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Abstract

Algorithmic randomness uses tools from computability theory to give precise formula-

tions for what it means for mathematical objects to be random. When the objects in

question are reals (infinite sequences of zeros and ones), it reveals complex interactions

between how random they are and how useful they are as computational oracles. The

results in this thesis are primarily on interactions of this nature.

Chapter 1 provides a brief introduction to notation and basic notions from com-

putability theory.

Chapter 2 is on shift-complex sequences, also known as everywhere complex sequences.

These are sequences all of whose substrings have uniformly high prefix-free Kolmogorov

complexity. Rumyantsev showed that the measure of oracles that compute shift-complex

sequences is 0. We refine this result to show that the Martin-Löf random sequences that

compute shift-complex sequences compute the halting problem. In the other direction,

we answer the question of whether every Martin-Löf random sequence computes a shift-

complex sequence in the negative by translating it into a question about diagonally

noncomputable (or DNC) functions.

The key in this result is analyzing how growth rates of DNC functions affect what

they can compute. This is the subject of Chapter 3. Using bushy-tree forcing, we show

(with J. Miller) that there are arbitrarily slow-growing (but unbounded) DNC functions

that fail to compute a Kurtz random sequence. We also extend Kumabe’s result that

there is a DNC function of minimal Turing degree by showing that for every oracle X,

there is a function f that is DNC relative to X and of minimal Turing degree.
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Chapter 4 is on how “effective” Lebesgue density interacts with computability-theoretic

strength and randomness. Bienvenu, Hölzl, Miller, and Nies showed that if we restrict

our attention to the Martin-Löf random sequences, then the positive density sequences

are exactly the ones that do not compute the halting problem. We prove several facts

around this theorem. For example, one direction of the theorem fails without the as-

sumption of Martin-Löf randomness: Given any sequence X, there is a density-one

sequence Y that computes it. Another question we answer is whether a positive density

point can have minimal degree. It turns out that every such point is either Martin-Löf

random, or computes a 1-generic. In either case, it is nonminimal.
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Chapter 1

Introduction

The results in this thesis align with the program in computability theory that is con-

cerned with the interactions between different types of noncomputability. Broadly speak-

ing, the emphasis here is on two main “flavors” of noncomputability. The first arises in

the study of algorithmic randomness. Noncomputability notions of this flavor typically

involve measure or information-theoretic tools such as Kolmogorov complexity in their

formulation. Examples are shift-complexity and positive density, which are the subjects

of chapters 2 and 4, respectively. Notions of the second flavor have their roots in “clas-

sical” computability theory. Examples are the ability to compute the halting problem,

and diagonal noncomputability (the subject of chapter 3).

As an illustration of the kind of interaction we are interested in, let us consider Sacks’s

theorem [30], which says that given any noncomputable infinite binary sequence X, the

set of sequences that compute X has Lebesgue measure 0. One particular consequence

of this theorem is that a random infinite binary sequence is almost surely incomplete,

meaning that it does not possess the ability to compute the halting problem.

On the other hand, there are fairly strong notions of randomness that do not preclude

this ability. For example, the Kučera-Gács theorem implies that Martin-Löf randomness

is compatible with a form of “coding”: Given any sequence, there is a Martin-Löf ran-

dom sequence that computes it. In particular, there are Martin-Löf random sequences
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that compute the halting problem. A properly stronger form of randomness, differ-

ence randomness, exactly characterizes the incomplete Martin-Löf randoms. An even

stronger notion, weak 2-randomness, widens the separation: a weak 2-random sequence

and the halting problem have no noncomputable information in common, in the sense

that they cannot both compute the same noncomputable sequence. We say that they

form a minimal pair. Interestingly, the property of being Martin-Löf random and form-

ing a minimal pair with the halting problem exactly characterizes the weak 2-random

sequences. Further, the randomness notions just mentioned are formulated in a manner

that seems, on first glance, to have little to do with classical forms of noncomputability

related to the halting problem. While algorithmic randomness began as an application

of computability theory to the philosophical question of what it means for various types

of mathematical objects to be random, interactions such as the above demonstrate a

deeper, more bilateral, relationship, the study of which has become one of the most

active areas in mathematical logic.

Our notation and terminology are standard. Nevertheless, we provide an overview

in this section for easy reference. Soare [32] and the first chapters of Downey and

Hirschfeldt [11] and Nies [27] provide in-depth accounts of the requisite computability

theory.

1.1 Shared notation

Cantor space, Baire space: Let ω denote the set of natural numbers. Baire space,

denoted by ωω, is the set of infinite sequences of elements of ω (or functions from ω to

itself). Cantor space, denoted by 2ω, is the set of all infinite binary sequences (or reals).
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Strings, prefix-freeness: A string is a finite sequence of natural numbers. The set of

strings is denoted by ω<ω. The set of strings that only have binary digits is denoted by

2<ω. The empty string is denoted by 〈〉. If σ is a string, |σ| denotes its length. If ρ is

another string, we write σ � ρ to indicate that σ is a prefix of ρ. If X is a function, and

σ a string, we write σ ≺ X to indicate that σ is an initial segment of X, while X �n

denotes the initial segment of X of length n.

A set of strings S is prefix-free if for any distinct σ and τ in S, neither is a prefix of

the other.

Join: If X and Y are functions, then the join X ⊕ Y is the function obtained by

interleaving the entries of X and Y . The join of two strings of equal length is defined

in the same way.

Open sets: Cantor space and Baire space are endowed with topologies generated by

basic clopen sets of the form [σ] = {X : σ ≺ X}, where σ is a string. If S is a set of

strings, then [S]≺ denotes the open set
⋃
σ∈S[σ].

Measure: The uniform measure µ on Cantor space is obtained by setting µ([σ]) = 2−|σ|.

This is essentially the only measure we work with.

1.2 Basic computability notions

Partial computable functions: A partial function from ω to ω is partial computable

if there is an algorithm that implements the function. There are countably many algo-

rithms, and the ones that implement partial computable functions can be listed effec-

tively. Let 〈ϕe〉e∈ω be such a listing. If the partial computable function θ = ϕe, then we

say e is an index for θ.
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The diagonal function, the halting problem, completeness: The diagonal partial

computable function J is of particular importance to us:

J(n) = ϕn(n).

The domain of J is a well-known set, the halting problem. We denote it by 0′. A function

that computes 0′ is said to be complete.

Computable sets and functions, c.e. sets: A partial computable function that is

total is said to be computable. A real is computable if it is computable when viewed as

the characteristic function of a set of natural numbers. More generally, we can speak

of computable sets of objects that can be coded by natural numbers (e.g., sets of finite

strings or rationals). A set is computably enumerable, or c.e., if there is an algorithm

that lists its elements in some order. The c.e. sets are exactly the domains of the partial

computable functions, and so there is an effective listing 〈We〉e∈ω of c.e. sets.

Diagonally noncomputable functions, order functions: A total function f is

diagonally noncomputable (or DNC) if for all n ∈ dom(J), f(n) 6= J(n).

Let DNC be the class of diagonally noncomputable functions. For a ≥ 2, DNCa

denotes DNC ∩ aω, i.e., the space of all DNC functions that take values less than a.

An order function is a function h : ω → ω\{0, 1} that is computable, non-decreasing

and unbounded. For an order function h, let DNCh denote {f ∈ DNC : (∀n)f(n) <

h(n)}.

Effectively open and closed classes: If S is a c.e. set of strings, then we say that

the open set [S]≺ is effectively open, or a Σ0
1 class. The complement of a Σ0

1 class is

an effectively closed or Π0
1 class. The e-th Σ0

1 class is then simply [We]
≺, where we are
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thinking of We as listing a set of strings.

Trees: A tree is a set of strings that is closed under initial segments. If T is a tree, then

[T ] denotes the set of paths through T , i.e., the functions X such that for every n ∈ ω,

X �n ∈ T .

Turing reducibility, functionals: Suppose that an algorithm Γ, when given black-

box (or oracle) access to the function X, computes the function Y . We write ΓX = Y

and say that Γ is a Turing reduction of Y to X. We often omit mention of the specific

reduction, saying Y is Turing reducible to X, written Y ≤T X, to mean that there

is some reduction of Y to X. At other times, the emphasis is less on the particular

functions X and Y , than on the reduction Γ as a (possibly partial) map from Baire

space to itself. In such situations, we refer to Γ as a Turing functional. If Γ is total on

2ω, we say it is a truth-table functional.

Turing degrees: The preorder ≤T on functions induces the equivalence relation ≡T .

The equivalence classes under this relation are called the Turing degrees. If a and b are

degrees, we write a ≤ b to mean that functions in b compute functions in a. The degree

of the computable functions is denoted by 0.

PA degrees: A function is of PA degree if it computes a member of every nonempty Π0
1

class. PA degrees are so named because they compute consistent, complete extensions

of Peano arithmetic.

Minimal degrees: A Turing degree a is minimal if for every degree b ≤ a, either

b = a or b = 0.

Hyperimmunity, highness: A degree is hyperimmune if it computes a function f such

that for every computable function g, there are infinitely many n such that f(n) > g(n).

Otherwise, it is hyperimmune-free. It is high if it computes a function h such that for
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every computable function g, for all but finitely many n ∈ ω, h(n) > g(n).

1-genericity: A real X is 1-generic if for every Σ0
1 class W in Cantor space, either X

is in W , or there is an n ∈ ω such that [X �n] is disjoint from W .

Martin-Löf randomness: We say a sequence 〈An〉n∈ω of Σ0
1 classes is uniform if there

is a computable function f such that An = [Wf(n)]
≺.

A Martin-Löf test is a uniform nested sequence 〈An〉n∈ω of Σ0
1 classes in 2ω such that

µ(An) ≤ 2−n. A real X ∈ 2ω passes this test if it is not contained in
⋂
nAn. Finally, X

is Martin-Löf random if it passes every Martin-Löf test.

Kurtz randomness: A real X is Kurtz random if it is not contained in any Π0
1 class

that has measure 0. The class of Kurtz random reals contains both the Martin-Löf

random reals and the 1-generics.
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Chapter 2

Shift-complex sequences

The contents of this chapter have appeared in [20].

2.1 Introduction

We use K : 2<ω → ω to denote prefix-free Kolmogorov complexity. Informally, prefix-

free Kolmogorov complexity is a measure of how complicated a string is to describe, or

equivalently, how incompressible it is. A string of a million zeros ought to have a short

description relative to its length and hence Kolmogorov complexity much smaller than a

million. On the other hand, a string of random bits will, with high probability, have no

description shorter than itself, hence Kolmogorov complexity roughly equal to its length.

One of the major threads in the study of algorithmic randomness has been to de-

termine how information-theoretic formulations of string complexity (such as prefix-free

Kolmogorov complexity) interact with measure-theoretic formulations of randomness of

infinite sequences. For example, the class of Martin-Löf random sequences was originally

defined in terms of tests that generalize the idea of statistical tests of randomness. But

it also has a precise characterization in terms of prefix-free Kolmogorov complexity. If

f and g are functions from some set S to ω, then we write f ≤+ g to indicate that there

exists a constant c ∈ ω such that for all x ∈ S, f(x) ≤ g(x) + c. Schnorr showed1 that
1See, for example, [27] Section 3.2.
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a sequence X ∈ 2ω is Martin-Löf random if and only if K(X �n) ≥+ n, where X �n is

the initial segment of X of length n.

Every Martin-Löf random sequence is normal, meaning that finite strings of equal

length occur as substrings with equal asymptotic frequency. Therefore, every Martin-Löf

random sequence must have substrings that are compressible by more than any given

factor2. Because of Schnorr’s theorem, we cannot hope to construct sequences with the

property that for all substrings σ, K(σ) ≥+ |σ|. However, it is possible to construct

sequences that are uniformly somewhat complex everywhere. The following definitions

make this idea precise:

Definition 2.1. Fix δ ∈ (0, 1) and b ∈ ω. A sequence X ∈ 2ω is (δ, b)-shift-complex if

for every substring σ of X, K(σ) ≥ δ|σ| − b.

A sequence is δ-shift-complex if it is (δ, b)-shift-complex for some b ∈ ω.

A sequence is shift-complex if it is δ-shift-complex for some δ ∈ (0, 1).

In this chapter, we contribute two new results that shed light on how shift-complex

sequences relate to Martin-Löf random sequences in the setting of the Turing degrees.

Access to a sequence of the latter type implies access to arbitrarily long finite strings of

high complexity, so can we exploit such resources to effectively produce shift-complex

sequences? A result by Rumyantsev [29] states that this is not the case: if a sequence is

“sufficiently random”, then it cannot compute any shift-complex sequence. We calibrate

precisely the level of randomness at which this theorem holds. In a similar vein, we ask if

access to a shift-complex sequence enables us to effectively obtain a Martin-Löf random

sequence. Again, the answer is no.
2As an extreme example, if 0n denotes a string of zeros of length n, then K(0n) ≤+ 2 log(n).
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2.2 Definitions and notation

In the previous section, we introduced the preordering ≥+. The equivalence relation

induced by this preordering is denoted by =+.

A prefix-free machine is a partial computable function from strings to strings that has

prefix-free domain. Let U be a universal prefix-free machine: it can simulate any other

prefix-free machine. In particular, this means that every string has a U-description,

i.e., for each string σ, there is an input τ to U that produces σ as the output. Then,

for a string σ, K(σ) is the length of a shortest U-description of σ. The string σ∗ is a

distinguished shortest description of σ: it is the lexicographically least of the strings

of length K(σ) on which the universal prefix-free machine halts and outputs σ in the

least number of steps. If τ is a string, the conditional prefix-free Kolmogorov complexity

K(σ | τ) is defined much as before, except now we imagine that U has access to τ . For an

in-depth account of the theory of Kolmogorov complexity, we refer the reader to Downey

and Hirschfeldt [11] or Nies [27].

Finally, if X is a sequence in 2ω, the effective Hausdorff dimension of X, denoted by

dim(X), is

lim inf
n→∞

K(X �n)

n
,

while the effective packing dimension of X, denoted by Dim(X), is obtained by replacing

the lim inf with a lim sup.

We begin by surveying the known constructions of shift-complex sequences in Section

2.3, and show that they lead easily to the existence of bi-infinite shift-complex sequences

(i.e., sequences indexed by ξ, the order type of the integers) in Section 2.4. In Section

2.5, we provide a proof of a result by Rumyantsev that shows that the measure of oracles
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that compute shift-complex sequences is 0. We also answer the following question that

arises from Rumyantsev’s theorem:

Question 2.2. How random does an oracle have to be to ensure that it does not compute

a shift-complex sequence?

In Theorem 2.21, we show that every Martin-Löf random that computes a shift-

complex sequence is Turing complete, using the characterization by Franklin and Ng [15]

of this class via a notion of randomness they term difference randomness. The difference

randoms are those sequences that escape being captured by difference tests, which are a

generalization of Martin-Löf tests where each test element is a difference of Σ0
1 sets. They

comprise a class properly between the weak 2-randoms and the Martin-Löf randoms. We

remark that Theorem 2.21 could be viewed as a generalization of Stephan’s result in [33]

that every Martin-Löf random of PA degree is Turing complete.

In Section 2.6, we turn to the question of whether shift-complex sequences can com-

pute random sequences. In Theorem 2.27, we show that there are shift-complex se-

quences that compute no Kurtz random real (and hence no Martin-Löf random real). In

order to do so, we adapt the technique employed by Greenberg and Miller [16] of using

slow-growing diagonally noncomputable functions to avoid computing random reals.

2.3 Constructions of shift-complex sequences

At the time of writing, there are three existence proofs of shift-complex sequences in the

literature. The first is due to Durand, Levin and Shen [12]:

Theorem 2.3 (Durand, Levin and Shen [12]). For any 0 < δ < 1, there exists a δ-shift-

complex sequence.
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Proof. The construction proceeds by building a sequence using extensions of an appro-

priately chosen fixed length m (which depends only on δ), such that each extension is

sufficiently complex relative to the initial segment constructed so far.

First, note that

K(xy) +K(|y|) ≥+ K(x, y)

since there is a prefix-free machine that, from a description of xy concatenated with a

description of |y|, can recover both x and y, and U can simulate this machine.

By the prefix-free symmetry of information theorem3, K(x, y) =+ K(x) +K(y |x∗).

Since K(|y|) ≤+ 2 log(|y|), we have K(xy) −K(x) ≥+ K(y |x∗) − 2 log(|y|). Let c0 be

such that K(xy)−K(x) ≥ K(y |x∗)− 2 log(|y|)− c0.

Now for any length n, and for any x, we can choose a string y of length n so that

K(y |x∗) ≥ n. Let m be large enough so that m − 2 logm − c0 ≥ δm. Then for any

string x, there exists a string y of length m such that K(xy)−K(x) ≥ δm.

We construct A in blocks of size m, each time choosing a block such that the com-

plexity of the string built so far increases by at least δm. It follows immediately that

the desired property holds for initial segments of A of lengths that are multiples of m.

We claim that K(σ) ≥ δ|σ| also holds for substrings σ of A that start and end at indices

that are multiples of m. Note that there is a constant c1 such that

K(xy) ≤ K(x) +K(y) + c1.

If ασ is an initial segment of A where σ starts and ends at indices that are multiples

of m, K(ασ)−K(α) ≥ δ|σ|. By the inequality above, K(σ) ≥ δ|σ| − c1.
3For more details, see Downey and Hirschfeldt [11], chapter 3.
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Next, if σ is an arbitrary subsequence of A, we can pad σ at either end to obtain a

string ασβ that starts and ends at indices that are multiples of m. Since both α and β

have length less than m, there is a constant c2 such that

K(σ) + c2 ≥ K(ασβ) ≥ δ|ασβ| − c1 ≥ δ|σ| − c1,

and so K(σ) ≥ δ|σ| − (c1 + c2). Thus A is (δ, c1 + c2)-shift-complex.

Rumyantsev and Ushakov in [28] provide an alternative existence proof. They use

the Lovász Local Lemma to show that for each δ, there is a b ∈ ω such that there exist

arbitrarily long finite (δ, b)-shift-complex strings. The existence of an infinite (δ, b)-shift-

complex sequence then follows from the compactness of 2ω.

