
Some results and applications of
computability theory

By

Ethan McCarthy

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

(Mathematics)

at the

UNIVERSITY OF WISCONSIN—MADISON

2018

Date of final oral examination: April 23, 2018

The dissertation is approved by the following members of the Final Oral Committee:

Professor J. S. Miller, Professor, Mathematics

Professor U. Andrews, Assistant Professor, Mathematics

Professor M. I. Soskova, Assistant Professor, Mathematics

Professor J. Ellenberg, Professor, Mathematics

i

Abstract

In this work we pursue various directions of research in computability theory, particularly

applications to effective symbolic dynamics, algorithmic randomness, and computable

analysis.

In our first direction, which we present in the second chapter, we study the enumer-

ation degrees of sets enumeration reducible to their complements. We provide several

natural characterizations of this class, including as the e-degrees of complements of

maximal anti-chains on the graph of integer strings, and as the e-degrees of enumera-

tion pointed binary trees. As an application, we obtain a characterization of the Turing

upper cones of closed sets. Finally, we show how these characterizations can be used to

obtain a complete characterization of the Turing degree spectra of minimal subshifts.

In the third chapter, we study the class of strongly jump traceable sets (SJT). This

class has been characterized as the MLR diamond classes of superhigh, superlow, and

of ω-c.e. We show that for the cases of superlow and ω-c.e., randomness doesn’t play

an essential role in the characterization: SJT is exactly the class of reals computable in

every superlow DNC, equivalently in every ω-c.e. DNC. In the superhigh case, however,

the class of reals computable in every superhigh DNC are the computable reals.

In the fourth chapter, we study the class of strong difference randoms (SDR), defined

as the class of randoms passing the Solovay condition on all difference tests. Members of

SDR satisfy computability properties similar to 2-randoms: array computability, hyper-

immunity, bounding 1-generics, etc. We introduce a lowness notion, implicitly present

in the work of Nies, which strengthens ω-c.e.-jump domination, and which characterizes

ii

the strong difference randoms among the 1-randoms. We also characterize SDR using

strict Demuth tests.

In the final chapter, we study the derivatives of computable functions. A deriva-

tive will densely often take computable values, so we look at what complexities can

be achieved almost-everywhere. We uncover an interaction between analytic condi-

tions imposed on a function and the possible complexities of its slopes under several

computability-theoretic notions of reduction.

iii

Acknowledgements

I would like to thank some of the professors at Madison who taught me mathematical

logic: Steffen Lempp, Uri Andrews, Mariya Soskova, Mingzhong Cai, Rutger Kuyper.

Each provided me with instruction, mentoring or support far exceededing any expecta-

tion placed on them.

In addition, a number of other professors at Madison have provided me with men-

toring and support, special thanks to Daniel Erman and Jordan Ellenberg. Outside of

Madison, I am particular indebted to Denis Hirschfeldt, Arno Pauly, Reed Solomon, and

Andy Lewis-Pye.

There are numerous teachers across the big lake to thank for contributing to my

mathematical education, but I would especially like to thank my parents, who would

have supported me in any direction I could have pursued. Thanks to my closest friends

and my family for their love and support.

For my first several years at Madison I had the privilege of looking up to several

brilliant senior students who were always willing to share not only knowledge and expe-

rience, but also company and conversation; I am especially thankful to Mushfeq Khan

and Ashutosh Kumar. And thanks to all my fellow students in logic throughout the rest

of my time at Madison: Turbo, Reese, Paul, Tamvana, Tejas, Iván, James.

There are many people who have made Van Vleck Hall a special place to study as a

graduate student, but I was particularly lucky throghout my stay in Madison to share

working spaces and friendship with many wonderful office mates: Eric, Christian, Zhou,

Ting-Ting, Kejia, Jiaxin, Ernest, Yunbai.

iv

Finally, I would like to thank Joe Miller. Joe’s intellect combined with his mathe-

matical taste and instinct would alone make him an invaluable advisor, but I am grateful

most of all for his tireless devotion and generosity in advising his students. Joe was there

for me every single week, regardless of circumstance, I could not have asked for a better

mentor.

v

Contents

Abstract i

Acknowledgements iii

1 Introduction 1

1.1 Cototal enumeration degrees . 1

1.2 Randomness . 3

1.3 Lowness and randomness . 4

1.4 Eliminating randomness . 6

1.5 Slopes of computable real-valued functions 7

2 Applications of the cototal enumeration degrees 10

2.1 Introduction . 10

2.2 Cototal sets and degrees . 14

2.3 Maximal anti-chain complements . 16

2.4 Enumeration pointed trees . 19

2.5 Minimal subshifts . 24

3 The Strong Difference Randoms 31

3.1 Introduction . 31

3.2 Strict Demuth tests . 35

3.3 Jump domination . 38

vi

4 Strong Jump-Traceability and Diagonal Non-Computability 41

4.1 The strong jump-traceables and randomness 41

4.2 Strong jump-traceables and DNCs . 45

4.3 The superhigh case . 48

5 Slopes of computable functions 49

5.1 Introduction . 49

5.2 A first construction . 51

5.3 Smoothing things out . 53

5.4 Coding locally . 56

5.5 Removing the point from the oracle . 60

5.6 Summary . 63

Bibliography 66

1

Chapter 1

Introduction

The focus of this work is computability theory and its applications. Computability

theorists quantify the computational content of mathematical objects, constructions,

and principles.

Computability theory begins by formalizing notions of computation betweens subsets

of natural numbers, which extends to any mathematical objects that can be effectively

coded by natural numbers. Throughout this work, we will use standard notation and

rely on the basic results and development of computability and Turing reducibility as

presented in standard texts such as [56,62]. We are also particularly influenced by [17].

This work contains results occupying several distinct areas of computability theory:

the enumeration degrees and their applications to effective mathematics, algorithmic

randomness and its interactions with computability theory, and computable analysis.

We will briefly summarize the results of each chapter in this introduction, terms left

undefined here will be defined in the chapters where they apply.

1.1 Cototal enumeration degrees

An active area of research in theoretical computer science concerns the computational

content of dynamical systems. Of central importance are effective symbolic systems such

2

as Turing machines, cellular automata, and subshifts (see the introduction to [12] for a

survey). A subshift is a nonempty class of infinite binary sequences, closed topologically

as a subset of 2ω (Cantor space), and closed under the shift operator deleting the first

bit from each sequence. A subshift is minimal if it does not properly contain any other

subshift. The Turing degree spectra of a subshift is the collection of Turing degrees

obtained by ranging over its points, which we consider as providing a measure of its

computational content. See [6–8, 18, 29, 32, 33, 61] for the development of this area. In

Chapter 2, we give a complete characterization of the Turing degree spectra of minimal

subshifts:

Theorem 2.24. A collection of Turing degrees is the spectra of minimal subshift if and

only if it is the enumeration cone of a cototal set.

The enumeration cone of X, denoted E(X), is the collection of Turing degrees of

enumerations of X. We say that X ≤e Y if E(Y) ⊆ E(X) [59]. The ≤e-equivalence

classes form the enumeration degrees De. Alternatively, an enumeration reduction X ≤e

Y can be viewed as a partial information computation which only uses and only computes

positive set membership information. Unlike Turing reduction, enumeration reducibility

distinguishes between X and its complement X. A set X is cototal if X ≤e X [1]. The

cototal degrees are the degrees of cototal sets. In Chapter 2, we greatly expand the study

of the cototal degrees, giving several characterizations:

Theorem 2.3, 2.15, 2.24. The class of cototal enumeration degrees is given by:

1. The e-degrees of complements of maximal anti-chains on ω<ω.

2. The e-degrees of languages of minimal subshifts.

3. The e-degrees of uniformly e-pointed trees on 2ω.

3

4. The e-degrees of e-pointed trees on 2ω.

An e-pointed tree T is a subtree of the infinite binary tree each path through which

is ≤e-above T . In computable model theory, given a countable structure M, the degree

spectra of M is the collection of Turing degrees of isomorphic copies of M. We note the

following generalization of Knight et. al.’s No two cones theorem [45]:

Theorem 1.1 (Montalbán [45]). The degree spectra of a structure is never the Turing

upward closure of an Fσ set of sequences, unless it is the enumeration cone of an e-pointed

tree.

Little was known, however, about these cones. Even, for example, whether or not

they were simply all the enumeration cones. In Section 2.4, we show they are only (and

precisely) the cototal ones:

Corollary 2.16. The Turing cone of an Fσ set of sequences is the degree spectra of a

structure if and only if it is the enumeration cone of a cototal set.

1.2 Randomness

In probability theory, random objects are nondeterministic, viewed as measurable maps

from an underlying probability space. This presents a challenge to computability theory,

where computations take place between fixed sequences. There are two perspectives

we will consider to bring computability theory to bear on “random” sequences: one

approach is to develop a theory of effectively measurable reductions, the framework for

this perspective is provided by the notion of layerwise reducibility. A second approach

is to develop a theory of algorithmic randomness which can be applied to individual

binary sequences.

4

Both of these perspectives can be pursued by means of statistical tests determining

null sets in 2ω. We restrict ourselves to countable collections of tests which are presented

in some effective way. We recommend either of the reference texts [17,49] for background.

The topology on the space of sequences 2ω is given by the clopen sets [σ] = {X ∈

2ω : σ is a prefix of X}. Given X ⊆ 2<ω a set of finite binary strings, we can define the

open class [X] =
⋃
σ∈X [σ]. A class X ⊆ 2ω is effectively open (Σ0

1) if X = [We] for some

computably enumerable (c.e.) set of strings We ⊆ 2<ω. A class P ⊆ 2ω is Π0
1 (effectively

closed) if its complement is Σ0
1.

A Martin-Löf test is a uniform sequence {An}n<ω of effectively open classes with

µ(An) ≤ 2−n for all n. A sequence X ∈ 2ω is said to pass the Martin-Löf condition on

a test {An}n∈ω if X 6∈
⋂
n∈ω An. The class MLR of Martin-Löf random sequences is the

class of sequences passing the Martin-Löf condition on every Martin-Löf test.

We lose no generality in assuming that our Martin-Löf tests are nested, so that

An+1 ⊆ An for each n. Then any nested Martin-Löf test {An}n∈ω induces a layering

{2ω \ An}n∈ω of the measure-one class of sequences passing it.

1.3 Lowness and randomness

We think of sequences which are useful as oracles as being atypical. For example,

the Turing cone {X : X ≥T A} above any noncomputable set A has measure zero

[11, 58], so we would expect a “random” sequence to not be able to compute a given

noncomputable set A. This intuition fails spectacularly for Martin-Löf randoms: given

any set A, there exists an MLR sequence X such that X ≥T A [23,37]. There are several

ways to strengthen the notion of Martin-Löf randomness which eliminate some of the

5

potential for computational utility. A striking dichotomy appears at the degree of the

halting problem, ∅′: an MLR is either complete—strong enough to compute ∅′—or is

computationally too weak even to compute a complete, consistent extension of Peano

Arithmetic [64]. The difference randoms were introduced by Franklin and Ng as a test

notion giving precisely the incomplete Martin-Löf randoms [22].

Definition 1.2. A difference test is a sequence {Un \ Vn}n∈ω where {Un} and {Vn} are

uniformly Σ0
1 classes of subsets of 2ω, and each component has measure µ(Un\Vn) ≤ 2−n.

A sequence is difference random if it passes the Martin-Löf condition on all differ-

ence tests. An even stronger randomness notions is Demuth randomness, which ensures

even less computational power: every Demuth random is GL1 [49], i.e., not only is X

incomplete, but its jump has lowest possible degree:

Definition 1.3. A sequence X ∈ 2ω is generalized low (GL1) if X ′ ≡T X ⊕ ∅′.

Demuth randomness uses the notion of a Demuth test, but also applies a stronger

criteria for passing a test. A sequence X ∈ 2ω is said to pass the Solovay condition

on a test {An}n∈ω if X ∈ An for only finitely many n. Recently, Bienvenu and Porter

introduced the class of strong difference randoms [3]:

Definition 1.4. A sequence X ∈ 2ω is strong difference random if it passes the Solovay

condition on every difference test.

