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Abstract

We explore various questions of complexity in model theory and computable structures. Part I focuses on

computable complexity. In Chapter 2, we show that the theory of the collection of isomorphism classes

of at-most countable groups pre-ordered by embedability is 1-reducible to the true theory of second-order

arithmetic. In Chapter 3, we show that uncountable categoricity is a 0′-d.c.e. property, work previously

published with Uri Andrews. Part II focuses on one specific dividing line in model theory called convex

orderability. We show that convexly orderable linear orders can be divided into dense and discrete orders.

We show that definable sets in a convexly orderable discrete orders are piecewise periodic, and that convexly

orderable dense orders have the nowhere dense graph property.
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Chapter 1

Introduction

If you ask two mathematicians what is mathematics is, you’re as likely as not to get a different answers

from them. We write here from a structural perspective, i.e., from the point of view that mathematics is

the study not of any particular objects, real or imagined, but rather the study of the relationships between

objects. From an ontological point of view this means that we are not concerned with understanding what

things are, but rather with understanding the rules for how they interact with each other. From a practical

point of view, this is not only a declaration of philosophy, but also a way of saying that the work in this

thesis is in the realm of model theory and computable structure theory.

The questions that we answer in this thesis are, in various shapes, questions about complexity. Com-

plexity is, like mathematics, a concept with many definitions and in this work we employ many. We can

sometimes determine the relative complexity of two structures by showing that one interprets the other, and

is therefore at least as complicated (this general idea is in fact common to both model theory and com-

putability theory). This notion is relative, and some structures simply cannot be compared this way, though

it can be quite powerful when it shows two structures to be equally complex. We have, in computability

theory, the arithmetic hierarchy, which gives a classification of some structures in terms of the number of

“infinite steps” necessary to build them. Model theory, for its part, has many different dividing lines which

classify structures as more or less complex. Many of these define complexity in terms of the tools which can

be applied in attempting to understand a structure.

The thesis is laid out as follows: In Part I, we focus on complexity in computability theory terms. In

Chapter 2 we consider the preorder of groups by the subgroup relation. We show that this structure is inter-

interpretable with second-order arithmetic. Chapter 3 contains joint work with Uri Andrews. We classify

a model-theoretic dividing line, uncountable categoricity, in the arithmetic hierarchy by showing that the

set of uncountably categorical computable theories is the intersection of a Π2 and a Σ2 set, and that it is

complete for such sets (i.e., that other such sets can be computed from it).

In Part II we focus entirely on model theory, and in particular on a relatively new notion of complexity

called convex orderability. Chapter 4 focuses on the relationship between convex orderability and other

notions of minimality, in particular dp-smallness, and weak o-minimality. Chapter 5 focuses on ordered



2

convexly orderable structures as examples of structures which might have some sort of canonical convex

ordering, and which might give more insight into the reducts of structures with weakly o-minimal theories.

We show that ordered convexly orderable structures have “nice” definable orders. Finally, in Chapter 6

we use this to show that sets in ordered convexly orderable structures have some reasonable topological

properties locally.

1.1 Notation and Conventions

Throughout this work, unless it is otherwise specified, the letters i, j, k, l,m, n, p are used to denote integers.

We use ω to denote the set of natural numbers and Z to denote either the set of integers, or the infinite

cyclic group. The script capital letters M and N refer to structures, and the corresponding print capitals

M and N to their universes. Script capital L is used to denote a first-order language. For a structure M

and n ∈ ω, the subsets of Mn are generally denoted by capital letters X, Y , and so on, and the elements of

Mn are generally denoted by lowercase letters a, b, and so on.

The letters η, τ , and ξ refer to finite binary strings. We use ε to denote the empty string. The letters

ϕ, ψ, and θ refer to formulas in a first-order language. When we wish to emphasize the variables we write,

for example, ϕ(x̄; ȳ). The semicolon indicates that the variables are partitioned, instances of a formula

ϕ(x̄; ȳ) in a structure M are the parametrized formulas ϕ(x̄; b̄) where b̄ ∈M |ȳ|. When working in a specific

structure, we generally treat a formula and the set that it defines as interchangeable.

We write a ∈ M when referring to a single element of M , and we write a ∈ M to refer to a tuple of

elements from M , i.e., when referring to a ∈ Mn for some n. We use a bar (e.g., ā) only when we wish to

emphasize that ā may not be a single element of M . Given a definable set X = ϕ(x̄, y)
M
, and a ∈ M , we

write Xa for the set ϕ(x̄, a)
M
.

A definable family is the collection of instances of a formula. We denote definable families with script

capital letters, e.g., F . If X1, X2, X3, . . . are instances of the same formula, we say that they are uniformly

definable.
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Part I

Complexity in Computable Structures
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Chapter 2

The Preorder of Groups

2.1 Introduction

Our goal in this chapter is simply to extend a result of Kach and Montalbán. They showed:

Theorem 2.1.1 (Kach and Montalbán [13]). The first-order theory of isomorphism classes of at most

countable groups under the direct product relation and the subgroup relation is 1-equivalent to true second-

order arithmetic.

We will extend this result by showing that the direct product is unnecessary:

Theorem 2.3.6. The first-order theory of isomorphism classes of at most countable groups under the sub-

group relation is 1-equivalent to true second-order arithmetic.

We will use the following notation:

Notation 2.1.2. We denote by Grp<κ the set of (isomorphism classes of) groups of cardinality less than κ.

We denote by G<κ the structure (Grp<κ,≤) where A ≤ B if A is isomorphic to a subgroup of B.

We prove this by finding a 0-interpretation of second-order arithmetic in G<ℵ1 . Our basic strategy will be

to start by showing there are two countable definable sets, Xa and Y , so that:

1. Xa is definable with parameter a, and has order-type ω,

2. Y is 0-definable,

3. |Xa ∩ Y | = 1, and

4. the (true) set X⊆Y (a) of functions from subsets of Y \Xa to Xa is a definable family.

This is enough to show that there is an interpretation of second-order arithmetic with a parameter; we

can define the successor function on Xa since it has order type ω, which allows us to define addition and

multiplication inductively by quantifying over functions from Xa to Xa (which are the same as functions

g−1f where g, f ∈ X⊆Y (a)). The subsets of Xa are uniformly definable as images of functions in X⊆Y (a).
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To complete the proof, we then show that there is a 0-definable set A so that as long as a ∈ A, the sets Xa

and Y are as above. For a, b ∈ A, every map from Xa to Xb is of the form f−1g where f : Xb → Y \(Xa∪Xb)

and g : Xa → Y \(Xa ∪Xb). We can therefore quantify over functions Xa → Xb. It follows that the unique

order-preserving bijection µa,b : Xa → Xb is uniformly definable in parameters a and b.

Our 0-interpretation of second-order arithmetic, then, will take for its copy of ω the set of pairs (a, x)

where a ∈ A and x ∈ Xa modded out by the equivalence relation (a, x) ≡ (b, y) if and only if µb,a(x) = y,

i.e., sets [n] consisting of (a, x) ∈ A×X so that x is the interpretation of n in Xa.

2.2 The sets Xa and Y

We use for our prototypical parameter a ∈ A, the group Zω, the direct sum of countably many copies of Z.

Notation 2.2.1. For G ∈ G<ℵ1 we write G< for the set G< = {H | H < G}. Note that G< is uniformly

definable from G.

Our ω-chain Xa will simply be a<. For our prototype, note that the proper subgroups of Zω are just the

groups Zn for n ∈ ω, and Zn is a subgroup of Zm exactly when n ≤ m, so (Zω)
<

is an ω-chain.

Definition 2.2.2. We say H is a successor of G if H< = G< ∪ {G}. The set of successors of G is denoted

Succ(G). If | Succ(G)| = n, we say that G is n-branching.

Of course, for any κ, G<κ has a unique minimum element 1, the trivial group (which is 0-definable). Any

other group embeds a cyclic group, so Succ(1) consists of Z and the prime cyclic groups. We write Zp for

the cyclic group of order p.

Lemma 2.2.3. Z2 is 2-branching. For any prime p > 1075, Zp is not 2-branching.

Proof. For any prime p, if G ∈ Succ(Zp) is finite, then G is a p-group. If G has an element of order p2, then

we can conclude that G ∼= Zp2 . Otherwise, since G is a p-group it has non-trivial center, so we can pick g 6= 1

from the center of G and h which is not in the subgroup of G generated by g since |〈g〉| = p and |G| > p.

Since both g and h have order p, it follows that g is not in the subgroup of G generated by h either. Since

g, h commute, it follows that G = 〈g, h〉 ∼= Z2
p . So, the only finite successors of Zp are Z2

p and Zp2 .

Now, assume that G 6= Z4 and G ∈ Succ(Z2). If a, b are distinct non-identity elements of G, then they

each have order 2, so [a, b] = a−1b−1ab = abab = (ab)
2
= 1. It follows that 〈a, b〉 ∼= Z2

2 . So, Z4 and Z2
2 are

the only successors of Z2.

In fact, an infinite successor of Zp must be an infinite group whose non-isomorphic proper subgroups are

all copies of Zp. Such a group is known as a Tarski p-group. So to show that Zp is not 2-branching when

p > 1075, we appeal to the following theorem of Ol’shanskǐı:
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Theorem 2.2.4 (Ol’̌sanskǐı [16]). There is a Tarski p-group for every prime p > 1075.

Such a group is necessarily countable, since it is generated by any pair of non-commuting elements, so in

fact Z2
p , Zp2 , and a Tarski p-group are all distinct successors of Zp. �

Lemma 2.2.5. Z is not 2-branching.

Proof. For any prime p, let Hp = {m/pn | n,m ∈ Z} ⊂ Q (this is a group under addition). Suppose G ⊂ Hp

is a non-trivial subgroup of Hp. For any m/pn, r/pn ∈ G, there are some j, k so that (mj + rk)/pn =

gcd(m, r)/pn, and both m/pn and r/pn are in the subgroup generated by gcd(m, r)/pn, it follows that either

G is generated by a single element, in which case G ∼= Z because that element must have infinite order,

or G is not finitely generated. In particular, if G is infinitely generated then it cannot be contained in

Hp,j = {m/pj | m ∈ Z} ∼= Z for any j ∈ ω, so we can fix m/pj+1 ∈ G\Hp,j . For any r/p
j ∈ Hp,j ∩G, then,

we will have gcd(m, r/pj+1) = gcd(m, rp)/pj+1 ∈ G, so r/pj is divisible by p. It follows that m/pn ∈ G if

and only if m/pk ∈ G for all k ∈ Z. In particular, the set of such m is an infinite subgroup of Z, therefore

isomorphic to Z, and it follows that G ∼= Hp.

So every proper subgroup of Hp is isomorphic to Z, which proves that each Hp is a successor of Z. �

Now, we are ready to define Y :

Definition 2.2.6. We define Y = Succ′ to be the set of c ∈ Succ(1) so that c is not 2-branching. Note that

Y is a countably infinite, and it consists of Z and cyclic groups of odd prime order.

So, now we have defined Xa and Y , and we’ve picked a = Zω as our prototype. We next need to show that

the functions from subsets of Y \Xa to Xa are uniformly definable. We use the set-theoretic definition of a

function as a collection of pairs.

Definition 2.2.7. We say that G ∈ G<ℵ1 is an a-pair if there are U ∈ Y \Xa and V ∈ Xa so that:

1. G< is a partial order.

2. G< ∩ Succ(1) ⊆ Y .

3. U is the unique element of G< ∩ Y \Xa.

4. V is the maximum element of G< ∩Xa

We say that G is an a-code for (U, V ). As these are all first-order conditions, the set of a-pairs is uniformly

definable from a, and the groups U and V are each uniformly definable from an a-code for (U, V ) and the

parameter a.
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Lemma 2.2.8. When a = Zω, there is a code for each pair (U, V ) where U ∈ Y \Xa and V ∈ Xa

Proof. In particular, there are p, n ∈ ω so that U = Zp and V = Zn. Let G = Zp × Zn. The subgroups of

G are isomorphic to either Zp × Zm or Zm where m ≤ n. They are partially ordered by embeddings, so G

satisfies the first requirement, and G< ∩ Succ(1) contains only Zp and Z, which are both in Y so G satisfies

the second requirement. Since Z ∈ Xa, we have G< ∩ Y \Xa = {Zp}, so G satisfies the third requirement.

Finally, G< ∩Xa = {Zm | m ≤ n} has maximum element Zn so G satisfies the fourth requirement. �

Definition 2.2.9. An a-code for the partial function f : Y \Xa → Xa is a group G ∈ G<ℵ1 so that for every

U ∈ Y \Xa either:

1. f(U) is undefined and there are no V ∈ Xa and a-code H for (U, V ) so that H ≤ G.

2. if GX is the set of V so that some a-code for (U, V ) < G, then GX has maximum element f(U).

We make the following important observations about this definition:

1. The set of groups which code functions from Y \Xa → Xa is uniformly definable in the parameter a.

2. The function coded by a group is uniformly definable with a and the group as parameters.

3. The equivalence relation “G and H code the same function Y \Xa → Xa” is uniformly definable in the

parameter a.

We delay the verification that for any partial function f : Y \Xa → Xa there is a code for f until we have

determined our conditions on a, but the code for f will be given by the free product of the groups (B, f(B))

where B ranges over the domain of f .

2.3 Defining the Set of Possible Parameters

We now want to pick out which properties of Zω make the construction work. We want to make sure that

we always choose a parameter a so that:

1. Xa has order type ω (at least in the structure G<ℵ1)

2. There are codes for any functions f : Y \Xa → Xa.

To this end, we define:

Definition 2.3.1. a is a sufficient parameter if:

1. a bounds a unique element of Y ,
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2. Xa is linearly ordered and each element of Xa has a successor,

3. for every U ∈ Y \Xa and every V ∈ Xa there is some a-pair Z which codes (U, V ), and

4. for partial f, g : Y \Xa → Xa coded by G,H, if Dom(f) ⊆ Dom(g) and both f and g are injections into

proper initial segments of Y , then Img(f) ⊆ Img(g).

Example 2.3.2. Zω is a sufficient parameter. We have already validated requirements one through three,

and the fourth requirement is a direct result of the fact that (Zω)
<

is an ω-chain.

We are now prepared to provide the main technical lemma which makes our interpretation work:

Lemma 2.3.3. If b is a sufficient parameter in G<ℵ1 , then any partial function from Y \Xa to Xa is coded

by some element of G<ℵ1 .

Proof. For each U ∈ Dom f , let FU be a code for (U, f(U)). Let F be the free product of the FU where U

ranges over Dom f . Assume that G < F is a maximal a-pair. There are two possibilities:

1. G is not itself a free product, so by the Kurosh subgroup theorem, G ≤ FU for some U ∈ Dom f . Since

G is maximal, G = FU .

2. Suppose G = C ∗D. Neither C nor D has an element of order 2 because any element of F with finite

order is conjugate to an element of one of the groups FU , and none of the groups FU contains an

element of order 2 by the second requirement in the definition of an a-pair. So, for any c ∈ C and

d ∈ D, the group
〈

cdc, dc−1d
〉

is isomorphic to the free group of rank 2, and since F2 < F3 < F2, we

have a contradiction to the first requirement in the definition of an a-pair.

So, the maximal a-pairs below F are exactly FU for U ∈ Dom(f). It follows that F is a code for f . �

Corollary 2.3.4. If a is a sufficient parameter in G<ℵ1 , then XG<ℵ1

a has order type ω.

Proof. Since Xa has a least element, and each element of Xa has a successor, there is at least an infinite

initial segment I of Xa with order type ω. Assume toward a contradiction that there is some G ∈ Xa\I,

then there is a partial function f from Y \Xa with image G<∪{G} ) I, and there is another function g from

Y \Xa so that Dom(f) = Dom(g) and Img(g) = I. This contradicts the fourth requirement on a sufficient

parameter, so in fact I must not be a proper initial segment, i.e., XG<ℵ1

a has order type ω. �

Corollary 2.3.5. G<ℵ1 interprets second-order arithmetic. �

Theorem 2.3.6. The first-order theory of isomorphism classes of at most countable groups under the sub-

group relation is 1-equivalent to true second-order arithmetic.