The final construction is due to Miller [25]. We say that X ∈ nω avoids a set S ⊆ n≤ω

if no σ ∈ S is a substring of X. The set of all sequences in nω that avoid a given set of

finite strings is called a subshift. Miller provides a condition on the lengths of strings in

S that guarantees that the subshift of S is nonempty. We outline the proof of this result

since an effective version of this construction is required in the proof of Theorem 2.25.

Since we are interested only in binary sequences, we present it for the case n = 2:

Theorem 2.4 (Miller [25]). Let S ⊆ 2<ω. If there is a c ∈ (1/2, 1) such that

∑
τ∈S

c|τ | ≤ 2c− 1,

then there is an X ∈ 2ω that avoids S.



13

Proof. For σ, τ ∈ 2<ω, we define

Tσ,τ = {ρ ∈ 2<ω : |ρ| < |τ | and σρ ends in τ}

and let

w(σ) =
∑
τ∈S

∑
ρ∈Tσ,τ

c|ρ|.

It is helpful to think of w(σ) as a measure of the danger of an extension of σ ending in a

forbidden string. Note that if σ ends in a string τ ∈ S, then 〈〉 ∈ Tσ,τ , and so w(σ) ≥ 1.

We build the sequence X a bit at a time, ensuring that for each initial segment σ of X,

w(σ) < 1. Then X avoids S.

Suppose that we have built a string σ that avoids S and that w(σ) < 1. Note that

w(σ0) + w(σ1) = w(σ)/c + (
∑

τ∈S c
|τ |)/c. The second term on the right corresponds to

the new threats that emerge as a result of extending σ by either a 0 or a 1, while the

first term corresponds to the existing threats to σ, magnified by a factor of 1/c. So we

have

w(σ0) + w(σ1) =
w(σ)

c
+

1

c

∑
τ∈S

c|τ | <
1

c
+

2c− 1

c
= 2,

from which it follows that either w(σ0) or w(σ1) is strictly less than 1.

Theorem 2.3 follows as a corollary.

Corollary 2.5 (Miller [25]). Fix δ ∈ (0, 1). Let b = − log(1 − δ) + 1 and S = {τ ∈

2<ω | K(τ) < δ|τ | − b}. Then there is an X ∈ 2ω that avoids S, and is therefore

δ-shift-complex.
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Proof. Let c = 2−δ. Then

∑
τ∈S

c|τ | =
∑
τ∈S

2−δ|τ | <
∑
τ∈S

2−(K(τ)+b) = 2−b
∑
τ∈S

2−K(τ) ≤ 2−b

where the last inequality follows from Kraft’s inequality4. Now 2−b = (1 − δ)/2, which

for δ ∈ (0, 1) is less than 21−δ − 1 = 2c− 1, so we can apply Theorem 2.4.

An advantage of the construction in Theorem 2.4 is that it can be effectivized to

yield the following:

Proposition 2.6. Suppose S ⊆ 2<ω satisfies the condition of Theorem 2.4 and is com-

putable. Then there is a computable X ∈ 2ω that avoids S.

Before proceeding with the proof, we establish some terminology. We say c ∈ R is a

computable real number if there is an algorithm which, when given a rational ε, outputs

a rational d such that |d − c| ≤ ε. The computable real numbers form a field. We say

c ∈ R is left-c.e. if there is an algorithm that enumerates an increasing sequence (qi)i∈ω

of rationals such that limi→∞ qi = c. It is not difficult to show that if the sum of two

left-c.e. real numbers is computable, then both are computable.

Proof of Proposition 2.6. Let an = |S ∩ 2n|, and let f(x) =
∑

n∈ω anx
n. We first argue

that if there is a c ∈ R such that c is computable, f(c) is computable, and f(c) ≤ 2c−1,

then w(σ) is computable, uniformly5 in σ ∈ 2<ω. We proceed by induction on the

length of σ. First, note that w(〈〉) = 0 (hence computable). Now assume that w(σ) is

4If A is a prefix-free set of strings, then
∑
τ∈A 2−|τ | ≤ 1.

5We mean that there is a single procedure that, given σ and a rational error ε as input, computes
w(σ) to within ε.
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computable. As observed in the proof of Theorem 2.4,

w(σ0) + w(σ1) =
w(σ)

c
+
f(c)

c
,

where the right hand side is computable by hypothesis. Both w(σ0) and w(σ1) are left-

c.e. reals, and since their sum is uniformly computable, both are computable (uniformly).

It follows that we can now effectively build X bit by bit as in Theorem 2.4.

Next, we show that if the coefficients an are computable, then there is a computable

c such that f(c) is also computable. The function f(x)− 2x+ 1 is concave up for x > 0

and so one of the following cases must hold:

Case 1: There is an interval [p, q] ⊆ (1/2, 1) such that for all x ∈ [p, q], f(x) ≤ 2x−1.

In this case, we can choose any rational c ∈ [p, q). Since f(q) converges,

aic
i = aiq

i c
i

qi
≤ f(q)

(
c

q

)i
≤ Ldi,

where L is any rational greater than f(q) and d is any rational in [c/q, 1). In other

words, f(c) is dominated term-by-term by the convergent geometric series
∑

i∈ω Ld
i. It

follows that f(c) is computable: to compute it to within ε, choose k ≥ N such that

(Ldk)/(1− d) < ε and compute
∑k−1

i=0 aic
i.

Case 2: There is a unique c ∈ (1/2, 1) such that f(c) = 2c − 1. The function

f(x)− 2x+ 1 is computably approximable from below by fs(x)− 2x+ 1, where fs(x) =∑
n≤s anx

n. For s large enough, fs(x)− 2x + 1 has two roots, as and bs, both of which

are computable. Note that c is between as and bs, so to compute c to within ε, we

simply search for s such that |as − bs| < ε. Now f(c), being equal to 2c − 1, is also
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computable.

The constructions above produce sequences that are at least δ-shift-complex. An

exactly δ-shift-complex sequence is one that is δ-shift-complex but not δ′-shift-complex

for any δ′ > δ, while an almost δ-shift-complex sequence is one that is δ′-shift-complex

for every δ′ < δ, but not δ-shift-complex. Hirschfeldt and Kach have shown that it is

possible to adapt the construction in Theorem 2.3 to produce such sequences. Recall

that for a sequence X, Dim(X) denotes the effective packing dimension of X.

Theorem 2.7 (Hirschfeldt and Kach [17]). For any δ ∈ (0, 1), there is a sequence X that

is almost δ-shift-complex and a sequence Y that is exactly δ-shift-complex. Moreover, X

and Y can be chosen so that Dim(X) = Dim(Y ) = δ.

It is easy to see that the effective Hausdorff dimension of a δ-shift-complex sequence

is at least δ. Since the effective packing dimension of a sequence bounds its effective

Hausdorff dimension, for each of the sequences in Theorem 2.7, the effective Hausdorff

dimension is δ.

Hirschfeldt and Kach have also observed that the effective packing dimension of a

shift-complex sequence is always less than 1. In fact, this is true of all sequences that

have the property that some string never occurs in the sequence.

Proposition 2.8 (Folklore). Suppose a finite string σ never occurs as a substring of

X ∈ 2ω. Then Dim(X) < 1.

Proof. Let m = |σ|. For n ∈ ω, let π(n) denote the number of strings of length n that

occur as substrings of X. Since π(m) ≤ 2m − 1, for all j ≥ 1, π(mj) ≤ (2m − 1)j. If

j is large enough, π(mj) ≤ 2mj−1. So we can represent substrings of X of length mj
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using an alphabet consisting of strings of length mj − 1, which allows us to uniformly

compress substrings of X by a factor of mj/(mj − 1). In particular,

K(X �n) ≤+ K(n) +
mj − 1

mj
n ≤+ 2 log(n) +

mj − 1

mj
n,

and so Dim(X) ≤ (mj − 1)/mj < 1 .

A similar argument can be used to show:

Theorem 2.9 (Hirschfeldt and Kach [17]). Fix a δ-shift-complex sequence A. Then for

some ε > 0, there is a (δ + ε)-shift-complex sequence B ≤T A.

We close the section with a couple of observations:

Proposition 2.10. For every δ ∈ (0, 1), there is a nonempty Π0
1 class of δ-shift-complex

sequences.

Proof. We assume that δ is a rational. By any of the constructions described above, for

some b, the class of (δ, b)-shift-complex sequences is nonempty. For each string σ, the

set of descriptions of σ is uniformly c.e., by which we mean there is a single program

that, given an arbitrary string σ, enumerates its descriptions. It follows that the set W

of finite strings that are not (δ, b)-shift-complex is c.e., since we can construct a program

that enumerates a finite string γ if any substring of γ has a description that is too short.

A real X is (δ, b)-shift-complex if and only if it has no initial segment in W . Hence, the

set of (δ, b)-shift-complex sequences is a Π0
1 class.

Corollary 2.11. Every oracle of PA degree computes a δ-shift-complex sequence for

every δ ∈ (0, 1).
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2.4 Bi-infinite shift-complex sequences

Given a shift-complex sequence A ∈ 2ω, it is easy to produce a bi-infinite sequence (in

2ξ, where ξ denotes the order type of the integers) of lower complexity by treating the

even and odd bits of A as two distinct sequences and reversing one of them. Recall that

if B and C are sequences in 2ω, we denote by B ⊕ C the join of B and C, i.e., the

sequence in 2ω formed by interleaving the bits of B and C.

Proposition 2.12. Fix ε > 0. Every (1−ε)-shift-complex sequence uniformly computes

a bi-infinite (1− 2ε)-shift-complex sequence.

Proof. Suppose an infinite sequence A is (1− ε)-shift-complex. Letting A = B ⊕ C, we

claim that Z =
←−
BC (where

←−
B is just B reversed) is (1− 2ε)-shift-complex.

First, we consider a substring σ of Z that lies completely in the left or the right

half of Z (i.e., it does not overlap the index 0). If σ lies in the right half of Z (the

argument is identical in the other case), let τ be the corresponding substring of the

left half of Z of the same length such that τ ⊕ σ is a substring of A. By assumption,

K(τ⊕σ) ≥+ (1−ε)2n, where n = |σ|. It is easy to see that there is a prefix-free machine

that witnesses the inequality K(σ) +K(τ |σ) ≥+ K(τ ⊕ σ). A similar argument shows

that K(τ |σ) ≤+ K(n |σ) + n. So we have:

K(σ) ≥+ (1− ε)2n−K(n |σ)− n.

But there is a constant c such that K(|σ| |σ) ≤ c, so we obtain:

K(σ) ≥+ (1− ε)2n− n = (1− 2ε)n.
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Next, we consider the case where σ overlaps 0. Let σ = τγ where τ is the part of σ to

the left of 0 and γ the part to the right. If |τ | = |γ|, thenK(σ) ≥+ (1−ε)|σ| > (1−2ε)|σ|,

so suppose (without loss of generality) that n = |τ | > |γ| = m. We can pad σ on the

right by ρ, so that |σρ| = 2n and σρ is a substring of Z. Then, K(σρ) ≥+ (1 − ε)2n,

since it corresponds to an initial segment of A of length 2n. We also have the inequality

K(σρ) ≤+ K(σ) +K(ρ | σ). So

K(σ) ≥+ (1− ε)2n−K(ρ | σ)

= (1− 2ε)(n+m) + (n−m) + 2εm−K(ρ | σ).

We know that K(ρ | σ) ≤+ K(|ρ| | σ) + |ρ| = K(n − m | σ∗) + (n − m). Now, since

|σ| = n+m, K(n−m | σ) ≤+ K(m) ≤+ 2 log(m). Combining all of the above, we have:

K(σ) ≥+ (1− 2ε)(n+m) + 2(εm− log(m)) ≥+ (1− 2ε)(n+m).

It follows that for any δ ∈ (0, 1), by starting out with a sequence of sufficiently

high shift-complexity, we can apply the proposition above to obtain a bi-infinite δ-shift-

complex sequence:

Corollary 2.13. For every δ ∈ (0, 1), there exists a bi-infinite δ-shift-complex sequence.

However, the answer to the following question is as yet unknown:

Question 2.14. Does every δ-shift-complex sequence compute a bi-infinite δ-shift-

complex sequence?
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2.5 Extracting shift-complexity from randomness

Initial segments of Martin-Löf random reals have high prefix-free Kolmogorov complex-

ity. Might it not be possible to effectively obtain a shift-complex sequence from any

Martin-Löf random real? A theorem by Rumyantsev shows that this is not the case.

In this section we give a proof of Rumyantsev’s theorem and show something stronger:

The Martin-Löf random reals which compute shift-complex sequences do so not because

they are random, but because they are of PA degree.

Theorem 2.15 (Rumyantsev [29]). The set of reals that compute shift-complex sequences

has measure 0.

We need a preliminary definition and a lemma.

Definition 2.16. We say that a shift-complex sequence Y is abundant if there is an

n ≥ 2 such that Y is δ-shift-complex for some δ > 1/n and further, for every m, Y

contains at least 2m(n−1)/n different substrings of length m.

Lemma 2.17. Every shift-complex sequence computes an abundant shift-complex se-

quence.

Proof. We begin by observing that if a sequence Y is δ-shift-complex for some δ > 1/n

but is not abundant with witness m (i.e., Y has fewer than 2m(n−1)/n different substrings

of length m), then it has fewer than (2m(n−1)/n)n = 2m(n−1) strings of length mn. Thus,

substrings of Y of length mn can be represented using an alphabet consisting of strings

of length m(n− 1), giving us a uniform way to compress substrings of Y whose lengths

are a multiple of mn by a factor of n/(n− 1).
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We show by induction on n that if a sequence X is δ-shift-complex for δ > 1/n, then

X computes an abundant shift-complex sequence. First note that if X is δ-shift-complex

for some δ > 1/2, then X itself is abundant. For if it is not, fix m such that X has fewer

than 2m/2 strings of length m. By the observation above, we can compress substrings of

X whose lengths are a multiple of 2m by a factor of 2, which contradicts the fact that

X is δ-shift-complex for δ strictly greater than 1/2.

Next, suppose X is δ-shift-complex for δ > 1/n and is not abundant with witness m.

Again by the observation at the beginning of the proof, X ≡T Y , where Y is obtained

from X by coding segments of X of length mn by strings of length m(n− 1). It is not

hard to see that Y is δ′-shift-complex for δ′ > 1/(n − 1). By the induction hypothesis,

Y computes an abundant shift-complex sequence.

In the proof of Theorem 2.15 we appeal to the Kraft–Chaitin Theorem, which allows

us to compress a set of strings subject to some constraints.

Definition 2.18. A c.e. set W ⊆ ω × 2<ω is a Kraft–Chaitin set if

∑
(n,τ)∈W

2−n ≤ 1.

We refer to elements of W as requests.

Theorem 2.19 (Kraft–Chaitin). For each Kraft–Chaitin set W , there is a constant d

such that for all (n, τ) ∈ W , K(τ) ≤ n+d. The constant d is called the coding constant

of W . Further, one can effectively obtain d from a procedure for enumerating W .

In conjunction with the Kraft–Chaitin Theorem, we use the Recursion Theorem from

computability theory, which allows us to know the coding constant of a Kraft–Chaitin
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set while we are enumerating it. For a detailed exposition of this technique, we refer the

reader to Chapter 2 of Nies [27].

Proof of Theorem 2.15. The strategy is to assume, for a contradiction, that a positive

measure set of reals computes shift-complex sequences, hence abundant shift-complex

sequences by Lemma 2.17. We will argue that since every oracle in this positive measure

set computes lots of strings of fairly high complexity, some of these strings must be

computed by a large measure of oracles. Using the Kraft–Chaitin Theorem, we will

compress these strings, thereby invalidating those oracles that compute them.

More precisely, each shift-complex sequence computes an abundant shift-complex

sequence for some n, and there are countably many choices for n. So we can assume

that for some n ≥ 2 there is a positive measure set A of oracles every member of which

computes an abundant shift-complex sequence for n. By a similar argument, we can

further assume that there is a single Turing functional Γ, a rational δ > 1/n and an

integer b such that if X ∈ A, then ΓX is abundant for n and (δ, b)-shift-complex.

Suppose µ(A) > ε where ε is rational. Let α be a rational in the interval (1/n, δ).

We build a Kraft–Chaitin set W , and by the Recursion Theorem, we assume that we

know the coding constant d of W in advance. Let m be chosen so that:

1. αm is an integer

2. αm < δm− (b+ d)

3. 2(α− 1
n

)mε > 1− ε.

We remark here that the choice of m is effective in ε, δ, n and b. This fact will be

relevant to the proof of Theorem 2.21.
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If σ is a string of length m, let

Sσ = {X ∈ 2ω | ΓX contains σ as a substring}.

We say that we compress a string τ of lengthm when we enumerate the pair (αm, τ) into

W . Note that by compressing a string, we ensure that it has a description no longer than

αm + d. We can compress 2αm many strings. If we ensure that µ(
⋃

(n,σ)∈W Sσ) > 1− ε

then we will have obtained a contradiction, since if an oracle X computes a string that

has a description strictly smaller than δm− b, then X ∈ Ā.

Suppose by stage s, we have compressed a set Ws of strings. Let Cs be the set of

oracles that we have seen by stage s that compute a string in Ws via Γ. The measure

of Cs should be thought of as the measure of oracles that we have eliminated by stage

s by determining that they belong to Ā. The key is that we compress a string when

we observe that the additional measure eliminated by doing so is large. Note that since

µ(A) > ε and every element of A computes at least 2m(n−1)/n strings of length m, there

is a string σ of length m such that

µ(Sσ ∩ A) > ε

(
2m(n−1)/n

2m

)
= ε

(
2−

m
n

)
.

Since A is disjoint from Cs, eventually we will see a string σ such that µ(Sσ\Cs) > ε·2−mn .

When we encounter such a string, we compress it.

Each time we compress a string, we ensure that Cs grows by a measure greater than

ε · 2−mn , so by compressing 2αm strings, the measure of oracles we will have eliminated
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will be greater than

2αm · ε · 2−
m
n = 2(α− 1

n
)mε,

which exceeds 1− ε by our choice of m above.