The strong difference random sequences fit in between the Demuth randoms and

the difference randoms, but still exhibit many of the computational properties we would

desire of random sequences, including that they are all GL1 . In Chapter 3, we introduce

a lowness notion and show that it characterizes the strong difference random sequences

among all ML-randoms:

6

Definition 3.16. A sequence X is 2n-c.e. jump-dominated if every X-partial computat-

able function is bounded by an ω-c.e. function with a computable approximation f(n, s)

with mind-changes bounded by 2n.

A function f(n) is ∆0
2 if it is given as lims→∞ f(n, s) of a computable function f(n, s).

In this case we call f(n, s) a computable approximation to f(n). We say that f(n) is ω-

c.e. if it has a computable approximation f(n, s) such that the number of mind-changes

|{s : f(n, s) 6= f(n, s+ 1)}| is bounded by a computable function g(n).

Theorem 3.18. A Martin-Löf random sequence X is strong difference random if and only

if it is 2n-c.e. jump-dominated.

We also give a characterization of the strong difference randomness in terms of

Franklin and Ng’s strict Demuth tests [22]:

Theorem 3.14. The strong difference randoms are the sequences passing the Solovay

condition on every strict Demuth test.

1.4 Eliminating randomness

Randomness can be a powerful hypothesis for taming behavior and coaxing out results.

We frequently draw from a deep body of techniques in algorithmic randomness to guide

intuition and as a source of examples and counter-examples. However, it is also inter-

esting to ask which results using randomness are fundamentally about randomness, and

which can be achieved with weaker, purely combinatorial concepts.

One lowness class historically connected to randomness is the class of strongly jump

traceables. A sequence X ∈ 2ω is strongly jump traceable if given any order function

h, every X-partial computable function has a c.e. trace bounded by h (for details, see

7

[26]). In Chapter 4, we consider the following theorem characterizing the strong jump-

traceables:

Theorem 1.5 (Greenberg et. al. [25], Diamondstone et. al. [14]). The class of strongly-

jump traceable sequences is:

1. The class of sequences computable in every superlow Martin-Löf random.

2. The class of sequences computable in every ω-c.e. Martin-Löf random.

3. The class of sequences computable in every superhigh Martin-Löf random.

For the two lowness notions, we are able to replace MLR with the weaker combina-

torial condition of DNC. A function f : ω → ω is diagonally non-computable (DNC) if

it differs from the universal Turing machine ϕe(e) in every position: f(e) 6= ϕe(e) for all

e ∈ ω.

We also show that in the superhigh case, DNC is not enough:

Theorem 4.8. The class of strongly-jump traceable sequences is:

1. The class of sequences computable in every superlow DNC function.

2. The class of sequences computable in every ω-c.e. DNC function.

Theorem 4.10. The class of sequences computable in every superhigh DNC function is

the class of computable sequences.

1.5 Slopes of computable real-valued functions

Computable analysis studies continuous functions f ∈ C[0, 1] via their representions by

convergent sequences of polynomial approximations. We code sequences of polynomials

8

by infinite sequence in ωω. Restricting to those functions given by computable sequences

with computable rates of uniform convergence gives the notion of a computable real-

valued function introduced by Lacombe and Grzegorczyk [66].

It is known that different randomenss notions capture the common points of differen-

tiability of different classes of computable functions [5,13]. In Chapter 5, we initiate the

study of the values of these derivatives. Given a real number x ∈ [0, 1], we can identify

almost-everywhere (in fact, off of the dyadic rationals) the real x with its unique binary

expansion. Then x′ denotes the halting problem relative to the binary expansion of x.

A map from 2ω is said to be layerwise recursive if it is uniformly computable on

2ω \ An for some nested Martin-Löf test {An}n∈ω. Particularly, although there may be

no single algorithm computing the function on all of 2ω, it is computable by algorithms

working on subsets of 2ω of arbitrarily full measure.

We obtain the following results in Chapter 5:

Theorem 1.6. 1. There exists a computable C1 function f ∈ C1[0, 1] for which f ′(x) ≥T

x′ almost everywhere.

2. There exists a computable function f ∈ C[0, 1] which is differentiable almost ev-

erywhere, and for which f ′(x) ≥T x′ uniformly almost everywhere.

3. However, for any function f ∈ C[0, 1] which is everywhere differentiable, it is not

possible even for f ′(x) ≥T ∅′ uniformly almost everywhere.

4. There exists a computable function f ∈ C[0, 1] which is everywhere differentiable,

for which f ′(x) ≥T x′ layerwise uniformly.

5. There exists a computable C1 function f ∈ C1[0, 1] for which f ′(x) ≥T ∅′ layerwise

9

uniformly.

6. However, for any function f ∈ C1[0, 1], it is not possible for f ′(x) ≥T x′ layerwise

uniformly.

10

Chapter 2

Applications of the cototal

enumeration degrees

2.1 Introduction

Questions concerning the effective or algorithmic properties of classical mathematical

objects have had a significant impact on the development of modern mathematics. In the

study of Diophantine sets, we have Matiyasevich’s resolution of Hilbert’s tenth problem;

or on the topic of word problems for groups, the seminal work of Dehn in the early

development of geometric group theory. A central goal of applied computability theory

is to mathematically formalize this algorithmic perspective by precisely quantifying the

computational content of classes of mathematical objects and relations.

The most widely studied measure of such computational content is that given by

Turing reducibility, and one approach to quantifying the complexity of a class of objects

is to calculate the degree spectra of the class, that is, the collection of Turing degrees

obtained by the members of the class. Consider for example the characterization of

the degrees of the block relations of computable linear orderings as precisely the Σ0
3

degrees [19], or the Novikov-Boone characterization of the degrees of word problems for

finitely presented groups as the computably enumerable degrees [4].

11

However, applications often must employ reducibilities other than Turing reduction.

An early indication that one must consider other reducibilities comes from group theory.

A result of Macintyre shows that for finitely generated groups G and H, that if G embeds

as a subgroup of every algebraically closed extension of H, then the word problem

for G is Turing reducible to the word problem for H [39]. Ziegler showed that the

converse fails, but that the result becomes an equivalence if a stronger computability-

theoretic reducibility, namely Ziegler reducibility, is substituted for Turing reducibility

[69]. Because an algebraically closed group is determined by the finitely generated groups

that embed in it, the computability theoretic structure not only provides a complete

understanding of the algebraic one, but is in fact implicit within the algebraic structure

(see also [2, 28]).

Ziegler’s reducibility (which he called ∗-reducibility) was formulated as a strength-

ening of enumeration reducibility, a reducibility important in its own right and the

primary reducibility we will use in this chapter. Enumeration reducibility, along with its

associated degree structure, measures the relative computational difficulty in producing

enumerations of sets of natural numbers.

Enumeration reducibility also revealed its significance early on in the study of struc-

ture spectra, that is, degree spectra of isomorphism classes of structures. Richter used

enumeration reducibility to give sufficient conditions on a first-order theory to ensure it

has countable models whose structure spectra has no least element, so that the Turing

degrees alone are not sufficient to capture the effective content of the structure considered

up to isomorphism [54,55].

Enumeration reducibility has also been important in applications to computable anal-

ysis. Miller, answering a question of Pour-El and Lempp, showed that the Turing degrees

12

are similarly deficient for quantifying the complexity of continuous real-valued functions,

introducing the continuous degrees, a subclass of the enumeration degrees which are able

to capture the computational content of continuous functions [40]. Kihara and Pauly

have extended this connection to associate degree structures to arbitrary quasi-Polish

spaces, obtaining the enumeration degrees as the degree structure associated to the uni-

versal quasi-Polish space O(N) [35]. These connections have proven particularly fruitful,

resulting in a solution to the general n’th level Borel isomorphism problem.

In this chapter, using a specific subclass of the enumeration degrees: the cototal

enumeration degrees, we succeed in identifying several degree spectra which have been

of interest in the fields of effective structure theory and symbolic dynamics. In Section

2.4, we see that the cototal enumeration degrees can be used to characterize which

enumeration cones are obtainable as Turing upward closures of Fσ sets of reals, a question

stemming from a result of Montalbán on structure spectra. Then in Section 2.5, we

consider an example from symbolic dynamics, that of subshifts, and show that the cototal

enumeration degrees provide a complete characterization of the Turing degree spectra

of their building-blocks: the minimal subshifts.

The computational power of subshifts, and in particular of minimal subshifts, has

generated interest for several years. From the perspective of computability theory, see

Durand, Levin, and Shen [18], Cenzer, Dashti, and King [6], Cenzer, Dashti, Toska, and

Wyman [7,8], as well as Simpson [61], Jeandel and Vanier [33], Hochman and Vanier [29],

and Jeandel [32]. In computer science, the study of the computational power of sim-

ple dynamical systems, especially subshifts, comprises an active body of recent research

(see [12] for a summary). Minimal subshifts are also important in studying individ-

ual infinite sequences, because measures of sequence complexity that are important in

13

characterizing the algebraic combinatorics of infinite sequences can be studied on the

subshifts they generate (the well-studied Thue-Morse sequence, for example, generates

a minimal subshift) [53].

We consider the results of Section 2.5 to constitute an extension of the connection

between the enumeration degrees and applications of effective mathematics—already

rich in application to group theory and analysis—now to the field of symbolic dynamics.

Although these results mark the first use of the cototal enumeration degrees to identify

a degree spectrum of independent interest, observations of Jeandel indicate intimate

connections between cototality and both simple groups and maximal ideals of rings [32],

so we anticipate further interest. Also, in the point-degree spectrum language of Kihara

and Pauly, cototality results from topological tameness of the underlying represented

spaces, so we believe a better understanding of the cototal degrees will be impactful

with regard to those applications as well.

In addition to our applications, some of our results should be useful in pursuing a

greater understanding of the cototal enumeration degrees themselves. For example, The-

orem 2.3 provides a simple characterization of the cototal enumeration degrees as those

e-degrees which contain complements of maximal anti-chains on ω<ω, and Theorem 2.9

as the enumeration degrees which contain e-pointed trees. This second characteriza-

tion is particularly useful because of the rich intro-enumerability properties of e-pointed

trees. For example, Miller and Soskova have recently used Theorem 2.9 to prove that

the cototal enumeration degrees are dense [42]. In the theory of the structure of the

enumeration degrees, cototality corresponds to a combinatorial property of good approx-

imation that has been essential in establishing structural properties of the enumeration

degrees, so we anticipate that further study of the cototal degrees will produce greater

14

insight into the structure of the enumeration degrees.

2.2 Cototal sets and degrees

Enumeration reducibility, introduced by Friedberg and Rogers in 1959, captures the

relative difficulty of producing enumerations of sets of natural numbers. Alternatively,

it can be thought of as a notion of computation between sets that uses only the positive

portion of their set membership information.

An enumeration functional Γ is a computably enumerable (c.e.) set of pairs 〈n, F 〉

with each n ∈ ω and F the canonical code of a finite subset of ω. We think of Γ as

reading the positive membership information of X, and, for 〈n, F 〉 ∈ Γ, enumerating n

upon seeing F ⊆ X. Given X ⊆ ω, we define Γ(X) = {n : ∃F (〈n, F 〉 ∈ Γ and F ⊆ X)}.

For sets A,B ⊆ ω, we say that A ≤e B if there exists an enumeration functional Γ

with Γ(B) = A. Equivalently, A ≤e B if there is a single Turing functional which, given

any enumeration of B, outputs an enumeration of A. The relation ≤e defines a pre-

order on 2ω, the partial order it induces is called the enumeration degrees, or e-degrees,

denoted De.

Another way to characterize enumeration reducibility was given by Selman [59].

Given a set X, let E(X) denote the collection of all Turing degrees computing enumer-

ations of X, called the enumeration cone of X. Then Selman showed:

Theorem 2.1 (Selman [59]). A ≤e B if and only if E(B) ⊆ E(A).