Proof. This now follows directly from Corollary 2.3.5 �
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Chapter 3

The Index Set of Uncountable

Categoricity

3.1 Introduction

The work in this chapter is joint with Uri Andrews, previously published in [3]. One important dividing

line for complexity in model theory is uncountable categoricity. Our goal here is to address the question

of how complicated the dividing line itself is; to wit: how difficult is it to determine whether a theory is

uncountably categorical? This follows work of Lempp and Slaman [14] who characterized the complexity

of countable categoricity (Π0
3-complete) and Ehrenfeuchtness (Π1

1-complete), two other important model

theoretic dividing lines.

We will categorize uncountable categoricity in the arithmetic hierarchy by looking at its index set:

Notation 3.1.1. Let TA denote the set of indices for A-computable sets of formulae which are uncountably

categorical theories, and let TA
c denote the set of indices for complete theories in TA

Notice that this means that we are restricting our attention to computable theories, and therefore to theories

with countable languages. Our characterization is, however, relativized, so while it applies only to computable

theories, the same statement can be made for A-computable theories where A is any real. We show:

Theorem 3.3.1. TA and TA
c are complete for intersections of Σ0

2(A) and Π0
2(A) sets (i.e., for A′-d.c.e.

sets).

We split this into two parts. In Section 3.2 we will show that TA and TA
c are in fact A′-d.c.e., and in

in Section 3.3 we will show that TA and TA
c are A′-d.c.e.-hard, that is, that any other A′-d.c.e. set can be

reduced to them.
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3.2 Description

We fix a theory T in a (computable) language L. Our goal is to give a criterion which determines whether

T is uncountably categorical. Since we are specifically looking at a computable theory, we can apply the

Henkin construction (which is effective) to get a decidable countable model M of T . It follows that we can

pass effectively from the theory T to the theory TM = ElDiag (M) in the language LM.

If T is an incomplete theory, then the theory TM produced by the Henkin construction will be incomplete

as well. In fact, the Henkin construction produces an enumeration of TM which is total exactly when T and

thus TM are complete.

Baldwin and Lachlan showed [5] that strongly minimal sets are key to understanding the definable sets

in an uncountably categorical structure. They showed that if T is uncountably categorical then there is a

strongly minimal set definable with parameters from the prime model of T (hence 0-definable in TM) over

which any model of T is prime.

We base our description here on the notion of a 2-cardinal formula (originally studied by Vaught):

Definition 3.2.1. A formula ϕ is 2-cardinal if |N | >
∣

∣ϕN
∣

∣ for some N |= T . We use the non-standard

convention that this definition can apply to formulas defining finite sets. A formula is 1-cardinal if it is not

2-cardinal.

Erimbetov gave the following characterization of uncountable categoricity:

Theorem 3.2.2 (Erimbetov [7]). A complete theory T is uncountably categorical if and only if T has a

1-cardinal strongly minimal formula with parameters from any model of T .

Corollary 3.2.3. A complete theory T is uncountably categorical if and only if TM has a 1-cardinal strongly

minimal formula without parameters.

Proof. If T is uncountably categorical, then from Baldwin and Lachlan [5], we know that the prime model

of T has a strongly minimal 1-cardinal formula. This formula has parameters in M, so in particular it is

definable without parameters in TM.

Conversely, any formula 0-definable in TM is definable in T with parameters from M, so in particular if

there is a 1-cardinal strongly minimal formula definable without parameters in TM, then there is a 1-cardinal

strongly minimal formula in T with parameters from some model. We apply Erimbetov’s theorem. �

Our description of uncountable categoricity is therefore the following

Theorem 3.2.4. A complete first-order theory T is uncountably categorical if and only if:
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1. T defines no infinite 2-cardinal formula (even with parameters), and

2. There is some ϕ ∈ LM so that ϕ is 1-cardinal and for all ψ(x) ∈ LM with no parameters either

ψ(x) ∧ ϕ(x) or ¬ψ(x) ∧ ϕ(x) is 2-cardinal.

Proof. If T is uncountably categorical, the TM contains a 0-definable strongly minimal formula ϕ. Since TM

is uncountably categorical, it cannot define any infinite 2-cardinal formulae. Thus we can read condition 2

as saying that for every 0-definable formula ψ, the formula ϕ ∧ ψ is either finite or co-finite in ϕ, which is

true because ϕ is strongly minimal.

For the converse, assume that the two conditions hold, and take ϕ as given by condition 2. ϕ is minimal

in M, and by a theorem of Baldwin and Lachlan [5], this means either it is strongly minimal or there is some

infinite 2-cardinal formula (in fact, we will see later that 2-cardinality is elementary, and a minimal but not

strongly minimal set has a family of finite sets of unbounded size, i.e., of 2-cardinal formulas of unbounded

size). So, ϕ is a 1-cardinal strongly minimal formula. �

We now show that TA
c is the intersection of a Π0

2(A) set and a Σ0
2(A) set by showing that condition 1 above

is Π0
2(T ) and condition 2 above is Σ0

2(T ). By Vaught’s 2-cardinal theorem [11, Thm. 12.1.1], ϕ is 2-cardinal

if and only if there are U ň M |= T with ϕU = ϕM. Thus, condition 1 is equivalent to stating:

∀ϕ(x, y)
[

T ∪ “U ≺ M” ∪ {∃≥nxϕ(x, c̄)} ∪ {c̄ ∈ U} ⊢ ∃x(x /∈ U ∧ ϕ(x, c̄))
]

This can all be stated in the language L ∪ {U} where U is a unary predicate naming U as a substructure of

M. Then condition 1 is the same as checking for the existence of a proof of ∃x(x /∈ U ∧ ϕ(x, c̄)) for each of

these computable theories. Checking for a single proof is Σ0
1(T ), and checking that these proofs all exist is

therefore Π0
2(T ).

Now, for condition 2, we use the formulation of 1-cardinality in terms of layerings. A layering in terms

of ϕ is a formula θ with specific form. It is computable to check whether θ is a layering in terms of ϕ. We

use the following unpublished theorem of Gaifman:

Theorem 3.2.5 (Gaifman [11, Thm. 12.1.5]). A 0-definable set ϕ is 1-cardinal if and only if there exists

a layering θ (also a 0-definable formula) in terms of ϕ so that T ⊢ ∀xθ(x).

So, it is Σ0
1(T ) to check whether a formula ϕ is 1-cardinal. Reading condition 2 with this in mind, we see

that condition 2 is Σ0
2(T ). Finally, note that the condition of being a complete theory is itself Π0

2(T ), so we

have shown the following:

Theorem 3.2.6. TA
c is A′-d.c.e.
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The result for TA is immediate:

Corollary 3.2.7. TA is A′-d.c.e.

Proof. This many-one reduces to the index set of computable complete uncountably categorical theories

because T is uncountably categorical exactly if the theory of infinite models of T is uncountably categorical

and complete, i.e., if T ∪ {∃≥nx(x = x)|n ∈ ω} is both uncountably categorical and complete. �

3.3 Hardness

It remains to show that TA is complete for A′-d.c.e. theories.

Theorem 3.3.1. TA and TA
c are complete for intersections of Σ0

2(A) and Π0
2(A) sets (i.e., for A′-d.c.e.

sets).

Proof. We have already shown that TA and TA
c are A′-d.c.e., so we need only show that they are hard for

this class. We use a reduction which always produces a complete theory. Since TA and TA
c coincide on

complete theories, this will suffice for both.

Since FINA is Σ0
2(A)-complete and INFA is Π0

2(A)-complete, we want to produce a complete theory TI,F

given enumerations WA
I and WA

F so that TI,F is uncountably categorical exactly if WA
I is infinite and WA

F is

finite. We fix a language with infinitely many unary relation symbols Uj and Vk and infinitely many binary

relation symbols Rj .

For each j, either Uj and Uj−1 are the same (and Rj is empty), or Uj is a subset of Uj−1 and Rj is a

bijection between Uj and Uj−1\Uj . Note then, that if there are infinitely many j so that Uj splits Uj−1 in

half, then there are continuum many 1-types, so TI,F is not uncountably categorical.

The Vk will be disjoint subsets of ∩j∈ωUj . Either each is finite, or infinitely many of them are infinite.

In the latter case, each infinite Vk is 2-cardinal, so TI,F is not uncountably categorical.

If there are only finitely many j so that Uj splits Uj−1 and all the Vk are finite, ∩j∈ωUj = ∩N
j=0Uj is a

strongly minimal 1-cardinal formula, so TI,F is uncountably categorical.

For the construction, we enumerate WA
I and WA

F in stages:

Stage 0: At the start of the construction, declare that U0 ⊇ U1 ⊇ U2 ⊇ · · · , that the Vk are disjoint subsets

of ∩jUj , and that U0 is the entire structure.

Stage s > 0: If WA
F enumerates a number at stage s, then we declare that Us splits Us−1. Otherwise, we

declare that Us does not split Us−1. If WA
I enumerates a number at stage s, then we declare that
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V|WA
I,s|

contains exactly s elements. Otherwise we declare that Vi contains at least s elements for each

i >
∣

∣WA
I,s

∣

∣.

This guarantees that TI,F is complete, and the analysis above the construction already shows that in fact

TI,F is uncountably categorical if and only if WA
F is finite (there are finitely many j so that Uj splits Uj−1)

and WA
I is infinite (there are infinitely many Vi which are declared to be finite; since we do so in order, this

means all of them are finite). �
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Part II

Convex Orderability
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Chapter 4

Introduction to Convex Orderability

4.1 Notation

Throughout Chapters 4 to 6, we will be considering linear orders, denoted by <, ✁, ◭, etc. Since we may

be considering multiple orders on the same set, we adopt the convention of prefixing order terminology with

the order to which we refer. For example, we say <-convex or ✁-convex rather than simply convex. We

similarly label intervals with the relevant order, thus (a, b)< = {x | a < x < b}, and [c, d)
✁
= {x | c✂x✁ d}.

By a <-convex set X in (M,<) we mean specifically that if a < c < b and a, b ∈ X, then c ∈ X as well.

In contrast with an <-interval, a <-convex set may not have <-endpoints in M .

Any reference to topology here is defined in terms of the orders, and will therefore be prefaced with the

relevant order as well, thus we speak of <-open sets or ✁-open sets. This refers to the usual order topology

in the home sort, and the product topology in higher dimensions, so for an order (M,<), the intervals (a, b)<

form a basis of open sets in M , and products of the form
∏d

i=0 (ai, bi)< form a basis of open sets in Md.

For any sequence (Ai, <i)i∈I of orders indexed by another order (I,<), we write
∑

I(Ai, <i) for the

order on the disjoint union of the Ai given by a < b if either (a, b ∈ Ai and a <i b) or (a ∈ Ai and

b ∈ Aj for some i < j). For finite sums, we write, for example, (A0, <0) + (A1, <1). Note that this sum

is not commutative. When (Ai, <i) ∼= (A,<A) for each i ∈ I, we write (A,<A) × (I,<) for
∑

i∈I(Ai, <i),

Equivalently, (Ai, <A)× (I,<) has underlying set A× I, and is ordered reverse-lexicographically first by <

and then by <A. So, for example, Q × 2 is densely ordered (it’s just two side-by-side copies of Q), while

every element of 2×Q has either a predecessor or a successor.

One piece of language in particular should be noted. When we refer to an order as dense, it can either

mean that it is dense in an ambient topological space, or that it is itself a dense linear order. For example,

in Q × Q, the set {0} × Q is a dense linear order, but is not dense in Q × Q. We adopt the convention of

stating that a set Y ⊆ X is <-densely ordered when we mean to say that (Y,<↾Y ) is a dense linear order,

and by contrast using the phrase <-dense in X to indicate that we are referring to how Y is embedded in

the larger order (X,<).

Similarly, we say a set Y ⊆ X is <-discretely ordered if each point of Y is (< ↾Y )-isolated, and we say
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that Y is <-discrete in X if each point of Y is isolated in the subspace topology induced by the <-topology

on (X,<). For example, in Q×Q, {0} ×Q is <-discrete in Q×Q, but is not <-discretely ordered.

In Chapter 6 we will make reference to functions f : M → M definable M = (M,<, . . . ). M is the

“definable completion” of the linear order M, a multi-sorted structure with one definable sort for every

M-interpretable extension of (M,<) to a linear order (M ′, <′) so that M is <′-dense in M ′. Each such

extension uniquely embeds into the Dedekind completion of (M,<). In this sense, therefore, we think of M

as a suborder of the Dedekind Completion and identify elements of M which have the same image under

these embeddings.

4.2 An introduction to Convex Orderability

Convex orderability first arose in the context of VC-minimality:

Definition 4.2.1 (Adler [1]). A theory T is VC-minimal if there is a collection Ψ of formulas so that:

1. if M |= T and X ⊆ M is definable, then X is a boolean combinations of instances of formulas in Ψ,

and

2. In any M |= T , the instances of formulas in Ψ form a directed collection of subsets of M , i.e., if ϕM
a

and ψM
b are instances of formulas from Ψ, then either ϕM

a and ψM
b are disjoint, or one contains the

other.

The name VC-minimality comes from the fact that every directed family becomes a family of Vapnik-

Chervonenkis dimension 1 (i.e., a chain of sets) after replacing some of the sets with their complements.

VC-minimality has shown promise as an extension of stability theory into the unstable domain. VC-mini-

mality is a weakening of strong minimality, weak o-minimality, C-minimality, and D-minimality, but is still

strong enough to imply dp-minimality. However, this original definition of VC-minimality is not obviously

local, and working from this definition it can be rather difficult to show that a theory is not VC-minimal.

Andrews and Guingona addressed this in [2] by finding a local characterization for VC-minimality, but before

this result, Guingona and Laskowski defined convex orderability:

Definition 4.2.2 (Guingona and Laskowski [10]). Let M be a structure. A definable family ϕ of sub-

sets of M is said to be n-convexly ordered by an order ✁ on M if there is some finite n so that every

instance of ϕ has at most n distinct ✁-convex components. A structure M is convexly orderable if there

is an order ✁ on M (possibly not definable) which convexly orders every definable family of subsets of M .

In this case, we also say that ✁ is a convex ordering of M.
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Lemma 4.2.3 (Guingona and Laskowski [10]). Convex orderability is first-order; if N ≡ M and M is

convexly orderable, then N is convexly orderable as well. In this case we say Th(M) is convexly orderable.

Convex orderability is a weakening of VC-minimality. To show that a VC-minimal theory is convexly

orderable, one need only remark that for any chain of sets, there is some order in which each of these sets

is a ray. From the comment in Definition 4.2.1, the same is true for a directed family. On the other hand

convex orderability is closed under reducts, while VC-minimality is not, so they are not equivalent.

Convex orderability is, however, close enough to VC-minimality that it was used in [8] to prove that all

VC-minimal ordered groups are divisible and abelian, and to give a condition on abelian groups equivalent

to VC-minimality. Research has moved away from convex orderability, however in favor of dp-smallness:

Definition 4.2.4 (Guingona [9]). A theory T is dp-small if there are no M |= T , definable subsets

X0, X1, X2, . . . ⊆M and uniformly definable subsets A0, A1, A2, . . . ⊆M such that for every i, j ∈ ω there is

some bi,j so that bi,j ∈ Xℓ ∩Ak if and only if i = ℓ and j = k. We say M is dp-small if Th(M) is dp-small.

In the same paper, Guingona showed that every convexly orderable theory is dp-small, and noted that the

proofs from [8] generalize to dp-small structures. Furthermore, Johnson showed in [12] that every dp-small

field is in fact real closed or algebraically closed, and therefore also VC-minimal in the field language.

On the other hand, dp-smallness is not equivalent to convex orderability, for example:

Example 4.2.5. Let M = (M,E,Ai,j)i<j<ω where E is an equivalence relation on M (so, for a ∈ M , the

set Ea is the E-class of a), and the Ai,j are disjoint sets covering M so that for i, j, i′, j′ ∈ ω:

1. for a ∈M , if Ai,j ∩ Ea is nonempty, then it is infinite;

2. for a ∈M , both Ai,j ∩ Ea and Ai′,j′ ∩ Ea are nonempty if and only if j = j′; and

3. each Ai,j intersects infinitely many E-classes.

