩB

1
1 .

If, however, there is a stage s′′ > s′ at which we see x ∈ Γ
ΩB

1
1 [s′′] − B[s′′], then a

similar argument as above gives us that B[s′′]− {x} ⊆ B and hence x ∈ Γ
ΩB

1
1 .

Therefore, for all x ∈ D, we know that x ∈ Γ
ΩB

0
0 ∩ Γ

ΩB
1

1 . By the Γi-axioms that

were enumerated at stage s, this implies that x ∈ ΨΩB
0 ⊕ΩB

1 . As in the analysis of

the N -strategy, for each xn ∈ D the axioms 〈xn, A � xn〉 will be enumerated in

such a way so as to guarantee that
⋂
{D : 〈xm, D〉 ∈ Θ} ⊆

⋂
{D : 〈xn, D〉 ∈ Θ}

for all m < n. Since A is ∆0
2 and the xn ∈ D are strictly increasing, this will
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allow us to conclude that if D is infinite and D ⊆ B, then A = Λ. By assumption,

however, this cannot happen since A is not c.e. Therefore, as B is ∆0
2, either there

is a least n for which we wait forever at Step 10, which yields xn ∈ B − ΨΩB
0 ⊕ΩB

1 ,

or D ⊆ B and hence is finite.

This gives us the following possible outcomes for the strategy:

wait: Wait at Step 2 forever for some n. In this case we have that either B is

c.e. or B 6= ΨΩB
0 ⊕ΩB

1 . By the satisfaction of the N -strategies, B cannot be c.e.

γ0: Infinitely many cycles end up waiting at Step 6, but only finitely many at

Steps 8 and 10. Then B =∗ Γ
ΩB

0
0 if B = ΨΩB

0 ⊕ΩB
1 .

γ1: Infinitely many cycles end up waiting at Step 8 and only finitely many at

Step 10. Then B =∗ Γ
ΩB

1
1 if B = ΨΩB

0 ⊕ΩB
1 .

stop: Either infinitely many cycles end up waiting at Step 10, which gives A

is c.e., or a single cycle waiting at Step 10 halts all higher cycles forever, which

yields B 6= ΨΩB
0 ⊕ΩB

1 .

Interactions Between the Strategies

The Γi-axioms defined by an S-strategy α are dependent on the assumption that no

diagonalization witness of a higher priority strategy, nor any element of the stream

of any strategy to the left of α, leaves B. To handle this dependency during the

construction, if such an element does leave B, we will initialize α. Since B is ∆0
2,

each element of a stream can initialize lower-priority strategies only finitely often.

Furthermore, if α is on the true path, there will be only finitely many elements in

streams to the left of α, and hence α will be initialized only finitely often.



66

One N -strategy Below One S-strategy

Assume that there is a single S-strategy α and a single N -strategy β of lower prior-

ity. The dumping mechanism of α in Steps 6 and 8 can potentially injure β in the

following manner. Assume that for i ≤ 1, β has chosen diagonalization witnesses ci

and has enumerated enumerated the non-empty sets Di =
⋃
{D : 〈xi, D〉 ∈ Θ}

into ∆. Clearly, if an element of Di leaves A then ci will leave B. In addition,

since α is above β on the tree, both c0 and c1 are elements of, say, stream Q0 of α,

and as such, α has defined Γ0-axioms for each of them.

If at some stage s we see c0 /∈ B[s] and c0 /∈ Γ
ΩB

0
0 [s], then, via Step 6 of the

S-strategy, c1 will be dumped into B. If at a later stage c0 re-enters B, elements

of D1 −D0 are free to leave A without causing c1 to leave B, thus destroying our

∆-computation.

To avoid this eventuality we change both the manner in which an N -strategy

chooses diagonalization witnesses and the dumping action of the S-strategy. As-

sume that β has chosen c0, . . . , cn as its diagonalization witnesses and currently

{c0, . . . , cn} ⊆ B and so is looking for a new witness. In this case, β will only

choose a cn+1 whose previous Θ-axioms were enumerated at stages during which

{c0, . . . , cn} ⊆ B. Since there are infinitely many elements from which α can choose

cn+1, if truly {c0, . . . , cn} ⊆ B then a witness meeting this criterion will be found.