A set X is total if its positive information already suffices to determine its negative

information, or precisely: if X ≤e X. We call an enumeration degree total if it is the

e-degree of a total set. The Turing degrees (which we denote by DT) embed in the

15

enumeration degrees via the map induced set-wise by X 7→ X ⊕X. The image of this

embedding is the total e-degrees.

The name “total” is evocative of the following fact: given a total function f , total

in the sense of having full domain, the set graph(f) = {〈n, f(n)〉 : n ∈ ω} is total under

enumeration reducibility. In fact, every total set is enumeration-equivalent to the graph

of a total function, for example, its characteristic function.

A closely related notion is that of cototality. A set A is cototal if A ≤e A that is, if

the complement of A is total as a set, and we call an enumeration degree cototal if it is

the e-degree of a cototal set.

For example, the complements of graphs of total functions are cototal as sets. The

e-degrees of such sets are called graph cototal. The class of graph cototal degrees has

been studied by Solon in [67] and [68]. Several other natural classes of cototal sets were

brought to attention by Jeandel in [32], including examples from symbolic dynamics and

algebra.

The cototal degrees were studied recently by Andrews et al. in [1]. In addition to

showing that the cototal enumeration degrees are a proper subclass of the enumeration

degrees (that not every enumeration degree is cototal), they also separate the class of

cototal degrees from the class of graph cototal degrees. That is: not every cototal set is

enumeration equivalent to a complement of the graph of a total function. It is natural

then to look for classes of objects that do capture cototality in the enumeration degrees.

Andrews et al. show that the complements of maximal independent sets in ω<ω (with

ω<ω considered as an undirected graph) form one such class.

In Section 2.3 we identify another simple class of objects characterizing cototality,

showing that the cototal degrees are the degrees of complements of maximal anti-chains

16

on ω<ω. In Section 2.4, we show that the e-degrees of enumeration pointed trees are

the same as those of the maximal anti-chain complements, providing yet another class

of objects whose e-degrees are the cototal degrees. Although we use this section as

a stepping stone to approach the class considered in Section 2.5, e-pointed trees are

interesting in their own right and provide us with applications to computable structure

theory.

Section 2.5 focuses on a particular example of a class of cototal objects identified

by Jeandel in [32], namely, the languages of minimal subshifts. Jeandel and Vanier

in [33] prove that the Turing degree spectra of a nontrivial minimal subshift is the

enumeration cone of its language. We show that the enumeration degrees of languages

of minimal subshifts are the same as the enumeration degrees of enumeration pointed

trees, providing a characterization of the Turing degree spectra of nontrivial minimal

subshifts as precisely the enumeration cones of cototal sets.

2.3 Maximal anti-chain complements

The graph ω<ω is the graph of finite strings of integers, ordered by extension.

Theorem 2.2. If A is a maximal antichain on ω<ω, then A is cototal.

Proof. To determine if a string σ ∈ ω<ω is in A, we wait for some element comparable

but not equal to σ to enter A. Since A is an antichain, we only enumerate elements of

A in this way. And by maximality, if σ ∈ A then something comparable but not equal

to σ must be in A, so our procedure enumerates all of A.

Note that every total set is enumeration-equivalent to a maximal antichain. Given a

17

total set A, consider C given by {n : n ∈ A} ∪ {nak . . . : n ∈ A, k ∈ ω}. Then A ≡e C.

However, it may be that A 6≡e C, i.e., when A is not total itself. Nonetheless, the

degrees of cototal sets are, in fact, exactly the degrees of the complements of maximal

antichains:

Theorem 2.3. If A is cototal, then A ≡e C for some C a maximal antichain on ω<ω.

Contrast this result with the case for function graphs: every total setA is enumeration-

equivalent to the graph of a total function, for example the graph of its characteristic

function χA, but not every cototal degree contains a set of the form graph(f) [1].

Proof of Theorem 2.3. Let A ≤e A via the enumeration operator Γ. Fix a computable

listing of Γ to work with. We construct a subset C of ω<ω as follows:

First, put λ ∈ C. For the first layer of C as a subset of ω<ω, we enumerate A. That

is, n ∈ C ⇐⇒ n ∈ A.

For each node α ∈ ω<ω \ {λ}, we attach some finite set, which we call the claim of

α. We think of α as claiming this finite set is a subset of A. A node is filled in, that

is, enumerated into C, when we witness its claim to be false. For the first-level nodes

α = n, we set their claims to {n}. So for nodes α = n, α ∈ C ⇐⇒ α ∈ A, that is, if

and only if α is wrong about its claim.

Layer by layer, we attach a claim to each node α as follows: each node α of length

|α| = k looks at all the k−1 nodes below it (apart from λ), and their claims, and chooses

one element from each claim to attempt to prove wrong. For each chosen element n, α

picks axioms 〈n, F 〉 from Γ. We choose claims in such a way that directly above each

node, we attach all possible claims from all possible choices of axioms from Γ that could

prove the claims below them wrong.

18

To do this asignment computably we assume, without loss, that Γ has the following

property: for all n ∈ ω, ∃F such that 〈n, F 〉 ∈ Γ. To achieve this we can, for example,

add the axioms 〈n, {a}〉 to Γ for some fixed a ∈ A.

We define the claim of α to be the union of the F ’s from those axioms chosen. A

node α is put into C when our enumeration of A proves its claim wrong. That is, when

some element in the claim of α is enumerated into A.

So C is enumeration below A via the construction, and also A is enumeration below

C because A can be read out explicitely in the first layer of C.

Claim 2.4. C is a maximal antichain.

First, C is an anti-chain: we must show it is not possible that α, β ∈ C with α ≺ β.

Indeed, if β ∈ C with α ≺ β, we have that claim(β) ⊆ A, but by construction there

exists F ⊆ claim(β) so that 〈n, F 〉 ∈ Γ and n ∈ claim(α). But then n ∈ A, so that

claim(α) 6⊆ A, so we have α 6∈ C. So indeed, C is an antichain.

Now suppose C were not maximal as an antichain. That is, suppose there exists some

α 6∈ C so that {α} ∪C were an anti-chain. But under our construction, since α 6∈ C we

have that claim(α) 6⊆ A. Say n ∈ claim(α), n 6∈ A. And by assumption on Γ, there is

an F ⊆ A so that 〈n, F 〉 ∈ Γ. But also since {α} ∪C is an anti-chain, all ancestors of α

are not in C, so similarly there are ni for each ancestor αi, with ni 6∈ A and finite sets

Fi ⊆ A with 〈ni, Fi〉 ∈ Γ. But then by construction, there is some immediate descendent

β of α so that claim(β) is the union of these Fi, so that claim(β) ⊆ A, so that β ∈ C,

so that {α} ∪ C is not an antichain, a contradiction.

19

2.4 Enumeration pointed trees

Definition 2.5. An e-pointed tree is a tree T ⊆ 2<ω with no dead-ends, such that

{σi}i∈ω ≥e T whenever {σi}i∈ω ⊆ 2<ω is a path through T .

Notice here that we view a path through a tree as a subset of 2<ω, rather than as

an element of 2ω. In the Turing degrees, we are less careful to avoid mixing types: a

set X ∈ 2ω and of its collection of prefixes {X � i}i∈ω ⊆ 2<ω have the same Turing

degree. But in terms of enumeration degree we have dege({X � i}i∈ω) = dege(X ⊕X).

In particular, viewed as subtrees, paths always have total enumeration degree.

Enumeration pointed trees were encountered in work of Antonio Montalbán in com-

putable structure theory:

Theorem 2.6 (Montalbán [45]). The Turing upward closure of an Fσ set of reals in ωω

cannot be the degree spectra of a structure unless it is an enumeration cone. In fact, for

X ⊆ DT , the following are equivalent:

1. X is the degree spectra of a structure and the Turing upward closure of an Fσ set

of reals in ωω.

2. X is the enumeration cone of an e-pointed tree.

Recall that the enumeration cone of a set A ⊆ ω is the collection E(A) of all Turing

degrees computing enumerations of A. In the case that A has total enumeration degree,

E(A) coincides with the Turing cone of A: the upward closure of d(A) in the Turing

degrees. Montalbán notes that there are structure spectra as in Theorem 2.6 which

are not Turing cones. However, it was not known precisely which enumeration cones

were possible, for example, whether every enumeration cone is realized as the Turing

20

upward closure of an Fσ set of reals. We provide an answer by showing that the enu-

meration degrees of e-pointed trees are exactly the cototal degrees. In particular, not

every enumeration cone is realized as a structure spectra as in Theorem 2.6.

We first show that e-pointed trees appear in every cototal degree. In fact, every

cototal degree contains an e-pointed tree of a particular form.

Definition 2.7. A uniformly e-pointed tree is a tree T ⊆ 2<ω with no dead-ends for which

there exists an enumeration functional W so that W (X) = T whenever X ⊆ 2<ω is a

path through T .

Uniformly e-pointed trees have a useful intro-enumerability property:

Theorem 2.8. If T is a uniformly e-pointed tree, then for each n, there exists an m so

that T � n ⊆ W|σ|(σ) for all σ ∈ T with |σ| ≥ m.

When working with a uniformly e-pointed tree T and functional W , we denote the

function taking n to the first such m by s(n) = m.

Proof of Theorem 2.8. Since every path through T enumerates T � n, the collection of

basic clopen sets {[σ] : σ ∈ T and W|σ|(σ) ⊇ T � n} ∪ {[σ] : σ 6∈ T} covers 2ω. By

compactness of 2ω, finitely many [σ] suffice, so by some finite level every path in T has

enumerated T � n.

Theorem 2.9. If A is cototal, then A ≡e T for some uniformly e-pointed tree T .

Proof. Fix C a maximal antichain on ω<ω with C ≡e A. Each nonzero level of 2<ω will

be associated to a pair of comparable, unequal strings in ω<ω.

Put λ in T . If level n is associated with (σ, τ), then every node on level n of T

branches left if σ ∈ C and right if τ ∈ C.

21

Since C is an antichain, at most one of σ, τ belong to C, so T has no dead ends. By

construction, C ≥e T .

To see that T ≥e C, we describe an enumeration functional, which we will call V :

we enumerate τ when we branch left at the level associated to (τ, σ) and enumerate σ

when we branch right. But we have more: we claim that by the same V , each path in

T enumerates C.

Let σ ∈ C. Then by maximality of C, there must be some element τ comparable to

σ with τ ∈ C. Then the level of 2<ω associated to (τ, σ) can only branch to the right in

T , so whichever path we take in T , we must enumerate σ.

So our functional V gives X ≥e C for each path X through T uniformly. Composing

this with the reduction C ≥e T , we obtain a functional W witnessing that T is a

uniformly e-pointed tree.

One can see, by an application of compactness of 2ω, that uniformly e-pointed trees

are cototal. It is more difficult to see that e-pointed trees themselves are all of cototal

degree. To prove this, we first pass through a superclass of uniformly e-pointed trees.

Definition 2.10. A uniformly e-pointed tree with dead-ends is a tree T ⊆ 2<ω, possibly

with dead-ends, for which there exists an enumeration functional W so that W (X) = T

for all paths X through T .

In particular, a uniformly e-pointed tree is a uniformly e-pointed tree with dead-ends.

Theorem 2.11. If T is a uniformly e-pointed tree with dead ends, then T is cototal.

Proof. Let W be the enumeration functional witnessing that T has the e-pointed prop-

erty uniformly.

22

Let n ∈ T and consider the following cover of 2ω by clopen sets:

{[σ] : σ 6∈ T} ∪ {[σ] : W (σ) 3 n}

Since 2ω is compact, finitely many σ suffice to cover the space. But then after enumer-

ating finitely many σ ∈ T , for any n ∈ T we witness at some finite stage that every

path remaining enumerates n, so we can safely enumerate n into T . This procedure is

uniform, so T ≥e T .