Then M is dp-small but not convexly orderable.

Proof. The theory of M admits quantifier elimination, so dp-smallness is a straightforward result.

Suppose toward a contradiction that ✁ is a convex ordering of M. Given n < ω, we will show that there

is an E-class with at least n distinct ✁-convex components. Each of the sets Ai,n for i < n has finitely many

✁-convex components, and they intersect infinitely many E-classes, so in particular, there is some E-class

Ea which intersects Ai,n for each i < n but does not contain any ✁-endpoints of any ✁-convex components

of these sets. Therefore Ea ∩Ai,n contains at least one ✁-convex component of Ea for each i, and it follows

that Ea has at least n distinct ✁-convex components. Since we can show that there is an E-class with at
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least n distinct ✁-convex components for each n, and the E-classes are uniformly definable, this contradicts

the assumption that ✁ is a convex ordering of M. �

The idea of Example 4.2.5 is that the structure M has finite approximations to the configuration from

Definition 4.2.4. In this sense, convex orderability can be thought of as requiring uniform dp-smallness.

While convex orderability extends the same list of minimality notions that VC-minimality does, the most

notable is perhaps weak o-minimality because the definitions are similar. In fact, the definition of weak

o-minimality can be stated as follows:

Definition 4.2.6 (Dickmann [6]). We say the theory of a structure M is weakly o-minimal if M has

a definable convex ordering.

This implies that in fact an understanding of sets in the convex ordering might lead to some sort of clas-

sification of definable sets along the line of weakly o-minimal cell decomposition. On the other hand, this

relationship between convex orderability and weak o-minimality can be misleading, as the following example

clarifies:

Example 4.2.7. Let N = (ω,E) where N |= nEm if and only if ⌊log2(n)⌋ = ⌊log2(m)⌋ (so E is an

equivalence relation). N is convexly orderable, but if ✁ is a convex ordering of N , then N✁ = (N ,✁) is not

convexly orderable, so in particular N✁ is not weakly o-minimal.

Proof. Given an order ✁ on ω and definable families ϕ and ψ of subsets of ω:

1. If ϕ is n-convexly ordered by ✁, then ¬ϕ is (n+ 1)-convexly ordered by ✁.

2. If ϕ is n-convexly ordered by ✁ and ψ is m-convexly ordered by ✁, then ϕ ∨ ψ is (m + n)-convexly

ordered by ✁.

From these two facts and quantifier elimination in N , it follows that any order which convexly orders the

E-classes is a convex ordering of N . In particular, the E-classes are all convex in the usual order on ω, so

it is a convex ordering of N .

Now fix a convex ordering ✁ of the structure N . Since each E-class in N is finite, each is discretely

ordered by ✁ with a least element. So, if N ′
✁

is an elementary extension of N✁ with infinite E-classes

A0, A1, A2, . . . , then each Ai is discretely ordered by ✁ with a least element. For i ∈ ω, let Xi be the set of

all x ∈ N ′
✁

which are the i-th element of their E-class in the ✁ order. Each Xi is definable in N ′
✁
. The Xi

are disjoint, the Aj are disjoint, and for any i, j ∈ ω, we have Xi ∩ Aj = {bi,j}. So, in fact the Xi, Aj , and

bi,j are as in Definition 4.2.4, and it follows that N ′
✁
(and thus N✁) are not dp-small, and thus not convexly

orderable. �
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So, there is a difference between a structure being convexly orderable and being the reduct of a weakly

o-minimal structure. Even if a structure is the reduct of a weakly o-minimal structure, not every convex

ordering is a witness to this fact. In fact, convex orderings can make arbitrary subsets of the structure

convex:

Lemma 4.2.8. Fix an order ✁ on M . We define the ✁-rank of an order on M to be the largest possible

rank so that:

1. ✁ and ✄ have ✁-rank 1,

2. for any set X ⊆M , and any order < of ✁-rank n, the order <X where (M,<X) = (X,<)+(M\X,<)

has ✁-rank at most 2n, and

3. the order < is ✁-rank at most (2n + 1)m if (M,<) =
∑

X∈M/E(X,<X) where E is an equivalence

relation on M and there is a ✁-rank m order ◭ so that the E-classes are ◭-convex, M/E is ordered

by ◭/E, and for every X ∈M/E, the order <X is (◭ ↾X)-rank n.

By this definition, orders which don’t match these descriptions have ✁-rank ∞. If ✁ is a convex order of

M, then all orders on M with finite ✁-rank are convex orders of M.

Proof. We show that ifX is ✁-convex and < is ✁-rank n, thenX has at most n distinct <-convex components

by following the above:

1. Any ✁-convex set is also ✄-convex, so the ✁-rank 1 case is trivial.

2. If < has ✁-rank n, then by inductive hypothesis, every ✁-convex set has at most n distinct <-convex

components. If U is <-convex, then both U ∩X and U\X are <X -convex, so U has at most 2 distinct

<X -convex components. So, each ✁-convex set has at most n distinct <-convex components, which in

turn have at most 2 <X -convex components, and it follows each ✁-convex set has at most 2n distinct

<X -convex components.

3. For the third case, let U be any ◭-convex set. Then define U◦ = {x ∈ U | U ⊇ Ex}. U
◦ is ◭-convex,

and since </E = ◭/E, it follows that U◦ is also <-convex. Now, for any a ∈ U\U◦, we know that

Ea ∩ U is (◭ ↾ Ea)-convex, and so by inductive hypothesis has at most n distinct (< ↾ Ea)-convex

components. There are at most two such E-classes since they must bound U either above or below.

So U\U◦ has at most 2n distinct <-convex components, and U◦ is <-convex. It follows that U has at

most 2n+ 1 distinct <-convex components, as desired. �

This brings up the two main questions which motivate the work in Chapters 5 and 6:
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Question 4.2.9. Which convexly orderable structures are reducts of weakly o-minimal structures?

Question 4.2.10. Is there a canonical choice of convex ordering for a given convexly orderable structure?

Chapters 5 and 6 focus on ordered convexly orderable structures in part because one might expect a ranked

order to be a better choice of canonical order for Question 4.2.10. They also represent a direct attempt at

answering Question 4.2.9; in Example 4.2.7 we saw that it was possible for a convexly orderable structure to

fail to be convexly orderable after making the convex ordering definable. Since a weakly o-minimal structure

has a definable convex ordering, we make the following definition:

Definition 4.2.11. A structure M is n-times convexly orderable (denoted COn) if there are orders

✁1,✁2, . . . ,✁n on M (possibly not definable) so that (M,✁1,✁2, . . . ,✁i) is convexly ordered by ✁i+1 for

each i < n. In particular, Example 4.2.7 is an example of a structure which is CO1 but not CO2.

Since the convex ordering is already definable in a weakly o-minimal structure, adding it to the structure

does not change the definable sets, so the reduct of a weakly o-minimal structure is COn for every n. On the

other hand, it is unknown whether the converse is true. It seems possible, given the results in Chapters 5

and 6 that in fact there is some n so that every COn structure is the reduct of a weakly o-minimal structure.

4.3 Observations on Convex Orderability

In this section, we make some observations on convex orderability which will be referred to later. The first

important observation is that convex orderability is closed under substructure in two senses:

Lemma 4.3.1. If ✁ is a convex ordering of M and N is a substructure of M so that for any family F of

subsets of N definable in N , there is a family G of sets definable in M so that for X ∈ F there is X ′ ∈ G

such that X = X ′ ∩N , then ✁ ↾N is a convex ordering of N .

Corollary 4.3.2. If M is convexly orderable and N is a substructure of M with universe definable in M,

then N is convexly orderable. �

This result also reverses:

Lemma 4.3.3. If N0, . . . ,Nn are substructures of M with M =
⋃

iNi and for every family F of subsets of

M definable in M, the collection Fi = {X ∩Ni | X ∈ F} is uniformly definable in Ni for each i, then if ✁i

is a convex ordering of Ni for each i, it follows that M is convexly ordered by (M,✁) =
∑

i(Ni,✁i).

Corollary 4.3.4. If N0, . . . ,Nn are substructures of M which are definable in M and M =
⋃

iNi, then if

✁i is a convex ordering of Ni for each i, M is convexly ordered by (M,✁) =
∑

i(Ni,✁i). �
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We finish this chapter with one last example of a condition separating convex orderability from dp-minimality:

Example 4.3.5. Let M be any structure and S = (bσ)σ∈2<ω ⊆ M . If there is a formula ϕ(x; y) so that

M |= ϕ(bσ; bτ ) if and only if σ ≺ τ , then M is not convexly orderable. In particular, the theory of a tree is

dp-minimal (Simon [17]) but if it embeds 2<ω, then it is not convexly orderable.

Proof. Let ✁ be any ordering of M . For any finite partition of a binary tree, one of the sets in the partition

contains a complete binary subtree. So, either one of the definable sets ϕ(a, x)
M

where a ∈ M has infinitely

many ✁-convex components (so ✁ is not a convex ordering), or we can pass to a subtree with the property

that if σ ∈ 2<ω, then the set Aσ = {bσ⌢τ | τ ∈ 2<ω} is ✁-convex. Then by the same partitioning idea (and

possibly reversing ✁), we can pass to a subtree so that one of the following cases holds:

1. We have bσ⌢0 ✁ bσ ✁ bσ⌢1 for all σ ∈ 2<ω. In this case, since Aσ is ✁-convex, we see that

bǫ ✁ b10 ✁ b1 ✁ b120 ✁ b13 ✁ · · ·✁ b1n0 ✁ b1n ✁ b1n+10 · · · .

2. bσ is ✁-below both bσ⌢0 and bσ⌢1 for all σ ∈ 2<ω. Relabeling the tree if necessary, we can there-

fore assume that bσ ✁ bσ⌢0 ✁ bσ⌢1 for all σ ∈ 2<ω and, since Aσ is ✁-convex, it follows that

bǫ ✁ b0 ✁ b1 ✁ b10 ✁ b12 ✁ · · ·✁ b1n−10 ✁ b1n ✁ b1n0 ✁ · · · .

By compactness we can find, in some elementary extension (M′,✁) of (M,✁), an element c satisfying any

limit of
(

tp(M,✁) (b1n/S)
)

n∈ω
. But then M′ |= ϕ(b1n ; c) ∧ ¬ϕ(b1n0; c) so ϕc has infinitely many ✁-convex

components, and ✁ is therefore not a convex ordering. �
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Chapter 5

Convex Orderings of Ordered

Structures

5.1 Decompositions of Orders

We consider a specific instance of Question 4.2.10. Namely, if M = (M,<, . . . ) is a linearly ordered structure

and M is convexly orderable, then is there a convex ordering on M which is somehow a straightforward

modification of < as in the following examples?

Example 5.1.1. Let M = (Z, <, f), where f(x) = 2⌊x
2 ⌋. The structure M is convexly ordered by <2Z.

Example 5.1.2. Let M = (R, <, f), where f(x) = x when x is irrational or |x| > 1, and f(x) = −x

otherwise. The structure M is convexly ordered by <Q.

These examples both use construction 2 from Lemma 4.2.8. In fact, the constructions in Lemma 4.2.8

guarantee that for any <-rank n order, every <-interval has at most n convex components. This is a

necessary condition for a convex ordering, so one guess might be that there is some finite <-rank order which

is a convex ordering. This is not the most helpful conjecture, however, since finite <-rank orders can be quite

nasty. On the other hand, Example 5.1.1 is of a structure with a discrete linear order, which is convexly

ordered by a discrete order. This hints at the following “reflection principle”:

Theorem 5.2.14. If M = (M,<, . . . ) is discretely ordered and convexly orderable, then M has a discrete

convex ordering.

Similarly, Example 5.1.2 hints that we might be able to do the same for a dense linear order, however, it

is possible for a densely ordered convexly orderable structure to name a discretely ordered set:

Example 5.1.3. Let M = (R, <, ⌊·⌋) where ⌊·⌋ is the usual floor function. Then M is convexly ordered by

<Z.

And in fact, it is easy to see that there is therefore no direct analogue for Theorem 5.2.14 for densely-ordered

structures:
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Lemma 5.1.4. Suppose ✁ is a convex ordering of the linear order M = (M,<, . . . ) and that there is some

X ⊆ M which is definable in M, <-discretely ordered and infinite. Then for any n, there is some element

of M which has an n-th ✁-successor.

Proof. We consider the family F = (X ∩ [b, c]<)b,c∈X
. Since these sets are uniformly definable, there is some

m so that each set in F has at most m distinct ✁-convex components. Since X is <-discretely ordered and

infinite, we can find a ∈ X so that a has an nm-th (<↾X)-successor b. Then [a, b]<∩X has exactly (nm+1)

elements, and by the pigeonhole principle, at least n + 1 of them are in the same ✁-convex component of

[a, b]< ∩X. So there is a finite ✁-convex set with at least n+1 elements. Since every finite order is discrete,

it follows that there is an element with an n-th ✁-successor, as desired. �

Beyond this, not every convexly orderable order is dense or discrete:

Example 5.1.5. Let M = (2×Q, <). The structure M is convexly ordered by <{0}×Q

Notice that in this example, we actually convexly order M by splitting it into two pieces which are each

<-densely ordered. Our goal for the remainder of this section is to show that in fact such a partition is

possible for any dp-small order.

Theorem 5.1.12. If M = (M,<, . . . ) is a dp-small linear order, then M has a 0-definable partition into

finitely many sets which are either <-densely ordered or <-discretely ordered.

We delay the proof so as to give some definitions and lemmas first:

Definition 5.1.6. We say that the sets (Bi ⊆Md)i∈I are definably separated if there are definable sets

(Ai ⊆Md)i∈I so that Ai ⊇ Bi for each i, and the Ai are pairwise disjoint. Note that the Ai in this definition

need not be uniformly definable.

Lemma 5.1.7. Let M = (M,<, . . . ) be a linear order and suppose there are definably separated infinite

sets B0, B1, B2, . . . ⊆ M so that for every i and every a, b ∈ Bi+1 with a < b there is some c in Bi so that

a < c < b. Then M is not dp-small.

Proof. Suppose that the sets A0, A1, A2, . . . witness that B0, B1, B2, . . . are definably separated and fix n.

Since Bn is infinite, we can choose elements b0,n < b1,n < b2,n < · · · < bn2,n of Bn. Now, by assumption,

there are elements b0,n−1 < b1,n−1 < · · · < bn2−1,n−1 of Bn−1 so that bi,n < bi,n−1 < bi+1,n for i < n2. From

there we choose b0,n−2 < b1,n−2 < · · · < bn2−2,n−2 with bi,n−1 < bi,n−2 < bi+1,n−1, and so on until we have

bi,j for j ≤ n and i ≤ n2 − (n− j) so that bi,j+1 < bi,j < bi+1,j+1 when j < n and i ≤ n2 − (n− j).

Let ai,j = bni+j,j for i, j < n and define Xi = (bni,n, bni+n,n)<. Then ai,j ∈ Xk ∩ Aℓ if and only if i = k

and j = ℓ where the Ai are the definable separating sets and the Xi are <-intervals, so uniformly definable
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(with defining formula which does not depend on n). Since we can find this configuration, for any n < ω, it

follows that by compactness (possibly changing to an elementary superstructure M′ of M), we can find ai,j

for i, j ∈ ω and uniformly definable X0, X1, . . . so that ai,j ∈ Xk ∩Aℓ if and only if i = k and j = ℓ. This is

a witness to non-dp-smallness of M as in Definition 4.2.4. �

The following uniform version for convexly orderable structures will be useful later:

Porism 5.1.8. Let M = (M,<, . . . ) be a convexly orderable linear order. Then there is some N so that

there are no definably separated infinite sets B0, B1, B2, . . . , BN so that for every i and every a, b ∈ Bi+1

with a < b there is some c in Bi so that a < c < b.

Proof. Fix ✁ a convex ordering of M, and let N be the maximum number of ✁-convex components of a

<-interval. Now, for B0, B1, . . . , BN as in the statement, we define Xi, Aj and ai,j as in Lemma 5.1.7.