The reason that we do this is to ensure that if ci /∈ B then cj /∈ B for all j > i.

This fact will be used by the modification to the S-strategy. In Step 6, if α sees

xi /∈ B, it will only dump those xj ∈ Q0 into B which have xj > xi and xj ∈ B

while xj /∈ Γ
ΩB

0
0 . The change in Step 8 is similar. This will ensure that no current
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diagonalization witness of any lower priority N -strategy will be dumped into B.

One S-strategy Below One S-strategy

This case is similar to that of one N -strategy below one S-strategy. The change

here is that we will only enumerate into QW elements of the incoming stream that

have had axioms defined while D ⊆ B. This will then ensure that if any element

of D leaves B then all larger elements will also leave, and thus we avoid having an

incorrect Λ-computation.

The Tree of Strategies

Fix an arbitrary effective priority ordering {Re}e∈ω of all N - and S-requirements.

We define Σ = {stop < γ1 < γ0 < wait} to be our set of outcomes. We define

T ⊂ Σ<ω and refer to it as our tree of strategies. Each node α ∈ T will be

associated with, and thus identified with, the requirement R|α|.

We assign requirements to nodes on T by induction as follows: The empty node

is defined to be in T and assigned to requirement R0. Given an assignment to a

node α ∈ T, we distinguish cases depending on the requirement R assigned to α:

Case 1: R is an S-requirement: Define α_〈o〉 ∈ T for all o ∈ Σ.

Case 2: R is an N -requirement: Define α_〈wait〉 ∈ T.

The Construction

The construction proceeds in stages s ∈ ω. Before beginning, we give some con-

ventions and definitions.
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A strategy will be eligible to act if it is along the current approximation fs ∈ T

to the true path f ∈ [T] of the construction. At a stage s, if α ⊆ fs, we will call s

an α-stage.

The stream S(∅) of the root node ∅ of our tree of strategies at any stage s is

[0, s). The streams S(α) for α 6= ∅ are defined during the construction. When

we initialize a strategy, we cancel all parameters and local enumeration operators,

dump S(α)−F into B (where F is a finite set that we do not want to be dumped

into B), and set S(α) = ∅. When we dump an element x into B, we enumerate

the axiom 〈x, ∅〉 into Θ.

During the course of the construction, all parameters are assumed to remain

unchanged unless specified otherwise. We also assume that for all odd stages s,

As = As+1. At the end of each even stage s, we will dump certain elements into A

and initialize certain strategies as described below under Ending the stage s.

We now proceed with the construction.

Stage s = 0: Initialize all α ∈ T.

Stage s+ 1 is odd: For every α ∈ T, do the following:

1. If there is an x ∈ S(α) such that x ∈ Bs and x /∈ Bs+1, initialize all β >L α.

2. If α is an N -strategy and there is an x ∈ ∆ such that x ∈ As and x /∈ As+1,

then initialize all β ≥ α_〈wait〉.

3. If α is an S-strategy and there is an x ∈ Λ such that x ∈ As and x /∈ As+1,

then initialize all β ≥ α_〈stop〉 and cancel Γ0 and Γ1.

Substage t of even stage s+1: Suppose a strategy α of length t is eligible to act

at this substage. We distinguish cases depending on the requirement R assigned

to α. Choose the first case which applies.
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Case 1: α is an N -strategy: If α has not been eligible to act since its last

initialization, set n = 0. Choose the first subcase with applies.

Case 1.1: For some m < n, cm /∈ B: Enumerate S(α) − {ci : i ≤ n} into

S(α_〈wait〉), end the current substage and let α_〈wait〉 be eligible to act next.