Lemma 2.12. If T is a (non-uniformly) e-pointed tree, then there exists some uniformly

e-pointed tree T ′ with dead ends such that T ′ ≥e T ≥e T ′.

Proof. Given T , we attempt to build a sequence of subsets Ti diagonalizing against

enumeration functinoals Wi as follows:

T0 = T .

To define Tn+1, consider the enumeration functional Wn.

If there exists σ ∈ Tn with [σ] ∩ [Tn] 6= ∅ and Wn(σ) 6⊆ T , then set Tn+1 = Tn ∩ [[σ]].

Otherwise, assuming Wn does not enumerate T uniformly on [Tn], there must be some

path X ∈ [Tn] so that Wn(X) 63 τn for some τn ∈ T . Then define Tn+1 by removing any

node σ ∈ Tn for which Wn,|σ|(σ) 3 τn.

If this procedure continues indefinitely, we have nested sets Ti with [Ti] all nonempty.

A nested sequence of compact nonempty sets has nonempty intersection, so we obtain

a path X ∈ T on which no Wn enumerates T .

So this procedure must stop at some finite stage, that is, after intersecting T with

some finitely many [[σk]] and removing all nodes σ such that Wn,|σ|(σ) 3 τk for finitely

many k, τk, we have that Wn enumerates T uniformly on [Tn+1].

23

Let T ′ = Tn+1, W
′ = Wn. Notice that since we intersect with finitely many [[σk]]

and remove only nodes σ such that Wk,|σ|(σ) 3 τk for finitely many k, τk, we have that

T ≥e T ′: as we enumerate T we allow only those nodes lying above or below the finitely

many σk, and before enumerating a node σ check whether Wk,|σ|(σ) 3 τk for the finitely

many k, τk.

Claim 2.13. T ′ ≥e T .

Again by a similar compactness argument as in Theorem 2.11, for n ∈ T we have

that

{[σ] : σ 6∈ T ′} ∪ {[σ] : W ′(σ) 3 n}

is an open cover of 2ω. By compactness, in enumerating T ′, by some finite stage we will

have enumerated enough of T ′ to see, checking finitely many other σ, that all remaining

paths enumerate n.

Theorem 2.14. If T is an e-pointed tree, then T has cototal degree.

Proof. Let X = T ⊕ T ′, with T ′ as in Lemma 2.12. Clearly X ≥e T , and since T ≥e T ′,

we see T ≥e X. So X ≡e T . And since T ′ ≥e T ≥e T ′, we see that X ≥e X, so X is

cototal.

As a corollary:

Corollary 2.15. The following are equivalent of an e-degree e:

1. e contains a uniformly e-pointed tree.

2. e contains an e-pointed tree.

3. e contains a uniformly e-pointed tree with dead-ends.

4. e is cototal.

24

We obtain a corollary to Montalbán’s Theorem 2.6:

Corollary 2.16. A degree spectrum is the Turing upward closure of an Fσ set of reals in

ωω if and only if it is the enumeration cone of a cototal set. In fact, for X ⊆ DT the

following are equivalent:

1. X is the degree spectrum of a structure and the Turing upward closure of an Fσ

set of reals.

2. X is the enumeration cone of a cototal set.

In particular, not every enumeration cone may be simultaneously obtained both as

the degree spectrum of a structure and as the Turing upward closure of an Fσ set of

reals.

2.5 Minimal subshifts

In [32], Emmanuel Jeandel gave several examples of classes of algebraic and combina-

torial objects exhibiting cototality. We will consider one such class, the languages of

minimal subshifts. More on minimal subshifts can be found in [29]. The shift operator

on 2ω is the map taking a real α ∈ 2ω to the unique β ∈ 2ω such that α = naβ for some

n ∈ 2, that is, the operator which erases the first bit of a real. In functional notation, it

is the operator α(n) 7→ α(n+ 1).

Definition 2.17. A subshift is a closed, shift-invariant subspace of 2ω.

The trivial example of 2ω itself is called the full binary shift. Binary subshifts are

thought of as describing the evolution of a symbolic dynamical system taking states in

{0, 1}. More generally, subshifts on nω can be defined for any finite set of n states,

25

with elements of the subshift describing a possible sequence of states taken over some

evolution of the system.

Definition 2.18. A subshift X is minimal if it satisfies one of the following equivalent

conditions:

1. X contains no proper subshifts.

2. X is the shift-invariant closure of any of its points.

3. Every point of X contains the same subwords.

Definition 2.19. The language of a subshift X, denoted L(X), is the collection of all

subwords appearing in any of its points. The set L(X) is called the set of forbidden

words.

The closure condition guarantees that a subshift is characterized by its language,

or equivalently by its set of forbidden words. Conversely, designating any collection of

words as forbidden determines a unique subshift consisting of all infinite strings which

avoid the designated forbidden words (i.e., which do not contain any forbidden word as

a subword).

Definition 2.20. The Turing degree spectrum of a subshift X is the collection of Turing

degrees of its points.

Definition 2.21. A subshift is trivial (or periodic) if it is the shift-invariant closure of a

point of the form X = w∞ for some finite word w ∈ 2<ω.

The language of a subshift is particularly relevant to us because of the following

theorem:

Theorem 2.22 (Jeandel, Vanier [33]). If X is a minimal subshift which is not trivial, the

Turing degree spectrum of X is the enumeration cone E(L(X)).

26

Note by Theorem 2.1, the set E(L(X)) of Turing degrees which compute enumera-

tions of L(X) is characterized by the enumeration degree of L(X). So understanding the

possible Turing degree spectra of minimal subshifts X reduces to understanding what

enumeration degrees lie at the base of these enumeration cones E(L(X)). The cototal

degrees enter the picture here:

Theorem 2.23 (Jeandel [32]). If X is a minimal subshift, then L(X) is cototal.

Degreewise then, an enumeration degree must be cototal to be the enumeration

degree of the language of a minimal subshift. We show that this condition is sufficient.

That is: each cototal degree contains the language of a minimal subshift.

Our construction is similar to the main construction in [29], in that we build a

minimal subshift X as a nested intersection of subshifts Xn generated by languages

Ln, with each Ln+1 built up from concatenations of words in Ln. In [29], minimality

is ensured by requiring that each word in Ln+1 contains all of Ln as subwords. Our

main insight is that it is enough that for each n there exists an m > n so each word

in Lm contains all of Ln as subwords. This relaxed condition allows us to exploit the

intro-enumerability property of e-pointed trees given in Theorem 2.8.

Theorem 2.24. If A is cototal, then A ≡e L(X) for some X a minimal subshift on 2ω.

Proof. Given A cototal, let T ∈ dege(A) be a uniformly e-pointed tree with functional

W . Fix an enumeration {ak : k ∈ ω} of W and put Ws = {ak : k < s}.

For each string σ ∈ 2<ω, the set W|σ|(σ) defines a subtree of 2<|σ| given by the

downward closure of 2<|σ| ∩W|σ|(σ), which we will denote by W σ. Note that W σ are

increasing in σ, i.e., σ � τ ⇒ W σ ⊇ W τ , and that without loss of generality the W σ

have the property that τ ∈ W σ ⇒ W τ ⊆ W σ. We define levels Lσi inductively in i and

27

σ.

For each σ, define Lσ0 = {0, 1}. Then Lσn+1 consists of words of the form

AAAB(AB)kAA(CDE...Z)B

where {A,B, ..., Z} =
⋃
τ∈Wσ Lτn with A,B, . . . Z distinct, and k, thought of as an ele-

ment of 2<ω, is both in W σ and has length n+ 1.

We let

Ln =
⋃
σ∈T

Lσn

and define Xn to be the subshift generated by concatenations of the words in Ln. Let

X =
⋂
n<ωXn. This ends the construction. We now verify this X satisfies our conditions:

Claim 2.25. X is a subshift.

Each word in Ln+1 is made up of concatenations of words in Ln, so we have that

Xn+1 ⊆ Xn. Hence X, being a nested intersection of closed, shift invariant subsets of

2ω, is itself closed and shift invariant.

Notice that since W σ ⊆ 2<|σ|, and words are put in Lσm only to code for nodes in W σ

of length m, we have Lσm = ∅ for m ≥ |σ|. Hence we can also write:

Ln =
⋃

σ∈T,|σ|>n

Lσn

Claim 2.26. T ≥e L(X).

By the construction, we have that T ≥e
⋃
Ln. Then T enumerates the collection of

all subwords of
⋃
Ln, which we denote by L. We claim that L = L(X).

First, L(X) ⊆ L: suppose w is a subword of some point in X. Pick n large enough so

that the length of w is less than any word in Ln. Then since w appears in Xn it appears

28

in some concatenation of words in Ln, and by choice of n, in fact w must then appear

in a concatenation of at most two words in Ln, say AB with A ∈ Lσ1n and B ∈ Lσ2n

with σ1, σ2 ∈ T . Let m > n, |σ1|, |σ2| and consider the level s(m), where s(m) is the

function from Theorem 2.8. Then if |σ| > s(m), we know that W σ ⊇ T � m, so that⋃
τ∈Wσ Lτn ⊇ Lσ1n , L

σ2
n . In particular,

⋃
τ∈Wσ Lτn contains A and B, so w appears in the

word AAAB(AB)kAA(CDE...Z)B in Lσn+1.

Secondly, L ⊆ L(X): given a subword w of some word in Lσn for |σ| ≥ n, let

m = s(|σ|). Then every word in Lm contains w since σ ∈ W τ for every τ ∈ T with

|τ | ≥ m. Hence w appears in every point of Xm, so certainly in X.

Claim 2.27. L(X) ≥e T :

To see that L(X) ≥e T , recall that L(X) = L. So to enumerate T we re-run the

inductive construction of the languages Ln. We can output L0 = {0, 1}, then at each

stage we look among all the W σ for σ ∈ 2<ω, and we search our enumeration of L for

subwords of the form

AAAB(AB)kCDE...ZB

where k ∈ W σ and if k has length n + 1 then {A,B,C, . . . , Z} =
⋃
τ∈Wσ Lτn. If such a

word is found in our enumeration of L, then we output the node coded by k into our

enumeration of T .

Before we can see that this procedure enumerates all of T , first note that it does

reconstruct the layers Lσn at least for σ ∈ T . We can proceed by induction: any w in L

is a subword of some word in Lσn:

For n = 0, Lσ0 = {0, 1} are both outputted.

If w appeared in Lσn+1, then it was constructed from letters in Lτn for τ ∈ W σ, so by

29

induction hypothesis on n and τ , we enumerate every letter in Lσn+1 for at least every

σ ∈ T .

Since all of T is in fact coded at some level Lσn, this means the procedure certainly

enumerate at least all of T . What we need to see is that in fact only elements of T are

enumerated. The worry is that that by searching among all possible W σ for all σ ∈ 2<ω,

rather than just σ ∈ T , we may have accidently enumerated nodes corresponding to k’s

found that were not actually ever in T .

To verify that we only enumerate σ corresponding to k for σ ∈ T , we again proceed

by induction. Suppose we have found k in some word w in L. Now any w of the

appropriate form that we do find must be found as some concatenation of words in some

Lj (for some Lσij , but we can forget which σi). Let j be smallest such: i.e., w does

not appear strictly within any of the words A,B,C, . . . , Z in Lj. Then to have seen w

and accepted it as in Lj, we must have seen a subword made up of these letters and of

the form AAAB(AB)kAA(CDE...Z)B, but that was not put into L to code for k ∈ T .

But then in particular, we found w while searching for subwords of concatenations of

Lj that begin with a word in Lj repeated three times. But there is no way in Lj to

concatenate words of the correct form to obtain any new word of this form: the only

way to even obtain a new subword of the form AAA is to concatenate a word ending in

A, say PPPA(PA)k(QR..Z)A with a word starting in A, say AAAV (AV)j(WX..Z)V

but then the only new sequence of three As is followed by another A, not some distinct

letter B, so it is not of the correct form either.