Since the Xi is always a <-interval,, we conclude that the bound on the number of Ai is uniform, as in

Example 4.2.5. As in the proof there, we can use Xi, Aj , and ai,j to show that one of the Xi has N + 1

distinct ✁-convex components, but then this contradicts the definition of N . �

Definition 5.1.9. The <-discrete equivalence relation ≡ ◦
< is the equivalence relation defined by a ≡ ◦

<b

if and only if the closed <-interval between a and b is <-discretely ordered. In particular, < is a dense order

if and only if ≡ ◦
< is equality, and < is a discrete order if and only if ≡ ◦

< has only one equivalence class.

Note, that ≡ ◦
< is definable in M = (M,<, . . . ).

Lemma 5.1.10. If M = (M,<, . . . ) is a dp-small linear order, then there is some n so that there are only

finitely many a ∈M so that a has an n-th <-successor but no <-predecessor. Similarly, there are only finitely

many a ∈M so that a has an n-th <-predecessor but no <-successor.

Proof. We only need to prove the first statement; the second is equivalent since <-predecessors are >-suc-

cessors and vice versa. Assume toward a contradiction that for each n there are infinitely many elements

of M which have an n-th <-successor but no <-predecessor. Since dp-smallness is elementary, we can

assume without loss of generality (passing to an elementary extension of M if necessary) that there are

elements a0 < a1 < a2 < · · · which each have n-th <-successor for each n but have no <-predecessor. Let

Xi = (ai, ai+1)<, let Ai be the set of elements which have an i-th <-predecessor but no (i+ 1)-th <-prede-

cessor, and let ai,j be the j-th <-successor of ai. Then ai,j ∈ Xk ∩ Aℓ exactly when i = k and j = ℓ, i.e.,

(Xi)i∈ω, (Aj)j∈ω, and (ai,j)i,j∈ω are a witness to non-dp-smallness as in Definition 4.2.4, which contradicts

the hypothesis that M is dp-small. �

Corollary 5.1.11. If M = (M,<, . . . ) is a dp-small linear order, then there is some n so that if a ∈ M

has a finite ≡ ◦
<-class, then it has an ≡ ◦

<-class of at most n elements. �
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We are now prepared to prove our Theorem on decompositions of dp-small orders:

Theorem 5.1.12. If M = (M,<, . . . ) is a dp-small linear order, then M has a 0-definable partition into

finitely many sets which are either <-densely ordered or <-discretely ordered.

Proof. We will construct a tree of definable sets {Aσ | σ ∈ T ⊆ 2<ω} so that Aε =M , and for σ ∈ T which

is not a leaf, Aσ⌢0 and Aσ⌢1 form a partition of Aσ. To simplify notation throughout the proof, we will

write ≡ ◦
σ for the equivalence relation ≡ ◦

<↾Aσ
. Given Aσ in the tree we define Aσ⌢0 as follows (in each case

Aσ⌢1 = Aσ\Aσ⌢0):

1. If there are infinitely many ≡ ◦
σ-classes which have at least 2 elements and have a <-least element, then

we let Aσ⌢0 be the collection of <-least elements of ≡ ◦
σ-classes of size at least 2.

2. Otherwise, if there are infinitely many ≡ ◦
σ-classes which have at least 2 elements and have a <-greatest

element, then we let Aσ⌢0 be the collection of <-greatest elements of ≡ ◦
σ-classes of size at least 2.

3. Otherwise, if there are some infinite ≡ ◦
σ-classes in Aσ and some finite ≡ ◦

σ-classes in Aσ, then we let

Aσ⌢0 be the elements in infinite ≡ ◦
σ-classes. This is 0-definable by Corollary 5.1.11.

4. Otherwise, if Aσ has some ≡ ◦
σ-classes of size 1 and some ≡ ◦

σ-classes of size at least 2, then we let

Aσ⌢0 be the elements which are <-least in their ≡ ◦
σ-class.

5. Otherwise, if there is more than one ≡ ◦
σ-class and there is a <-least ≡ ◦

σ-class, then let Aσ⌢0 be the

<-least ≡ ◦
σ-class.

6. Finally, if none of the above cases hold, then σ is a leaf and both Aσ⌢0 and Aσ⌢1 are undefined. In

this case, either:

(a) There is an ≡ ◦
σ-class of size 1. Then since case 4 fails above it follows that every ≡ ◦

σ-class has

size 1, i.e., that Aσ is <-densely ordered.

(b) There is no ≡ ◦
σ-class of size 1. If a✚≡◦

σb then Aσ ∩ [a, b]< is not <-discretely ordered, so there is

c ∈ Aσ ∩ [a, b]< which either has no (< ↾Aσ)-successor or no (< ↾Aσ)-predecessor. In particular,

since cases 1 and 2 fail above, it follows that there are finitely many ≡ ◦
σ-classes. So, there is a

<-least ≡ ◦
σ-class. Since case 5 above fails, it follows that there is only one ≡ ◦

σ-class, i.e., that Aσ

is <-discretely ordered.

So, it suffices to show that the tree T is finite, in which case M can be 0-definably partitioned into the

sets (Aσ)σ is a leaf of T , which are each <-densely ordered or <-discretely ordered. We first note that these

operators are designed to grow ≡ ◦
<-classes:
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Claim 5.1.13. If a, b ∈ Aσ⌢i with a < b and a≡ ◦
σb, then a ≡ ◦

σ⌢i b.

Proof. In cases 1, 2 and 4, b is not the <-least element of its ≡ ◦
σ-class and a is not the <-greatest element

of its ≡ ◦
σ-class, so we see that i = 1. Any c ∈ [a, b]< ∩ Aσ is also neither the <-least nor the <-greatest

element of its ≡ ◦
σ-class, and so is also in Aσ⌢1. It follows that [a, b]< ∩Aσ⌢i = [a, b]< ∩Aσ is <-discretely

ordered, so a ≡ ◦
σ⌢i b as desired.

In cases 3 and 5, the entire ≡ ◦
σ-class of b is contained in Aσ⌢i. Since ≡ ◦

σ-classes are <-convex in Aσ, it

follows that again [a, b]< ∩Aσ⌢i = [a, b]< ∩Aσ is <-discretely ordered, and a ≡ ◦
σ⌢i b as desired. �

Now there are two cases we can show directly do not occur on an infinite path:

Claim 5.1.14. If σ satisfies case 4, then σ ⌢ 0 and σ ⌢ 1 are leaves.

Proof. Since there are finite ≡ ◦
σ-classes and case 3 failed, we know that every ≡ ◦

σ-class is finite, and since

case 1 failed, only finitely many of the ≡ ◦
σ-classes with more than one element have a least element, i.e.,

there are finitely many ≡ ◦
σ-classes with more than one element. It follows that there are only finitely many

elements in Aσ⌢1, so Aσ⌢1 is discretely ordered, i.e., σ ⌢ 1 is a leaf.

We will show that Aσ⌢0 is <-densely ordered, i.e., for any a, b ∈ Aσ⌢0 with a < b we need to show that

there is c′ ∈ Aσ⌢0 so that a < c′ < b. Let a′ be the <-greatest element of the ≡ ◦
σ-class of a. Since a✚≡◦

σ b

(they can’t both be the <-least element of the same ≡ ◦
σ-class) and ≡ ◦

σ-classes are convex, it follows that

a′ < b and a′ ✚≡◦
σ b. Thus there is some c ∈ Aσ ∩ [a′, b]< so that a′ ✚≡◦

σ c✚≡
◦
σ b. Let c

′ be the <-least element

of the ≡ ◦
σ-class of c, then a ≤ a′ < c′ < b and c′ ∈ Aσ⌢0 as desired. �

Claim 5.1.15. If σ satisfies case 5, then T is finite above σ.

Proof. Since Aσ⌢0 is an ≡ ◦
σ-class, it follows from Claim 5.1.13 that Aσ⌢0 has a single ≡ ◦

σ⌢0-class, so it is

<-discretely ordered. From Claim 5.1.13, Aσ⌢1 satisfies case 5 or case 6, but there are fewer ≡ ◦
σ⌢1-classes

than there are ≡ ◦
σ-classes. This process can therefore only continue fore finitely many levels above before

we reach Aσ⌢1n which has a unique ≡ ◦
σ-class and is therefore <-discretely ordered. �

And so any infinite path would have to consist only of cases 1 to 3. We can further restrict the possibilities

in these cases:

Claim 5.1.16. If σ satisfies case 3, then T is finite above σ ⌢ 0.

Proof. In this case, each ≡ ◦
σ⌢0-class is a union of infinite ≡ ◦

σ-classes by Claim 5.1.13. The <-least (or

<-greatest) element of any≡ ◦
σ⌢0-class is therefore the<-least (or<-greatest) element of an infinite≡ ◦

σ-class.

There are finitely many such by Corollary 5.1.11. It follows that σ ⌢ 0 doesn’t satisfy cases 1 to 4, and so

either σ ⌢ 0 is itself a leaf or it satisfies case 5 and we can apply Claim 5.1.15. �
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Claim 5.1.17. If σ satisfies case 1 or case 2, then for a, b ∈ Aσ⌢1 with a < b, if a✚≡◦
σ b, then a✚≡

◦
σ⌢1 b (so

≡ ◦
σ⌢1 and ≡ ◦

σ agree on Aσ⌢1)

Proof. We assume that there is some c ∈ [a, b)< ∩ Aσ which has no <-successor in Aσ (otherwise there is

some c ∈ (a, b]< ∩ Aσ with no predecessor; this case follows the same argument). If c ∈ Aσ⌢1, then let

c′ = c, otherwise c is the <-greatest element of its ≡ ◦
σ-class, which has more than one element, so it has a

<-predecessor in Aσ which is then c′ ∈ [a, b)< ∩Aσ⌢1. We will show that c′ has no <-successor in Aσ⌢1.

Now, assume that c′, d ∈ Aσ⌢1 with c′ < d. We need to show that (c′, d)< ∩ Aσ⌢1 is nonempty. We

know c < d, and since c has no <-successor in Aσ, we can choose e, f, g ∈ Aσ so that c′ ≤ c < e < f < g < d.

There are four possibilities:

1. If f ∈ Aσ⌢1, then we are done.

2. If f ≡ ◦
σ c

′, then e is not the <-least or <-greatest element of its ≡ ◦
σ-class, so e ∈ (c′, d)< ∩Aσ⌢1.

3. If f ≡ ◦
σ d, then by the same argument g ∈ (c′, d)< ∩Aσ⌢1.

4. Finally, if c′ ✚≡◦
σ f ✚≡◦

σ d, then since f /∈ Aσ⌢1, we know there is f ′ ≡ ◦
σ f so that f ′ ∈ Aσ⌢1. Since

≡ ◦
σ-classes are convex, it follows that c′ < f ′ < d as desired.

Since a ≤ c′ < b and c′ has no <-successor in Aσ⌢1, it follows that a✚≡
◦
σ⌢1 b. �

Claim 5.1.18. There are no σ0 ≺ σ1 ≺ σ2 ≺ · · · in T so that each σi satisfies case 1 or case 2 and

σi+1 � σi ⌢ 0 for each i.

Proof. Assume toward a contradiction that there are, and let Yi = Aσi⌢1. Fix a, b ∈ Yi+1 with a < b. We

have a and b are both in Aσi⌢0. If σi satisfies case 1 then a and b are each the <-least elements of their

≡ ◦
σi
-class and if we let c be the <-successor of a in Aσi

, then a < c < b and c ∈ Yi. Similarly, if σi satisfies

case 2 then a and b are each the <-greatest elements of their ≡ ◦
σi
-class and if we let c be the <-predecessor

of b in Aσi
, then a < c < b and c ∈ Yi.

So, the sets Y0, Y1, Y2, . . . are definable and disjoint, and between every two elements of Yi+1 is an element

of Yi. This violates Lemma 5.1.7. �

Claim 5.1.19. There are no σ0 ≺ σ1 ≺ σ2 ≺ · · · in T each satisfying case 3.

Proof. Assume toward a contradiction that there are. We can assume without loss of generality that any

τ so that σi ≺ τ ≺ σi+1 satisfies case 1 or case 2 (by Claims 5.1.14 and 5.1.15) and that any τ, τ ′ so that

σi � τ ≺ τ ′ � σi+1, satisfy τ
′ � τ ⌢ 1 (by Claims 5.1.16 and 5.1.18).
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Let Yi be the set of a ∈ Aσi+1
so that a is the <-least element of its ≡ ◦

σi
-class in Aσi+1

, and a is not the

<-least element of its ≡ ◦
σi+1

-class, and the ≡ ◦
σi+1

-class of a is infinite. The set Yi is definable and since Aσi+1

is made up of elements of finite ≡ ◦
σi
-classes (since σi+1 ≻ σi ⌢ 1). It follows that every infinite ≡ ◦

σi+1
-class

intersects Yi infinitely often. There is at least one such, since σi+1 satisfies case 3, so Yi is infinite.

Let a, b ∈ Yi+1 with a < b, then a ✚≡◦
σi+1

b since b is the <-least element of its ≡ ◦
σi+1

-class in Aσi+2
,

and a < b. By Claim 5.1.17, if a ≡ ◦
σi+2

b then a ≡ ◦
σi+1⌢1 b, and since a ✚≡◦

σi+1
b, it follows that

[a, b]< ∩ Aσi+1
6= [a, b]< ∩ Aσi+1⌢1. So, there is some infinite ≡ ◦

σi+1
-class contained in (a, b)<. Then in

particular, Yi intersects (a, b)<. Thus the sets Y0, Y1, Y2, . . . are definable and disjoint, and between every

two elements of Yi+1 is an element of Yi. This violates Lemma 5.1.7. �

Let τ ∈ 2ω be an infinite path through T . From Claims 5.1.14, 5.1.15 and 5.1.19, we may assume (passing to

Aσ for some σ if necessary) that if σ ≺ τ then σ satisfies case 1 or case 2. From Claim 5.1.17 (passing to Aσ

for some σ if necessary), we can assume that τ = 1ω, so in particular, by Claim 5.1.17, it follows that ≡ ◦
1n

and ≡ ◦
1m agree on A1m when m > n. Since case 2 never changes the <-initial segment of an ≡ 1n -class, it

follows that if 1n satisfies case 2, then so does 1n+1 (because in particular it still doesn’t satisfy case 1).

So, we may assume that either 1n satisfies case 1 for each n or 1n satisfies case 2 for each n. Assume it

is the former (the arguments are analogous). There are infinitely many ≡ ◦
1n -classes with <-least element.

Given n ∈ ω, suppose that an is the <-least element of an ≡ ◦
1n -class. Then since the ≡ ◦

1n−1 -class of a has at

most one more element than the ≡ ◦
1n -class of a, it follows that the ≡ ◦

1n−1 -class of a has a <-least element

which is not in A1n , and is therefore the <-predecessor of a in A1n−1 . Repeating this argument, we find

that the ≡ ◦
ε-class of a has a <-least element which is the n-th <-predecessor of a. Thus there are infinitely

many ≡ ◦
ε-classes with <-least element which has an n-th <-successor. Since this is true for every n ∈ ω,

this contradicts Lemma 5.1.10. �

So, Theorem 5.1.12 gives us a basic idea of how to separate orders into “discrete parts” and “dense parts”.

It is sometimes easier to think of the structure in one discrete piece and one dense piece:

Corollary 5.1.20. If M = (M,<, . . . ) is a dp-small linear order, then there are some linear order <dd on

M , definable with parameters from M, which has finite <-rank, and some x ∈ M so that (−∞, x]<dd is

<dd-discretely ordered, and (x,∞)<dd is <dd-densely ordered.

Proof. Let A0, A1, . . . , An be the partition given by Theorem 5.1.12. Without loss of generality, each Ai is

either <-discretely ordered or <-densely ordered without <-endpoints (if Ai is <-densely ordered and has a

<-endpoint, then the <-endpoint is 0-definable, so we can split Ai into Ai\{a}, which is <-densely ordered

and has one <-endpoint fewer than Ai, and {a} which is <-discretely ordered).
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If none of the Ai is <-discretely ordered, then we can choose a ∈ Ai for some Ai which is <-densely

ordered, and split Ai into Ai\{a} and {a} (this requires a single parameter a in the definition).