Case 1.2: cn is undefined: Choose cn ∈ S(α) to be the least such that cn >

a(B, {ci : i < n}) and is not dumped into B (where a(B, {ci : i < n}) is the age

of the set {ci : i < n} in the set B as defined in Definition 1.5.4). If cn exists,

enumerate 〈cn, A � cn〉 into Θ and dump S(α)−{ci : i ≤ n} into ΘA. If no such cn

exists, dump S(α)−{ci : i < n} into ΘA. In either case, initialize all β ⊇ α_〈wait〉,

and end the current stage.

Case 1.3: cn is defined and cn /∈ Φ: Enumerate 〈cn, A � cn〉 into Θ. Enumerate

S(α)− {ci : i ≤ n} into S(α_〈wait〉), end the current substage, and let α_〈wait〉

be eligible to act next.

Case 1.4: Otherwise cn is defined and cn ∈ Φ: Enumerate
⋂
{D : 〈cn, D〉 ∈ Θ}

into ∆, set n = n+ 1, end the current substage and let α_〈wait〉 be eligible to act

next.

Case 2: α is an S-strategy: If this is the first stage at which α has been eligible

to act since it was last initialized, set n = 0. Let s0 be the last stage at which α

was eligible to act since its last initialization, or, if no such stage exists, let s0 be

the stage of the most recent initialization.

Case 2.1: There is a stage s′, with s0 ≤ s′ ≤ s, such that {di : i < n} *

B[s′]: Enumerate S(α) ∩ [s0, s) into S(α_〈stop〉), end the current substage, and

let α_〈stop〉 be eligible to act next.

Case 2.2: Otherwise {di : i < n} ⊆ B[s′] for s0 ≤ s′ ≤ s: Enumerate S(α) ∩
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[s0, s) into S(α_〈wait〉). Choose the first subcase which applies:

Case 2.2.1: There exists a z ∈ S(α_〈γ1〉) such that z /∈ B but z ∈ Γ
ΩB

1
1 : Let z0

be the least such z. Extract z0 from S(α_〈γ1〉) and dump (S(α_〈γ1〉)∪S(α_〈γ0〉)∪

S(α_〈wait〉)) − {z0} into B. Enumerate z0 into F , enumerate S(α) ∩ [s0, s) into

S(α_〈stop〉), and enumerate
⋂
{G : 〈z0, G〉 ∈ Θ} into Λ. Set dn = z0, and let

n = n + 1. Cancel Γ0 and Γ1. End the current substage and let α_〈stop〉 be

eligible to act next.

Case 2.2.2: There exists a z ∈ S(α_〈γ1〉) such that z /∈ B but z ∈ B[s0]:

Let z0 be the least such z. For all z ∈ S(α_〈γ1〉) with z > z0, if z ∈ B and

z /∈ Γ
ΩB

1
1 , dump z into B. End the current substage and let α_〈wait〉 be eligible

to act next.

Case 2.2.3: There exists a z ∈ S(α_〈γ0〉) such that z /∈ B but z ∈ Γ
ΩB

0
0 :

Let z0 be the least such z. Extract z0 from S(α_〈γ0〉) and dump (S(α_〈γ0〉) ∪

S(α_〈wait〉))−{z0} into B. Enumerate z0 into S(α_〈γ1〉) and F . Cancel Γ0. End

the current substage and let α_〈γ1〉 be eligible to act next.

Case 2.2.4: There exists a z ∈ S(α_〈γ0〉) such that z /∈ B but z ∈ B[s0]:

Let z0 be the least such z. For all z ∈ S(α_〈γ0〉) with z > z0, if z ∈ B and

z /∈ ΓΩ10B

0 , dump z into B. End the current substage and let α_〈wait〉 be eligible

to act next.

Case 2.2.5: There exists a z ∈ S(α_〈wait〉), which has not been dumped

into B, such that z ∈ B∩ΨΩB
0 ⊕ΩB

1 : Let z0 be the least such z. For i ≤ 1, enumerate

〈z0,Ω
B
i 〉 into Γi. Extract z0 from S(α_〈wait〉) and dump S(α_〈wait〉) − {z0}

into B, enumerate z0 into S(α_〈γ0〉) and into F . End the current substage and

let α_〈γ0〉 be eligible to act next.
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Case 2.2.6: Otherwise: End the current substage and let α_〈wait〉 be eligible

to act next.