Claim 2.28. X is minimal.

Suppose p appears in some point on X. Then p appears in some word w ∈ Ln so in

30

some w ∈ Lσn for some σ ∈ T .

Let m = s(|σ|). Then for |τ | ≥ m, since W τ ⊇ T � |σ| 3 σ, we know w appears in

Lσn+1. So taking k ≥ max(m,n+ 1) we see that w appears in every word in Lk. So all

the points in X, being points in Xk, contain p.

Since p was arbitrary, all points of X contain the same subwords.

Theorem 2.22 makes our result of particular interest, as it allows us to find examples

of degree spectra of minimal subshifts using known examples of cototal sets. We close

with one such application:

Definition 2.29. The Turing co-spectrum of a minimal subshift X is the collection of all

lower-bounds of the degree spectra of X, i.e. {d ∈ DT : d ≤T b,b ∈ SpecT (X)}.

Gutteridge shows that there is a quasiminimal cototal degree q [27]. That is, a

cototal degree q which is nonzero, and bounds no non-zero total e-degree. Taking X a

minimal subshift with dege(L(X)) = q, we obtain the following:

Theorem 2.30. There exists a minimal subshift with no computable points, but whose

Turing co-spectrum is {0}.

31

Chapter 3

The Strong Difference Randoms

3.1 Introduction

The study of algorithmic randomness concerns notions of randomness which can be

applied to individual subsets of ω. For an overview of the basic ideas and results in

algorithmic randomness, we recommend [17, 49]. The most widely studied notions of

algorithmic randomness are given in terms of passing a countable collection of statistical

tests, each of which describe null subsets of 2ω.

Definition 3.1. A test is a sequence {An}n∈ω of subsets of 2ω with µ(An) → 0. A real

X ∈ 2ω is said to pass the Martin-Löf condition on a test {An}n∈ω if X 6∈
⋂
n∈ω An, and

to pass the Solovay condition on a test {An}n∈ω if X ∈ An for only finitely many n.

Test-based algorithmic randomness notions are typically obtained by restricting to a

countable class of tests, and considering either the class of reals which pass the Martin-

Löf condition on all those tests, or the class of reals which pass the Solovay condition

on all those tests. Note that the Solovay condition is a stronger condition: a real which

passes the Solovay condition on a test already passes the Martin-Löf condition on that

test. When applied to the same class of tests, imposing the Solovay condition gives a

randomness notion at least as strong as imposing the Martin-Löf condition, and often a

strictly stronger randomness notion.

32

Solovay introduced the Solovay condition in conjunction with the notion of a Solovay

test :

Definition 3.2. A Solovay test is a sequence {An}n<ω of uniformly Σ0
1 classes in 2ω, the

sum of whose measures is finite:
∑

n<ω µ(An) <∞. A real is Solovay random if it passes

the Solovay condition on all Solovay tests.

In this sense, the class of randoms obtained by imposing the Solovay condition over

the class of Solovay tests is the class of reals that obey the Borel-Cantelli lemma on all Σ0
1-

presented statistical tests. More well-known is the definition of Martin-Löf randomness:

Definition 3.3. A Martin-Löf test is a sequence {An}n<ω of uniformly Σ0
1 classes in 2ω

with µ(An) ≤ 2−n for all n. A real is Martin-Löf random if it passes the Martin-Löf

condition on all Martin-Löf tests.

In this sense, the Martin-Löf randoms are those which are not covered by an effective

sequence of covers with measure that can effectively be made arbitrarily small. At its

face, Solovay randomness seems a stronger notion than Martin-Löf randomness. How-

ever, in a short and slick argument, Solovay observed that a real is Solovay random if

and only if it is Martin-Löf random [63].

Although these definitions conform well to our intuition about what an effective

version of randomness should look like, under either the probability paradigm or the

measure-theoretic paradigm, the class of Martin-Löf randoms fails to satisfy some of the

computational conditions we might expect of a randomness notion. For example, given

a noncomputable set A, the collection of reals {X : X ≥T A} has measure zero. Under

the informal notion of randomness, we would say that, given any non-computable set

A, a “typical” or “random” set does not compute it [11, 58]. Of course, no randomness

33

notion will guarantee this sort of typicality, since a non-computable set A will always

compute itself, but the class of Martin-Löf randoms fails this entire intuition even more

spectacularly: given any set A, there exists a Martin-Löf random X such that X ≥T A

[23, 37].

There are many ways to strengthen the notion of Martin-Löf randomness which

eliminate some of the potential for a random to be computationally useful. For example,

the notion of weak 2-randomness, although originally defined as the collection of reals

which belong simultaneously to every Σ0
2 class of measure one [38], can be obtained by

imposing the Martin-Löf condition over a superclass of Martin-Löf tests:

Definition 3.4. A generalized Martin-Löf test {An}n<ω is a nested sequence of uniformly

Σ0
1 classes in 2ω with µ(An)→ 0.

Theorem 3.5 (Wang [65]). A real is weak 2-random if and only if it passes the Martin-Löf

condition on every generalized Martin-Löf test.

Downey, Nies, Weber and Yu showed that each weak 2-random forms a minimal pair

with the halting problem ∅′ [16]: i.e., for X a weak 2-random, and any set Y , if Y ≤T X

and Y ≤ ∅′, then Y ≤ ∅. Hirschfeldt and Nies showed the converse, so the property of

forming a minimal pair with ∅′ characterizes the weak 2-randoms among the Martin-Löf

randoms1. For example, no weak 2-random is ∆0
2, i.e. no weak 2-random is computable

from ∅′.

Another strengthening of Martin-Löf randomness is Demuth randomness, obtained

by imposing the Solovay condition over the class of Demuth tests. Imposing the Martin-

Löf condition gives a weaker notion, aptly named weak Demuth randomness.

1Hirschfeldt and Nies’ result is unpublished, the proof appears in [51].

34

Definition 3.6. A Demuth test is a class {An}n∈ω of Σ0
1 classes in 2ω with µ (An) ≤ 2−n,

whose components are given by some ω-c.e. function g(n) as An = [Wg(n)] for all n.

Recall that a function g(n) is ω-c.e. if it has a computable approximation g(n, s)

such that the number of mind-changes |{s : f(n, s) 6= f(n, s+ 1)}| is bounded by a com-

putable function f(n). Given e ∈ ω, We denotes the e’th computably enumerable set

under a fixed effective listing of all c.e. sets.

Definition 3.7. A real X ∈ 2ω is Demuth random if it passes the Solovay condition on

every Demuth test, and weak Demuth random if it passes the Martin-Löf condition on

every Demuth test.

Again, Demuth randomness ensures some degree of computational weakness: every

Demuth random is GL1 [49].

A particularly striking dichotomy appears at the level of computing ∅′. By a result of

Stephan, a Martin-Löf random real is either computationally strong enough to compute

the halting problem (that is, it is complete), or is computationally too weak to com-

pute any complete extension of Peano Arithmetic [64]. The typical case is the latter,

since the class of reals computing ∅′ (or any fixed non-computable set) is of measure

0. Remarkably, this class of incomplete Martin-Löf randoms can be characterized by a

natural test notion, introduced by Franklin and Ng [22].

Definition 3.8. A difference test is a sequence {Un \ Vn}n∈ω where {Un} and {Vn} are

uniformly Σ0
1 classes of subsets of 2ω, and each component has measure µ(Un\Vn) ≤ 2−n.

Definition 3.9. A real X ∈ 2ω is difference random if it pases the Martin-Löf condition

on every difference test.

Then Franklin and Ng showed:

35

Theorem 3.10 (Franklin and Ng [22]). A Martin-Löf random real X is difference random

if and only if X 6≥ ∅′.

Bienvenu and Porter considered imposing the strong condition on these tests [3]:

Definition 3.11 (Bienvenu and Porter). A real X ∈ 2ω is strong difference random if it

passes the Solovay condition on every difference test.

The strong difference randoms fit in between the Demuth randoms and the difference

randoms, incomparable with the weak Demuth randoms and the weak 2-randoms [3].

Bienvenu and Porter were also able to show that the strong difference randoms satisfy

many of the computational properties we would desire of a randomness notion, including

that they are all GL1 [3].

We continue the study of strong difference randomness along the lines of Franklin

and Ng’s study of the difference randoms. Franklin and Ng characterized the difference

randoms by imposing the Martin-Löf condition on a subclass of Demuth tests which

they called the strict Demuth tests. We present a characterization of strong difference

randomness as that class obtained by imposing the Solovay condition over the same

class of strict Demuth tests. Then, we present a computability-theoretic characterization

of the strong difference randoms among the Martin-Löf randoms as those Martin-Löf

randoms which are array computable in a very nice way, a notion of computational

weakness which we will make precise and explore in its own right.

3.2 Strict Demuth tests

Franklin and Ng characterized the difference randoms in terms of strict Demuth tests :

36

Definition 3.12. A Demuth test {[Wg(n)]} is strict if g(n) has a computable approxi-

mation g(n, s) such that for every n and s, if g(n, s) 6= g(n, s + 1), then [Wg(n,s+1)] ∩[⋃
t≤sWg(n,t)

]
= ∅.

Theorem 3.13 (Franklin and Ng). A real X ∈ 2ω is difference random if and only if it

passes the Martin-Löf condition on every strict Demuth test.

We provide a similar characterization for the strong difference randoms. Namely, the

strong difference randoms are those passing the strong (Solovay) condition on all strict

Demuth tests. Our proof is similar to that of Franklin and Ng’s theorem above.

A key step in our proof is a simple combinatorial observation: each infinite set of

integers contains either infinitely many even integers, or infinitely many odd integers.

We apply this observation non-uniformly to speed up the rate at which the size of the

components of our difference tests converge to zero. When applied to difference tests

with the Martin-Löf condition, this step can be done uniformly, and followed mutatis

mutandis provides a simplified proof of Franklin and Ng’s theorem.

Theorem 3.14. A real X ∈ 2ω is strong difference random if and only if it passes the

Solovay condition on every strict Demuth test.

Proof. If {[Wg(n)]}n∈ω is a strict Demuth test, then setting Un =
⋃
s[Wg(n,s)] and Vn =⋃

{[Wg(n,s)] : g(n, s) 6= g(n, s+ 1)} gives a difference test with Un \ Vn = [Wg(n)] for each

n, so if X is in infinitely many components of a strict Demuth test, then it is not strong

difference random.

In the other direction, suppose that X is not strong difference random, and take

{Un \ Vn} a difference test for which X belongs to infinitely many components. By

speeding up the enumeration of Vn, we may assume without loss of generality that for

37

every n and s, µ{Un,s \ Vn,s} ≤ 2−n. Since X belongs to infinitely many components

of {Un \ Vn}, it belongs to infinitely many odd components, or infinitely many even

components. Knowing which (non-uniformly), culling appropriately either all of the

even or all of the odd components from our test and re-indexing, we may assume without

loss of generality that X is captured in infinitely many components of a difference test

{Un \ Vn} and that for every n and s we have µ{Un,s \ Vn,s} ≤ 4−n.

Largely following Franklin and Ng, we now build a strict Demuth test {Wg(n)}n∈ω

and a Solovay test E (note that a Solovay test is a strict Demuth test, with static

components) so that X fails the Solovay condition on at least one of them.

We build Wg(i) as follows: initially, Wg(i,s) copies Ui until the measure of Ui,s exceeds

2−i. Then we enumerate Ui,s \ Vi,s into E. On the k’th attempt to build Wg(i,s), for

Wm1 , . . . ,Wmk−1
the abandoned versions of Wg(i,s), we let our current version of Wg(i,s)

follow Ui,s \
(
[Wm1 ∪ . . . ∪Wmk−1

]
)
, again until its measure exceeds 2−i, at which point

we abandon it and again throw Ui,s \ Vi,s into E. For each i, we can only abandon

a version of Wg(i,s) at most 2i times before running out of measure, so the g(i, s) so

constructed eventually settles with ≤ 2i changes. And since each set enumerated into E

on behalf of i contributes only 4−i much weight, and this is done at most 2i times, E is

a Solovay test.