Now, if Ai is <-discretely ordered and has no <-endpoints, we can choose a ∈ Ai which has a <-pre-

decessor and a <-successor. Then we can split Ai into Ai ∩ (−∞, a]< and Ai ∩ [a,∞)<, which are both

<-discretely ordered and have a <-endpoint. Thus by allowing Ai to be defined with parameters, we may

assume that each Ai is either <-discretely ordered with at least one endpoint, or <-densely ordered with no

<-endpoints.

Now, without loss of generality, we label the Ai so that if Ai is <-discretely ordered and Aj is <-densely

ordered, then i < j. In particular, let k be the minimum so that Ak is <-densely ordered. Then we see that

(D,<D) =
∑n

i=k(Ai, < ↾Ai) is densely ordered, and <D is built by repeated applications of Construction 2

from Lemma 4.2.8, so it has finite (< ↾D)-rank.

For the discrete portion of the order, note for i < k that if Ai is <-discretely ordered and has a <-least

element but no <-greatest element, then we can replace (Ai, <) with (Ai, >) and get a <-discretely ordered

set with <-greatest element and no <-least element. This is of course an example of Construction 1 from

Lemma 4.2.8. So, we may assume that the discrete order (Ai, <Ai
) is of finite (< ↾ Ai)-rank and has a

<Ai
-greatest element.

For i, j < k with i 6= j, if Ai has no <Ai
-least element and Aj has no <Aj

-least element, then we see

that (B,<B) = (Ai, >Ai
) + (Aj , <Aj

) is discretely ordered. The order <B has finite (< ↾ B)-rank (it is an

example of construction 3 from Lemma 4.2.8), and B has both a <B-least and a <B-greatest element, so we

may assume that there is at most one i so that Ai has no <Ai
-least element.

Now, again assuming i, j < k with i 6= j, if Ai has a <Ai
-least element, then since Aj has a <Aj

-greatest

element, it follows that (B,<B) = (Ai, <Ai
) + (Aj , <Aj

) is a discrete order and <B has finite (< ↾B)-rank.

Iterating this construction, we can paste the discrete orders together to get a single discrete order (B,<B)

with a greatest element.

Now, (M,<M ) = (B,<B) + (D,<D) is the desired order on M . �

This has an immediate application to COn structures:

Corollary 5.1.21. If M is COn for some n > 1 then there are some convex ordering ✁ of M and x ∈ M

so that (M,✁) is COn−1, (−∞, x]
✁

is ✁-discretely ordered, and (x,∞)
✁

is ✁-densely ordered. �

Since any definable set in a dp-small structure is itself dp-small, we can also decompose definable sets into

dense and discrete parts. By compactness, this is in fact uniform for families of definable sets:

Corollary 5.1.22. If M = (M,<, . . . ) is a dp-small linear order, and F is a definable family of subsets of

M , then there are finitely many families A0, A1, A2, . . . , An so that each Ai is either a family of <-densely
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ordered subsets of M or a family of <-discretely ordered subsets of M and for each X ∈ F then there are

sets Ai ∈ Ai for each i so that X =
⋃n

i=0Ai. �

So, to understand dp-small orders, we need to understand discrete and dense orders, as well as their densely

or discretely ordered subsets. In Section 5.2 we will consider the case of a discretely ordered structure, and

prove our reflection principle Theorem 5.2.14. In Section 5.3 we will look more closely at the dense case, and

see a modified analogue to Theorem 5.2.14 which applies to dense orders.

5.2 Discretely Ordered CO Structures

We now consider the case of a discrete convexly orderable order in more detail. Our primary goal in this

section will be to prove our reflection principle Theorem 5.2.14, but we will also more generally discuss the

families of sets definable in a discretely ordered structure. We begin with a simple observation on dp-small

discrete orders:

Example 5.2.1. Let M = (Z×2, <, U), where U is a unary predicate naming (Z×{0}). Then M is weakly

o-minimal and <-discretely ordered, but A = Z+ × 2 is a definable subset which is not <-discretely ordered

(because in particular, (1, 1) is not the <-least element of A, but does not have a < ↾A-predecessor).

So, certainly, we must accept that even in a weakly o-minimal discretely ordered structure M, not every

definable subset of M will be discretely ordered. On the other hand, we want to say that the definable sets

are essentially discrete. This line of thought inspires the following definition:

Definition 5.2.2. Let X = (X,<) be a linear order. We say that X is pseudo-discrete if there are only

finitely many x ∈ X so that X has either no <-predecessor or no <-successor. We say that X is pseudo-

dense if there are only finitely many x ∈ X so that X has a <-predecessor or a <-successor. We say that

M = (M,<, . . . ) is fully pseudo-discrete (fully pseudo-dense) if whenever N ≡ M and A ⊆ N is

definable in N , then A is <-pseudo-discretely ordered (<-pseudo-densely ordered).

In understanding pseudo-discrete orders it is useful to think in terms of <-successors. The following termi-

nology will be helpful:

Definition 5.2.3. For any linear order (X,<) and x ∈ X, the <-entourage of x is the collection of n-th

<-successors and n-th <-predecessors of x for all n ∈ ω. We say (X,<) is weakly pseudo-discrete if only

finitely many elements of X have finite <-entourage.

Weak pseudo-discreteness will be a useful stepping-stone in our proof of Theorem 5.2.14, but on a dp-small

structure, this is really the same condition as pseudo-discreteness
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Lemma 5.2.4. If M = (M,<, . . . ) is a dp-small order, then (M,<) is pseudo-discrete if and only if it is

weakly pseudo-discrete.

Proof. If a <-entourage has least element a, then a has no <-predecessor. Since every finite <-entourage

has a <-least element, clearly pseudo-discrete implies weakly pseudo-discrete. For the converse, we note

that from Lemma 5.1.10, there are only finitely many elements of M which have infinite <-entourage but

have either no <-predecessor or no <-successor. It follows that there are finitely many elements with no

<-predecessor or no <-successor if and only if there are finitely many such with finite <-entourage. So,

weakly pseudo-discrete implies pseudo-discrete. �

So, we will instead be using weak pseudo-discreteness as a condition on the convex order. In this case it is

a distinct condition from pseudo-discreteness, but it is still strong enough to imply that some convex order

is discrete:

Lemma 5.2.5. If ✁ is a weakly pseudo-discrete order, then there is a finite ✁-rank discrete order.

Proof. We can assume without loss of generality that each element of M has infinite ✁-entourage, be-

cause there are only finitely elements which do not have infinite ✁-entourages, and by construction 2

of Lemma 4.2.8 we can move these points into infinite ✁-entourages. We will apply construction 3 of

Lemma 4.2.8 to construct our discrete order. Say a ≡ b if a and b have the same ✁-entourage. The ≡-classes

are convex, as desired. It will suffice to find a (✁ ↾X)-ranked order on each ≡-class X in which each element

has a predecessor and successor. Since ≡-classes are just ✁-entourages, there are three possibilities for an

≡-class X:

1. X has ✁-order type Z: No change is needed.

2. X has order-type ω: We need to show that there is a <-ranked order on (ω,<) with the desired

properties. By moving the odds to the front of the order, we get a <-rank 2 order (construction 2)

with order type ω + ω. Now, we can reverse the order on the first copy of ω (construction 3) to get a

<-ranked order with order type Z.

0
◦
1
•
2
◦
3
•
4
◦
5
•
6
◦
7
•
···
· · · ⇒

1
•
3
•
5
•
7
•
···
· · ·

0
◦
2
◦
4
◦
6
◦
···
· · · ⇒

···
· · ·

7
•
5
•
3
•
1
•
0
◦
2
◦
4
◦
6
◦
···
· · ·

3. X has order-type ω∗. In this case X has order-type ω in the (✁↾X)-rank 1 order ✄↾X, so this reduces

to the previous case. �

Corollary 5.2.6. If M has a weakly pseudo-discrete convex ordering, then M has a discrete convex order-

ing. �
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So, our goal will be to show that every pseudo-discrete convexly orderable structure has a weakly pseudo-

discrete convex ordering. We first show that the definable subsets of a pseudo-discrete convexly orderable

structure are finite unions of periodic sets.

Definition 5.2.7. Let M = (M,<, . . . ). For any X,A ⊆ M , where A is <-discretely ordered, we say that

X is <-periodic on A with period n if, for any a ∈ A with n-th (< ↾ A)-successor a′, we have a ∈ X

if and only if a′ ∈ X. We say that A is a <-periodic component of X if A is a maximal <-discretely

ordered <-convex set on which X is periodic.

Example 5.2.8. One specific oddity of Definition 5.2.7 is that periodic components of a set are not nec-

essarily disjoint. As an example, here are two ways to divide a sequence of ones and zeros into periodic

pieces:

. . . 101101101|01010 · · · = . . . 1011011|0101010 . . .

Note that the “01” is part of both maximal periodic pieces, i.e., part of both periodic components. On the

other hand, the overlap between two periodic components is always finite.

So, we want to show that definable subsets of a convexly orderable pseudo-discrete order have finitely many

<-periodic pieces. We do this by first showing that the distance between elements of a definable set is

uniformly short:

Lemma 5.2.9. Suppose that M = (M,<, . . . ) is a convexly orderable pseudo-discrete order. Given a defin-

able X ⊆M , and a ∈M , we define dX(a) to be the least positive n so that the n-th successor of a is in X if

and only if a is (if there is no such n, then dX(a) = ∞). There is some N (which doesn’t depend on X and

a) so that for any X ⊆M the set {x | dX(a) > N + 1} is finite.

Proof. If a has n-th <-successor for each n and dX(a) = ∞, then the <-successor of a is an element of X

which has an n-th (<↾M\X)-successor for each n but has no (<↾M\X)-predecessor. By pseudo-discreteness

and Lemma 5.1.10, then, it follows that there are only finitely many a so that dX(a) = ∞ for any definable

X ⊆ M . By compactness, it follows that there are only finitely many a so that dX(a) > m for some m

(which might depend on X). So, showing that {x | dX(a) > N + 1} is finite is equivalent to showing that

d−1
X ({k}) is finite whenever k > N + 1.

Let N be the as in Porism 5.1.8, and assume there are some definable X ⊆ M and k > N + 1 so

that B0 = d−1
X ({k}) is infinite. Let Bi be the set of i-th successors of B0. By pseudo-discreteness and

Lemma 5.1.10, since B0 is infinite, Bi is infinite for each i too.

Suppose a ∈ B0 and b is the j-th <-successor of a for some j ≤ N . Then a ∈ X if and only if b /∈ X

since dX(a) > j. Let b′ be the successor of b. Then a ∈ X if and only if b′ /∈ X since dX(a) > j + 1. It
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follows that b ∈ X if and only if b′ ∈ X, so dX(b) = 1, i.e., b /∈ B0. So the B0, B1, . . . , BN are disjoint, and

for a, b ∈ Bi+1 with a < b, there is b′ ∈ Bi so that b is the <-successor of b′, from which a < b′ < b. This

violates Porism 5.1.8. �

Corollary 5.2.10. If M = (M,<, . . . ) is a convexly orderable pseudo-discrete order, then M is fully pseudo-

discrete.

Proof. Fix definable X ⊆ M . By Lemma 5.2.9 for all but finitely many a ∈ X the k-th successor of a is in

X for some k < N . In particular, this means that all but finitely many a ∈ X have (< ↾X)-successors, as

desired. �

Now we use the fact that if X is a definable set, then so are sets that describe the “pattern” of X on a

specific <-periodic component. We show that sets with repeating patterns are periodic:

Lemma 5.2.11. Given σ = b0b1b2 . . . ∈ 2ω, suppose there is some N so that for any i, there is 0 < j ≤ N

so that bibi+1bi+2 · · · bi+N = bi+jbi+1+jbi+2+j · · · bi+N+j. Then σ is periodic with period ≤ N .

Proof. Let f(i) be any j with N ≥ j > 0 which satisfies the equation:

bibi+1bi+2 · · · bi+N = bi+jbi+1+jbi+2+j · · · bi+N+j

Since f takes finitely many values, there is some value τ so that f(i) = τ infinitely often. We will show

that if f(i + 1) = τ , we can assume that f(i) = τ as well. Since for every i0 there is some i1 > i0 with

f(i1) = τ , this is sufficient to show that we can assume f(i) = τ for all i, and therefore that bi = bi+τ for all

i, i.e., that σ is periodic with period dividing τ .

By definition of f(i), we have bi = bi+f(i), and since i+ 1 ≤ i+ f(i) < i+ 1+N , it follows by definition

of f(i+1) = τ that bi+f(i) = bi+f(i)+τ , so we have bi = bi+τ+f(i). Finally, since i < i+ τ ≤ i+N , it follows

from the definition of f(i) that bi+τ = bi+τ+f(i), so we have bi = bi+τ .

By definition of f(i+ 1) = τ , we have:

bi+1bi+2bi+3 · · · bi+N = bi+1+τ bi+2+τ bi+3+τ · · · bi+N+τ

Which, along with bi = bi+τ tells us that f(i) = τ works. �

And we combine these results to show that we have periodicity within a <-entourage:
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Lemma 5.2.12. If M = (M,<, . . . ) is a convexly orderable pseudo-discrete order, then there is some N so

that for any definable X ⊆ M and a ∈ M with <-entourage Y there are b, c ∈ Y with b ≤ a ≤ c so that X

is periodic with period n ≤ N on (−∞, b)< ∩ Y , and X is periodic with period n′ ≤ N on (c,∞)< ∩ Y .

Proof. Fix N as in Lemma 5.2.9. Let S be the <-successor function. For x, y ∈ M we will say x ∼ y if,

Sj(x) ∈ X ↔ Sj(y) ∈ X for every j ≤ N . Then ∼ is a definable equivalence relation with at most 2N

equivalence classes, so by Lemma 5.2.9 we can choose b, c ∈ Y with b ≤ a ≤ c so that if x ∈ Y \[b, c]<, then

there is j ≤ N so that x ∼ Sj(x).

Now, if (c,∞)< ∩ Y is finite, then we could have chosen c to be its maximum element, in which case we

are done. On the other hand, if (c,∞)< ∩ Y is infinite, then we define bj = 1 if Sj+1(c) ∈ X, and bj = 0 if

Sj+1(c) /∈ X. For each j ∈ ω, there is some k < N so that Sj+1(c) ∼ Sj+1+k(c), i.e., so that bj+ℓ = bj+ℓ+k

for each ℓ < N . It follows from Lemma 5.2.11 that b0b1b2b3 . . . is periodic with period n′ < N , as desired.

The argument for (−∞, b)< ∩ Y is analogous. �

Compactness then tells us that we have periodicity overall:

Corollary 5.2.13. If M = (M,<, . . . ) is a convexly orderable pseudo-discrete order, then there is some N

so that if X ⊆ M is definable, then it has finitely many <-periodic components, and has period dividing N !

on each.

Proof. Fix N as in Lemma 5.2.12. Let B0 be the collection of a so that a ∈ X but the N !-th successor of a

is not or vice versa. It is enough to show that this is finite.

By Lemma 5.2.12, each <-entourage intersects B0 finitely. The set B0 is definable. Let C0 be the

collection of a ∈ B0 so that a is the <-greatest element of B0 in its <-entourage. Let B◦
0 = B0, and for

each i > 0 we let Ci+1 be the collection of <-successors of elements of Ci, let Bi+1 be the collection of

<-successors of elements of B◦
i , and let B◦

i+1 = Bi+1\B0. Then B◦
i ⊇ Ci, and the B◦

i are disjoint, i.e., the

B◦
i witness that the Ci are definably separated. For a, b ∈ Ci+1 with a < b, we know b is the <-successor

of some b′ ∈ Ci, and thus a < b′ < b. It follows from Porism 5.1.8 that Ci is finite for some i, and so by

Corollary 5.1.11, C0 is finite, and it follows that B0 is finite. �

We now have a strong enough understanding of the definable subsets of a convexly orderable discrete order

to prove the reflection principle:

Theorem 5.2.14. If M = (M,<, . . . ) is discretely ordered and convexly orderable, then M has a discrete

convex ordering.