Ending the stage s: Initialize every β >L fs. Set F = ∅ (where F is a set of

elements that were not dumped into B).

Verification

Let f = lim infs fs be the true path of the construction, defined more precisely by

recursion as

f(n) = lim inf
{s:f�n⊂fs}

fs(n).

3.5.2 Lemma. i. Once an element is dumped into B, it is never removed

from B.

ii. 〈Bs〉 is a ∆0
2-approximation to B.

Proof. i. Immediate since an element x is dumped into B by enumerating the

axiom 〈x, ∅〉 into Θ.

ii. Consider an element x ∈ ω. Only N -strategies can enumerate x-axioms

into Θ, and they are of the form 〈x,D〉, where D = A[s] � x for some s.

Therefore, there are only finitely many such axioms in Θ, and since A is ∆0
2,

lims→∞ ΘA(x; s) exists.

3.5.3 Remark. Since every ∆0
2-degree bounds a low degree, replacing A by a

low set Â in the statement of the theorem makes the above result trivial.
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3.5.4 Lemma. If α ⊆ f is an N -strategy and infinitely many elements of S(α)

are not dumped into B by higher priority requirements, then

i. no diagonalization witness cn is ever dumped into B after α’s last initializa-

tion.

ii. α meets its requirement.

iii. S(α_〈wait〉) contains infinitely many elements which are not dumped into B

by any higher priority requirement.

Proof. i. Let s be the least stage after which α is never initialized, and let cn be

the least diagonalization witness for α which is dumped into B at stage, say,

sn > s. Since α is not initialized after stage s, we may assume that for all

β <L α, no element of S(β) leaves B, and for all β ⊂ α, no diagonalization

witness leaves B. For β > α, no element of S(β) leaving B can cause any

diagonalization witness of α to be dumped into B since any such element

is larger than the use of any defined cn-axiom, and will be dumped into B

by stage sn. Therefore, the only cases in which cn could have been dumped

into B are Cases 2.2.2 and 2.2.4.

This implies that there is a β ∈ T and an i ≤ 1 such that cn ∈ S(β_〈γi〉)

and β_〈γi〉 ⊆ α. In addition, there must be an x0 ∈ S(β), with x0 < cn, and

a j ≤ 1 such that

x0 /∈ B[sn] ⇒ cn ∈ B[sn] and cn /∈ Γ
ΩB

j

j [sn].

Since, for all δ <L α, no element of S(δ) left B, it follows that x ∈ S(β_〈γi〉)

and j = i.
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In every case of the construction, whenever a strategy δ is active, δ either

dumps all of the new elements of S(δ) into B, selects one as a new diagonal-

ization witness and dumps the rest into B, or enumerates all of them into the

stream of its current outcome. By induction it follows that at the stage an

element is chosen by a strategy β as a coding location, all smaller elements

of S(δ), for δ ⊆ β, are either diagonalization witnesses of δ, dumped into B,

or are in a stream S(ε) for some ε <L β. Therefore, x0 is a diagonalization

witness for some δ ⊆ α.

If x0 is a diagonalization witness for some δ ⊂ α, then α would have been

initialized at stage sn, contrary to assumption. If x0 is a diagonalization

witness for α then x0 = cm for some m < n. However, this would imply that

cn /∈ B[sn], and cn would not be dumped into B, also contrary to assumption.

ii. Assume that for some i, ci /∈ Φ. Since A is ∆0
2 and by Case 1.3, α will

eventually enumerate enough axioms into Θ so that ci ∈ B.

So, assume that α chooses infinitely many diagonalization witnesses ci, and

that for all i, ci ∈ Φ. Since B is ∆0
2, we may assume that eventually each

ci ∈ B, since otherwise there would be some i such that ci /∈ B and this would

eventually be permanent. After this, we would choose no more diagonaliza-

tion witnesses since we would have successfully diagonalized B against Φ.