Suppose X is in the component Un \ Vn, if X 6∈ [Wg(n)], then since [Wg(n)] eventually

settles to some Un \([Wm1∪ . . .∪Wmk]), it must belong to one of the [Wmi], which means

it appeared in Un,s for some early s, so was in Un,s \ Vn,s which was put in E on behalf

of Wmi .

So for each of the infinitely many components of {Un \Vn}n∈ω that contain X, either

X belongs to the n’th component of E, or to Wg(n). So either X belongs to infinitely

38

many components of {Wg(n)}n∈ω, or infinitely many components of E. In either case, X

is witnessed to fail a strict Demuth test.

3.3 Jump domination

The following lowness notion was introduced in [20]:

Definition 3.15. A set A is ω-c.e.-jump dominated if for each A-partial computable

function ΘA, there exists an ω-c.e. function f(n) so that ΘA(n) is dominated by f(n).

Note that since the jump JA is universal for A-partial computable functions, it is

enough that JA be dominated by an ω-c.e. function, which is indeed the definition given

in [20]. Among the well-known lowness notions, ω-c.e. jump domination is implied by

jump traceability and implies array computable, but also implies GL1 [20]. For more

background on lowness notions, including definitions of these classes, we recommend [49]

Chapter 8, although they will not be needed for the results of this chapter.

Given a computable approximation f(i, s) to an ω-c.e. function f(i), we often con-

sider the number of mind-changes m(i) = |{s : f(i, s) 6= f(i, s+ 1)}|. We introduce the

following notion:

Definition 3.16. A is 2n-c.e.-jump dominated if for each A-partial computable function

ΘA, there exists an ω-c.e. function f(n) so that ΘA(n) is dominated by f(n), and f(n) has

a computable approximation f(n, s) such that for all n, |{s : f(n, s) 6= f(n, s+ 1)}| ≤ 2n.

It should be noted that the specific choice of 2n is not essential. We could similarly

define an-c.e.-jump dominated for any fixed constant a > 1. Then given any A-partial

computable function ΘA, by splitting ΘA into ΨA
j (n) = ΘA(j + nk) for j = 1, . . . , k− 1,

39

with k = dlog2 ae, then bounding each ΨA
j (n) with ≤ an mind-changes and combining

these bounds gives a bound on ΘA with mind-changes eventually bounded by 2n.

We do insist, however, that the bound on mind-changes be given uniformly by a fixed

exponential gauge: if we allow a to vary, then again dominating JA with exponentially-

bounded mind-changes would be enough to bound any A-partial computable function

with exponentially-bounded mind-changes (with exponential bounds of varying bases),

as we can write a pairing function 〈i, j〉 which grows linearly in the second coordinate.

In [49], Theorem 3.6.26, Nies shows that all Demuth randoms are GL1 by showing

that they are in fact ω-c.e.-jump dominated. He proceeds by setting ΘA(i) = µs :

JAs (i) ↓, then Nies builds f(i, s) with mind-changes bounded by 2i, together with a De-

muth test (in fact, a difference test), so that any random passing with Solovay condition

has ΘA(i) bounded by f(i). Given an arbitrary A-partial computable function ΨA, by

replacing JA by the functional which converges on input i (say to 1) at stage ≥ ΨA(i),

the exact same argument goes through giving an ω-c.e. bound now on ΨA(i), with the

same 2i bound on mind-changes. As a result:

Corollary 3.17. Each strong difference random is 2n-c.e.-jump dominated.

Among the MLR reals, the converse of this theorem also holds. Hence, the strong

difference randoms are precisely those randoms which are 2n-c.e.-jump dominated.

Theorem 3.18. If A is MLR and 2n-c.e.-jump dominated, then A is strong difference

random.

Proof. Suppose that A is not SDR, then A is in infinitely many components of {Wg(i)}i∈ω,

where Wg(i,s) is a strict Demuth test.

Hence A is in infinitely many components of {Wg(2i)}i∈ω or {Wg(2i+1)}i∈ω. So without

40

loss of generality, we may assume A is in some test {Wg(i)}i∈ω where |Wg(i)| ≤ 4−i.

Suppose moreover now that A is 2n-c.e.-jump dominated. Applying this condition to

ΘA(m) = µs : A ↘ Wg(m,s),s, we obtain f(m, s) with ≤ 2m mind-changes, dominating

ΘA(m).

We now build a Solovay test E capturing A. Each time f(i, s) gives output, for

t = f(i, s) enumerate Wg(i,t),t into E for up to 4−i much measure. Since f(i, s) changes

only up to 2i times, E is a Solovay test. And since f(i, s) dominates ΘA(i), we know

that A is captured by E.

41

Chapter 4

Strong Jump-Traceability and

Diagonal Non-Computability

4.1 The strong jump-traceables and randomness

The notion of strong jump-traceability was introduced by Figueira, Nies and Stephan [21]

as a modification of Nies’ notion of jump-traceability [46] in an attempt to capture the

class of K-trivials using traditionally combinatorial ideas of computability theory, rather

than the analytic ideas characteristic of algorithmic randomness. Although we will not

explore the class of K-trivials directly in this chapter, it suffices to say that their defini-

tion arises from Kolmogorov complexity, and they have many characerizations intimately

related to algorithmic randomness. Therefore, a purely combinatorial characterization

of the class would be highly desirable (see also [41, 48]). Instead of producing such a

characterization, the strong jump-traceables emerged as a sub-ideal of the K-trivials,

with weaker notions of jump-traceability fleshing out a hierarchy of classes within the

K-trivials [14, 15].

A set A is strongly jump-traceable (SJT) if for every order function h, every A-

partial computable function has a trace bounded by h. Definitions of all these terms

can be found in [21], but it suffices to remark that they are of a combinatorial flavor.

42

In contrast to this combinatorial definition, the strong jump-traceables also have an

characerization in terms of the more analytic notion of cost functions, which we will

be using in this chapter. This alternative analytic perspective made the strong jump-

traceables a compelling, albeit unsuccessful, candidate for characterizing the K-trivials.

Definition 4.1. A monotone cost function is a computable function c of two variables.

We say that it assigns a cost c(x, s) to changing a ∆0
2 approximation at position x at

stage s. We require that, for each fixed x, c(x, s) is non-decreasing in s and converges

to a limit, c(x), and that for each fixed s the cost c(x, s) is non-increasing in x (in

particular, c(x) is non-increasing).

Definition 4.2. A ∆0
2 approximation 〈As〉 obeys a cost function c(x, s) if the sum of all

c(xs, s) is finite, where xs range over those x = xs which are least such that As(x) 6=

As+1(x).

Definition 4.3. A cost function c(x, s) is benign if there is a computable function g so

that for all positive rational ε, the size |I| of any collection I of pairwise disjoint intervals

[x, s) with c(x, s) ≥ ε is bounded by g(ε): i.e. |I| ≤ g(ε).

Then we have the following theorem, which for our purposes in this chapter we will

take as a definition:

Theorem 4.4 (Greenberg, Nies [26]). A ∆0
2 set A is strongly jump-traceable if it obeys

every benign cost function. That is, if for any benign cost function c, there is a ∆0
2

approximation of A obeying c.

Of particular interest in the body of results concerning the K-trivials have been

various characterizations of the K-trivials by different notions of computational lowness.

One notion is that of being computed by “many” oracles: a set A is K-trivial if and

43

only if it is computed by some MLRA set: i.e. if A is computed by a set of oracles that

is not effectively small (in A) [47].

Similar characterizations of the SJTs have been found characterizing them as the

reals computable from some “large” class of oracles. Strikingly, the theorems split into

two archetypes: if a set is computed by random and computationally weak oracles, it

is strongly jump-traceable, but the same holds if a set is computed by random and

computationally strong oracles.

We say that a set A is weak truth-table reducible to a set B, written A ≤wtt B, if

there is a Turing reduction from B to A with computably bounded use.

A set A is superlow if A′ ≤wtt ∅′, i.e. if A′ is ω-c.e., equivalently, if every set c.e.

relative to A is ω-c.e. [44]. In particular, A superlow implies that A itself is ω-c.e. A set

A is superhigh if ∅′′ ≤wtt A′.

Theorem 4.5 (Greenberg, Hirschfeldt and Nies [25]). For each of the following classes,

the strong jump-traceables are precisely the collection of degrees computable in each of

their members:

(1) The MLR superlows.

(2) The MLR ω-c.e. sets.

(3) The MLR superhighs.

These theorems were proven first for the c.e. strong jump-traceables by Greenberg,

Hirschfeldt, and Nies [25]. Of fundamental importance but established later by Dia-

mondstone, Greenberg, and Turetsky, strong jump-traceability is inherently enumerable:

every strong jump traceable can be bounded by a c.e. strong jump-traceable [14].

In the cases (1) and (2), there is reason to suspect that the results are not essentially

related to randomness of the class of oracles. Indeed, [25] point out a corollary to cases

44

(1) and (2) in the PA degrees. Recall that a set A is of PA degree or is PA-complete

if A computes a path through every non-empty Π0
1 class, if and only if A computes a

0–1 valued DNC function, if and only if A computes a complete, consistent extension of

Peano Arithmetic [34].

Theorem 4.6 (Greenberg, Hirschfeldt and Nies [25]). A set is strongly jump traceable if

and only if it is computable from every superlow (or from every ω-c.e.) PA degree.

In the following section, we will show that in Theorem 4.5, for (1) and (2), MLR

can be replaced by the weaker combinatorial property of DNC. A sequence X ∈ ωω

is diagonally non-computable (DNC) if it differs in each diagonal position from the

universal Turing machine: X(e) 6= φe(e) for each e. For example, each Martin-Löf

random computes a DNC sequence [37].

Since in the nontrivial forward direction, this replaces the MLRs with the larger class

of DNCs, we have not only reason to suspect, but grounds to assert, that the low cases

(1) and (2) are in fact not essentially related to randomness of the oracles.

To us, this suggests that the characterization of SJTs as computable from every

computationally low random are not intimately related to the randomness of the oracle:

they only esssentially use a combinatorial property which is true of randoms. We will

however note that characterization (3) cannot be improved in this way—the collection

of sets computable from every DNC superhigh (in fact every DNC LR-hard) is precisely

the collection of computable sets—leaving open the possibility that (3) is indeed deeply

connected to randomness.

45

4.2 Strong jump-traceables and DNCs

Theorem 4.7. If A is strongly jump-traceable, then A is computable from every ω-c.e.

DNC real.

Before proving the theorem, a corollary:

Corollary 4.8. A is strongly jump-traceable if and only if A is computable from every

superlow (or from every ω-c.e.) DNC real.

Every ML-random has DNC degree [37], so the “if” direction follows directly from

Theorem 4.5, the “only if” direction follows from the main theorem, and the fact previ-

ously observed that superlow implies ω-c.e.

To prove the theorem, we adapt the proof of Greenberg and Nies in Proposition 5.1

of [26].

Proof. Let Y ∈ ωω be ∆0
2 and DNC, and fix 〈Ys〉 a ∆0

2 approximation.

Given f computable, increasing, we define a cost function c(x, t) = cf (x, t) as follows:

Let c(x, 0) = 2−x. For t > 0, put n = nt the least n such that Yt � f(n) 6= Yt−1 � f(n),

and set c(x, t) = max{c(x, t− 1), 2−n} for x < t.

Claim: if 〈Ys〉 is an ω-c.e. approximation, then c is benign.

Proof: Certainly c is monotone and has the limit condition. If Y is ω-c.e. via 〈Ys〉

with witness g, that is, g is computable and Ys(m) 6= Ys−1(m) on at most g(m) many

stages, then given I a set of pairwise disjoint intervals with each [x, s) ∈ I yielding

c(s, x) ≥ 2−n, then for all [x, s) ∈ I with x > n, there is a t ∈ (x, s] such that Yt �

f(n) 6= Yt−1 � f(n). But then |I| ≤ (n+ 1) + Σm<f(n)g(m), which proves the claim.