Because any property that holds of almost all oracles must hold of sufficiently ran-

dom oracles, Rumyantsev’s theorem could be rephrased as follows: If a sequence X is

sufficiently random, then it does not compute a shift-complex sequence. In the remain-

der of the section, we establish precisely how random an oracle must be for this property

to hold. Franklin and Ng in [15] introduce a notion called difference randomness and

show it to be strictly stronger than Martin-Löf randomness and strictly weaker than

weak 2-randomness.

Definition 2.20. A difference test is a uniform sequence of pairs (Ui, Vi) of Σ0
1 classes

such that for all i ∈ ω, µ(Ui \ Vi) ≤ 2−i. A real passes a difference test 〈(Ui, Vi)〉i∈ω if it

is not contained in
⋂
i∈ω(Ui \ Vi). A real is difference random if it passes all difference

tests.

Theorem 2.21. No difference random real computes a shift-complex sequence.

Proof. Suppose a real Y computes a shift-complex sequence X via Γ. Without loss of

generality we can assume X is abundant for some n and that it is (δ, b)-shift-complex

for some b ∈ ω and δ > 1/n. For an arbitrary real A, ΓA may be partial. We say σ is a

substring of ΓA if ΓA converges on a contiguous set of positions to σ. Let Gm be the set

of reals A such that

1. ΓA contains no substring σ such that K(σ) < δ|σ| − b

2. ΓA contains at least 2m(n−1)/n different substrings of length m.
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Then Gm is Um \ Vm, where Um is the set of reals A such that ΓA converges enough

to produce 2m(n−1)/n substrings of length m and Vm is the set of reals B such that ΓB

converges on a substring σ such that K(σ) < δ|σ| − b. Clearly, both Um and Vm are Σ0
1.

As remarked in the proof of Theorem 2.15, for fixed δ, b and n, given a rational

ε > 0 we can effectively find an m such that µ(Gm) ≤ ε. In other words, there is a

computable f such that µ(Gf(i)) ≤ 2−i. Then 〈(Uf(i), Vf(i))〉i∈ω is a difference test that

captures Y .

Franklin and Ng also provide the following characterization of the difference random

reals:

Theorem 2.22 (Franklin and Ng [15]). The difference random reals are precisely the

incomplete Martin-Löf random reals.

Since the halting problem has PA degree, any Martin-Löf random real that is not

difference random computes a shift-complex sequence, by Corollary 2.11. Together,

Theorem 2.21 and Theorem 2.22 imply the following:

Corollary 2.23. A Martin-Löf random real computes a shift-complex sequence if and

only if it is complete.

We will see shortly that there are shift-complex sequences that are not of PA degree,

so Corollary 2.23 can be viewed as a generalization of the following well-known result:

Theorem 2.24 (Stephan [33]). A Martin-Löf random real is of PA degree if and only

if it is complete.
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2.6 Extracting randomness from shift-complexity

We turn our attention now to the strength of shift-complex sequences as oracles. In this

section we show that not all shift-complex sequences compute Martin-Löf random reals.

The plan is similar to Greenberg and Miller’s construction in [16] of a real of effective

Hausdorff dimension 1 that computes no Martin-Löf random real. The separation is

achieved through an analysis of the computational power of slow-growing diagonally

noncomputable (DNC) functions.

Our main goal in this section is to show that for any δ ∈ (0, 1), all sufficiently

slow-growing DNC functions compute δ-shift-complex sequences:

Theorem 2.25. Fix δ ∈ (0, 1). There is an order function h such that every DNCh

function computes a δ-shift-complex sequence.

Then, to see that for every δ ∈ (0, 1), there are δ-shift-complex sequences that

compute no Martin-Löf random real, we could appeal to a result by Greenberg and

Miller that there are arbitrarily slow-growing DNC functions that compute no Martin-

Löf random real:

Theorem 2.26 (Greenberg and Miller [16]). For every order function h, there is an

f ∈ DNCh that does not compute a Martin-Löf random real.

However, we can prove something stronger. In Theorem 3.18, we show (with J.

Miller) that Theorem 2.26 can be strengthened to hold for Kurtz randomness.

Theorem 2.25 and Theorem 3.18 then imply:

Theorem 2.27. For every δ ∈ (0, 1) there exists a δ-shift-complex sequence that does

not compute a Kurtz random real.
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Before proving Theorem 2.25 we need a preliminary result.

Proposition 2.28. Let S ⊆ 2<ω be computable and suppose that for some α ∈ (0, 1),

|S ∩ 2n| ≤ 2αn for all n. Then there is a computable X ∈ 2ω that avoids S except for

finitely many strings.

Proof. Pick a rational c ∈ (1/2, 1) such that log(c) < −α. Then

∑
τ∈S

c|τ | ≤
∑
n∈ω

2αncn =
∑
n∈ω

2(α+log(c))n,

where the sum on the right converges geometrically. Let N ∈ ω be such that

∑
n≥N

2(α+log(c))n ≤ 2c− 1.

Now S ′ = S \ 2<N and c satisfy the hypotheses of Theorem 2.4. By Proposition 2.6,

there is a computable X ∈ 2ω that avoids S ′.

If S ⊆ 2<ω covers {σ ∈ 2<ω : K(σ) < δ|σ|}, then any sequence which avoids S except

for finitely many strings is δ-shift-complex. Relativizing Proposition 2.28 to such an S

we obtain the following:

Corollary 2.29. Fix δ ∈ (0, 1). Suppose S ⊆ 2<ω all but finitely contains {σ ∈ 2<ω :

K(σ) < δ|σ|} and for some α ∈ (0, 1), |S ∩ 2n| ≤ 2αn for all n. Then S computes a

δ-shift-complex sequence.

The next step is to show that for every δ ∈ (0, 1), every sufficiently slow-growing

DNC function computes an S ⊆ 2<ω satisfying the hypotheses of the corollary above.
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Lemma 2.30. Suppose δ ∈ (0, 1) and α ∈ (δ, 1) are rational. Let π(n) := max(2, b2(α−δ)nc).

Then, for all n such that 2(α−δ)n ≥ 2, uniformly in n, given access to a function

g ∈ DNCπ(n), we can compute a set Sn ⊂ 2n such that

1. |Sn| ≤ 2αn

2. {σ ∈ 2n : K(σ) < δn} ⊆ Sn.

Moreover, there is a computable function θ : ω → ω (independent of the oracle g) such

that the use of the computation is bounded by θ(n).

Instead of working directly with DNC functions, we work with a related class. Let

J(n,m) denote ϕn(m).

Definition 2.31. For a ≥ 2 and c > 0, let Pca be the class of functions f ∈ aω such that

for all n and all x < c, if (n, x) ∈ dom(J), then f(n) 6= J(n, x).

We use the following fact, originally due to Cenzer and Hinman [6], in the form

presented in Greenberg and Miller [16]:

Theorem 2.32 (Cenzer and Hinman [6]). For each a ≥ 2 and c > 0, there is a functional

Γ such that if g ∈ DNCa, then Γg ∈ Pcac. Further, the functional Γ can be obtained

effectively from a and c.

Note that since DNCa is a Π0
1 class in aω, the functional Γ can be assumed to be

total on aω, and hence a truth-table functional.

Proof of Lemma 2.30. Let c = b2δnc. By the preceding theorem, we can obtain f =

Γg ∈ Pccπ(n). Let Bn denote {σ ∈ 2n : K(σ) < δn}. We construct Sn ⊂ 2n by eliminating

strings that are not in Bn one at a time. A simple counting argument shows that
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|Bn| ≤ 2bδnc ≤ c. The key is that for an appropriately chosen m, Bn can be covered by

the values of J(m,x) for x ≤ c. Since f(m) avoids these values, it picks out a string

that is not in Bn.

More formally, for T ⊆ 2n, we can computably find an mT ∈ ω such that J(mT , x) =

y if and only if the xth element seen in an enumeration of Bn is the yth lexicographically

least element of T . If |T | > 2αn, then

|T | > 2(α−δ)n · 2δn ≥ b2(α−δ)ncb2δnc = cπ(n).

Therefore, f(mT ) corresponds to an string in T \ Bn. So let T0 = 2n and, for 0 ≤ i <

2n − b2αnc, let Ti+1 = Ti \ {σi}, where σi is the f(mTi)
th lexicographically least element

of Ti. Finally, let Sn = T2n−b2αnc.

Since Γ is a truth-table functional, its use γ is computable. We can define θ(n) to be

max{γ(mT ) : T ⊆ 2n, |T | > 2αn}.

The uniformity in Lemma 2.30 allows us to string together the constructions of

Sn for varying n. At the same time, the fact that as n increases the DNC strength

needed to compute Sn decreases (π is exponential in n) implies that instead of using the

computational power of a function in DNCa for a fixed a ∈ ω, we can use a function

whose range is allowed to grow unboundedly.

Lemma 2.33. For every δ ∈ (0, 1), there is an order function h such that every f ∈

DNCh computes a set S ⊆ 2<ω that all but finitely contains {σ ∈ 2<ω : K(σ) < δ|σ|}
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and satisfies the condition that for some α ∈ (δ, 1), |S ∩ 2n| ≤ 2αn for all n.

Proof. Without loss of generality, assume δ is rational and choose a rational α ∈ (δ, 1).

Let θ be the computable bound on the use of the computation in Lemma 2.30. Now, for

i ∈ ω, let h(i) = b2(α−δ)m)c, where m = min{n : θ(n) ≥ i and 2(α−δ)n ≥ 2}. Then h is

clearly total, non-decreasing, unbounded, and computable. Moreover, by Lemma 2.30,

if f ∈ DNCh, then for each n such that 2(α−δ)n ≥ 2, we can use the values of f on the

interval [0, θ(n)] to compute Sn, since h(i) ≤ b2(α−δ)nc for i ∈ [0, θ(n)].

To complete the proof of Theorem 2.25, let h be the order function of Lemma 2.33.

By Corollary 2.29, every f ∈ DNCh computes a δ-shift-complex sequence.

2.7 Questions

A shift-complex sequence X has positive effective packing dimension, so by a result of

Fortnow, Hitchcock, Pavan, Vinochandran, and Wang [14], we know that for every ε > 0,

X computes a real Y such that Dim(Y ) > 1 − ε. On the other hand, Conidis [7] has

shown that there is a real of positive effective packing dimension that computes no real

of effective packing dimension 1. However, the added assumption of shift-complexity

might allow us to circumvent the limitation posed by Conidis’s result.

Question 2.34 (Kach). Does every shift-complex sequence compute a real of effective

packing dimension 1?

We can also ask the analogous question for effective Hausdorff dimension:
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Question 2.35. Does every shift-complex sequence compute a real of effective Hausdorff

dimension 1? If not, then for every ε > 0, does every shift-complex sequence compute a

real of effective Hausdorff dimension 1− ε?

A related question is whether we can extract arbitrarily higher shift-complexity.

Theorem 2.9 shows that a shift-complex sequence always computes one of higher shift-

complexity. To what extent is this possible? If a shift-complex sequence can have a

‘complexity ceiling’, how is this determined?

Question 2.36. Fix δ ∈ (0, 1). Does every δ-shift-complex sequence compute a δ′-shift-

complex sequence for every δ′ ∈ (δ, 1)?
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Chapter 3

Bushy tree forcing

The application of bushy tree forcing in computability theory was pioneered by Kum-

abe [22] who used it to show that there is a DNC function of minimal Turing degree,

answering a question of Sacks [31]. We have two main goals in this chapter. First, in

Theorem 3.18, we show that given any order function h, there is a function f ∈ DNCh

(i.e., bounded pointwise by h) such that f computes no Kurtz random real. Second, we

extend Kumabe’s theorem to show that given any oracle X there is a function that is

DNC relative to X of minimal Turing degree (Theorem 3.24). Along the way, we provide

concise proofs of some existing results involving this type of forcing.

Some of the contents of this chapter will appear in a joint publication with J. Miller.

3.1 Definitions and combinatorial lemmas

Definition 3.1. Given σ ∈ ω<ω, we say that a tree T ⊆ ω<ω is n-bushy above σ if every

element of T is comparable with σ, and for every τ ∈ T that extends σ and is not a leaf

of T , τ has at least n immediate extensions in T . We will refer to σ as the stem of T .

Note that the set of initial segments of σ is actually n-bushy above σ according to

the definition above.

Definition 3.2. Given σ ∈ ω<ω, we say that a set B ⊆ ω<ω is n-big above σ if there is
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a finite n-bushy tree T above σ such that all its leaves are in B. If B is not n-big above

σ then we say that B is n-small above σ.

We begin by establishing some of the basic combinatorial properties of bushy trees.

The first observation is that we can extend the leaves of an n-bushy tree with n-bushy

trees to obtain another n-bushy tree:

Lemma 3.3 (Concatenation property). Suppose that A ⊆ ω<ω is n-big above σ. If

Aτ ⊆ ω<ω is n-big above τ for every τ ∈ A, then
⋃
τ∈T Aτ is n-big above σ.

The second property that we use frequently is known as the smallness preservation

property. This is the second sparse subset property of Kumabe and Lewis [23], and

Lemma 5.4 of Greenberg and Miller [16].

Lemma 3.4 (Smallness preservation property). Suppose that B and C are subsets of

ω<ω, that m,n ∈ ω and that σ ∈ ω<ω. If B and C are respectively m-small and n-small

above σ then B ∪ C is (n+m− 1)-small above σ.

Proof. Let T be an (m+n− 1)-bushy tree above σ with leaves in B ∪C. We show that

either B is m-big above or C is n-big above σ. Label a leaf τ of T “B” if it is in B, “C”

otherwise. Now if ρ is the immediate predecessor of τ , then ρ has at least (m + n − 1)

immediate extensions on T , each of which are labelled either “B” or “C”. Then either m

of these are labelled “B”, in which case we label ρ “B”, or n are labelled “C”, in which case

we label ρ “C”. Continuing this process leads to σ eventually getting a label. It is clear

that if σ is labelled “B” then B is m-big above σ. Otherwise C is n-big above σ.

The third property is known as the small set closure property :
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Lemma 3.5 (Small set closure property). Suppose that B ⊂ ω<ω is k-small above σ.

Let C = {τ ∈ ω<ω : B is k-big above τ}. Then C is k-small above σ. Moreover C is

k-closed, meaning that if C is k-big above a string ρ, then ρ ∈ C.

Proof. Suppose that C is k-big above a string ρ. Then, since B is k-big above every

τ ∈ C, by the concatenation property, B is k-big above ρ, so ρ ∈ C. The lemma follows

immediately.

The small set closure property is quite useful in the context of a forcing construction.

Typically, σ is an approximation to a function that we are building and B is a set of

strings that must be avoided in order to ensure that requirements remain met. We refer

informally to the set B as the “bad set”. Throughout the construction, we may wish to

maintain the property that the bad set B is k-small above σ for some k ∈ ω. Clearly,

if B is k-big above some string ρ, then ρ is off-limits as well. Lemma 3.5 allows us to

assume that all such strings are already in the bad set, while preserving its smallness.

From now on, whenever we deal with a bad set that is k-small, we also assume that it

is k-closed. Note that the k-closure of a c.e. set of strings is also c.e.

3.2 Basic bushy forcing

As a first illustration of the convenience afforded us by these lemmas, we present a proof

of a well-known result. Any bounded DNC function (i.e., a function in DNCk for some

k ≥ 2) computes a function in DNC2. However, Jockusch showed in [19] that this is not

uniform.
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Theorem 3.6 (Jockusch [19]). For each n ≥ 2, there is no single functional Γ such that

for all f ∈ DNCn+1, Γf ∈ DNCn.

Proof. Let us assume that such a Γ exists, i.e., for all f ∈ DNCn+1, Γf ∈ DNCn. The

set of sequences in DNCn+1 is a Π0
1 class in (n + 1)ω, so we may obtain a functional Ξ

that is total on (n+ 1)ω and that agrees with Γ on every member of DNCn+1. We may

also assume that Ξf ∈ nω for all f ∈ (n+ 1)ω.

For each m ∈ ω and for each i < n, let Λi,m = {σ ∈ (n + 1)<ω : Ξσ(m) = i}.

By the compactness of (n + 1)ω, there exists a finite level k such that for every string

τ ∈ (n+1)k, Ξτ (m) converges. Therefore,
⋃
i<n Λi,m is (n+1)-big above the empty string

〈〉. It is now easy to see, by repeatedly applying the smallness preservation property,

that for some i < n, Λi,m must be 2-bushy above 〈〉.

We specify a partial computable function ϕ. On input m, ϕ searches for a 2-bushy

tree T above 〈〉 such that for every leaf τ of T , Ξτ (m) converges to the same value, say

i, and when it finds such a tree, itself outputs i. By the argument above, such a tree

must exist, and so ϕ(m) is defined for each m. Let e be the index for ϕ, and let Te

be the 2-bushy tree that ϕ finds on input e. Since Te is 2-bushy, there is a leaf τ of Te

that is DNC, and so there is an f ∈ (n + 1)ω extending σ that is DNCn+1. But then

Ξf (e) = Ξτ (e) = ϕe(e), which is a contradiction.

Finitely iterating this strategy yields the following stronger result:

Theorem 3.7. For each n ≥ 2, there is no finite set of functionals Γ0,Γ1, ...,Γk such

that for all f ∈ DNCn+1, there exists a j ≤ k such that Γfj ∈ DNCn.

Proof. Let us assume that such a set of functionals exists. We define a new functional

Ξ as follows: on input e, Ξ simulates Γ0 through Γk on input e and outputs the result
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of whichever one converges first. Clearly, Ξ is total on the class of DNCn+1 sequences,

so we can assume that Ξ is total on (n + 1)ω. We then proceed exactly as in the

proof of Theorem 3.6, obtaining a string σ0 that is DNCn+1 and an e ∈ ω such that

Ξσ0(e) = ϕe(e). Then Ξσ0(e) = Γσ0j (e) for some j ≤ k. It follows that Γj fails to compute

a DNCn function on any f ∈ DNCn+1 extending σ0. We now repeat the same process

above σ0 with the reduced list of functionals {Γ1, ...,Γk} \ {Γj}, obtaining a DNCn+1

string σ1 extending σ0 that diagonalizes against one of the remaining functionals. After

k + 1 iterations, we will have obtained a contradiction.