Proof. Let N be as given by Lemma 5.2.12. For a, b ∈ M , we say that a ∼ b if there are exactly N !k − 1

elements <-between a and b for some k ∈ ω. Note that if a < b < c, and there are r elements between a and
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b and there are s elements between b and c, then there are r+ s+1 elements between a and c (the +1 is for

b itself). So, ∼ is an equivalence relation on M . Let f : M → M be a choice function for this equivalence

relation.

Now, given ✁ a convex ordering onM , we say a✁f b if f(a)✁f(b) or if f(a) = f(b) and a < b. Clearly ✁f

is an order on M , and if a ∈ M has infinitely many <-successors (or <-predecessors), then a has infinitely

many ✁f -successors (or ✁f -predecessors). So, since M is <-weakly pseudo-discrete, it follows that M is

✁f -weakly pseudo-discrete. So by Corollary 5.2.6, if ✁f is a convex ordering of M, then we are done.

Suppose that ✁f is not a convex ordering of M, then (possibly passing to some elementary exten-

sion (M′,✁′, f ′) of (M,✁, f)) there is some definable X ⊆ M and some strictly ✁f -monotone sequence

a0, a1, a2, . . . so that ai ∈ X if and only if i is even. By Corollary 5.2.13 we may assume that the ai are all

in the same <-periodic component of X, so if ai ∼ aj , then ai ∈ X if and only if aj ∈ X. So, it follows that

ai ≁ ai+1 for each i and, since ∼-classes are ✁f -convex, ai ≁ aj for i 6= j.

By Corollary 5.2.13, we may assume that for each i, we have f(ai) ∈ X if and only if ai ∈ X. Then since

the f(ai) are distinct, we have a strictly ✁f -monotone sequence f(a0), f(a1), f(a2), . . . so that f(ai) ∈ X if

and only if i is even. But then f(a0), f(a1), f(a2), . . . is a ✁-monotone sequence by definition of ✁f , which

contradicts the assumption that ✁ is a convex ordering. �

In Theorem 5.2.14 it is sufficient to the hypothesis that M be a pseudo-discrete order, rather than a discrete

order. However, consider the following example:

Example 5.2.15. Let M = ((Z+ 1)× Z, <). M is convexly orderable, and is not pseudo-discrete, but M

defines the discrete order <Z×Z on M , so M has a discrete convex ordering.

As in this example, the most general way to apply Theorem 5.2.14 is to first apply Corollary 5.1.20 to

make the order discrete if possible. In this sense, pseudo-discreteness is actually a stronger condition than

necessary.

5.3 Dense Orders

We now consider the analogue of Theorem 5.2.14 for densely ordered structures. We will prove this analogue

by successive approximations, beginning by showing that monotone sequences in the original order can’t be

too far from monotone in the convex order:

Definition 5.3.1. Given orders < and ✁ on X, we say that a ✁-monotone sequence a0, a1, a2, . . . , ak is a

<-zigzag in ✁ if either a2i < a2j+1 for all i, j, or a2i > a2j+1 for all i, j.
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Lemma 5.3.2. If M = (M,<, . . . ) is a linear order and ✁ is a convex ordering of M, then there is some

N so that no <-zigzag in ✁ has length 2N .

Proof. Let N be the maximum number of ✁-convex components of a <-interval, and suppose a0, a1, . . . , a2N

is a <-zigzag in ✁. Let ai and aj be the <-minimum and <-maximum of {a0, a2, a4, . . . , a2N} respectively.

Then ak ∈ [ai, aj ]< exactly when k is even. For k < k′ ≤ N , a2k+1 is ✁ between a2k and a2k′ and is not in

[ai, aj ]<, so the elements a0, a2, a4, . . . , a2N are each in different ✁-components of [ai, aj ]<. Thus [ai, aj ]<

has at least N + 1 distinct ✁-convex components, which contradicts the choice of N . �

Now, we can use this to show that a convex ordering of a dense order has dense pieces.

Lemma 5.3.3. Suppose M = (M,<, . . . ) is a linear order and ✁ is a convex ordering of M. If X ⊆M is

infinite and <-densely ordered then there is an infinite (✁ ↾X)-interval I ⊆ X which is ✁-densely ordered.

Proof. Assume not, then any infinite (✁ ↾ X)-interval of X contains a point with a ✁-successor. Choose

such a point a0 and call its successor b0. Now, given such a pair ai, bi, the <-interval between ai and bi

is definable and intersects X infinitely, so it contains some infinite (✁ ↾X)-interval. We can therefore pick

ai+1, bi+1 in the (< ↾X)-interval between ai and bi so that bi+1 is the ✁-successor of ai+1.

By switching ai and bi as necessary, we have a0 < a1 < a2 < a3 < · · · < b3 < b2 < b1 < b0 where bi

may be either the ✁-predecessor of ai (if we switched them) or ✁-successor of ai (if we didn’t switch them).

By the pigeonhole principle, one of these two cases happens infinitely often so (reversing ✁ if necessary)

we can once again assume that bi is the ✁-successor of ai for each i. Applying Ramsey’s theorem, we can

also assume that a0, a1, a2, . . . is ✁-monotone. Since bi is the ✁-successor of ai for each i, if a0, a1, a2, . . . is

✁-increasing, then a0, b0, a1, b1, a2, b2, . . . is ✁-increasing as well, and if a0, a1, a2, . . . is ✁-decreasing, then

b0, a0, b1, a1, b2, a2, . . . is ✁-decreasing as well.

Either way, we have found an infinite <-zigzag in ✁, which is a contradiction by Lemma 5.3.2. �

This combines with our results on discrete linear orders to show that dense and discrete are truly a dichotomy

on convexly orderable linear orders.

Corollary 5.3.4. If M = (M,<, . . . ) is a convexly orderable linear order, and M is <-discretely ordered,

then for any definable order ✁ on M , we can definably partition M into finitely many ✁-discretely ordered

sets. �

Corollary 5.3.5. If M = (M,<, . . . ) is a COn pseudo-discrete order for some n > 1, then there is some

discrete convex ordering of M so that (M,✁) is COn−1.
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Proof. By Corollary 5.1.21 there are some order ✁ and x ∈ M so that (M,✁) is COn−1, (−∞, x]
✁

is

✁-discretely ordered, and (x,∞)
✁

is ✁-densely ordered without endpoints. If (x,∞)
✁

isn’t empty, then

in fact it is an infinite definable ✁-densely ordered set. By Corollary 5.3.4, (x,∞)
✁

cannot be <-pseudo-

discrete, which contradicts Corollary 5.2.10. �

Now, we show the converse, that if the convex ordering is dense, then this can be traced back to the original

order:

Definition 5.3.6. We say that orders < and ✁ are compatible on a set X if either for every a, b ∈ X we

have a < b if and only if a✁ b, or for every a, b ∈ X we have a < b if and only if b✁ a.

Lemma 5.3.7. Suppose M = (M,<, . . . ) is a linear order, and ✁ is a convex order of M. If there is some

infinite X ⊆M which is ✁-densely ordered, then there is some infinite Y ⊆ X so that Y is ✁-densely ordered

and < and ✁ are compatible on Y .

Proof. Since (X,✁) is infinite and densely ordered by ✁, we can choose xσ ∈ X for σ ∈ 2<ω so that when

τ � σ ⌢ 0 we have xτ ✁ xσ and when τ � σ ⌢ 1 we have xσ ✁ xτ . By Milliken’s tree theorem, we can pass

to a subtree so that if we fix i ∈ 2, then either xσ⌢i⌢τ < xσ for every σ, τ ∈ 2<ω, or xσ⌢i⌢τ > xσ for every

σ, τ ∈ 2<ω.

In the case where x0 < xε < x1, it follows that xτ < xσ for τ � σ ⌢ 0, and xσ < xτ for τ � σ ⌢ 1.

Thus < and ✁ are the same on Y = {xσ | σ ∈ 2<ω}, and we are done. Analogously, in the case where

x1 < xε < x0, then similarly we can show that < and ✁ are the reverse of each other on Y .

Now, if x0, x1 < xε, then let A be the set of σ so that for any τ � σ ⌢ 1, there is some η � σ ⌢ 0 such

that xη < xτ . There are two possibilities:

1. There is a sequence σ0 ≺ σ1 ≺ σ2 ≺ · · · disjoint from A with σi+1 � σi ⌢ 0. By definition of A, we

can choose τi � σi ⌢ 1 for each i ∈ ω so that xτi < xσj
for each j ∈ ω. By definition of the xσ, we

see that xτ0 ✄ xσ0
✄ xτ1 ✄ xσ1

✄ xτ2 ✄ xσ2
✄ · · · , so this is an infinite <-zigzag in ✁, which contradicts

Lemma 5.3.2.

2. If there is no such sequence, it is because A contains an entire cone in 2<ω. We may assume that

A = 2<ω. For any k, we can choose τ0, τ1, τ2, . . . , τN−1 so that τi ≻ 1i ⌢ 0 and so that we have

xτ0 < xτ1 < xτ2 < · · · < xτN−1
< x1N−1 < x1N−2 < · · · < x1 < xε. By definition of the xσ, we have

xτ0 ✁ xε ✁ xτ1 ✁ x1 ✁ xτ2 ✁ x12 ✁ · · ·✁ xτN−1
✁ x1N−1 , so this is a <-zigzag of length 2N in ✁. Since

N is arbitrary, this contradicts Lemma 5.3.2. �
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Note, of course, that X and Y are not necessarily definable (in M or in (M,✁)) so either or both could

be subsets of a set which is <-or ✁-discretely ordered. We must therefore refine these results to find more

useful compatible sets. Our final reflection principle for dense orders will be as follows:

Theorem 5.3.11. Suppose M = (M,<, . . . ) is a linear order, and ✁ is a convex order of M. Then

for X ⊆ M which is <-densely ordered there is some N so that for any (< ↾ X)-interval I, there are

a (< ↾ X)-interval J ⊆ I, and a partition Y0, Y1, Y2, . . . , YN−1 of J into sets Yi on which < and ✁ are

compatible so that each Yi is <-dense in J and (✁ ↾X)-convex.

We begin by making the compatible sets ✁-dense in a ✁-interval:

Lemma 5.3.8. Suppose M = (M,<, . . . ) is a linear order, and ✁ is a convex ordering of M. Then for any

<-densely ordered infinite X ⊆M there are I ⊆ X, an infinite (✁ ↾X)-interval which is ✁-densely ordered,

and Y ⊆ I which is (✁ ↾X)-dense in I so that ✁ and < are compatible on Y .

Proof. Assume toward a contradiction that this is false. By Lemma 5.3.3, there is a (✁↾X)-interval I0 which

is ✁-densely ordered. We build ai, bi, ci, Ii, and Yi for each i ∈ ω so that:

1. Ii is a ✁-densely ordered ✁ ↾X-interval,

2. Yi ⊆ Ii is ✁-densely ordered,

3. the orders ✁ and < are compatible on Yi,

4. ai, bi, ci ∈ Yi with ai ✁ ci ✁ bi, and

5. either Ii+1 ⊆ (ci, bi)✁ and Ii+1 is contained in the <-interval between ai and ci, or Ii+1 ⊆ (ai, ci)✁

and Ii+1 is contained in the <-interval between ci and bi.

Given Ii there is, by Lemma 5.3.7 some Yi ⊆ Ii which is ✁-densely ordered and on which < and ✁ are

compatible. We choose a maximal such Yi. The next step of the construction is written assuming < and ✁

are the same on Yi. If not, replace < with > in the construction. The rest is the same.

Choose ai✁ bi in Yi. The interval (ai, bi)< contains Yi∩ (ai, bi)✁, which is infinite and ✁-densely ordered,

so since (ai, bi)< has finitely many (✁ ↾ X)-convex components, it contains some infinite (✁ ↾ X)-interval

J ⊆ (ai, bi)✁. Since we assumed that the lemma is false, we may assume without loss of generality that

J ∩ Yi = ∅. By Lemma 5.3.7 we can choose some Z ⊆ J , densely ordered by ✁, on which ✁ and < are

compatible. Choose x ∈ Z which is not a <-endpoint. By the maximality of Yi, < and ✁ are not compatible

on Yi ∪ {x}, so there is some ci ∈ Yi so that either ci ✁ x and ci > x, or ci ✄ x and ci < x.
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We consider the case where ci ✁ x (the other case is analogous). We have ci > z for any z ∈ Z ∩ (ai, x)<

by compatibility of ✁ and < on Z, and this set is infinite since x is not a <-endpoint of Z. On the other

hand ci ✁ z for any z ∈ J since J is (✁ ↾X)-convex and does not contain ci. So, (ai, ci)< ⊇ (ai, x)< contains

an infinite (✁ ↾X)-interval Ii+1 ⊆ (ci, bi)✁.

Now, by the pigeonhole principle, we can assume that either < and ✁ match on Yi always. If not, replace

< with > throughout the rest of the proof, but the argument is otherwise the same. We may also assume

that either Ii+1 ⊆ (ai, ci)< ∩ (ci, bi)✁ always, in which case a0 ✁ c0 ✁ a1 ✁ c1 ✁ · · · is an infinite zigzag, or

that Ii+1 ⊆ (ci, bi)< ∩ (ai, ci)✁ always, in which case b0 ✄ c0 ✄ b1 ✄ c1 ✄ · · · is an infinite zigzag. Either case

contradicts Lemma 5.3.2. �

One thing worth noting with Lemma 5.3.8 is that given a uniformly definable collection of sets (<-intervals),

we have found a set in which these sets make some sort of uniform sense in terms of ✁. However, ✁ is a

convex ordering, so we expect definable structure to correspond to ✁-convex sets. So, our next step is to

show that in fact we can require our compatible set to be ✁-convex as well:

Lemma 5.3.9. Suppose M = (M,<, . . . ) is a linear order, and ✁ is a convex ordering of M. Then for any

<-densely ordered infinite X ⊆ M there is some infinite (✁ ↾X)-densely ordered (✁ ↾X)-interval in M on

which < and ✁ are compatible.

Proof. Assume toward a contradiction that there is no such (✁ ↾ X)-interval. By Lemma 5.3.8, there are

some infinite (✁ ↾X)-interval I ⊆ X and some Y which is ✁-dense in I so that < and ✁ are compatible on

Y . Let Y be maximal with this property. By assumption, Y cannot contain a (✁ ↾ X)-interval, so Y and

I\Y are both ✁-dense in I.

Let N be the maximum number of ✁-convex components of a <-interval. Then for any sequence of

elements y0 < y1 < y2 < y3 < · · · < yN in Y , there must be some i so that yi and yi+1 are in the same

(✁ ↾ X)-convex component of [y0, yN ]<. Since I\Y intersects the (✁ ↾ X)-interval between yi and yi+1, it

follows that [y0, yN ]< contains some point of I\Y which is ✁-between y0 and yN . So, we can choose Z ⊆ I\Y

so that for y, y′ ∈ Y with y < y′, there is some z ∈ Z so that y < z < y′ and z is ✁-between y and y′. We

can in fact choose Z so that if z, z′ ∈ Z with z < z′ there is some y ∈ Y so that z < y < z′. (Say that

z ∼ z′ if there is no such y, and choose a single representative of each ∼-class). It follows that ✁ and < are

compatible on Z. Furthermore < and ✁ are the same on Y if and only if they are the same on Z.

We assume that < and ✁ are in fact the same on Y (otherwise, replace < with > in the rest of the

argument). Now, fix a ∈ Z. If b ∈ Y with a✁ b, then (a, b)
✁
intersects Y infinitely, so it intersects (−∞, b)<

infinitely. Since ✁ is a convex ordering and (−∞, b)< is definable, it follows that some ✁-subinterval of

(a, b)
✁

is contained in (−∞, b)<. Then there is c ∈ Z ∩ (−∞, b)< ∩ (a, b)
✁
. In particular, a ✁ c implies
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a < c < b. By an analogous argument, if b ∈ Y with a ✁ b, then b < a. In other words, ✁ and < are

compatible on Y ∪ {b}, which contradicts our choice of Y . �

Now, we can infer that such a compatible set should be somewhere dense in the original structure too:

Lemma 5.3.10. Suppose M = (M,<, . . . ) is a linear order, and ✁ is a convex ordering of M. Then for

any <-densely ordered infinite X ⊆M there are some infinite (< ↾X)-interval I, and some (✁ ↾X)-interval

J so that < and ✁ are compatible on J and J is <-dense in I.