Since each ci is not dumped into B, and ci ∈ B, we must have⋂
{D : 〈ci, D〉 ∈ Θ[s]} ⊆ Λ[s] ⊆ A[s] ⊆ A,

where s is the stage at which Case 1.4 was applied to ci. Thus, Λ ⊆ A.

Choose x ∈ A and let sx be the least stage after which x never leaves A.
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Then for all ci > max(x, sx),

x ∈
⋂
{D : 〈ci, D〉 ∈ Θ[s]} ⊆ Λ.

Therefore A ⊆ Λ.

iii. By Lemmas 3.5.4.iii and 3.5.5.ii, S(α) contains infinitely many elements

which are not dumped into B by higher priority strategies. The only time

that α dumps elements into B is in Case 1.2, which by Lemma 3.5.4.ii can

happen only finitely often. The only time that any β ⊃ α can dump an

element of S(α) into B after stage s is in Case 2.2.2 or Case 2.2.4. Choose

x ∈ S(α) which has not been dumped into B. Since B is ∆0
2, x will cause

only finitely many elements of S(α) to be dumped via Cases 2.2.2 and 2.2.4.

Since S(α) is infinite, the conclusion follows.

3.5.5 Lemma. If α ⊆ f is an S-strategy and infinitely many elements of S(α)

are not dumped into B by higher priority requirements, then

i. α meets its requirement.

ii. If α_〈o〉 ⊂ f , then S(α_〈o〉) contains infinitely many elements which are

not dumped into B by any β ⊆ α.

Proof. i. Let s0 be the least stage after which α is never initialized. Assume

that α_〈stop〉 ⊂ f . A proof similar to the one found in Lemma 3.5.4.i

shows that no defined diagonalization witness di is ever dumped into B after

stage s0. In addition, if α chooses infinitely many di, and for all i, di ∈ B,
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then by an argument similar to that in Lemma 3.5.4.ii, A is c.e. Therefore,

for some i, di /∈ B. Let n be the least such i and let tn be the stage at

which α enumerated the axioms 〈dn,Ω
B
0 [tn]〉 into Γ0 and 〈dn,Ω

B
1 [tn]〉 into Γ1.

After stage s0, no element in any S(β) for β <L α left B. Furthermore,

due to the dumping action at even stages and Cases 2.2.2, 2.2.3, 2.2.4, and

2.2.5, every element of S(α)[tn] − {di : i ≤ n} has been dumped into B. As

in Lemma 3.5.4.i, every element that is not eventually permanently picked

as a diagonalization witness by some strategy is dumped into B, no diag-

onalization witness of any strategy β ⊂ α leaves B after stage tn, and the

extraction of any diagonalization witnesses of any β >L α will not harm the

Γi- or Θ-computations of any di. Therefore, by Case 2.2.3, ΩB
0 [tn] ⊆ Ω

B−{dn}
0

and by Case 2.2.1, ΩB
1 [tn] ⊆ Ω

B−{dn}
1 . Hence ΨΩB

0 ⊕ΩB
1 (dn) = 1 6= 0 = B(dn).

Assume that B = ΨΩB
0 ⊕ΩB

1 . Furthermore, assume that α_〈wait〉 ⊂ f , and

let s1 ≥ s0 be least such that at no stage after s1 is α_〈wait〉 initialized.

For every x that enters S(α_〈wait〉) after stage s1, if x is not dumped

into B then either B(x) = ΨΩB
0 ⊕ΩB

1 (x) = 0 or B(x) 6= ΨΩB
0 ⊕ΩB

1 (x), since

otherwise the strategy would execute Case 2.2.5 for some x and initialize

α_〈wait〉. If B(x) = ΨΩB
0 ⊕ΩB

1 (x) = 0 for all such x, then B is c.e. since

there are only finitely many elements in streams to the left of α_〈wait〉, and

after stage tn, if an element is not dumped into B, then it eventually enters

S(α_〈wait〉) and hence is not in B. However, by Lemma 3.5.6, f is infinite,

and by Lemma 3.5.5, every N -strategy meets its requirement, so B is not

c.e. Therefore, there is some x ∈ S(α_〈wait〉) such that ΨΩB
0 ⊕ΩB

1 (x) 6= B(x).
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Therefore α_〈γi〉 ⊂ f for some i ≤ 1. Let s2 ≥ s0 be the least stage after