The previous proof points the way towards more sophisticated constructions involving

bushy trees where we satisfy countably many requirements. The next result is our first

example of such a construction. It features a simpler variant of bushy tree forcing, which

we term basic bushy forcing, and is characterized by the fact that the forcing conditions

essentially have two components: a finite string that represents an approximation to a

function that we are building, and a set of bad strings that we are trying to avoid.

Theorem 3.8 (Ambos-Spies, Kjos-Hanssen, Lempp, and Slaman [1]). There is a DNC

function that computes no computably bounded DNC function.

Proof. The forcing conditions are pairs (σ,B), where σ ∈ ω<ω, B ⊂ ω<ω and:

• for some k ∈ ω, B is k-small above σ (and without loss of generality, k-closed)

• B is upward closed (i.e., if γ is in B, then all extensions of γ are in B).

The string σ is an approximation to f and the set B is a “bad set”, i.e., a set of

strings that must be avoided in order to ensure that requirements remain satisfied.
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A condition (σ,B) extends another condition (τ, C) if τ � σ and C ⊆ B. Let P

denote this partial order. Now if G is a filter on P, then for any two elements (σ,B) and

(τ, C) of G, σ and τ are comparable. Hence, fG =
⋃
{σ : (σ,B) ∈ G} ∈ ω≤ω. In fact, we

can ensure that fG is total:

Claim 3.9. If G is sufficiently generic with respect to P, then fG is total.

Proof. We show that the collection Tm = {(σ,B) ∈ P : |σ| ≥ m} is dense in P. Suppose

(σ,B) ∈ P, where |σ| < m. Then B is k-small above σ for some k ∈ ω. Clearly, the

set C = {τ ∈ ω<ω : |τ | ≥ m} is k-big above σ. Let τ be any string in C \ B. Then

(τ, B) ∈ P.

Claim 3.10. If G is any filter on P, then for all (σ,B) ∈ G, fG has no initial segment

in B.

Proof. Suppose that fG has an initial segment τ in B. Then there is a (ρ′, C ′) ∈ G such

that ρ′ extends τ . Let (ρ, C) be a common extension of (ρ′, C ′) and (σ,B). Since B is

upward closed, ρ ∈ B. But B ⊆ C, so ρ ∈ C. This is a contradiction, since it follows

that C is k-big above ρ for all k ∈ ω.

If Γ is a functional and h a computable function such that Γ is h-valued (in other

words, whenever Γ converges with any oracle on input e, its output is less than h(e)),

let DΓ,h denote the set of (σ,B) ∈ P such that for all g ∈ [σ] \ [B]≺, Γg is not a DNCh

function.

Claim 3.11. For each computable function h, and h-valued functional Γ, DΓ,h is dense

in P.
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Proof. Suppose (σ,B) ∈ P and thatB is k-small above σ. As in the proof of Theorem 3.6,

we specify a partial computable function ϕ. On input m, ϕ searches for a k-bushy tree

T above σ such that for every leaf τ of T , Γτ (m) converges to the same value i < h(m).

Upon finding such a tree, ϕ outputs i. Let e be the index of ϕ.

There are now two cases. If the set A = {τ : Γτ (e) ↓} is (h(e) ·k)-small above σ, then

A∪B is (h(e) · k+ k− 1)-small above σ. Then (σ,A∪B) ∈ P and extends (σ,B). Note

that we have forced Γ to be partial on any g ∈ [σ] \ [A∪B]≺. Hence, (σ,A∪B) ∈ DΓ,h.

On the other hand, if A is (h(e)·k)-big above σ, then for some i < h(e), {τ : Γτ (e) ↓=

i} is k-big above σ. So ϕ(e) is defined. In this case, we extend σ to any τ not in B

such that Γτ (e) ↓= ϕ(e). This forces Γg to fail to be DNC on any g extending τ . Hence,

(τ, B) ∈ DΓ,h.

Finally, we observe that the set of finite strings that are not DNC, which we denote

by BDNC, cannot be 2-big above the empty string 〈〉, since any 2-bushy tree contains

a string that is DNC. So (〈〉, BDNC) ∈ P. Let G be a filter on P containing (〈〉, BDNC)

that meets Tm for every m ∈ ω and DΓ,h for every computable function h and h-valued

functional Γ (note that this is a countable collection of dense sets).

By Claim 3.9, fG is total. By Claim 3.10 and the fact that (〈〉, BDNC) ∈ G, fG is

a DNC function. If fG computes a function in DNCh for some computable function h,

then it does so via an h-valued functional Γ. Claim 3.11 shows that this is not the case.

This concludes the proof of Theorem 3.8.

We note that while the bad sets in the previous proof are c.e., we do not make use of

this fact. Given an oracle X, let BX
DNC denote the set of finite strings that are not DNC

relative to X. Note that BX
DNC is not necessarily c.e., but is nevertheless 2-small above
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〈〉. This suggests that we could use the same sort of techniques to construct a function

that is DNC relative to X. As an example, we prove a theorem that implies the main

result in [1], and is slightly stronger.

Theorem 3.12. Fix an order function h. Suppose X computes no DNCh function.

Then there is an f that is DNC relative to X such that f ⊕ X computes no DNCh

function.

Proof. The forcing partial order is the same as before. If Γ is an h-valued functional,

let DΓ denote the set of (σ,B) ∈ P such that for all f ∈ [σ] \ [B]≺, Γf⊕X is not a DNCh

function. We show that DΓ is dense in the partial order. Suppose (σ,B) is a condition

where B is k-small above σ.

First, if there are x, l ∈ ω such that

Cx = {τ ∈ ω<ω : Γτ⊕X(x) ↓}

is l-small above σ, then the condition (σ,B∪Cx) extends (σ,B) and forces the divergence

of ΓfG⊕X(x). Therefore, let us assume that for each x, l ∈ ω, Cx is l-big above σ.

Next, if there exists an x ∈ ω such that ϕx(x) converges and

Nx = {τ ∈ ω<ω : Γτ⊕X(x) ↓ = ϕx(x)}

is k-big above σ, then there is a τ extending σ not in B such that Γτ⊕X(x) ↓ = ϕx(x),

and so the condition (τ, B) extends (σ,B) and forces that fG is not DNC. Therefore, let

us assume that for each x ∈ ω, either ϕx(x) diverges or Nx is k-small above σ.
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We now describe how to compute a DNCh function from X, which yields a contra-

diction. On input x, search for a k-bushy tree T above σ such that for every leaf τ of T ,

Γτ⊕X(x) converges to the same value j < h(x), then output j. Since for each x, Cx is

(h(x) ·k)-big above σ, such a tree T exists. So the X-computable function just described

is total. Moreover, it disagrees with ϕx(x) whenever it is defined, since Nx is k-small

above σ.

Therefore, DΓ is dense. Let G be a generic filter including the condition (〈〉, BX
DNC).

Then fG has the required properties.

With a stronger assumption, the technique in the proof of Theorem 3.12 yields a

stronger conclusion: If X computes no computably bounded DNC function, then there

is an f that is DNC relative to X such that f ⊕X computes no computably bounded

DNC function. We omit the proof.

An analysis of the amount of bushiness we require above σ in the diagonalization

argument of Claim 3.11 yields the following:

Theorem 3.13 (Ambos-Spies, et al. [1]). For each order function h there is an order

function j and a function f ∈ DNCj that computes no function in DNCh.

Proof. If j is an order function, let jn denote the space

∏
m<n

{0, 1, ..., j(m)− 1},

and let j<ω and jω be defined in the obvious way.

We now fix a computable function h and let (Γi)i∈ω be an effective enumeration of

all h-valued Turing functionals. We define an order function j by recursion. In order to
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define j, we will also define an auxiliary computable function q : ω<ω×ω2, the definition

of which will refer to the index of the function j. This is possible because we can assume,

by the recursion theorem, that we have access to the index of j in advance.

On input x, ϕq(σ,i) searches for a |σ|-bushy tree T above σ contained in j<ω such

that for every leaf τ of T , Γτi (x) ↓ to the same value k < h(x), and upon finding such a

tree, itself outputs k. Now let q̄ = maxi<n,σ∈jn q(σ, i). We define j(n) to be the larger of

maxi<n j(i) and ((h(q̄(n)) + 1) · n) + 2.

The forcing conditions are now pairs (σ,B) where B ⊆ j<ω and σ ∈ j<ω \ B. We

require that B be upward-closed and |σ|-small above σ. By the small set closure property,

we may assume that B is |σ|-closed. For σ ∈ j<ω, let [σ]j denote {X ∈ jω : σ ≺ X}.

Claim 3.14. Let Di denote the set of (σ,B) ∈ P such that for all g ∈ [σ]j \ [B]≺, Γgi is

not a DNCh function. Then for each i ∈ ω, Di is dense in P.

Proof. Suppose that (σ,B) ∈ P. By suitably extending σ, we can assume that |σ| > i.

Let n = |σ| and

A = {τ ∈ j<ω : Γτi (q(σ, i)) ↓}.

As in the proof of Claim 3.11, there are two cases.

If A is (h(q(σ, i)) · n)-small above σ, then letting c = (h(q(σ, i)) · n+ n− 1), A∪B is

c-small above σ. Let C be the c-closure of A ∪ B. Since j(n) ≥ (h(q(σ, i)) + 1) · n > c

and j is nondecreasing, jc is c-big above σ. Let τ be any string extending σ in jc \ C.

Then (τ, C) is a condition. Further, Γfi is partial on any f ∈ [τ ]j \ [C]≺, so (τ, C) ∈ Di.

On the other hand, if A is (h(q(σ, i)) · n)-big above σ, then for some k < h(q(σ, i)),

the set {τ ∈ j<ω : Γτi (q(σ, i)) ↓= k} is n-big above σ. It follows that ϕq(σ,i)(q(σ, i)) is

defined. So there is a τ ∈ j<ω \ B extending σ such that Γτi (q(σ, i))) = ϕq(σ,i)(q(σ, i)).



42

Then (τ, B) ∈ P ∩ Di.

This concludes the proof of Theorem 3.13.

Theorem 3.15. Given any order function g, there is an order function h and an f ∈

DNCg such that f computes no DNCh function.

Proof. We define h inductively. Let n0 = 0 and let h(0) = 2. At the ith stage of

the construction, suppose we have defined it up to ni. Let k ≥ ni + 1 be the least

such that g(k) ≥ (h(ni) + 1) · g(ni). Let q(σ) be the computable function such that if

σ ∈ gk, then q(σ) ≥ k, and ϕq(σ)(n) searches for a g(ni)-bushy tree T above σ contained

in g<ω such that for every leaf τ of T , Φτ
i−1 converges to the same value l < h(ni).

Let m = maxσ∈gk q(σ). Let h(n) = h(ni) for all n such that ni < n ≤ m and let

h(m+ 1) = h(m) + 1. Finally, let ni+1 = m+ 1, ensuring that h is unbounded. The fact

that k ≥ ni + 1 ensures that h is total.

It remains to construct f . Let B0 = BDNC and let σ0 ∈ g1\BDNC. Assume inductively

that σi ∈ gni \ Bi and that Bi is g(ni)-small above σi. Let k and q be defined as above

and extend σ to a string ρ ∈ gk \Bi. For j < h(q(ρ)), let

Aj = {τ ∈ g<ω : Φτ
i (q(ρ)) ↓ = j}.

If Aj is g(ni)-big above ρ for some j, then ϕq(ρ)(q(ρ)) is defined. If ϕq(ρ)(q(ρ)) = j′

then there is a τ ∈ Aj′ \ Bi extending ρ such that Φτ
i−1(q(ρ)) = ϕq(ρ)(q(ρ)). Otherwise,

C = (
⋃
j<h(q(ρ))Aj)∪Bi is (h(q(ρ)) + 1) · g(ni)-small above ρ. Since g(k) ≥ (h(ni) + 1) ·

g(ni) = (h(q(ρ)) + 1) · g(ni), C is g(k)-small above ρ. So let Bi+1 = C and let σi+1 be

any string in gni+1 \Bi+1 extending ρ. Finally, let f =
⋃
i∈ω σi.
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By alternating the strategies of Theorems 3.13 and 3.15, one can also show:

Theorem 3.16. Given any order function g0, there is another order function g1 and

functions f0 ∈ DNCg0 and f1 ∈ DNCg1 such that f0 computes no DNCg1 function and

f1 computes no DNCg0 function.

3.3 Bushy tree forcing

Bounded DNC functions, being of PA degree, compute Martin-Löf random reals. Kučera

[21] showed that there is an order function h such that every Martin-Löf random real

computes a DNCh function. Theorem 3.8 then implies that there are unbounded DNC

functions that compute no Martin-Löf random real. Greenberg and Miller established a

stronger version of this fact:

Theorem 3.17 (Greenberg and Miller [16]). For each order function h, there is an

f ∈ DNCh that computes no Martin-Löf random real.

The proof uses basic bushy forcing, and does not require that the bad sets be c.e.

In fact, the same technique could be used to show that for each order function h and

each oracle X, there is an f ∈ DNCX
h that computes no Martin-Löf random real. Our

main result in this section (joint with J. Miller) cannot be partially relativized in this

manner (it strongly depends on the fact that the bad sets are c.e.) but improves upon

the Greenberg-Miller theorem in a different way.

Theorem 3.18 (Khan, Miller). For each order function h, there is an f ∈ DNCh that

computes no Kurtz random real.
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Theorem 3.18 is our first example of bushy tree forcing, where the conditions consist

of trees, not just finite strings. The atomic step in the forcing is based on the following

result of Downey, Greenberg, Jockusch, Milans [10], which we prove here for convenience.

Theorem 3.19 (Downey, et al. [10]). There is no single functional Γ such that Γf is

Kurtz random for all f ∈ DNC3.

Proof. Suppose that such a functional Γ exists. As before, we may assume that Γ is

total. It will be convenient to assume that Γ satisfies the following additional property:

• If σ ∈ 3<ω and Γσ(n) converges, then Γσ(n) converges within |σ| steps and for all

n′ < n, Γσ(n′) also converges.

It is not difficult to see that this assumption can be made without any loss of gen-

erality and that if Γ satisfies this property, then Γσ = τ is a computable relation for

σ ∈ 3<ω and τ ∈ 2<ω.

We build a computable 2-bushy subtree S of 3ω with no leaves such that the image

of Γ on S (denoted by Γ(S)) has measure 0. The tree S will be obtained as the union

of a sequence {〈〉} = S0 ⊂ S1 ⊂ S2... of finite regular1 binary subtrees of 3<ω. Let Γ(Si)

denote the set of reals ⋃
{[Γσ] : σ is a leaf of Si}.

In constructing Si+1, we want to ensure that µ(Γ(Si+1)) ≤ (3/4)µ(Γ(Si)). Let L =

{σ0, σ1, ..., σ|L|−1} be the set of leaves of Si and let m = max{|Γσ| : σ ∈ L}. Our

assumption on Γ above allows us to find m computably. Let l be large enough so that

for all τ ∈ 3l, |Γτ | ≥ m+ (2|L| + 1). In other words, l is large enough so that we obtain
1All the leaves are of the same length.
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at least 2|L| + 1 additional bits of convergence by extending a leaf of Si to any ternary

string of length l. Note that such an l exists by the compactness of 3ω and that we can

find it computably. Let Tj = {τ ∈ 3l : τ � σj}.

Suppose that k is a position corresponding to one of the additional bits of conver-

gence, i.e., m ≤ k < m + 2|L| + 1. Since each Tj is 3-big above σj, by the smallness

preservation property, either {τ ∈ Tj : Γτ (k) = 1} is 2-big above σj (in which case, we

say that we can force the kth bit to be 1 above σj) or {τ ∈ Tj : Γτ (k) = 0} is 2-big above

σj (we say that we can force the kth bit to be 0 above σj). This allows us to obtain

a binary sequence ρk of length |L|, where ρk(j) = 1 if we can force the kth bit to be 1

above σj, and 0 otherwise. Moreover, we can computably find 2-big sets above σj that

force the kth bit one way or another, so we can compute ρk, given k.

By the pigeonhole principle, there exist r and s such that m ≤ r, s < m + 2|L| + 1

and ρr = ρs. Note that for each j < |L|, even though we can force the rth and sth bits

in the same way above σj, we may not be able to do so simultaneously. We adopt the

following strategy above each σj: If we can force the rth bit to be 1 above σj, we do so,

by extending σj to a finite 2-bushy tree Bj with leaves in 3l such that for every leaf τ

of Bj, Γτ (r) = 1. Otherwise, ρr(j) = ρs(j) = 0, so we force the sth bit to be 0 above σj.

The regular binary tree of height l that results is Si+1.

For any leaf τ of Si+1, it is not the case that the rth bit of Γτ is 0 and the sth bit is

1: Say τ extends σj. By our choice of strategy, if the rth bit is 0, then it must be the

case that we could not have forced it to be 1 above σj, and so we would have forced the

sth bit to be 0 above σj.

Let P = {X ∈ Γ(Si) : X(r) = 0 and X(s) = 1}. Then µ(P ) = (1/4)µ(Γ(Si)), since

r, s ≥ m. Clearly, Γ(Si+1) ⊆ Γ(Si) \ P , so µ(Γ(Si+1)) ≤ (3/4)µ(Γ(Si)), as desired.
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Let S =
⋃
i∈ω Si. Then µ(Γ(S)) = µ(

⋂
i∈ω Γ(Si)) = 0. Let f be any path through S

that is DNC3. Then Γf ∈ Γ(S). But Γ(S) is a null Π0
1 class, which implies that Γf is

not Kurtz random, contradicting our initial assumption.

Note that the construction in Theorem 3.19 starts with a 3-bushy tree and produces

a 2-bushy subtree with no leaves.

Definition 3.20. Let j be an order function. We say that a tree T ⊆ ω<ω is j-bushy

above a string σ ∈ ω<ω if every element of T is comparable with σ and for each τ

extending σ that is not a leaf of T , there are at least j(|τ |) many immediate extensions

of τ . We say T is exactly j-bushy above σ if for each nonleaf τ , there are exactly j(|τ |)

immediate extensions of τ in T .