Proof. We assume toward a contradiction that there are no such I and J . Let I0 = X. Given Ii an infinite

(< ↾X)-interval, we have a finite coloring of Ii by (✁ ↾X)-convex components. Since Ii is <-densely ordered,

it follows that one of the colors is somewhere dense. So, possibly replacing Ii with a (< ↾X)-subinterval as

necessary, we may assume that there is a (✁ ↾X)-interval K ⊆ Ii which is <-densely ordered.

By Lemma 5.3.9, there is some infinite, densely ordered (✁ ↾ K)-subinterval Ji of K so that < and ✁

are compatible on Ji (and of course Ji is also a (✁ ↾ X)-interval). We choose ai, bi ∈ Ji with ai < bi. By

assumption, we may let Ii+1 be any (< ↾X)-subinterval of (ai, bi)<↾X which does not intersect Ji.

From this construction, we have ai < bj for all i, j ∈ ω, and since the (✁ ↾ X)-interval between ai and

bi is contained in Ji we know that it doesn’t contain aj or bj for i 6= j. In other words either ai, bi ✁ aj , bj

or ai, bi ✄ aj , bj . By the pigeonhole principle we may assume that either a0, b0, a1, b1, . . . is ✁-monotone, or

that b0, a0, b1, a1, . . . is ✁-monotone. Either way, this is an infinite zigzag, which contradicts Lemma 5.3.2.�

This finally allows us to prove our main reflection principle for densely ordered structures:

Theorem 5.3.11. Suppose M = (M,<, . . . ) is a linear order, and ✁ is a convex order of M. Then

for X ⊆ M which is <-densely ordered there is some N so that for any (< ↾ X)-interval I, there are

a (< ↾ X)-interval J ⊆ I, and a partition Y0, Y1, Y2, . . . , YN−1 of J into sets Yi on which < and ✁ are

compatible so that each Yi is <-dense in J and (✁ ↾X)-convex.

Proof. We can build a sequence I0 ) I1 ) · · · of (< ↾X)-intervals and Y0, Y1, Y2, Y3, . . . so that the Yi are

disjoint (✁ ↾X)-intervals on which ✁ and < match, and Yi is <-dense in Ii for each i. We begin by any I0

and Y0 with these properties. There is some such by Lemma 5.3.10. Now, assuming that we have Ii and

Yi for i < n. If
⋃n−1

i=0 Yi contains any <-subinterval of In−1, then they satisfy the theorem so we are done.

Otherwise A = In−1\Y0 ∪ Y1 ∪ Y2 ∪ · · · ∪ Yn−1, is <-dense in In−1, so we apply Lemma 5.3.10 to get an

infinite (< ↾A)-interval I and a (✁ ↾A)-interval Yn ⊆ I so that Yn is <-dense in I and < and ✁ match on Yn.

Since Yn is an infinite (✁ ↾A)-interval and A has at most n+1 distinct (✁ ↾X)-convex components, there is

some (✁ ↾X)-convex subset of Yn. In particular, we may assume that Yn is in fact a (✁ ↾X)-interval. Let
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In be the <-convex hull of I. Since I is a (<↾ A)-interval and A is (< ↾X)-dense in In−1, it follows that In

is a (< ↾X)-subinterval of In−1, and since Yn is <-dense in I and I is <-dense in In, it follows that Yn is

<-dense in In as desired.

Now, if the construction continues infinitely, we derive a contradiction, since for a, b ∈ YN with a < b,

only (✁ ↾ X)-interior points of Yi are in (a, b)< ∩ Yi for each 0 ≤ i ≤ N , and it follows that Yi contains

a (✁ ↾ X)-convex component of (a, b)< for 0 ≤ i ≤ N . Thus we can find for any N a (< ↾ X)-interval

with more than N distinct (✁ ↾N)-convex components, which contradicts the assertion that ✁ is a convex

ordering. Note, in fact, that the number of Yi in our decomposition is therefore no greater than the number

of ✁-convex components of a <-interval, which is bounded. �

We use this theorem in Chapter 6 to give a partial characterization of the definable sets in an convexly

orderable linear order. For this reason we make the following definition:

Definition 5.3.12. Let M = (M,<, . . . ) be a linear order convexly ordered by ✁. Then we say that the

sets Y0, Y1, . . . , YN−1 are a match partition of X if the Yi partition X, each Yi is <-dense in X, each Yi is

✁-convex, and for each i, the orders < and ✁ are compatible on Yi.

Theorem 5.3.11 then, can be thought of as saying that every infinite densely ordered set in a convexly

orderable structure has a <-subinterval with a match partition. The main use of a match partition is that

in a match partitioned interval, the ✁-convex sets are somewhere <-dense. We have the following:

Lemma 5.3.13. Suppose that M = (M,<, . . . ) is a dense linear order and ✁ is a convex ordering of M.

If Y0, Y1, Y2, . . . YN−1 is a match partition of some <-interval I, then for any definable set X there is some

infinite <-interval J ⊆ I so that for each i either Yi ∩ J ⊆ X or Yi ∩ J ∩X = ∅.

Proof. Fix i. We show that we can satisfy the conclusion for Yi. It follows that we can do so for all Yj by

iterating finitely many times (just replace I with J and use the same argument). There are two possibilities.

The first is that X intersects Yi infinitely, in which case X ∩ Yi contains a ✁-interval since both X and Yi

have finitely many ✁-convex components. In this case, we choose a, b ∈ I with a < b so that the ✁-interval

between a and b is contained in X ∩ Yi, and let J = (a, b)< so that J ∩X ⊇ Yi. The second possibility is

that X only intersects Yi finitely, in which case, since Yi is infinite and ✁-densely ordered, we can choose

a, b ∈ Yi so that a < b and no element of X is in the ✁-interval between them. Then we let J = (a, b)< so

that J ∩ Yi ∩X = ∅. �

Of course, match partitioned sets are not definable a priori, but since we can detect <-dense definable sets,

we have the following (weaker) versions of Theorem 5.3.11 in only the language of M:
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Lemma 5.3.14. Suppose that M = (M,<, . . . ) is a dense linear order, ✁ is a convex ordering of M, and

I is an infinite <-interval match partitioned by Y0, Y1, . . . , YN−1. Then for any definable family F of subsets

of M , there is some n ∈ ω so that if X ∈ F and a0 < a1 < a2 < · · · < an is a sequence of elements of X ∩J ,

then for some i < n, and ℓ < N , we have X ⊇ Yℓ ∩ (ai, ai+1)<.

Proof. Given a definable family F of subsets ofM , there is some k so that each X ∈ F has at most k distinct

✁-convex components. Let n = kN . Then, if X ∈ F and a0 < a1 < a2 < · · · < an is a sequence of elements

of X ∩ J , then by the pigeonhole principle, there are i < j < n and ℓ < N so that ai and aj are in the same

✁-convex component of X and ai, aj ∈ Yℓ, so the ✁-interval between ai and aj is infinite, and contained in

X ∩ Yℓ, in particular this set is exactly (ai, aj)< ∩ Yℓ. �

Porism 5.3.15. If M = (M,<, . . . ) is a convexly orderable dense linear order, then for every infinite

<-interval I ⊆ M , there is an infinite <-interval J ⊆ I so that for any definable family F of subsets of M ,

there is some n ∈ ω (which depends only on F , not on I) so that if X ∈ F and a0 < a1 < a2 < · · · < an is

a sequence of elements of X ∩ J , then X is dense in (ai, ai+1)< for some i < n.

Proof. By Theorem 5.3.11 I contains some match partitioned <-interval J , so we can apply the argument

of Lemma 5.3.14. We simply note that since the number of ✁-convex components of a <-interval is finitely

bounded, so is the number of sets in a match partition. So, N and k in Lemma 5.3.14 is bounded indepen-

dently of the match partitioned <-interval we choose, which means that n = Nk is as well. �

Lemma 5.3.16. Suppose that M = (M,<, . . . ) is a dense linear order, ✁ is a convex ordering of M, I is a

nonempty <-open interval, and Y0, Y1, . . . , YN−1 is a match partition of I. Then if a ∈ I is a <-lower-limit

of some definable X ⊆M , it follows that there are b > a and ℓ < N so that X ⊇ (a, b)< ∩ Yℓ.

Proof. Assume that a ∈ I is a <-lower-limit of a definable set X ⊆M but X ∩Yℓ. Then a is a <-lower-limit

of X ∩Yℓ for some ℓ. Then we build a <-descending sequence b0 > c0 > b1 > c1 > b2 > c2 > · > a as follows:

Begin with any b0 ∈ Yℓ ∩ (a,∞)<. Given bi, if X ⊇ (a, bi)< ∩ Yℓ then we are done. Otherwise, choose some

ci ∈ (a, bi)< ∩ Yℓ\X. Given ci, since a is a <-lower-limit of X ∩ Yℓ, we can choose bi+1 ∈ (a, ci)< ∩ Yℓ ∩X.

Since ✁ and < match on Yℓ ∩ (a,∞)<, it follows that this sequence is ✁-monotone, but it alternates in and

out of the definable set X, which contradicts the assertion that ✁ convexly orders M. �

Corollary 5.3.17. If M = (M,<, . . . ) is a convexly orderable dense linear order, then for any <-interval

I ⊆M there is a <-interval J ⊆ I so that for every definable X and any <-lower-limit a of X contained in

J , there is some b > a so that X is <-dense in (a, b)<. �
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Chapter 6

Monotonicity in Ordered Convexly

Orderable Structures

6.1 Introduction and Notation

As remarked in Chapter 4, convex orderability intentionally mimics the definition of a weakly o-minimal

theory. In fact (Definition 4.2.6), a structure with weakly o-minimal theory is exactly one with a distinguished

definable convex ordering <. One of the most important features of weak o-minimality is that it admits a

cell decomposition theorem:

Theorem 6.1.1 (Macpherson [15]). Let M be a model of a weakly o-minimal theory, let d > 0 and let

X be a definable subset of Md. Then there is a definable partition of X into cells C0, C1, . . . , CM−1 so that

for 0 ≤ i ≤ M − 1 there exist di ≤ d and a projection πi : M
d → Mdi so that πi(Ci) is open in Mdi and

πi : Ci → πi(Ci) is a homeomorphism.

Where a cell is defined as follows:

Definition 6.1.2. A weakly o-minimal cell in M is a subset of Md where d > 0 defined as follows:

1. A 1-cell is a definable <-convex subset of M .

2. A set X ⊆Md+1 is a (d+1)-cell if there is a d-cell Y ⊆Md so that Xz = ∅ for any z /∈ Y and (Xy)y∈Y

is a definable family of nonempty <-convex sets.

These results are used in [15] to show that topological dimension is well behaved in weakly o-minimal

theories. The topological dimension of a finite union of definable sets is the maximum of the dimensions of

the individual sets, it is preserved by definable bijections, and if algebraic closure has the exchange property,

then algebraic dimension is the same as topological dimension. Key to these results is showing that weakly

o-minimal theories have monotonicity:
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Definition 6.1.3 (Aref’ev [4]). We say that M = (M,<, . . . ) has monotonicity if for every definable

function f : D ⊆ M → M , there is some partition of D = Dom(f) into definable sets X and I1, . . . , Im so

that X is finite, each Ii is <-convex, and for x ∈ Ii, and for fixed i, either f is strictly <-increasing in a

<-neighborhood of each x ∈ Ii, or f is strictly <-decreasing in a <-neighborhood of each x ∈ Ii, or f is

constant in a <-neighborhood of each x ∈ Ii, where the case depends only on i, not on x.

More recently, Simon and Walshberg [18] proved that if a dp-minimal structure has a uniform structure (in

the topological sense), then definable multi-functions are continuous almost everywhere. They employ this

result to show that in such structures topological dimension, algebraic dimension, and dp-rank all agree on

definable sets and are definable in families.

Convexly orderable structures need not admit cell-decomposition. Our goal in this chapter is more

modest: to give our own approximation to the monotonicity theorem for convexly orderable structures.

Throughout the chapter, we will assume that M = (M,<, . . . ) is a dense linear order and that ✁ is a

convex ordering of M. By a <-open box, we mean a non-empty set of the form U =
∏d−1

i=0 (ai, bi)<. We call

d the dimension of U (this is unambiguous as such a set has the same dp-rank, topological dimension, and

algebraic dimension). We say that
∏d−1

i=0 Ii is match partitioned if each Ii is match partitioned. By a grid

we mean a definable set of the form G =
∏d−1

i=0 Xi where each Xi ⊆ M . If Xi has at least k elements for

each i < d, then we say
∏d−1

i=0 Xi is a k
×d-grid.

6.2 Density and Grids

Our main goal in this section is to show that graphs of definable functions in M cannot be <-dense anywhere.

We do so by showing that a set which is <-dense in some <-open box must contain a grid <-dense in some

<-open box. In particular, the graph of a function cannot contain a 2×d-grid, and so cannot be <-dense in

any <-open box. We rely on the following pigeonhole principle for grids:

Lemma 6.2.1 (Pigeonhole principle for grids). For any k, ℓ, d ∈ ω there is some nk,ℓ,d ∈ ω so that any

ℓ-coloring of an n×d
k,ℓ,d-grid contains a monochrome k×d-subgrid.

Proof. In the case where d = 1, this is the usual pigeonhole principle. Now, if the statement holds when

d = r, we simply need to show that it holds for d = r + 1 as well. There are
(

nk,ℓ,r

k

)r
distinct k×r-subgrids

of an (nk,ℓ,r)
×r

-grid, so nk,ℓ,r+1 = kℓ
(

nk,ℓ,r

k

)r
, should work. In any n×r+1

k,ℓ,r+1 grid G = A× B where B ⊆ M ,

we can pick an n×r
k,ℓ,r-grid C ⊆ A. Fix any ℓ-coloring of G. Then for each b ∈ B, there is by inductive

hypothesis some Cb ⊆ C so that Cb × {b} is monochrome. By the pigeonhole principle, we can find B0 ⊆ B

with |B0| = kℓ so that Cb = Cb′ = D for any b, b′ ∈ B0. Again by the pigeonhole principle, we can find
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B1 ⊆ B0 with |B1| = k so that D × {b} and D × {b′} are the same color for b, b′ ∈ B1. But then D ×B1 is

the desired k×(r+1)-grid. �

As we’re going to be parsing sets up into <-grids, the following will also be useful:

Lemma 6.2.2. Let N be as in Theorem 5.3.11. If A0, A1, A2, . . . , ANd are grids <-dense in the same <-open

box U ⊆Md, then they are not pairwise disjoint.

Proof. We can assume without loss of generality that U =
∏d−1

i=0 Ii where Ii is match partitioned by

Yi,0, Yi,1, . . . , Yi,ni
and ni < N . By Lemma 5.3.13 we can further assume that each Ar is equal to a product

∏d−1
i=0 Yi,f(i) for some f . Since f ∈ Nd, it follows by the pigeonhole principle that two of the Ai are the

same. �

Theorem 6.2.3. Let F be a definable family of subsets of Md. Then there is some definable family G of

grids so that:

1. if X ∈ F is <-dense in the <-open box U , then X ∩ U ⊇ G for some grid G ∈ G which is <-dense in

some <-open box V ⊆ U , and

2. there is some k ∈ ω so that, for any X ∈ F and match partitioned <-open box U , if X ∩ U contains a

k×d-grid A, then X ∩ U ⊇ G for some grid G ∈ G which is <-dense in some <-open box V ⊆ U .

Proof. We proceed by induction on d. In the d = 1 case, we simply let G be the collection of sets X ∩ U

where U ⊆M is a <-open box. If X is <-dense in the <-interval U , then certainly X ∩ U is <-dense in U ,

so point 1 holds. For point 2, this is just a direct application of Porism 5.3.15.