We will choose f(n) so that effectively during the construction, we control n·2n places

below f(n) in the diagonal function: we allot 2n places for each index e < n. We will see

46

our construction is computable, so we can write an auxilliary partial computable function

that diagonalizes its reflected places in the diagonal function against the corresponding

position of Yt at the current stage. Then f(n) total computable is chosen so that we

have control over sufficiently many positions. Because f is computable, by the recursion

theorem we have access to its index in the construction following.

Let 〈Ae,t〉 list all ∆0
2 approximations. If Ae,t → Ae obeys c(x, t), we claim that

Y ≥T Ae.

We introduce some notation which will be crucial to the proof: for each n and t ≥ n,

let sn(t) be least s ≤ t such that ∀r ∈ [s, t] Yr � f(n) = Yt � f(n). So sn(t) is the time

of the last change in Ys � f(n) before stage t.

At stage t, if n is the least such that Ae,t � sn(t) 6= Ae,t−1 � sn(t), then converge the

diagonal function to a position of Yt � f(n) − 1. Do this for each e < n that have not

yet met their allotment.

If 〈Ae,t〉 obeys c, then it cannot infinitely often make 2n changes at cost ≥ 2−n. So

eventually, any change in 〈Ae,t〉 is responded to by a convergence agreeing with Yt. That

is more precisely, a change Ae,t � sn(t) 6= Ae,t−1 � sn(t) means (by defintion of c) a change

of cost ≥ 2−n.

So after some finite stage, we have enough changes allotted to e to respond to any

change in Ae,t. So for fixed e, wait until 〈Ae,t〉 has settled in any place where it changes

at least 2n times at cost ≥ 2−n. Say by stage s′.

Claim: if t > s′, then the following implication holds:

Y � f(n)− 1 = Yt � f(n)− 1 =⇒ Ae � sn(t) = Ae,t � sn(t).

From this implication we have Y ≥T Ae for Y DNC, since we will certainly have sn(t)

47

unbounded by definition of sn(t), and each time we see Yt � f(n)− 1 = Y � f(n)− 1 we

can obtain Ae � sn(t).

Proof of claim: in fact, we claim As � sn(t) never changes after stage t. Suppose

u > t is a stage where Ae,u � sn(t) 6= Ae,u−1 � sn(t). Let m be least such that Ae,u �

sm(t) 6= Ae,u−1 � sm(t).

Since sn is non-decreasing, sn(u) ≥ sn(t), so Ae,u � sn(u) 6= Ae,u−1 � sn(u). So by

minimality, m ≤ n.

Since u > s′, we converge a position of the diagonal function to agree with Yu �

f(m)− 1. So Yu � f(m)− 1 cannot agree with Y . Minimality of m implies

Ae,u � sm−1(u) = Ae,u−1 � sm−1(u),

so by assumption on u, sm−1(u) < sn(t) and sn(t) ≤ t by definition of sn. Hence:

Yu � (f(m)− 1) = Yt � (f(m)− 1) ≺ Yt � (f(n)− 1).

But Yt � (f(n)− 1) agrees with Y � (f(n)− 1) by assumption, a contradiction.

Recall that any MLR A computes a DNC real via a finite variation of the function

n 7→ A � n [37], notice that this map is indeed a wtt reduction (the use is bounded by

n), and by definition wtt reductions preserve the properties of ω-c.e. and superlow.

A set which wtt-computes a DNC is called wtt-DNC, e.g. any MLR is wtt-DNC.

Under this terminology, we note that our proof gives the following:

Corollary 4.9 (Of proof). A is strongly jump-traceable if and only if A is computable

from every superlow (or from every ω-c.e.) wtt-DNC set.

We see that this statement improves (in the nontrivial forward direction) the theo-

rems for superlow and ω-c.e. MLRs, while replacing the randomness content with the

48

purely combinatorial property of wtt-DNC.

4.3 The superhigh case

An analogous characterization to Theorem 4.5 (3) fails entirely. The only sets com-

putable in every superhigh DNC are the computable sets. In fact, following Nies

[47], we say a set A is LR-hard if MLR(A) ⊆ MLR(∅′). In general, A ≤LR B if

MLR(B) ⊆ MLR(A). In particular, A ≤T B implies that A ≤LR B (≤LR is a “weak

reducibility”), and the notion that A is LR-hard means precisely that ∅′ ≤LR A. Simpson

proved that every LR-hard set is superhigh [60], and we have:

Theorem 4.10. The collection of sets computable from every LR-hard PA degree is the

collection of computable sets.

Proof. Suppose Z 6≥T A. By the relativized Cone Avoidance Basis Theorem [24], for

any nonempty Π0
1[Z] class P , there is an x ∈ P that does not compute A. And there is

a nonempty Π0
1[Z] class consisting only of PA[Z]-degree sets (in fact, of sets which are

all 0–1 valued DNC[Z] sets [34]), therefore there is an X of PA[Z]-degree, in particular

an X which is of PA degree and for which X ≥T Z, such that also X 6≥T A.

Considering Z an LR-hard set, then X is of PA degree and LR-hard. So we see the

collection of sets computable from every LR-hard PA degree is all of the sets computable

from every LR-hard degree. But this collection is known to be the computable sets by

a result of Cholak, Greenberg and Miller [9]: they show that the property of almost-

everywhere domination, which is equivalent to LR-hardness [36], can be forced by a

notion that admits cone avoidance. That is, for any noncomputable set A, there is a

uniformly almost-everywhere dominating f that does not compute A.

49

Chapter 5

Slopes of computable functions

5.1 Introduction

This chapter concerns real-valued functions which are computable in the classical sense

of Lacombe and Grzegorczyk. For an exposition of the basic notions of computable

analysis, we recommend [52, 66]. Informally, a real valued function is computable if

there is an effective algorithm which, given an effective approximation to an input real

x, produces an effective approximation to the output value f(x).

Precisely, we fix a standard effective listing {pn}n∈ω of all the rational polygonal

functions on [0, 1]—i.e. the polygonal functions made of segments whose endpoints with

rational coordinates—then a function f(x) ∈ C[0, 1] is computable if there is a total

computable function λ : ω → ω, called a representation of f , such that maxx∈[0,1]|f(x)−

pλ(n)(x)| ≤ 2−n. In other words, f(x) is an effective uniform limit of rational polygonal

functions. The same class of computable real-valued functions is obtained if, rather than

the standard listing of rational polygonal functions, we use a standard effective listing

of the polynomials with rational coefficients [52].

Our intuition from classical real analysis is that functions which are analytically

tame (e.g. smooth, smoothly differentiable, etc.) ought to behave well in a computa-

tional sense. This intuition is confirmed for example by a theorem of Pour-El and

50

Richards, from early in the development of computable analysis, which established that

if a computable function f is twice continuously differentiable, the derivative of f is

itself a computable function [52].

Classical theorems in computable analysis concerning differentiability consider the

behavior of f and its derivatives as global functions given by effective representations.

More recent work (and some rediscovered work in the language of constructivism) has

turned toward the points of differentiability themselves, yielding a connection between

classical differentiability theorems and algorithmic randomness. For example, the com-

mon Lebesgue points of all L1 computable functions are the Schnorr randoms [50] [57],

an effective analogue of the Lebesgue density theorem. Similarly, the common points of

differentiability of all monotone computable functions are the computable randoms, an

effective analogue of the monotone differentiation theorem [5]. The points of differen-

tiability of all computable functions of bounded variation are precisely the Martin-Löf

randoms [5,13]. A similar theorem characterizes the Kurtz randoms [43].

With a newfound interest in particular points of differentiability it is natural to ask

about the corresponding values of f ′(x), that is, how computationally complicated are

the slopes of computable functions? Given any computable function f , it is easy to

see that the value of f ′(x), whenever it exists, is uniformly computable in the jump

of x. Pour-El and Richards’ result tells us that, given a C2 computable function, the

values f ′(x) are uniformly computable in x. We pursue this perspective further, asking

questions of the following form: given some degree of good analytic behavior for f , how

computationally complicated are the values of the derivative f ′(x)? We will see that even

at the level of C1, there is a computable function f so that the values of f ′(x) compute

the jump of x almost everywhere: that is, they have the highest degree possible.

51

At this point, we should clarify a notational issue: throughout this chapter, when f

is a function, we will write f ′(x) to denote the value of the derivative of the function f

at the point x. When x denotes a number, we will write x′ to denote the Turing jump

of the real x, i.e. the halting set relative to (the binary expansion) of x. We will also

use ∅′ to denote the halting set itself. So for example, when we write f ′(x) ≥T x′ we

mean that the value of the derivative of the function f at the point x computes the

halting set relative to the real x, when we write f ′(x) ≥T ∅′ we mean that the value of

the derivative of the function f at the point x computes the halting set.

In addition to constructions of C1 functions, we explore what happens as we vary

the smoothness and differentiability criteria for f , for example we consider what hap-

pens when f is asked only to be merely differentiable almost everywhere, or when f

is asked to be differentiable everywhere. In these cases we will see that the possible

computational complexity of f ′(x) interacts with different computational paradigms,

both uniform and non-uniform. We also construct several examples of functions where

f ′(x) ≥T ∅′. Although it is not possible for a C1 function f to give f ′(x) ≥T x′ uniformly

almost everywhere, or even f ′(x) ≥T ∅′ uniformly almost everywhere, it is possible for

the latter condition (and not the former) to be satisfied with layerwise uniformity, a

concept from algorithmic randomness.

5.2 A first construction

We should first note that the mean-value theorem guarantees that the values of a deriva-

tive cannot all be computationally complicated.

Remark 5.1. If f is a differentiable, computable function, then f ′(x) is computable on

52

a dense set of points.

Proof. By the mean value theorem, between any two computable reals a, b, there exists

a point c ∈ [a, b] for which f ′(c) = f(b)−f(a)
b−a , and hence for which f ′(c) is computable.

This means that we cannot hope to construct any computable function f(x) for which

f ′(x) is of high complexity everywhere. In light of this restriction, we will constrain

ourselves to almost-everywhere results. We start by constructing a computable function

f with f ′(x) ≥ ∅′ almost everywhere:

Theorem 5.2. There exists a computable function f for which f ′(x) ≥T ∅′ uniformly in

x for almost all x.

Proof. We build g(x) (which we will want to look like our f ′(x)) on [0, 1] as a sum of

waveforms. Given a partition P of [0, 1], by an alternating step function of depth a on

P we mean a piecewise-constant function alternating between a and −a on the intervals

defined by P .

Let K be the halting set (we can also do the same with any c.e. set). Fix a list of

dyadic meshes
{

i
2n

: 0 ≤ i ≤ 2n
}

, in order of fineness. Fix a computable listing {an} of

K. We start with g0(x) = 1/2 (so the ternary expansion of g0 is all 1s).

At stage n + 1, we obtain gn+1(x) by summing gn(x) with another step function as

follows: when an enters K, we add an alternating step function of depth 3−an on the

first unused diadic mesh whose fineness δ satisfies 3−anδ < 2−n−1 (that is, whose steps

have areas each < 2−n−1).

Let gn(x) be the sum of the first n waveforms so enumerated, and g(x) = limn→∞ gn(x)

pointwise. Summing the first n waveforms, and integrating up to some fixed x ∈ [0, 1],

we miss at most one step of each remaining waveform. So |
∫ x
0
g(t)dt −

∫ x
0
gn(t)dt| ≤

53

∑∞
i=n 2−i−1 = 2−n, hence the

∫ x
0
gn(t)dt converge uniformly and effectively to

∫ x
0
g(t)dt.

Morevoer,
∫ x
0
gn(t)dt are uniformly computable, therefore f(x) :=

∫ x
0
g(x)dx is com-

putable.