Proof of Theorem 3.18. The forcing conditions have the form (σ, T,B), where σ ∈ ω<ω,

T is a computable subtree of ω<ω, B ⊂ T and:

• T is exactly j-bushy above σ for some order function j

• B is c.e. and upward-closed in T (i.e., if τ ∈ B then ρ extending τ on T is also in

B)

• B is j(|σ|)-small above σ (and, without loss of generality, j(|σ|)-closed).

A condition (σ, T,B) extends another condition (τ, S, C) if σ � τ , T ⊆ S and

B ∩ T ⊇ C ∩ T . Let P denote this partial order. As before, if G is a filter on P, then

fG =
⋃
{σ : (σ, T,B) ∈ G} ∈ ω≤ω. It is not difficult to verify that if G is sufficiently

generic, then fG is total and if (σ, T,B) ∈ G, then fG contains no initial segment in B.

If Γ is any functional, let DΓ denote the set of (σ, T,B) ∈ P such that either
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• g ∈ [T ] r [B]≺ implies that Γg is total, or

• there is an n ∈ ω such that g ∈ [T ] r [B]≺ implies that Γg(n) ↑.

Claim 3.21. DΓ is dense in P.

Proof. Suppose (σ, T,B) ∈ P, where T is exactly j-bushy above σ. Let Cx = {τ ∈ T :

Γτ (x) ↓}. Note that Cx is c.e. and upward closed in T . As usual, there are two cases.

Case 1. For every τ ∈ T extending σ and every x ∈ ω, Cx ∪B is j(|τ |)-big above τ .

In this case, we build a computable tree S ⊆ T in stages that is exactly j′-bushy above

σ for an order function j′. Let S0 consist of just σ and its initial segments. Suppose

inductively that we have li ∈ ω and Si ⊂ T such that

• For each x < li, j′(x) has already been defined and j′(x) ≤ j(x).

• Si is a finite, regular j′-bushy tree of height li above σ.

• For every leaf τ of Si, either Γτ (x) ↓ for every x < i or τ ∈ B.

Let τ be a leaf of Si. By assumption, Ci ∪B is j(|τ |)-big above τ , so we extend τ to

a finite tree with leaves in Ci ∪ B that is j(|τ |)-bushy above τ . Note that since Ci ∪ B

is c.e., we can find such a tree computably. The tree S ′i+1 that results from carrying

out this operation above each leaf of Si may not be regular, but since both Ci and B

are upward closed in T and T is j-bushy above the leaves of S ′i+1, we can extend them

j(li)-bushily to some common level li+1, retaining the property that every leaf is in Ci

or in B, and producing the tree Si+1. We now let j′(x) = j(li) for li ≤ x < li+1. Note

that j′ is nondecreasing because of our assumption that j′(x) ≤ j(x) for x < li.
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Let S = ∪i∈ωSi and note that since j′(|σ|) = j(|σ|), B is already j′(|σ|)-closed. So

the condition (σ, S,B ∩ S) extends (σ, T,B). Finally, if g ∈ [S] r [B]≺, then for every i,

g � li ∈ Ci, so Γg is total.

Case 2. Let τ and x be counterexamples to the assumption in Case 1 and let S be

the full subtree of T above τ . Let B′ = (Cx ∪ B) ∩ S. Then B′ is j(|τ |)-small above τ ,

so (τ, S,B′) ∈ P and if g ∈ [S] r [B′]≺, then Γg(x) diverges.

Let HΓ be the set of all conditions (σ, T,B) such that if g ∈ [T ] r [B]≺, then Γg is

not Kurtz random.

Claim 3.22. HΓ is dense in P.

Proof. Let (σ, T,B) ∈ P and Γ be a {0, 1}-valued functional. Claim 3.21 allows us to

assume that Γ is total on [T ] r [B]≺, and since B is c.e., we can assume further that Γ

is total on [T ]. Let j be the order function such that T is exactly j-bushy above σ.

The remainder of the proof is a straightforward modification of Theorem 3.19. We

build an order function j′ and an exactly j′-bushy tree S ⊆ T above σ in stages. Let S0

consist of σ and its initial segments. Next, suppose inductively that we have li ∈ ω and

Si ⊂ T such that

• For each x < li, j′(x) has already been defined and j′(x) ≤ j(x).

• Si is a finite, regular j′-bushy tree of height li above σ.

Let Γ(Si) denote {Γg : g ∈ [T ] ∩ [Si]
≺}.

We first extend Si j(li)-bushily within T to a height q > li such that j(q) ≥ 2j(li),

obtaining the tree S ′i+1. This ensures that every level of T above q is 2j(li)-big above

each leaf of S ′i+1. Clearly, µ(Γ(S ′i+1)) ≤ µ(Γ(Si)). Let L be the set of leaves of S ′i+1 and
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let m = max{|Γρ| : ρ ∈ L}. We choose li+1 large enough so that for every τ ∈ T of

length li+1, |Γτ | ≥ m + 2|L| + 1. Note that the fact that T is exactly j-bushy ensures

that we can find li+1 computably.

For any leaf ρ of S ′i+1, let Tρ be the set of strings of length li+1 in T extending

ρ. If k is a position corresponding to one of the additional bits of convergence (i.e.,

m ≤ k < m + 2|L| + 1), we say we can force the kth bit to be c ∈ {0, 1} above ρ if

{τ ∈ Tρ : Γτ (k) = c} is j(li)-big above ρ. Since Tρ is 2j(li)-big above ρ, if we cannot

force the kth bit to be 0 above ρ, we can force it to be 1.

As in the proof of Theorem 3.19, we obtain positions r and s such that above each leaf

of S ′i+1, the rth and sth bits can be forced in the same way. We adopt the same strategy as

before for extending S ′i+1 to Si+1 and ensuring that µ(Γ(Si+1)) ≤ (3/4)µ(Γ(Si)). Finally,

we let j′(x) = j(li) for li ≤ x < li+1.

Let S =
⋃
i∈ω Si. Since j

′(|σ|) = j(|σ|), B ∩ S is j′(|σ|)-small above σ. So (σ, S,B ∩

S) ∈ P and since µ(Γ(S)) = µ(
⋂
i∈ω Γ(Si)) = 0, (σ, S,B ∩ S) ∈ HΓ.

To conclude the proof of Theorem 3.18, let G be any filter containing (〈〉, h<ω, BDNC)

that meets HΓ for each functional Γ as well as the families of conditions that ensure

totality. Then fG ∈ DNCh and does not compute a Kurtz random.

Every hyperimmune degree contains a Kurtz random [24], so if the function we are

building is to avoid computing a Kurtz random, it must be hyperimmune-free. This is,

in fact, the case:

Claim 3.23. If G is sufficiently generic, then fG has hyperimmune-free degree.

Proof. Suppose ΓfG is a total function. Then if (σ, T,B) ∈ G ∩ DΓ, it must be the case

that Γ is total on [T ]r [B]≺. Let Ξ be the functional that on input x and oracle τ ∈ T ,
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computes Γτ (x) until the computation converges or τ enters B. If the latter occurs first,

then let Ξτ (x) = 0. Now Ξ is total on [T ] and agrees with Γ on [T ] r [B]≺.

Let j be the order function such that T is exactly j-bushy above σ. We define a

computable function m that majorizes ΓfG . To compute m(i), search for a finite tree

Si ⊂ T that is j-bushy above σ such that for every leaf τ of Si, Ξτ (i) ↓. Note that such

a finite tree must exist by the compactness of [T ] and we can find it computably since T

is computable. Now let m(i) be the maximum of the values Ξτ (i) as τ ranges over the

leaves of Si.

Since T is exactly j-bushy above σ and Si is a subtree of T that is j-bushy above σ,

[T ] ⊆ [Si]
≺. So fG ∈ [Si]

≺ and ΓfG(i) = ΞfG(i) ≤ m(i).

3.4 A DNCX function of minimal degree

In this section, we strengthen Kumabe’s result that there is a DNC function of minimal

degree.

Theorem 3.24. Given any oracle X, there is a function that is DNC relative to X and

of minimal degree.

Kumabe and Lewis [23] provided a simplified version of Kumabe’s original arguments

[22]. Our proof reuses much of the combinatorial machinery developed in the Kumabe-

Lewis proof, but differs in several key aspects. Kumabe and Lewis use partial trees with

computable domains, hence the function they produce is hyperimmune-free. We use

partial trees with noncomputable domains, out of necessity: any DNC function relative

to 0′ is hyperimmune [18]. Further, it suffices in the Kumabe-Lewis construction to work

with bad sets of constant bushiness. This is not the case here; our bad sets are h-small
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for some order function h. In our approach to bad sets of varying bushiness, we use

ideas from Cai and Greenberg’s result in [5] that there exist degrees a and b such that

a is minimal and DNC and b is DNC relative to a and a strong minimal cover of a.

3.4.1 Definitions and notation

Definition 3.25. Let h be an order function. Given σ ∈ ω<ω, we say that a set B ⊆ ω<ω

is h-big above σ if there is a finite h-bushy tree T above σ such that all its leaves are in

B. If B is not h-big above σ then we say that B is h-small above σ.

It is easy to see that the smallness preservation property, concatenation property and

small set closure property all continue to hold when one replaces the constants governing

bushiness with order functions.

For an order function g and l ∈ ω, let w(g, l) denote
∏

i<l g(i) and let r(g, l) denote

23+3wg(l).

In order to simplify our calculations, throughout this proof we restrict ourselves to

order functions that only take values that are powers of two.

Definition 3.26. Suppose h(n) = 2h
′(n) and g(n) = 2g

′(n) are order functions, where

h′, g′ : ω → ω. The middle of h and g is the order functionM(h, g) defined by

M(h, g)(n) = 2b
h′(n)+g′(n)

2
c.

Definition 3.27. Suppose h and g are order functions. We say the pair (h, g) allows

splitting above N ∈ ω if

1. h(N) ≥ g(N),
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2. for n ≥ N , h(n)/g(n) is nondecreasing, and

3. there is an increasing sequence 〈li〉i∈ω of natural numbers with l0 ≥ N such that

h(li)/g(li) ≥ (r(h, li))
i.

We say (h, g) allows splitting if it allows splitting above some N ∈ ω. We call the

sequence 〈li〉 the splitting levels for (h, g).

Lemma 3.28. Let h and g be order functions such that (h, g) allows splitting. Let

m =M(h, g). Then (m, g) and (h,m) allow splitting.

Proof. We provide the argument for (m, g). Suppose (h, g) allows splitting above N and

〈li〉 is the sequence of splitting levels for (h, g). Note that conditions (1) and (2) in the

definition above are satisfied by (m, g) above N .

We verify condition (3). Suppose that h(n) = 2h
′(n) and g(n) = 2g

′(n). Note first that

for each n ≥ N ,

m(n)

g(n)
= 2b

h′(n)+g′(n)
2

c−g′(n) = 2b
h′(n)−g′(n)

2
c ≥ 2

h′(n)−g′(n)
2

2
.

It follows that for each i ∈ ω,

m(l2i+2)

g(l2i+2)
≥ 2

h′(l2i+2)−g
′(l2i+2)

2

2
≥ (r(h, l2i+2))

2i+2
2

2
=

(r(h, l2i+2))i+1

2
≥ (r(m, l2i+2))i,

so 〈l2i+2〉i∈ω is a sequence of splitting levels for (m, g).

A similar calculation shows that (h,m) allows splitting.

It is not hard to verify that if (h, g) allows splitting then for any c ∈ ω, so do (h, 2cg)

and (max(h/2c, 2), g).
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3.4.2 The partial order

The forcing conditions are of the form (σ, T,B, hT , hB), where

• the tree T is partial recursive (some nodes may be terminal) and exactly hT -bushy

above σ

• B includes the terminal nodes in T , is upward closed and is hB-small above σ

• (hT , hB) allows splitting above |σ|.

Only σ, T andB contribute to the ordering. Let hM denoteM(hT , hB). By extending

σ appropriately, we can assume that hM(n)/16 ≥ hB(n) for all n ≥ |σ|.

Note that we have no access to the set B (it is not c.e.). Since the terminal nodes of

T are contained in the bad set B, the conditions that force fG to be total are dense in

this partial order.

As before, we can assume that the bad set is hB-closed. In other words, if τ is any

string in T \B then B is hB-small above τ .

3.4.3 Forcing ΓfG to be partial

Let Cn = {τ ∈ T : Γτ (n) ↓}. Given a condition (σ, T,B, hT , hB) and a functional Γ we

say we can force ΓfG to be partial if there is a τ on T extending σ and an n such that the

set Cn ∪B is hM -small above τ . If this is the case, then we let T ′ be the full subtree of

T above τ . The condition (τ, T ′, Cn ∪B, hT , hM) extends (σ, T,B, hT , hB), while forcing

ΓfG(n) ↑. From now on we assume that we cannot force ΓfG to be partial. It follows

that for every n, and every τ ∈ T \ B, Cn \ B is hM/2-big above τ . Applying this fact

iteratively we obtain the following claim:



54

Claim 3.29. For any τ ∈ T \B extending σ and any n, there is an A ⊂ T \B, hM/2-big

above τ , such that for every ρ ∈ A, Γρ �n is defined.

3.4.4 Forcing ΓfG to be computable

It is worth pointing out here how our argument for this case of the forcing differs from

the one in Kumabe-Lewis. As we have mentioned, the bad sets in their argument are

c.e., and they make strong use of this fact in an effective simultaneous construction of a

refined subtree and a real such Y that it is the image of Γ on every path on this subtree

(and hence computable). We do not have access to the bad set, since we will ultimately

want it to include the set of strings that are non-DNC relative to X. So we construct

Y noneffectively, arguing that it is the image under Γ of a sufficiently bushy subtree.

Under the assumption that we make in this case of the forcing, Y will turn out to be

computable.

Definition 3.30. Let g be an order function. A g-big splitting above τ ∈ T is a pair of

sets A0 ⊂ T and A1 ⊂ T , both g-big above τ , such that for any τ0 ∈ A0 and τ1 ∈ A1,

Γτ0 | Γτ1 . We say that A0 and A1 are Γ-splitting.

Suppose that there is a τ ∈ T \B extending σ such that we cannot find any hM/16-

big splitting above τ . Under this assumption, we construct a real Y with the property

that for each n ∈ ω, the set of ρ on T such that Γρ �n = Y �n is hM/4-big above τ . It

follows immediately that Y is computable: to compute it up to n bits, we search for an

hM/4-bushy tree A ⊂ T above τ every leaf of which gives the same n bits of convergence

via Γ. These bits must agree with Y , otherwise we will have obtained an hM/16-big

splitting above τ . Further, if we let D = {ρ ∈ T : Γρ | Y }, then D is hM/16-small
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above τ . It follows that B ∪D is hM -small above τ , so letting T ′ be the full tree above

τ , the condition (τ, T ′, B ∪D, hT , hM) extends (σ, T,B, hT , hB) while forcing ΓfG to be

computable.

We construct Y bit by bit (although not effectively), letting Y0 = Γτ . We also assume

inductively that there is a set Si ⊂ T \B that is hM/4-big above τ and for every ρ ∈ Si,

Γρ � i+ |Y0| = Yi. Let S0 consist of just τ .

Given Yi and Si, we proceed as follows. Above each leaf ρ of Si, there is an hM/2-

big set of strings Aρ such that for each ν ∈ Aρ, Γν(|Yi|) is defined. Aρ can then be

thinned out to a set A′ρ that is hM/4-big above ρ and such that for each ν ∈ A′ρ, Γν(|Yi|)

converges to the same value cρ. Next, since Si is hM/4-big above τ , there is a V ⊂ Si,

hM/8-big above τ , such that for each ρ ∈ V , cρ is the same value, say j. Let Yi+1 = Yij.

Note that V ′ = ∪{A′ρ : ρ ∈ V } is hM/8-big above τ and for each ν ∈ V ′, Γν � Yi+1. Let

Si+1 = {ν ∈ C : Γν � Yi+1}. The set C \ Si+1 must be hM/16-small above τ , otherwise

C \ Si+1 and V ′ form an hM/16-big splitting above τ . It follows that Si+1 is hM/4-big

above τ .

3.4.5 Forcing ΓfG ≥T fG

We work now under the additional assumption that for each τ ∈ T \B extending σ there

is a hM/16-big splitting above τ .

We refine T to a subtree S that has the delayed splitting property : above each

τ ∈ S \B, there are levels l′ > l > |τ | such that if ρ0 and ρ1 are any two extensions of τ

on S of length l, and ρ′0 � ρ0 and ρ′1 � ρ1 are extensions on S of length l′, then Γρ
′
0 | Γρ′1 .

The statement of the following lemma has been slightly modified from the original
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in order to apply to trees of varying bushiness:

Lemma 3.31 (Kumabe, Lewis [23]). Let Γ be a functional. Let A be 4g-big above α

and B be 4h-big above β, where g and h are order functions. Suppose that above every

leaf τ of A, there exist ∆τ,0 and ∆τ,1, such that they are both 4g-big above τ and are

Γ-splitting. Let A′ = ∪τ,i∆τ,i and let v = max{|Γρ| : ρ ∈ A′}. If for every leaf σ of

B, |Γσ| > v, then there is an A′′ ⊆ A′ and a B′ ⊆ B, g-big above α and h-big above β

respectively, that are Γ-splitting.

Proof. Let σ0 = 〈〉 and B0 = B.

Assume inductively that we have σs of length s and Bs, h-big above β, such that for

all ρ ∈ Bs, Γρ � σs.

If {τ ∈ A′ : Γτ | σs} is g-big above α then we are done. If not, then either

1. A1 = {τ ∈ A′ : Γτ � σs} is g-big above α or

2. A2 = {τ ∈ A′ : Γτ properly extends σs} is g-big above α.

If (1) holds then let V be the set of leaves of A that have an extension in A1. For each

τ ∈ V , the set of strings in A1 extending τ must lie entirely in one of the ∆τ,i. Let ∆′τ

denote the other member of the splitting above τ . Then ∪{∆′τ : τ ∈ V } is g-big above

α and splits with Bs.