Now, assume that the statement holds for d = r. We must show that it holds for d = r+1. Consider the

sets BI
a = {c ∈ Mr | Xc ∩ I = Xa ∩ I} where I is a <-interval and a ∈ Mr. The sets BI

a form a uniformly

definable family F0, and so by inductive hypothesis, we can choose a corresponding family G0 and k0 ∈ ω as

in the statement of the theorem.

1. Suppose that X ∈ F is <-dense in a match partitioned <-open box U =
∏d−1

i=0 Ii. Then we define

U1 =
∏d−1

i=1 Ii and let Y0, Y1, . . . , YN−1 be the match partition of I0. By Lemma 5.3.13, for any a ∈ U1

we can find some J ⊆ I0 so that:

P (a, J): for each i < N either Xa ⊇ Yi ∩ J or Xa ∩ Yi ∩ J = ∅.

By successive applications of Lemma 5.3.13, we can therefore find an n×r-grid G ⊆ U1 and an J ⊆ I0

so that, for each a ∈ G, the set Xa ∩ I0 is nonempty and P (a, J) holds. The map which sends a ∈ G
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to the collection of i < N so that Xa ⊇ Yi ∩ J is a 2N -coloring of G. Since we can make n arbitrarily

large, then by the pigeonhole principle for grids we can assume, without loss of generality, that for

each a, a′ ∈ G and i < N we have Xa ∩ Yi ∩ J = Xa′ ∩ Yi ∩ J .

In particular, we can find a0 ∈ U1 with Xa0
∩ I0 6= ∅ and J0 ⊆ I0 so that BJ0

a0
∩U1 contains a k×r

0 -grid.

Since U1 is match partitioned, there is some G0 ∈ G0 so that G0 ⊆ BJ0
a0

∩U1 and G0 is <-dense in some

<-open box V0 ⊆ U1.

Now, without loss of generality we can choose V0 so that either G0 ⊇ V0 or V0\G is <-dense in V0.

Similarly, without loss of generality we can assume that one of the following cases holds:

(a) Xa0
is <-dense in J0, in which case Xa0

×G ⊆ X is <-dense in J0 × V0.

(b) Xa0
is not <-dense in J0, so without loss of generality, Xa0

∩ J0 = ∅, and for a ∈ G0 we have

Xa ∩ J0 = Xa0
∩ J0 = ∅. In this case, we repeat the argument replacing U with J0 × V to find

a a1, J1 ⊆ J0, G1 ∈ G0 (with G1 necessarily disjoint from G0), and V1 ⊆ V . If necessary (i.e., if

we still aren’t in case 1a), we can repeat until we have ai, Ji, Gi, and Vi for i < Nd, with the

Gi disjoint. Then by Lemma 6.2.2, we conclude that there is some <-open box V ⊆ U1 so that

⋃Nd−1
i=0 Gi ⊇ V . But then X ∩ (Jn × V ) =

⋃Nd−1
i=0 (Xai

×Gi) ∩ (Jn × Vn) = ∅, which contradicts

the assertion that X is <-dense in U .

So, by this argument, it suffices to let G = {Xa ×G | a ∈M, G ∈ G0}.

2. Now, suppose that X ∈ F and U =
∏d−1

i=0 Ii is a match partitioned <-open box. Let U1 be as

before. By Porism 5.3.15 there is some n so that for any a ∈ U1 if b0 < b1 < b2 < · · · < bn−1 are

in Xa, then, Xa ∩ (bi, bi+1)< is <-dense in (bi, bi+1)< for some i < n − 1. So, suppose that there are

b0 < b1 < · · · < bn−1 in I0 and an ℓ×r-grid G0 ⊆ U1 so that for each a ∈ G0 and each i < n we have

bi ∈ Xa. Then we can choose for a ∈ G0 some f(a) < n so that Xa ∩ (bf(a), bf(a)+1)< is <-dense in

(bf(a), bf(a)+1)<. f is an n-coloring of G0, so by the pigeonhole principle for grids, if ℓ is large enough

there are an m×r-grid G1 ⊆ G0 and an i so that Xa ∩ (bi, bi+1)< is <-dense in (bi, bi+1)< for each

a ∈ G1.

Let Bb,c be the set of a ∈ Mr so that Xa ∩ (b, c)< is <-dense in (b, c)<. By inductive hypothesis

there are a definable family G1 of grids and m ∈ ω so that if Bb,c ∩ U1 contains a m×r-grid then there

are G ∈ G1, and some <-open box V1 ⊆ U1 so that G ⊆ X ∩ V1 and G is <-dense in V1. By the

argument above, if X ∩ U contains an ℓ×r-grid then there is some i < n so that Bbi,bi+1
∩ U1 contains

an m×r-grid. So there are a <-open box V1 and grid G ∈ G1 so G ⊆ Bbi,bi+1
∩V1. Since Xa is <-dense
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in (bi, bi+1)< for every a ∈ G and G is <-dense in V1, it follows that X is <-dense in (bi, bi+1)< × V1

which is sufficient by part 1 of the theorem. �

Corollary 6.2.4. For any <-open box U ⊆ Md there are no definable disjoint sets D0, D1, D2, . . . , DNd

which are each <-dense in U . In fact, if D0, D1, . . . , DNd are each <-dense in U , then there are some

<-open box V ⊆ U , some grid G which is <-dense in V , and some i, j so that G ∩ V ⊆ Di ∩Dj.

Proof. From Theorem 6.2.3, we may assume that each Di is a grid, and we conclude from Lemma 6.2.2 that

for any <-open V ⊆ U there are i and j so that Di ∩ V and Dj ∩ V are not disjoint. In particular, one of

the intersections Di ∩Dj must be somewhere dense in U . Applying Theorem 6.2.3 again, it contains a grid

G which is <-dense in some <-open V ⊆ U as desired. �

One immediate result of this proof is that convexly orderable orders have the nowhere-dense graph property.

Corollary 6.2.5. Suppose f : Md →M is definable. Then the graph of f is nowhere <-dense in Mn ×M .

Proof. Assume toward a contradiction that some definable function f : Md → M is <-dense in the <-open

box U =
∏d−1

i=0 Ii×J . Then we can find disjoint <-open intervals J0, J1, . . . , JNd contained in J (where N is

as in Theorem 5.3.11). Then the sets f−1(Ji) for 0 ≤ i ≤ Nd are disjoint, definable, and dense in
∏d−1

i=0 Ii,

which contradicts Corollary 6.2.4. �

We also get the following topological consequence:

Corollary 6.2.6. If X is definable and somewhere <-dense, then X has ✁-interior. �

Unfortunately, there is no immediate converse:

Example 6.2.7. Let M = (Q2, <, U), where U is a unary predicate naming {0} ×Q. Then M is convexly

ordered by <U . In particular, notice that U must have ✁-interior in any convex ordering ✁ of M, but is

nowhere <-dense.

Example 6.2.7 shows that in fact discrete sets are not the only barrier to a cell decomposition theorem for

convexly orderable dense linear orders. In particular, the main issue appears to be definable infinite sets of

<-isolated points.

6.3 Monotonicity

We end our exploration of convexly orderable linear orders by proving a monotonicity result for convexly

orderable structures. We start with functions f : M →M .
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Lemma 6.3.1. For any definable function f : D → M where D is <-dense in an infinite <-open interval

U ⊆M there are some infinite <-open interval V ⊆ U and definable G which is <-dense in V and on which

f is either constant or strictly <-monotone.

Proof. We assume without loss of generality that U is match partitioned. For any d ∈ D, we define the sets

Ad = f−1((f(d),∞)<), Bd = f−1((−∞, f(d))<), and Cd = f−1(f(d)). If Cd is somewhere <-dense, then

we are done, as this gives an infinite <-dense grid on which f is <-constant. If there is no such Cd, then

for each d ∈ D then either d is a <-lower-limit of Ad or d is a <-lower-limit of Bd. By Lemma 5.3.16, there

is some d′ > d so that Ad and Bd are each either <-dense in (d, d′)< or disjoint from (d, d′)<. So we can

choose, for any k, a sequence d0 < d1 < · · · < dk of elements of D and some a > dk so that for each i the

sets Adi
and Bdi

are each either <-dense in (di, a)< or disjoint from (di, a)<. Since k is arbitrarily large, by

Lemma 5.3.14 we can define V and G ⊆ D which is <-dense in V so that:

1. V ⊆ U is a <-open interval,

2. G ⊆ D is definable and <-dense in D, and

3. Ad and Bd are each either <-dense in or disjoint from (d,∞)< ∩ V ∩D, for any d ∈ G.

Without loss of generality, we can replace 3 with:

3a. Either Ad is <-dense in (d,∞)< ∩ V ∩ D for each d ∈ G or Ad is disjoint from (d,∞)< ∩ V ∩ D for

each d ∈ G.

3b. Either Bd is <-dense in (d,∞)< ∩ V ∩ D for each d ∈ G or Bd is disjoint from (d,∞)< ∩ V ∩ D for

each d ∈ G.

There are three cases to consider:

1. Ad is disjoint from (d,∞)< ∩ V ∩ D for each d ∈ G. Then for d < d′ in G we have d′ ∈ Bd, so

f(d′) < f(d), i.e., f is strictly <-decreasing on G.

2. Bd is disjoint from (d,∞)< ∩ V ∩ D for each d ∈ G. Then for d < d′ in G we have d′ ∈ Ad, so

f(d′) > f(d), i.e., f is strictly <-increasing on G.

3. Ad and Bd are both <-dense in (d,∞)< ∩ V ∩D for each d ∈ G. Choose d0 ∈ G and define the sets

D0 = Ad0
∩ (d0,∞)<∩D and U0 = (d0,∞)<∩V . We repeat the argument replacing U with U0 and D

with D0. If we keep returning to this case, then eventually, we will have built d0, d1, d2, . . . , dN , and V

so that for each i < N we have di+1 ∈ Adi
, i.e., f(d0) < f(d1) < f(d2) < · · · < f(dN ), and Adi

∩Bdi+1

is <-dense in V for each i < N . This contradicts Lemma 6.2.2. �
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Corollary 6.3.2. For any definable function f : U → M where U is a <-open interval, there are some

<-open interval V ⊆ U and disjoint <-open intervals I0, . . . , In so that for each i:

1. V ⊆
⋃n

i=0 f
−1(Ii),

2. f−1(Ii) is <-dense in V , and

3. f is <-strictly monotone or constant on f−1(Ii).

Proof. By repeated applications of Lemma 6.3.1, we can find a <-open interval V ⊆ U and disjoint definable

G0, G1, . . . Gn so that each Gi is <-dense in V and f is <-monotone on each Gi. By Lemma 6.2.2, there is

a uniform bound on the number of such sets we can find, so we can assume that G0 ∪G1 ∪G2 ∪ · · ·Gn ⊇ V .

For the rest, we simply need the <-convex hulls of the sets f(Gi ∩ V ) to be disjoint. Suppose there are

i, j so that for every <-open V ′ ⊆ V , the <-convex hulls of f(Gi ∩ V
′) and f(Gj ∩ V

′) intersect. Then if

a < b < c with a, c ∈ Gi ∩ V and b ∈ Gj ∩ V we conclude that f(b) is <-between f(a) and f(c). Otherwise,

by strict monotonicity of f on Gj ∩ V , and since Gj is <-dense in (a, c)< we can find b′ so that a < b′ < c

and the <-interval between f(b′) and f(b) is disjoint from the <-interval between f(a) and f(c), a direct

contradiction to the assumption on Gi and Gj . So, f is <-strictly monotone on Gi ∪ Gj and we simply

replace Gi and Gj in our collection with Gi ∪Gj . �

For the higher dimensional analogue to this lemma, we will need to clarify the meaning of “<-monotone”.

Definition 6.3.3. For any grid G ⊆Md, we say that f : G→M is <-simply monotone in direction σ

(where σ ∈ 3d) if one of the following holds:

1. d = 1, f is <-strictly decreasing, and σ = 2

2. d = 1, f is constant, and σ = 0

3. d = 1, f is <-strictly increasing, and σ = 1

4. d = r + 1, G =
∏r

i=0Gi ⊆Mr+1 and for each n ≤ r and g ∈ Gn the map:

fng : (a0, a1, . . . , an−1, an+1, . . . ar) 7→ f(a0, a1, . . . , an−1, g, an+1, . . . , ar)

with domain
∏

i6=nGi is <-simply monotone with direction σ0σ1 · · ·σn−1σn+1 · · ·σr.

Our final monotonicity result for convexly orderable dense linear orders is as follows

Theorem 6.3.4. For any definable function f : U → M where U ⊆ Md is a <-open box, there are some

<-open box V ⊆ U and disjoint grids G0, G1, . . . , Gn so that V ⊆
⋃n

i=0Gi and f is <-simply monotone on

Gi and Gi is <-dense in V for each i.
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Proof. If d = 1, then this is simply Corollary 6.3.2. Now assume the theorem holds for d = r. We show that

it holds for d = r+ 1 as well. Assume without loss of generality that U =
∏r

i=0 Ii is match partitioned. Fix

n ≤ r.—

By inductive hypothesis, we can find, for any x ∈ In, a <-open box Vx ⊆
∏

i6=n Ii, a <-open grid Gx ⊆ Vx

which is <-dense in Vx and σx ∈ 3r so that fnx is <-simply monotone on Gx in direction σx. We can

choose x0, x1, x2, . . . so that Vxi+1
⊆ Vxi

for each i, and by the pigeonhole principle we can assume that

σxi
= σxj

= σ for i, j ∈ ω. Then Gxi
is <-dense in Vx

kNd
for i ≤ kNd, so by applying Corollary 6.2.4 and

the pigeonhole principle we find some <-open box V ⊆ Vx
kNd

, some grid G which is <-dense in V , and

i0, i1, . . . , ik so that G ⊆
⋃k

j=0Gxij
.

So, using the uniformity of Corollary 6.2.4 (which comes from the uniformity of Theorem 6.2.3) there

is some definable family G of grids so that for any k we can find <-open box V =
∏

i6=n Vi ⊆
∏

i6=n Ii and

∏

i6=nGi = G ∈ G so that G is <-dense in V , and the set BV
G of x so that fnx is <-simply monotone on

G ∩ V in direction σ contains contains at least k points of In. The sets BV
G are uniformly definable so by

Porism 5.3.15 we can assume that BY
G is <-dense in some <-open interval Vn ⊆ In.

We may repeat the same argument for each n ≤ r to get a <-open box V ⊆ U and a grid G which

is <-dense in V so that f satisfies condition 4 for <-simple monotonicity. By repeating this argument, we

can get grids G0, G1, . . . , Gn so that f is <-simply monotone on each Gi, each Gi is <-dense in V , and

V ⊆
⋃

iGi, as desired. �
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[16] A. Yu Ol’shanskǐı, Groups of bounded period with subgroups of prime order, Algebra and Logic 21 (September 1982), no. 5,

369–418.

[17] Pierre Simon, On dp-minimal ordered structures, The Journal of Symbolic Logic 76 (June 2011), no. 02, 448–460.

[18] Pierre Simon and Erik Walsberg, Tame Topology over Dp-minimal Structures, arXiv:1509.08484 [math] (September 2015).

arXiv: 1509.08484.

http://www.logic.univie.ac.at/~adler/docs/vcm.pdf

	Acknowledgements
	Abstract
	Introduction
	Notation and Conventions

	I Complexity in Computable Structures
	The Preorder of Groups
	Introduction
	The sets X and Y
	Defining the Set of Possible Parameters

	The Index Set of Uncountable Categoricity
	Introduction
	Description
	Hardness


	II Convex Orderability
	Introduction to Convex Orderability
	Notation
	An introduction to Convex Orderability
	Observations on Convex Orderability

	Convex Orderings of Ordered Structures
	Decompositions of Orders
	Discretely Ordered CO Structures
	Dense Orders

	Monotonicity in Ordered Convexly Orderable Structures
	Introduction and Notation
	Density and Grids
	Monotonicity

	Bibliography