which α_〈γi〉 is not initialized. Choose x ∈ S(α_〈γi〉) which is not dumped

into B. All numbers greater than x in the Γ0- and Γ1-uses of x have been

dumped into B, and all numbers less than x have stabilized before the Γ0-

and Γ1-axioms for x were defined, since otherwise x would have been dumped

into B. Therefore, x ∈ B implies x ∈ ΓB
0 and x ∈ ΓB

1 .

If i = 0 and x ∈ S(α_〈γ0〉), then x /∈ B implies x /∈ ΓB
0 since otherwise α

would have executed Case 2.2.3 on behalf of x, causing α_〈γ0〉 to be initial-

ized after stage s2. Thus B =∗ ΓB
0 .

If i = 1 and x ∈ S(α_〈γ1〉), then x /∈ B implies x /∈ ΓB
1 since otherwise α

would have executed Case 2.2.1 on behalf of x, causing α_〈γ1〉 to be initial-

ized after stage s2. Thus B =∗ ΓB
1 .

ii. If α_〈o〉 ⊂ f , by the same argument used in Lemma 3.5.4.iii, it is not the

case that cofinitely many elements of S(α) are dumped into B by higher

priority strategies. Let s3 > s0 be least such that α_〈o〉 is not initialized

after stage s3. If α_〈wait〉 ⊂ f , then after stage s3, no higher priority

strategy dumps any member of S(α_〈wait〉) into B.

Assume α_〈γi〉 ⊂ f for some i ≤ 1 and let b0 be the least element of

S(α_〈γi〉). By the construction, α cannot dump b0 into B. Since B is

∆0
2, let t0 ≥ s3 be the least stage such that for all s ≥ t0, B(b0; s) = B(b0).

Define b1 to be the least element that enters S(α_〈γi〉) after stage t0. Since b0

has reached its limit, b1 cannot be dumped into B by α. Continuing in this

manner, we construct an infinite sequence of elements b0 < b1 < b2 < · · · ⊆
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S(α_〈γi〉) that are not dumped into B by any strategy of priority higher

than α_〈γi〉.

Assume that α_〈stop〉 ⊂ f . Since there are only finitely many di chosen

by α, say d0, . . . , dn, and B is ∆0
2, there is a least stage s4 ≥ s3 such that

B(di)[s] = B(di)[s1] for all s ≥ s4 and all i ≤ n. (Clearly there is some i such

that bi /∈ B.) After stage s4, α will always take on outcome 〈stop〉 and will

dump no more members of S(α) into B, and enumerate all of S(α)∩ (s4,∞)

into S(α_〈stop〉).

3.5.6 Lemma. f is infinite.

Proof. Clearly the empty node is in f . Assume that α ⊂ f , let 〈o〉 be the true

outcome of α and assume that α is never initialized after stage s0. Then there is

a least stage s1 > s0 after which fs ≥ α_〈o〉 for all s ≥ s1. By the construction,

there are only finitely many elements in the streams S(β) with β <L α
_〈o〉. Since

B is ∆0
2, there is stage s2 > s1 after which no such element will cause α_〈o〉 to be

initialized.

If α is an N -strategy, then by Lemma 3.5.4.ii, α chooses only finitely many

diagonalization witnesses. If α is an S-strategy, then by Lemma 3.5.5.ii, α also only

chooses finitely many diagonalization witnesses. In either case, since B is ∆0
2, there

is a stage s3 > s2 after which α will never initialize α_〈o〉. Furthermore, a stage

can end prematurely only in Case 1.2, but by Lemmas 3.5.4.ii, 3.5.4.iii, and 3.5.5.iii,

this can happen only finitely often for any given α. Therefore α_〈o〉 ∈ f .
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