Next, assume (2) holds, which implies that |σs| < v. If {τ ∈ B : Γτ | σs} is h-big

above β, then we are done. If not, then it must be the case that D = {τ ∈ B : Γτ � σs}

is h/2-big above β. D can be partitioned into the sets Di = {τ ∈ D : Γτ (|σs|) = i},

one of which must be h/4-big above β, say Dj. Let Bs+1 = Dj and let σs+1 = σj and

continue the construction. Since this process cannot continue indefinitely, we will obtain

the required splitting via one of the other alternatives.
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Claim 3.32. Suppose τ0, ..., τk are nodes of length l in T \ B, k < whM (l) and that

hM(l)/hB(l) ≥ r(hM , l). Then there is a sequence of sets A0, ..., Ak, where Aj is (hM/2
3+3k)-

big above τj and which are pairwise Γ-splitting.

Proof. The proof is by induction on k. Suppose we already have A0, ..., Ak, where each

Aj is (hM/2
3+3k)-big above τj and the collection is pairwise Γ-splitting. Let τk+1 be an

additional node of length l that is not in B and let q = hM/2
3.

Note that since whM (l) > k + 1, hB(l) < q(l)/23k+1. So we first refine each Aj to a

Πj where Πj is (q/23k+1)-big above τj and Πj ∩B = ∅. If ρ is a leaf of Πj, then it is not

in B and since q/23k+1 ≤ hM/16, we can find a q/23k+1-bushy splitting, say Dρ,0 and

Dρ,1, above ρ. We let Π′j = ∪i,ρDρ,i.

Let m be the longest length of the image of Γ on any string in any of the Π′j.

Appealing to Claim 3.29, we let ∆0 be a q-big set above τk+1 such that each leaf of ∆0

gives at least m+1 bits of convergence via Γ. We now apply Lemma 3.31 on Π′0 and ∆0,

obtaining A′0 ⊂ Π′0 and ∆1 ⊂ ∆0, which are Γ-splitting and where the former is q/23(k+1)-

big above τ0 and the latter is q/4-big above τk+1. Next, we apply Lemma 3.31 to the

pair Π′1 and ∆1, obtaining A′1 ⊂ Π′1 and ∆2 ⊂ ∆1, which are Γ-splitting and where A′1 is

q/23(k+1)-big above τ1 and ∆2 is q/42-big above τk+1. After k+ 1 applications of Lemma

3.31, we will have obtained A′0 through A′k and ∆k+1, which are pairwise Γ-splitting.

Moreover, ∆k+1 is q/22(k+1)-big above τk+1, so we can let A′k+1 = ∆k+1.

Our argument here differs once again in a crucial way from Kumabe and Lewis’s.

Suppose we have defined the delayed splitting tree S up to a certain level and let τ be

one of the leaves of this finite tree. In order to continue the construction above τ , we

must find a sufficiently bushy splitting above τ . In the Kumabe-Lewis argument, such
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a splitting will be found, or τ will be seen to enter the bad set. In either case, the

construction of the tree S is in no danger of “stalling”. Here, however, we have no access

to the bad set, so we may end up searching in vain for a splitting. In order to get around

this, we will only ask for splittings above sufficiently bushy many leaves of the current

approximation to S, a situation that we can guarantee, and add the remaining leaves to

the bad set. Thus, we will be adding lots of strings to the bad set at each level of the

construction. The following lemma is critical to preserving its smallness when we do so:

Lemma 3.33. Let g be an order function. Suppose A ⊂ ω<ω is g-small above σ ∈ ω<ω,

and suppose τ ∈ ω<ω extends σ and A contains no extension of τ . If B is a set of strings

extending τ that is g-small above τ , then A ∪B is g-small above σ.

Proof. Suppose otherwise, i.e., there is a g-bushy tree T above σ with leaves in A ∪ B.

Clearly, some leaves of T are in B. Since every string in B extends τ , τ ∈ T . This means

that there is a tree T ′ that is g-bushy above τ whose leaves are in B, namely the tree

consisting of all strings in T that are comparable with τ . This is a contradiction.

Let 〈li〉 be the sequence of splitting levels for the pair (hM , hB). We begin by defining

hS. Let ji = li+1. For n < j0, let hS(n) = hM(n). For ji+1 > n ≥ ji, let hS(n) =

hM(ji)/r(hS, ji). Then for each i,

hS(ji)

hB(ji)
=

hM(ji)

hB(ji)r(hS, ji)
≥ (r(hM , ji))

i+1

r(hS, ji)
≥ (r(hS, ji))

i.

Hence the pair (hS, hB) allows splitting above |σ|.

We now describe how we build the partial recursive tree S. We start by letting S0

be an hS-bushy subtree of T above σ with leaves of length l1 or less such that if D0 is
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the set of leaves of S0 of length strictly smaller than l1, then D0 is hB-small above σ.

Since the terminal nodes of T are contained in B, such a tree must exist. We declare the

nodes in D0 terminal and the leaves of S0 that are of length l1 to be the children of σ.

Throughout the construction we will maintain the property that if τ ∈ S has children

in S, then they are all of the same length and that length is a splitting level for the pair

(hM , hB).

At a stage s of the construction, we will have built a finite approximation Ss of S,

and accumulated a set Ds of nodes on Ss that we have declared terminal. Ds will always

be hB-small above σ.

Suppose that τ ∈ Ss has a set Cτ of children of length li and that they are leaves of

Ss. If we have not already done so, we initiate a search for a subset C ′τ of Cτ such that

Cτ \ C ′τ is hB-small above τ , and for each ρ ∈ C ′τ , there is a Aρ, hS-bushy above ρ such

that the collection {Aρ : ρ ∈ C ′τ} is pairwise Γ-splitting.

If τ /∈ B then this search must terminate. To see why this is the case note first that

B is hB-small above τ . Let ρ0, ..., ρk be the strings in Cτ \B. Since li is a splitting level

for (hM , hB), hM(li)/hB(li) ≥ r(hM , li). Moreover, whM (li) ≥ whS(li) > k. By Claim

3.32, there are A0, ..., Ak, with Aj hM/23+3k-big above ρj, that are pairwise Γ-splitting.

Now
hM(n)

23+3k
≥ hM(n)

23+3whS (li)
=

hM(n)

r(hS, li)
≥ hS(n)

for n ≥ li, so we can refine the Aj to subtrees that are hS-bushy.

If C ′τ is found, then we extend each ρ ∈ C ′τ by Aρ. Note that by Lemma 3.33,

Ds ∪ (Cτ \ C ′τ ) is hB-small above σ, since Ds initially contains no extension of τ and

Cτ \ C ′τ is hB-small above τ . So we can add Cτ \ C ′τ to Ds.
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Next, for each ρ ∈ C ′τ we wish to extend the leaves of Aρ hS-bushily to the next

splitting level for (hM , hB). Let Lρ be the set of leaves of Aρ, and let m = max{|ν| : ν ∈

Lρ}. Let l be least splitting level for (hM , hB) greater equal to m. We begin a search

for an L′ρ ⊆ Lρ such that Lρ \L′ρ is hB-small above ρ and above each ν ∈ L′ρ there is an

hS-bushy tree with leaves of length l. Note that if ρ /∈ B, this search must terminate.

When we find such an L′ρ, we extend all its elements hS-bushily to level l, declaring the

new leaves to be the children of ρ and add Lρ \L′ρ to Ds. The same argument as before

shows that Ds remains hB-small above σ.

The resulting tree S is hS-bushy and if we let D = ∪sDs, then the new bad set D∪B

is 2hB-small above σ. It is clear that the construction halts above a node τ ∈ S if it

is either in B or we have declared it to be terminal by adding it to D, and so B ∪ D

contains all the terminal nodes of S. By extending σ, we can ensure that (hS, 2hB)

allows splitting above |σ|. For such a σ, the condition (σ, S,D ∪ B, hS, 2hB) extends

(σ, T,B, hT , hB) and forces ΓfG ≥T fG.
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Chapter 4

Lebesgue density and Π0
1 classes

4.1 Introduction

The Lebesgue density theorem says that if A is any Lebesgue measurable set of reals,

for almost every point x of A, the density of A at x is 1. Roughly speaking, the more

we “zoom in” on x by looking at a smaller and smaller interval containing it, the closer

to 1 is the fractional measure of A within that interval.

Suppose that C is a countable collection of Lebesgue measurable subsets of the unit

interval. We say x ∈ [0, 1] is a positive density point for C if for every P ∈ C that

contains x, the density of P at x is positive. We say x is a density-one point for C if for

every P ∈ C that contains x, the density of P at x is 1. It follows from the Lebesgue

density theorem (and the countable additivity of Lebesgue measure) that almost every

point in the unit interval is a density-one point for C. Of particular interest are the

positive density and density-one points we obtain when C is the collection of effectively

closed (or Π0
1) subsets of the unit interval. These have been at the heart of the solutions

of the ML-covering and ML-cupping problems [2,8,9]. An interesting fact that emerged

from this line of research is a new characterization of the incomplete Martin-Löf random

reals:

Theorem 4.1 (Bienvenu, Hölzl, Miller, and Nies [4]). A Martin-Löf random real is a



62

positive density point if and only if it is incomplete.

The positive density points are properly contained within the class of Kurtz random

reals, but not within the Martin-Löf random reals. So Theorem 4.1 leads us to ask: Are

positive density points computationally weak in general? In the other direction, are the

Kurtz random reals that are not positive density computationally powerful?

The 1-generics, which are one of the most widely studied class of reals in computabil-

ity theory, are closely connected to the density-one points of Π0
1 classes. In fact, every

1-generic is a density-one point. If the former is a member of a Π0
1 class P , then P

contains an open interval around it. A general density-one point can then be viewed

as a more tolerant 1-generic. It permits P to have gaps in the interval, as long as the

gaps are not too big in fractional measure, and this measure goes down as we shrink the

interval. A natural question is, how unlike 1-generics can these points be?

Bienvenu, Greenberg, Kučera, Nies, and Turetsky [3] distinguish between dyadic

density and full density. The former is a more natural notion of density in Cantor space,

while the latter is more natural on the unit interval. In Section 4.3, we strongly separate

the two by constructing a dyadic density-one point that is not a full positive density

point (Theorem 4.6). We also show (with J. Miller) that when we restrict our attention

to the Martin-Löf random reals, being dyadic density-one is equivalent to being full

density-one (Theorem 4.13).

In Section 4.4, we turn to the computational power of dyadic positive density points,

showing that one direction of Theorem 4.1 fails dramatically when the assumption of

Martin-Löf randomness is removed: There is a dyadic density-one point Turing above

any degree (Theorem 4.17). In Section 4.5, we lift Theorem 4.17 to full density on the

unit interval (Theorem 4.24).
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In Section 4.6, we probe the connection between 1-generics and density-one points

further. We find that the “van Lambalgen property” fails for dyadic density-one points.

However, no dyadic positive density point can be of minimal Turing degree: Every such

point is either Martin-Löf random, or computes a 1-generic (Theorem 4.29).

In Section 4.7, we explore the relationship between randomness and various notions

of computability-theoretic strength within the class of reals that are not positive density.

We observe (Proposition 4.33) that there is a computably random real that is incomplete

and not positive density. On the other hand, the property of being not positive density

does imply a weaker form of computational strength on the class of Schnorr random

reals. In Proposition 4.35, we show that every such real is high.

4.2 Definitions and notation

We will refer more often to Σ0
1 classes than the c.e. sets of strings that generate them,

so we depart slightly from convention and let 〈We〉e∈ω denote a uniform enumeration of

Σ0
1 classes.

If i ∈ {0, 1}, i denotes the other binary digit, namely, 1− i.

Any irrational x ∈ [0, 1] can be identified uniquely with an infinite binary sequence,

namely, its binary expansion. Since we are seldom concerned with rationals, we use the

term real to refer both to infinite binary sequences and elements of [0, 1]. The clopen

set [σ] in Cantor space is similarly identified with the open set (0.σ, 0.σ + 2−|σ|) on the

unit interval. We can thus speak of Σ0
1 and Π0

1 classes on the unit interval.

The symbol µ refers both to the uniform measure on Cantor space and to Lebesgue
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measure on the unit interval, which are measure-theoretically isomorphic via the corre-

spondence just described. Given σ ∈ 2<ω and a measurable set C ⊆ 2ω, the shorthand

µσ(C) denotes the relative measure of C in [σ], i.e.,

µσ(C) =
µ([σ] ∩ C)

µ([σ])
.

If I and C are measurable subsets of [0, 1], and I is not null, then µI(C) denotes the

relative measure of C in I, i.e.,

µI(C) =
µ(I ∩ C)

µ(I)
.

4.3 Dyadic density vs full density

Definition 4.2. Let C be a measurable subset of 2ω and X ∈ 2ω . The (lower) dyadic

density of C at X, written %2(C |X), is

lim inf
n

µX �n(C).

Definition 4.3. A real X ∈ 2ω is a dyadic positive density point if for every Π0
1 class

C containing X, %2(C |X) > 0. It is a dyadic density-one point if for every Π0
1 class C

containing X, %2(C |X) = 1.

Even though dyadic density seems like the natural notion of density in Cantor space,

it is a simplification of the version of density that appears in the classical Lebesgue

Density Theorem:
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Definition 4.4. Let C be a measurable subset of R and x ∈ R. The (lower) full density

of C at x, written %(C |x), is

lim inf
γ,δ→0+

µ((x− γ, x+ δ) ∩ C)

γ + δ
.

Definition 4.5. We say x ∈ [0, 1] is a full positive density point if for every Π0
1 class

C ⊆ [0, 1] containing x, %(C |x) > 0. It is a full density-one point if for every Π0
1 class

C ⊆ [0, 1] containing x, %(C |x) = 1.

As pointed out earlier, if x is irrational, we can identify it uniquely with a binary

sequence. So it makes sense to ask if x is a dyadic density-one point. Likewise, it

makes sense to ask if a sequence X ∈ 2ω is a full density-one point. Clearly, every full

density-one point is dyadic density-one. That the converse fails is our main result in

this section:

Theorem 4.6. There is a dyadic density-one point that is not a full positive density

point.

The real described by this theorem is not 1-generic, and as we will see shortly, not

Martin-Löf random. Its construction illustrates a method by which we can break out

of those classes, and serves as the basic template for the constructions in Sections 4.4

and 4.5. We begin with a lemma that is a restatement of the well-known “Kolmogorov

inequality for martingales” (see, for example, [27], 7.1.9):

Lemma 4.7. Suppose W ⊆ 2ω is open. Then for any ε such that µ(W ) ≤ ε ≤ 1, let Uε

denote the set {X ∈ 2ω : µρ(W ) ≥ ε for some ρ ≺ X}. We call Uε the ε-vicinity of W .

Then µ(Uε) ≤ µ(W )/ε.



66

Proof. For each X ∈ Uε, let ρX denote the least initial segment ρ of X such that

µρ(W ) > ε. Let V = {ρX : X ∈ Uε}. Note that V is prefix-free and [V ] = Uε. Since W

is open, for every Y ∈ W , some initial segment of Y is in V and so [V ] covers W . Now,

for each ρ ∈ V ,

µρ(W ) =
µ(W ∩ [ρ])

2−|ρ|
≥ ε.

So 2−|ρ| ≤ µ(W ∩ [ρ])/ε and

µ([V ]) =
∑
ρ∈V

2−|ρ| ≤
∑
ρ∈V

µ(W ∩ [ρ])

ε
=
µ(W )

ε
.

Proof of Theorem 4.6. We build the desired real Y by computable approximation. At

each stage s of the construction, we have a sequence of finite strings σ0,s ≺ σ1,s ≺

· · · approximating Y . At the same time, we build a Σ0
1 class B, the complement of

which witnesses the fact that Y is not a full positive density point. The main idea for

accomplishing this is depicted in Figure 4.1, where σ is the longest initial segment of

Y that “sees” the measure that we enumerate into B. This measure is small inside [σ],

but there is an interval containing Y , namely, the closure of [σ01j]∪ [σ10j], in which the

measure is quite large.

Recall that We denotes the e-th Σ0
1 class. Each such class represents a requirement

that needs to be met by Y . In other words, for each e, if Y is not in We, we require that

limρ≺Y µρ(We) = 0. Priorities are assigned to Σ0
1 classes in the usual manner, with Wj

being of higher priority than Wi for any i > j. We make use of the following shorthand:

Let C be a measurable set and τ and τ ′ two strings such that τ ≺ τ ′. If for every ρ such

that τ � ρ ≺ τ ′, µρ(C) < α, then we say that between τ and τ ′, µ(C) < α.

At any stage s, for each k ≤ s, we will be working above σk,s to define σk+1,s. We
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Figure 4.1: Separating dyadic and full density-one

have two goals in mind: First, for any e < k such that [σk,s] is not already contained in

We, we must keep the measure of We between σk,s and σk+1,s below a certain threshold.

If the threshold is exceeded, say above a string ρ between σk,s and σk+1,s, we will move

σk+1 to a string extending ρ so that the cone above it is contained entirely inWe. Second,

we must ensure that there is an interval I ⊆ [σk,s] such that [σk+1,s] ⊆ I and µI(B) is

large. Both goals must be satisfied while keeping Y from entering B. Globally, we must

maintain the fact that between σk,s and σk+1,s, the measure of B remains strictly below

a threshold βs(k), which is updated each time we act above σk,s by moving σk+1,s. We

begin the construction by setting σ0,0 = 〈〉.

Procedure above σk,s

When we first start working above σk,s, say at stage s0, we set βs0(k) = β∗(k) (see

below for how β∗(k) is defined). If k > 0, then we start by choosing a ν � σk,s0 long

enough so that between σk−1,s0 and σk,s0 , µ(Bs∪ [ν]) < βs0(k− 1). We let σk+1,s0 = ν10j

and enumerate [ν01j] into B, where j is chosen large enough so that the measure of B

between σk,s0 and σk+1,s0 remains below β∗(k). If k = 0, ν can be chosen to be 〈〉.
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In a subsequent stage s, suppose that C0, ..., Cl are those among the first k Σ0
1 classes

in which [σk,s] is not already contained, in order of descending priority. Now if for some

ρ between σk,s and σk+1,s and some j ≤ l, µρ(Cj) exceeds
√
βs(k) and no action has yet

been taken for a higher priority Cj′ , then we act by moving σk+1,s to a string extending

ρ. Let ν � ρ be a string such that [ν] ⊆ Cj and let it be long enough so that:

1. Between ρ and ν, µ(Bs) <
√
βs(k).

2. Bs ∩ [ν] = ∅.

3. If k > 0, then between σk−1,s and σk,s, µ(Bs ∪ [ν]) must be strictly less than

βs(k − 1).

Let j be large enough so that between σk,s and ν, µ(Bs ∪ [ν01j]) remains strictly be-

low
√
βs(k). We set σk+1,s+1 = ν10j+k and enumerate [ν01j] into B. Finally, we set

βs+1(k) =
√
βs(k).

Choosing β∗(k)

We move [σk+1,s+1] into Cj when the following is seen to occur at some stage s: For

some ρ between σk,s and σk+1,s, µρ(Cj) exceeds the measure of the
√
βs(k)-vicinity of

Bs above ρ, i.e., if µρ(Cj) > βs(k)/
√
βs(k) > µρ(Bs)/

√
βs(k). If this does not occur, we

wish to limit the measure of Cj to 2−k between σk,s and σk+1,s. Each time we act above

σk,s, the value of βs+1(k) is magnified by a power of 1/2, so we require that β∗(k) satisfy

(β∗(k))1/2k+1 ≤ 2−k.
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Verification

Claim 4.8. Unless we act immediately above σk,s, the measure of B remains strictly

below βs(k) between σk,s and σk+1,s.

Proof. Condition (2) above ensures that if σk,s is redefined at stage s due to an action

above σl,s for some l < k, then µ(Bs ∩ [σk,s]) = 0. If we act above σk+1,s, then condition

(3) ensures that µ(Bs) remains below βs(k) between σk,s and σk+1,s. Note that there is

a string ν such that σk+1,s ≺ ν ≺ σk+2,s and µ(Bs ∪ [ν]) < βs(k) between σk,s and σk+1,s.

So if we act above σl,s for some l > k + 1, then we add some measure to B, but this

measure is contained entirely in [ν].

Claim 4.9. We can act above σk,s while satisfying requirements (1) through (3) above.

Proof. By Claim 4.8, µ(Bs) < βs(k) between σk,s and σk+1,s. So if at stage s, for some ρ

between σk,s and σk+1,s, µ(Cj) exceeds
√
βs(k) then by Lemma 4.7 there is an X ∈ Cj

extending ρ such that for every α such that ρ � α ≺ X, µα(B) <
√
βs(k). Thus there

are arbitrarily long strings extending ρ satisfying condition (1). Conditions (2) and (3)

are met by simply choosing a long enough such string.

Claim 4.10. For each k ∈ ω, σk = lims σk,s exists, and Y =
⋃
k σk is total.

Proof. Assume that σk,s has stabilized by stage s. Then σk+1 is redefined above σk,s at

most k times.

Claim 4.11. Y is a dyadic density-one point.

Proof. Suppose that Y /∈ We. Let k be large enough so that k > e and for all e′ < e,

if Y ∈ We′ , then [σk] ⊆ We′ . Fixing a k′ > k, let s be large enough so that σk′,s has
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stabilized. By our choice of k, we never act above σk′,s for the sake of We′ for any e′ < e,

and by the assumption that Y /∈ We, we never act for the sake of We. Let t > s be

such that σk′+1,t has stabilized. For all t′ > t, between σk′,t′ and σk′+1,t′ , µ(We) does not

exceed
√
βt′(k′), which is always bounded by 2−k

′ .

Claim 4.12. Y is not a full positive density point.

Proof. Let σk and σk+1 be the final values of σk,s and σk+1,s respectively. Then by

construction there is a string ν such that σk ≺ ν ≺ σk+1 ≺ Y , and σk+1 = ν10j+k

for some j and [ν01j] ⊆ B. Let l = |ν| + j + 1 and let I be the interval (0.ν1 −

2−l, 0.ν1 + 2−(l+k)). Since Y is a dyadic density-one point, Y is not a rational and so

Y ∈ (0.ν1, 0.ν1 + 2−(l+k)) ⊂ I, and µI(B) ≥ 1/(1 + 2−k).

This completes the proof of Theorem 4.6.

Bienvenu, et al. have observed (see [4], Remark 3.4) that Theorem 4.1 remains true

if full density is replaced by dyadic density. It follows that a Martin-Löf random real is

dyadic positive density if and only if it is full positive density. We now show that the

notions of dyadic density-one and full density-one also coincide on the class of Martin-Löf

random reals.

Theorem 4.13 (Khan, J. Miller). Suppose X is Martin-Löf random. Then X is a

dyadic density-one point if and only if X is a density-one point.

In order to prove Theorem 4.13, we need to introduce non-porosity points.

Definition 4.14. We say that a Π0
1 class C is porous at X ∈ 2ω if there is an ε > 0

such that for every α > 0, there is a 0 < β < α such that (X − β,X + β) contains an

open interval of length εβ that is disjoint from C.
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We say Y ∈ 2ω is a non-porosity point if every Π0
1 class to which Y belongs is

non-porous at Y .

Lemma 4.15 (Khan, J. Miller). If X ∈ 2ω is dyadic density-one but not full density-one,

then there is a Π0
1 class that is porous at X.

Proof. Suppose that the Σ0
1 class W witnesses that X is not a full density-one point,

i.e., there is an ε > 0 such that for all δ > 0, there is an open interval I ⊆ (X− δ,X+ δ)

containing X such that µI(W ) > ε. Since X is a dyadic density-one point, there is an

initial segment σ of X such that for all τ � σ, µτ (W ) ≤ ε/6, and σ is not all zeros or

all ones.

If ρ is a string of length k that is not all zeros or all ones, let ρ− and ρ+ denote the

lexicographically preceding and succeeding strings of length k. The intervals [ρ−], [ρ]

and [ρ+] are all of the same length and adjacent.

Now let I ⊆ [σ] be any open interval containing X, and let ρ be the longest initial

segment of X extending σ such that the closure of [ρ−] ∪ [ρ] ∪ [ρ+] covers I and denote

this closure by I ′. Then µ(I) ≥ µ(I ′)/6. To see this, assume without loss of generality,

that X � ρ0. By the maximality of ρ, it cannot be the case that I is contained in the

closure of [ρ0−] ∪ [ρ0] ∪ [ρ0+]. So I must overlap either half of the interval [ρ−] or half

of the interval [ρ], which means that µ(I) > µ([ρ])/2 = µ(I ′)/6.

Next, assume that µρ−(W ) ≤ ε/6 and µρ+(W ) ≤ ε/6. Since ρ extends σ, µρ(W ) ≤

ε/6. It follows that µI′(W ) ≤ ε/6. Then

µI(W ) =
µ(W ∩ I)

µ(I)
≤ 6µ(W ∩ I)

µ(I ′)
≤ 6µ(W ∩ I ′)

µ(I ′)
= 6µI′(W ) ≤ ε.

We have shown that if µI(W ) > ε, then either µρ−(W ) or µρ+(W ) must exceed ε/6.
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We build C as follows: whenever we see a ρ � σ such that µρ(W ) > ε/6, enumerate [ρ]

into the complement of C. Note that we never enumerate an initial segment of X into

the complement of C, so C contains X. Moreover, C is porous at X: Given an α > 0,

there is an open interval I ⊆ [σ] containing X such that I ⊆ (X −α/24, X +α/24) and

µI(W ) > ε. Let ρ be chosen as above, and I ′ accordingly. Then I ′ ⊆ (X−α/4, X+α/4).

Finally, let β = 2 · 2−|ρ|. Then (X − β,X + β) ⊆ (X − α/2, X + α/2), and there is a

subinterval of (X − β,X + β) of size β/2, namely, one of [ρ−] or [ρ+], that lies in the

complement of C.

Theorem 4.13 now follows from two facts. By Theorem 4.1 (and the fact that it holds

for dyadic density), X in Lemma 4.15 is incomplete, while the Π0
1 class C is porous at

X. But then X cannot be Martin-Löf random:

Theorem 4.16 (Bienvenu, et al. [4]). Every incomplete Martin-Löf random real is a

non-porosity point.

Nies [26] has extended Lemma 4.15 to show that if X is a non-porosity point, then

for each Π0
1 class C, %(C |X) = %2(C |X).

4.4 A dyadic density-one point above any degree

We have seen that the Martin-Löf random positive density points are incomplete. Every

1-generic G satisfies G⊕ 0′ ≡T G′ and is therefore also incomplete. However, the proof

of Theorem 4.6 suggests a way of constructing dyadic density-one points outside of those

classes. In this section, we use this framework to show that general dyadic density-one

points can be arbitrarily powerful as oracles. Our ultimate goal is Theorem 4.24 which
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shows this to be true of full density-one points, but working on the unit interval presents

complications that obscure the idea behind the proof of that theorem. For this reason,

we first present the dyadic version.

Theorem 4.17. For every X ∈ 2ω, there is a dyadic density-one point Y ∈ 2ω such

that X ≤T Y ≤T X ⊕ ∅′.

Proof. We build a ∆0
2 perfect tree F : 2<ω → 2<ω and a functional Γ such that for

every X ∈ 2ω, F (X) is a density-one point and ΓF (X) = X. F will be obtained as the

limit of partial computable functions Fs : 2<ω → 2<ω. For each s, we will ensure that

if Fs(σ) is defined, then ΓFs(σ) = σ. If, at any stage s, we set Fs(σ) to a new value,

it should be assumed that for any σ′ properly extending σ, we undefine Fs(σ′). Each

Σ0
1 class now represents a requirement that needs to be met by each path on the tree.

In other words, for each e and for each X ∈ 2ω, if F (X) is not in We, we require that

limρ≺F (X) µρ(We) = 0. Priorities are assigned as before.

Above Fs(σ), we work to define Fs(σi) for i ∈ {0, 1}. We want to ensure that

for each e < |σ|, if [Fs(σi)] is not already contained in We, then between Fs(σ) and

Fs(σi), µ(We) remains below a certain threshold. If the threshold is exceeded above

some ρ between Fs(σ) and Fs(σi), we will move F (σi) to a new string ν extending ρ

such that [ν] is contained in We. Complications arise because ν cannot be such that Γν

properly extends σi or is incompatible with σi. In the proof of Theorem 4.6, we built

a single forbidden Σ0
1 class B, the measure of which we had to keep small along the

approximation. Here, we maintain a Σ0
1 class Bσ for every nonempty string σ: if σ = αi,

then Bσ consists of the union of the set of current or previous values of [F (σ0)], [F (σ1)]

and [F (αi)]. We also maintain thresholds βs(σ), and the fact that at every stage s,
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for every nonempty string σ, between Fs(σ−) and Fs(σ), the measure of Bσ,s is strictly

below βs(σ).

We begin the construction by setting F0(〈〉) = 〈〉.

Procedure for Fs(σi)

Let t be the stage at which Fs(σ) is first set to its current value. Both βt(σ0) and βt(σ1)

are set to the same initial value β∗(|σ|). The strings Ft(σi) for i ∈ {0, 1} are chosen

initially so that:

• The measure of [Ft(σi)] between Ft(σ) and Ft(σi) is strictly below β∗(|σ|).

• If σ is not the empty string, Ft(σ0) and Ft(σ1) must be long enough so that

between Ft(σ−) and Ft(σ), µ(Bσ,t) < βt(σ).

Suppose that C0, ..., Cl are those among the first |σ| many Σ0
1 classes in which [Fs(σ)]

is not already contained, in order of descending priority. Now if for some ρ between

Fs(σ) and Fs(σi) and some j ≤ l, µρ(Cj) exceeds
√
βs(σi) and no action has yet been

taken for a higher priority Cj′ , then we act : Let ν be a string extending ρ such that

[ν] ⊆ Cj and

1. between ρ and ν, µ(Bσi,s) <
√
βs(σi).

2. ν is long enough so that µ(Bσi,s ∪ [ν]) < βs(σi) between Fs(σ) and Fs(σi), and

µ(Bσ,s ∪ [ν]) < βs(σ) between Fs(σ−) and Fs(σ).

3. Bσi,s ∩ [ν] = ∅.

We set Fs+1(σi) = ν and βs+1(σi) =
√
βs(σi).
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Choosing β∗(|σ|)

We should move [Fs(σi)] into Cj when the following is seen to occur at stage s: For

some ρ between Fs(σ) and Fs(σi), µρ(Cj) exceeds the measure of the
√
βs(σi)-vicinity

of Bσi,s, i.e., if µρ(Cj) > βs(σi)/
√
βs(σi) > µρ(Bσi,s)/

√
βs(σi). If this does not occur,

we wish to limit the measure of Cj to 2−|σ| between Fs(σ) and Fs(σi). Each time we act

by moving Fs(σi) above Fs(σ), the value of β(σi) is magnified by a power of 1/2, so we

require that β∗(|σ|), the initial value of β(σi), satisfy

(β∗(|σ|))1/2|σ|+1 ≤ 2−|σ|.

Verification

Claim 4.18. For every σ ∈ 2<ω, lims Fs(σ) exists.

Proof. Assume that Fs(σ) has stabilized by stage s0. For each i ∈ {0, 1}, Fs(σi) is

redefined after stage s0 at most |σ| times.

Claim 4.19. We can act to redefine Fs(σi) while satisfying requirements (1) through (3)

above.

Proof. Suppose we redefine Fs(σi) for the sake of Cj, i.e., for some ρ between Fs(σ) and

Fs(σi), µρ(Cj,s) >
√
βs(σi). By Lemma 4.7, there is a Y ∈ 2ω extending ρ such that

for each α such that ρ � α ≺ Y , µα(Bσi,s) <
√
βs(σi). Thus there are arbitrarily long

strings α extending ρ satisfying condition (1). To satisfy (2) and (3), we simply choose

an α long enough and designate it Fs+1(σi).
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Claim 4.20. Suppose at stage s + 1, we set Fs+1(σi) = τ and set Γτs+1 = σi. Then

Γτs � σi. In other words, setting Γτ = σi keeps Γ consistent.

Proof. We first show by induction that if t is the stage when Fs(σ) is first set to its

current value, then for all ρ � Ft(σ), Γρt = σ. The base case is trivial since Fs(〈〉) = 〈〉

for all s. Suppose σ = αj for some j ∈ {0, 1}. When Fs(α) is first set to its current

value, say at stage t0, then for all ν � Fs(α), Γνt0 = α. Now suppose at some subsequent

stage t1, we set Ft1(αj) = τ , then because of requirement (3), Bαj,t1 ∩ [τ ] is empty, and

hence for all ρ � τ , Γρ = σ.

Subsequent to initialization, [Fs(σi)] is always disjoint from Bσi,s, hence ΓFs(σi) never

properly extends σi or becomes incompatible with σi.

Claim 4.21. For each X ∈ 2ω, F (X) =
⋃
k∈ω lims→∞ Fs(X � k) is a dyadic density-one

point.

Proof. Suppose that F (X) /∈ We. Let σ ≺ X be long enough so that |σ| > e and for all

e′ < e, if F (X) ∈ We′ , then F (σ) ∈ We′ . Let ρ be any initial segment of X that properly

extends σ and let t be large enough so that Ft(ρ) has stabilized. By our choice of σ, we

never act to redefine Fs(ρ) for the sake of We′ for any e′ < e, and by the assumption

that F (X) /∈ We, we never act for the sake of We. Hence, for all t′ ≥ t, between Ft′(ρ−)

and Ft′(ρ), µ(We) never exceeds
√
βt′(ρ), which is always bounded by 2−(|ρ|−1).

This concludes the proof of Theorem 4.17.
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4.5 A full density-one point above any degree

We can adapt the previous construction to produce a full density-one point above any

degree. We will need a version of Lemma 4.7 for the unit interval:

Lemma 4.22 (Bienvenu, et al. [4]). Suppose W ⊆ [0, 1] is open. Then for any ε such

that µ(W ) ≤ ε ≤ 1, let Uε(W ) denote the set

{X ∈ [0, 1] : ∃ an interval I, X ∈ I, and µI(W ) ≥ ε}.

We call Uε(W ) the ε-vicinity of W . Then µ(Uε(W )) ≤ 2µ(W )/ε.

Lemma 4.22 has a subtle shortcoming. When relativizing it to an interval J ⊂ [0, 1],

we obtain a bound on the measure of the ε-vicinity of W ∩ J , but in our construction

we will be concerned about the ε-vicinity of W , not merely its intersection with J .

Fortunately, this is easily remedied:

Lemma 4.23. Let W ⊆ [0, 1] be open, and let K be an open interval such that for all

open intervals L containing K, µL(W ) < δ. Then for any interval I containing K, and

any ε such that µ(W ) ≤ ε ≤ 1, µI(Uε(W )) < 6δ/ε.

Proof. By Lemma 4.22, µI(Uε(W ∩ I)) ≤ 2δ/ε. Let S = Uε(W ) \ Uε(W ∩ I) and

c = µI(S). There must exist an X ∈ S such that X is at least µ(I)c/4 away from the

nearest endpoint of I. Let J be an interval containing X such that µJ(W ) ≥ ε. Since

X /∈ Uε(W ∩ I), J cannot be contained in I, so µ(J ∩ I) > µ(I)c/4. We now have

µ(J)/µ(J ∪ I) ≥ µ(J ∩ I)/µ(I) > c/4, and so:

µI∪J(W ∩ J) =
µ(W ∩ J)

µ(I ∪ J)
=
µ(W ∩ J)

µ(J)
.
µ(J)

µ(I ∪ J)
> µJ(W )

c

4
≥ εc

4
.
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On the other hand, µI∪J(W ∩ J) < δ by assumption, so c < 4δ/ε.

The following shorthand is convenient: Let C be a measurable set and I and I ′

intervals such that I ′ ⊆ I. If for every interval J such that I ′ ⊆ J ⊆ I, µJ(C) < α, then

we say that between I and I ′, µ(C) < α.

We briefly outline the obstacles to lifting Theorem 4.17 to the unit interval. The first

is that what was an advantage in the proof of Theorem 4.6 now works against us. In

building a full density-one point X, we can no longer restrict our attention to relative

measures of Σ0
1 classes within dyadic cones of the form [Xs �n]. As an example, consider

the intervals we enumerate into B in the proof of Theorem 4.6, which appear small in

dyadic cones along the approximation, but big when we consider their fractional measure

within arbitrary intervals around Xs.

The second obstacle is subtler. In the proof of Theorem 4.17 we decompose a density

requirement with respect to a single Σ0
1 class into countably many subrequirements. At

each level of the construction, we attempt to satisfy stronger and stronger subrequire-

ments with respect to We that, when taken together, ensure that the limiting density

requirement is satisfied. The key is that if ν0 � ν1 � ν2 are strings, and the measure of

the set W is below ε between ν0 and ν1, and also between ν1 and ν2, then the measure

of W is below ε between ν0 and ν2. However, if I0 ⊆ I1 ⊆ I2 are intervals, it may be the

case that the measure of W is below ε between I0 and I1, and also between I1 and I2,

but not between I0 and I2.

Theorem 4.24. For every X ∈ 2ω, there is a density-one point Y ∈ 2ω such that

X ≤T Y ≤T X ⊕ ∅′.

Proof. Let I denote the collection of closed subintervals of the unit interval with dyadic
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rational endpoints. By computable approximation, we build a tree F : 2<ω → I of

intervals and a functional Γ such that for all every σ in 2<ω, and every Y ∈ F (σ),

ΓY � |σ| = σ. F is obtained as a limit of partial computable functions Fs such that if

σ � σ′ and Fs(σ) and Fs(σ′) are both defined, then Fs(σ′) ⊆ Fs(σ). If at stage s, Fs(σ)

is redefined, it should be assumed that we set ΓXs = σ for all X in Fs(σ) and we undefine

Fs(σ
′) for any σ′ properly extending σ.

As in the previous construction, we will be working within Fs(σ) to define Fs(σi) for

i ∈ {0, 1}. A key difference is that we now maintain a proper subinterval Js(σ) of Fs(σ)

within which Fs(σ0) and Fs(σ1) reside. If we act at stage s by setting Fs+1(σi) to a

new value, we are allowed to move it outside Js(σ), in which case we expand Js(σ) to

a larger interval Js(σ)+ = Js+1(σ) that contains Fs+1(σi). We postpone explaining how

the initial value of Js(σ) is chosen and how Js(σ)+ is defined.

Let Bσi,s denote the union over all t ≤ s of Ft(σi0) ∪ Ft(σi1) ∪ Ft(σi). By acting to

redefine F (σi0), say, we contribute measure to Bσi. We shall have to ensure that we can

do this without violating the measure constraint β(σ) for Bσi.

We begin the construction by setting F0(〈〉) = [0, 1].

Procedure for Fs(σi)

Let t be the stage at which Fs(σ) is first set to its current value. We set βt(σ0) and

βt(σ1) to the same initial value β∗(|σ|). We set Jt(σ) = Int(Ft(σ), |σ|) (we define Int

later) and choose Ft(σ0) and Ft(σ1) to satisfy the following conditions:

• Both are contained in Jt(σ).

• Between Jt(σ)+ and Jt(σ0), µ(Ft(σ1)) < β∗(|σ|).
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• Between Jt(σ)+ and Jt(σ1), µ(Ft(σ0)) < β∗(|σ|).

• If σ is not the empty string, let α = σ−. Then between Jt(α)+ and Jt(σ),

µ([Bσ,t]) < βt(σ).

It is not hard to see that these conditions can be met by ensuring that the intervals are

small enough and far enough apart relative to their width.

In a subsequent stage s, let C0, ..., Cl be those among the first |σ| many Σ0
1 classes

that Fs(σ) has not already entered, in order of descending priority. Suppose that for

some interval I such that Js(σ)+ ⊇ I ⊇ Js(σi), µI(Cj) exceeds 6
√
βs(σi), and no action

has yet been taken within Fs(σ) for a higher priority Cj′ . Then there is an interval

L ⊆ Cj such that:

1. For every Z ∈ L, and every interval K ⊆ Js(σ)+ such that Z ∈ K, µK(Bσi,s) <√
βs(σi). To see that such an interval exists, note that we inductively maintain

the property that between Js(σ)+ and Js(σi), µ(Bσi,s) < βs(σi). By Lemma 4.23,

µI(U√βs(σi)
(Bσi,s ∩ Js(σ)+)) < 6

√
βs(σi).

Now let L be an interval contained in Cj ∩ I that is disjoint from U√
βs(σi)

(Bσi,s ∩

Js(σ)+).

2. L is small enough so that between Js(σ)+ and Js(σi), µ(Bσi,s ∪ L) < βs(σi).

3. If σ is not the empty string, let α = σ−. Then between Js(α)+ and Js(σ), µ(Bσ,s∪

L) < βs(σ).

4. L ∩Bσi,s = ∅.
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In this case, we let Fs+1(σi) = L, Js+1(σ) = Js(σ)+, and βs+1(σi) =
√
βs(σi).

Choosing β∗(|σ|)

If Wj is a Σ0
1 class that Fs(σ) has not already entered, then if Fs(σi) never enters Wj,

we wish to limit the measure of Wj to 2−k between Js(σ)+ and Js(σi). The idea is the

same as in the proof of Theorem 4.17, the only difference being the factor of 6 in the

statement of Lemma 4.23. It suffices to pick β∗(|σ|) small enough so that

6(β∗σ)1/2k+1 ≤ 2−k.

Defining Int and +

For an interval I, let I+ be obtained by padding I on either side with intervals of the

same length. For an interval J , let Int(J, k) be a subinterval I of J small enough so

that 2k applications of the + operation to I result in an interval still contained in J .

Verification

Claim 4.25. We can act to redefine Fs(σi) without violating any measure constraints.

Proof. Given a string ν, there are two ways in which the measure constraint for Bν,s

could be affected: by the direct addition of measure to Bν,s, or by the expansion of Js(σ).

It is easy to see that the only such ν are σ and σi.

Property (2) of L above ensures that µ(Bσi,s ∪ L) < βs(σi) between Js(σ)+ and

Js(σi), and since Fs(σ) ∩ (Bσi,s ∪ L) is contained entirely in Js(σ)+ = Js+1(σ), also

between Js+1(σ)+ and Js+1(σi).
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Property (3) of L ensures that µ(Bσ,s ∪ L) < βs(σ) between Js(σ−)+ and Js(σ), and

hence between Js+1(σ−)+ and Js+1(σ) = Js(σ)+.

The argument for the following claim is virtually the same as for Claim 4.20.

Claim 4.26. Suppose at stage s+1, we set Fs+1(σi) = I. Then for any X ∈ I, ΓXs � σi.

In other words, setting ΓXs+1 = σi for all X ∈ I keeps Γ consistent.

Claim 4.27. Let X be any real, and let Y be a real in
⋂
σ≺X F (σ). Then Y is a density-

one point.

Proof. For σ ∈ 2<ω, let F (σ), J(σ), and β(σ) denote the limiting values of Fs(σ), Js(σ),

and βs(σ), respectively. Suppose that Y is not in Wj. Let σ be an initial segment of X

such that |σ| > j and if Y ∈ Wl for any l < j, then F (σ) ⊆ Wl. We claim that for any

I ⊆ J(σ)+ such that Y ∈ I, µI(Wj) ≤ 2−|σ|+1.

Let ρ � σ be the longest initial segment of X such that I is entirely contained in

J(ρ)+. Suppose X � ρi. Let I ′ = I ∪ J(ρi). Now,

µ(I ′)

µ(I)
≤ µ(I ∪ J(ρi))

µ(I)
≤ 1 +

µ(J(ρi))

µ(I)
.

By the maximality of ρ, I 6⊆ J(ρi)+. Since J(ρi)+ is obtained by pasting a copy of J(ρi)

on either side of J(ρi), µ(I) ≥ µ(J(ρi)). So the ratio above is bounded by 2. Since I ′

is an interval between J(ρ)+ and J(ρi), µI′(Wj) never exceeds β(ρi) ≤ 2−|ρ|. Therefore,

µI(Wj) never exceeds 2−|ρ|+1.

This concludes the proof of Theorem 4.24.
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4.6 Nonminimality

It is easy to see that if A ⊕ B is dyadic positive density, then so are A and B (and if

A⊕ B is dyadic density-one, so are A and B). The similarities with 1-generics seem to

end here. It can be shown using the techniques of the constructions above that the “van

Lambalgen property” fails badly for density-one points:

Proposition 4.28. There is a dyadic density-one point A⊕B such that A ≡T B.

Proof sketch. The construction is similar to the one in Theorem 4.6. We build a real

X = X0 ⊕ X1 and reductions Γ0 and Γ1 by computable approximation, satisfying the

usual density requirements as well as

Pn,i : ΓXii (n) = Xi(n),

for n ∈ ω and i ∈ {0, 1}.

Acting on Pn,i requirements produces Σ0
1 classes that we must avoid:

B0 = {X ⊕ Y : ∃nΓX0 (n) 6= Y (n)},

with B1 defined analogously. Let B = B0 ∪ B1. As in previous constructions, we will

have to keep the measure of B small along the approximation.

At each stage s of the construction, we have a sequence of finite strings 〈〉 = σ0,s ≺

σ1,s ≺ · · · approximating X. If at stage s+ 1, we set σk+1,s+1 = τ ⊕ ρ, then we also set

Γτ0(k) = ρ(k) and Γρ1(k) = τ(k). We claim that we can control the resulting addition

of measure to Bs. Let us consider the effect of setting Γτ0(k) = ρ(k). The additional
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measure is contained in the set

∆B0 = {X ⊕ Y : τ ≺ X and Y (k) 6= ρ(k)}.

Let ν be the initial segment of σk+1,s+s of length 2k + 2. Then for any α such that

ν � α � σk+1,s, µα(∆B0) = 0, because if α = τ ′ ⊕ ρ′, then ρ′(k) = ρ(k). Next, suppose

that α ≺ ν, then

µα(∆B0) ≤ 2
−
(
b
|σk+1,s+1|−|α|

2
c
)
≤ 2

−
(
b
|σk+1,s+1|−(2k+2)

2
c
)
.

Controlling the measure of ∆B0 along the approximation, then, is a matter of ensur-

ing that σk+1,s+1 is long enough. Defining ∆B1 analogously, let ∆B = ∆B0 ∪∆B1. We

must now maintain the fact that for each l ≤ k and each α between σl,s+1 and σl+1,s+1,

µα(Bs+1) ≤ µα(Bs) + µα(∆B) < βs+1.

In other respects, the construction and verification are identical to those in Theo-

rem 4.6. We omit the details.

What the previous proposition demonstrates is that settling the question of whether

there is a positive density point of minimal degree is not simply a matter of pointing

to the even and odd bits (or in fact, any computable sampling) of the sequence. It is

nevertheless a consequence of the main result of this section that no positive density

point can be of minimal Turing degree.

Theorem 4.29. Every dyadic positive density point is either Martin-Löf random or

computes a 1-generic.

Proof. Let 〈Un〉n∈ω be a Martin-Löf test such that X ∈
⋂
n Un. For each n, let Sn be a
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prefix-free c.e. set of strings such that Un = [Sn]≺. We can assume that S0,s = {〈〉} for

all s, and if τ ∈ Sj+1,s, then there is some σ � τ such that σ ∈ Sj,s. Let Ve denote the

e-th c.e. set of strings.

We define a functional Γ such that for each Y ∈
⋂
n Un,

1. ΓY is total, and

2. if Y is a dyadic positive density point, ΓY is 1-generic.

We define Γ inductively on a sequence 〈Rn〉n∈ω of c.e. sets of strings. Let R0 = S0, and

let Γ〈〉 = 〈〉. When a string τ enters Rn, we choosem large enough so that 2−m ≤ 2−|τ |−n,

and so µτ (Um) ≤ 2−n. Then, whenever a string ν extending τ enters Sm at stage s, we

extend the definition of Γ as follows: If there exists an e such that [Γτ ] is not already

contained in [Ve,s]
≺ and there is an extension of Γτ in Ve,s, then let e′ be the least such

index and let σ be an extension of Γτ in Ve′,s. We set Γν = σ0. On the other hand,

if no such e exists, we set Γν = Γτ0. In either case, we enumerate ν into Rn+1. This

completes the definition of Γ.

Consider a Y ∈
⋂
n Un. To see that (1) holds, note that for each n, Y has a unique

initial segment σn in Rn, and Γσn+1 properly extends Γσn . It remains to verify (2). If

ΓY is not 1-generic, then let e be the least index such that Ve is dense along it. Let M

be large enough so that for each e′ < e, if ΓY ∈ [Ve′ ]
≺, then [ΓσM ] ⊆ [Ve′ ]

≺, otherwise

[ΓσM ] ∩ [Ve′ ]
≺ = ∅. We exhibit a Σ0

1 class B such that Y ∈ B and %2(B |Y ) = 0. For

each n ≥ M and for each τ ∈ Rn, we wait for a stage s such that an extension of Γτ

appears in Ve,s. If this occurs, we enumerate the open set [τ ] \ [Rn+1,s]
≺ into B.

If τ is an initial segment of Y , then since Ve is dense along ΓY , such a stage s must

occur. Let ν be the initial segment of Y in Rn+1, and let t be the first stage at which
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ν ∈ Rn+1,t. By our choice of M , if an extension σ of Γτ occurs in Ve,t, we would have set

Γν = σ0. Therefore, t < s, which implies that Y ∈ B. Moreover, µτ ([Rn+1]≺) ≤ 2−n,

and so %2(B |Y ) = 0.

Corollary 4.30. No dyadic positive density point is of minimal degree.

Theorem 4.29 has an interesting consequence. Bienvenu, et al. [3] introduce Ober-

wolfach randomness and show that every Oberwolfach random real is a full density-one

point. Based on earlier work by Figueira, Hirschfeldt, Miller, Ng, and Nies [13], they

observe that one “half” of every Martin-Löf random real is always Oberwolfach random,

hence full density-one1:

Proposition 4.31 (Bienvenu, et al. [3]; Figueira, et al. [13]). If A ⊕ B is Martin-Löf

random, then either A or B is a full density-one point.

Thus, every Martin-Löf random real computes a full density-one point, which, to-

gether with Theorem 4.29, implies:

Corollary 4.32. Every dyadic positive density point computes a full density-one point.

4.7 Randomness and computational strength

We have already mentioned that Theorem 4.1 holds regardless of whether we use dyadic

density or full density, so one direction of that theorem can be rephrased as follows:

Every Martin-Löf random point that is not dyadic positive density computes 0′. The-

orem 4.29 implies that we cannot weaken the hypothesis from Martin-Löf randomness
1The author thanks A. Kuč for bringing this fact to his attention.
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to computable randomness. To see this, note that there is a computably random real of

minimal degree. By Corollary 4.30, it cannot be dyadic positive density.

Proposition 4.33. There is a computably random real that is not dyadic positive density

and is incomplete.

In this section, we show that the property of not being positive density does imply

some form of computational strength on the computably random reals, and in fact, on

a more general randomness class, the Schnorr random reals.

Definition 4.34. A Schnorr test is a Martin-Löf test 〈Gn〉n∈ω where µ(Gn) is uniformly

computable in n. A real X is Schnorr random if there is no Schnorr test 〈Gn〉n∈ω such

that X is contained in Gn for infinitely many n.

Proposition 4.35. Every Schnorr random real that is not full positive density is high.

We will need the following lemma:

Lemma 4.36 (Bienvenu, et al. [4]). Let W ⊆ [0, 1] be open. Fixing an ε ∈ (0, 1), let

Uε(W ) = {z : ∃ an open interval I, z ∈ I, and µI(W ) > 1− ε}.

Then µ(Uε(W ) \W ) < 2ε.

Proof of Proposition 4.35. Fix z ∈ 2ω and B a Σ0
1 class such that z ∈ B and %(B | z) = 0.

Let f ≤T z be the function such that f(n) is the least stage s such that there is an open

interval I containing z with µI(Bs) > 1 − 2−n. Note that f is total. Suppose the

computable function g is not dominated by f .
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Martin-Löf ≥T 0′

Schnorr high

Kurtz hyperimmune

\
(a)

(c)

\
(b)

Figure 4.2: Relationships between randomness and notions of computability-theoretic
strength within the reals that are not positive density

Then for each n ∈ ω, let

Gn = U2−n−1(Bg(n)) \Bg(n).

Each Gn is a Σ0
1 class modulo the rationals. By Lemma 4.36, µ(Gn) < 2−n. It is not hard

to see that µ(Gn) is uniformly computable in n, and in fact, that U2−n−1(Bg(n)) is the

union of a finite collection of open intervals with rational endpoints that can be computed

from Bg(n). Moreover, there are infinitely many n such that z ∈ Gn. Therefore, z is not

Schnorr random.

Figure 4.2 shows the relationship between three important randomness classes and

three forms of classical computability-theoretic strength within the class of reals that

are not positive density2. Every computably random real is Schnorr random, and so

Proposition 4.33 yields nonimplication (a).

To see nonimplication (b), let X be a minimal degree below 0′. Every minimal degree

is GL2, and so X satisfies (X ⊕ 0′)′ ≡T X ′′, which implies that it is not high. Because it
2It does not matter whether we use dyadic or full density.
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is minimal, X cannot compute a 1-generic, so by Theorem 4.29, it is not dyadic positive

density. However, every hyperimmune degree contains a Kurtz random real [24], and so

X ≡T Y , where Y is Kurtz random, not dyadic positive density, and not high.

For implication (c), we appeal to a result by L. Yu (see, for example, [11], Theorem

8.11.12) that every hyperimmune-free Kurtz random is weakly 2-random. For each Π0
1

class C and each rational ε > 0, the set of points {X ∈ C : %(C |X) < 1 − ε} is a

null Π0
2 set. The weakly 2-random reals are exactly those which avoid every null Π0

2 set.

Therefore, every hyperimmune-free Kurtz random real is, in fact, full density-one.

We conclude with a question. In Theorems 4.17 and 4.24, we saw that general positive

density points (in fact, density-one points) can be arbitrarily powerful as oracles. It is

unknown whether this remains true under the assumption of any form of randomness

intermediate between Kurtz and Martin-Löf randomness.

Question 4.37. Is there a positive density real which is Schnorr random and complete?
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