We claim that f ′(x) = g(x) for x not dyadic-rational. Let g̃n denote the sum of the

first n step functions by decreasing depth. Note g̃n then approximates g(x) uniformly

within
∑∞

i=n 3−i = 1
2·3n−1 , so the convergence g̃n → g(x) is uniform. Consider the

difference quotient for f :

f ′(x) = lim
h→0

∫ x+h
x

g(t) dt

h
= lim

h→0

∫ x+h
x

g̃n(t) +Rn(t) dt

h

where Rn(x) = g(x) − g̃n(x) is bounded in absolute value by 1
2·3n−1 . Splitting the sum

and taking the first limit, we get, for x not dyadic-rational:

f ′(x) = g̃n(x) + lim
h→0

∫ x+h
x

Rn(t) dt

h

and applying our bound on Rn yields

|f ′(x)− g̃n(x)| ≤
∫ x+h
x

2−131−ndt

h
=
h2−131−n

h
= 2−131−n

so g̃n(x)→ f ′(x), hence f ′(x) = g(x).

Moreover, for any point x, g(x) computes K: as an ∈ K if and only if the n’th term

in the ternary expansion of g(x) is not 1.

5.3 Smoothing things out

So far we have claimed no analytic conditions on the functions we have constructed,

other than that they are differentiable almost everywhere. To achieve good analytic

behavior, we must at some point sacrifice computational uniformity:

54

Remark 5.3. There does not exist any function f smooth of class C1 such that f ′(x) ≥T ∅′

uniformly almost everywhere.

Proof. By way of contradiction, let f be C1 and Φe a functional with ∅′ = Φe(f
′(x))

almost everywhere. Then Φe itself computes ∅′ from some subset of [0, 1]. We claim that

this reduction fails on densely many intervals of [0, 1].

Given any interval I of [0, 1], consider any subinterval of the form (σa0, σa1) in I,

with σ a finite binary expansion. We can then write a program i which continues testing,

under Φe, extensions of σ until it finds an extension σaτ where Φe converges to 0 on i,

and then halts. So Φe fails on some subinterval (σaτ, σaτa1) of I.

Now f ′(x) is continuous, and clearly cannot be constant (or else, applying the mean

value theorem on two computable reals, it would be computable), so the image of f ′(x)

passes through some interval where the reduction Φe fails. The inverse image of this

interval then itself contains an interval where the uniform reduction f ′(x) ≥T ∅′ fails.

We are able, however, to achieve a weaker notion of uniformity. In the papers [30,31],

Hoyrup and Rojas introduced the framework of layerwise computability, which formalize

versions of effective measurability corresponding to different randomness notions. We

are particularly interested in the version corresponding to Schnorr randomness. For an

introduction to the basic notions of algorithmic randomness, see [17] or [49], also recall

Definition 3.3.

Definition 5.4. A Martin-Löf test {Un} is a Schnorr test if µ(Un) are uniformly com-

putable.

Definition 5.5. f(x) is Schnorr layerwise computable if there is a Schnorr test (Un) such

that f(x) is uniformly computable on X \ Un.

55

This definition inspires a parameterized version, where the oracle in the computation

depends on x.

Definition 5.6. A reduction f(x) ≥T g(x) is Schnorr layerwise uniform in the deficiency

of x if there is a Schnorr test (Un) and a computable sequence of indices en such that

Φen(f(x)) = g(x) for all x ∈ X \ Un.

Note the use of x in the oracle below. We will be able to eliminate the use of x in

the oracle in Section 5.5.

Theorem 5.7. There exists a C1, computable function f for which x ⊕ f ′(x) ≥T ∅′

Schnorr-layerwise uniformly in x.

Proof. We follow the same construction as in Theorem 5.2, but with continuous wedge-

shaped waveforms.

That is, for each depth a and partition P = {p0, p1, . . . , pn}, we replace our step

functions with the piecewise linear functions interpolating:

(pm, 0) to
(
pm + pm+1−pm

4n+1 , (−1)ma
)

to
(
pm+1 − (pm+1−pm)

4n+1 , (−1)ma
)

to (pm+1, 0),

for 0 ≤ m ≤ n − 1. Summing these waveforms in reverse order of depth, we see that

convergence g̃n → g is absolutely uniform, and so g inherits continuity from the g̃n.

Consider the intervals where the waveforms have positive slope, which we will call the

smoothing sets. On these intervals we are not coding for ∅′, as we are not controlling the

height of the waveform. However, the smoothing sets form a Schnorr test: the smoothing

set for a step function on a dyadic mesh of length n have uniformly computable rational

sizes bounded by 2n
4n+1 , and we only add one step function for each partition, so we can

even throw all the potential smoothing sets we could ever use into a Schnorr test Un.

Therefore, each Schnorr random x only falls on the smoothed sections of finitely

56

many waveforms. But given x and a bound on the number of waveforms it lies on, we

can compute which smoothing intervals x beongs to, and subtract off the value of the

corresponding waveforms from f ′(x). Now we have succeeding in coding all but a finite

initial segment of ∅′, whose length we know: but by the padding lemma, if we know any

tail end of ∅′ we can always uniformly recover any initial segment of ∅′.

5.4 Coding locally

So far, our theorems only yield f ′(x) of some fixed complexity for almost all x. We could

also consider varying the complexity requirements on f ′(x) with the value of x. Again,

we begin with a remark:

Remark 5.8. For computable f , x′ ≥T f ′(x) uniformly in all x at which f is differentiable.

Proof. Since f is computable, x′ can compute difference quotients on rational intervals

closing about x, and find a sequence of such converging appropriately to (i.e. giving a

Cauchy name for) f ′(x).

So the strongest complexity we could demand from f ′(x) is that f ′(x) ≥ x′. We

can upgrade Theorem 5.2 to obtain such f , our only innovation is to code locally as we

witness convergences on individual dyadic rational intervals. We recommend the reader

consult the construction of Theorem 5.2 before this local construction.

Theorem 5.9. There exists a computable function f for which f ′(x) ≥T x′ uniformly in

x for almost every x.

Proof. We reference the proof of Theorem 5.2, but code locally on dyadic rational in-

tervals. As before, gn(x) will be the sum of the first n waveforms enumerated in a

57

computable procedure, but each waveform we be added on a dyadic rational interval as

follows: let {σn}n∈ω list all finite binary strings in 2<ω, which we again identify with

the binary expansions of dyadic rationals in [0, 1], and consider each Φσn
e (e). When we

witness a convergence Φσn
|σn|,e(e) ↓, this means that x′(e) = 1 for each x ∈ (σn, σn

a1).

So, with the same coding and same fineness requirements as in Theorem 5.2, we add a

wavefunction of depth 3−e on a partition of the interval (σn, σn
a1).

Again, with gn(x) the sum of the first n waveforms (by enumeration), since we choose

our partitions small enough we will still obtain
∫ x
0
gn(t)dt converging uniformly effectively

to
∫ x
0
g(t)dt. But we cannot take g̃n the sum of the first n step functions by decreasing

depth, since we have added step functions of the same height on densely many dyadic

rational intervals. Instead, we set g̃n to be the sum of all the step functions of depth

down to 3−n.

Now the g̃n may not be continuous off of dyadic rationals, but they are still certainly

integrable by Lebesgue dominated convergence. So we still have our derivatives:

lim
h→0

∫ x+h
x

g̃n(t)dt

h
= g̃n(x)

almost everywhere by the Lebesgue differentiation theorem. Since we also still have the

same bound on the remainder term in our difference quotient analysis, we obtain again

that f ′(x) = g(x) almost everywhere.

Note that we must temper any hope to upgrade Theorem 5.7 in this local way. That

is, we cannot obtain a Schnorr-layerwise reduction x⊕ f ′(x) ≥T x′ for a C1 computable

function f :

Remark 5.10. If f is C1 and computable, then ∅′ ⊕ x ≥T f ′(x).

58

Proof. Since f is C1, for each n there exists a rational mesh {x1, . . . , xk} of sufficient

fineness so that on each sub-interval [xi, xi+1], all rational secant lines (and therefore all

tangent lines) have slope within 2−n of f(xi+1)−f(xi)
xi+1−xi . Since f is computable, ∅′ can find

these meshes uniformly in n. From this sequence of meshes, access to x allows us to

compute a Cauchy name for f ′(x).

Therefore, for f C1 and computable, existence of a reduction x ⊕ f ′(x) ≥T x′ at a

point x witnesses that x is GL1. But there exist Schnorr randoms which are not GL1

(indeed, there are 1-randoms which are not GL1).

If we drop all uniformity requirements, the f of Theorem 5.7 is almost sufficient to

obtain f ′(x) ≥T x′ almost everywhere, since almost every x is GL1. See Theorem 5.17

below.

A naive attempt to adapt our proof of Theorem 5.7 in a similar way will run into

the following problem: although the convergence g̃n → g is uniform, each g̃n need not

be (and indeed is not) continuous, so we would need not obtain a continuous g.

Although we cannot obtain a Schnorr layerwise reduction f ′(x) ≥T x′ for any contin-

uously differentiable f , we can still obtain one for an f which is everywhere differentiable:

Theorem 5.11. There exists a function f which is computable, differentiable everywhere,

such that x⊕ f ′(x) ≥T x′ Schnorr-layerwise uniformly in x.

Proof. We follow the proof of Theorem 5.7, but we modify our meshes.

In Theorem 5.7, whenever we witness convergence of a functional on some interval,

we wish to code on this subinterval by locally adding a waveform. Instead of choosing a

fresh uniform mesh of fineness δ satisfying 3−anδ < 2−n−1 and defining our waveform on

this mesh, we ask as another uniform requirement that 3−anδ < 2−n−1l, where l is the

59

length of the interval we are coding on. Moreover, we ask that the fineness of the mesh

increase quadratically in the distance from each endpoint.

To achieve this last requirement, suppose we are working on an interval (a, b), where

b − a = l. We refine our mesh by adding the points ({a + 1/n : n ∈ N} ∪ {b − 1
n

:

n ∈ N}) ∩ (a, b). To define the step function, we begin at the centermost intervals,

cutting them in half and alternating (continuously, as in Theorem 5.7) between a and

−a (so that the integral over each interval of the mesh is 0), and continue alternating

out, defining our waveform in this way on the whole open interval.

Our meshes are still computable, and note that the fineness of the mesh at each stage

has only been increased. Now if we integrate a waveform so defined from a to a + 1/n,

note that we miss at most the interval from a+ 1/(n+ 1) to a+ 1/n, which is of width

1
n
− 1

n+1
= 1

n(n+1)
< 1

n2 . More generally integrating from a to a+h we claim we obtain a

value which is ≤ 21−ih2. To see this, find n so that 1
n+1

< h < 1
n
. Then integrating up to

h, we obtain a value of at most 2−i
(
1
n
− 1

n+1

)
= 2−i 1

n(n+1)
= 2−i n+1

n(n+1)2
≤ 21−i 1

(n+1)2
≤

21−ih2.

Now consider our analysis of the difference quotients. Let g̃n(x) =
∑n

i=0 γi(x) where

each γi is the sum of all the local waveforms coding for the i’th bit of x′ on some interval.

When x lies in the coding set of a γi (that is, in an interval where we are coding for the

i’th bit of x′), we have that γi is continuous at x, and so limh→0

∫ x+h
x γi(t)dt

h
= γi(x) as

desired.

For x that do not lie in the coding set of some γi, consider the integral
∫ x+h
x

γi(t)dt.

If x + h lies on the support of γi, then since x does not lie on the support of γi, if

x + h lies in a coding set for γi then it lies in a coding interval (a dyadic interval

where we have witnessed convergence of x′ at poisition i) that starts, at worst, at x.

60

So
∫ x+h
x

γi(t)dt ≤ 21−ih2. (Note that if x + h does not lie in a coding set for γi, then∫ x+h
x

γi(t)dt = 0). So

lim
h→0

∫ x+h
x

g̃n(t)dt

h
= lim

h→0

∑n
i=0

∫ x+h
x

γi(t)dt

h
≤ lim

h→0

4 · h2

h
= 0

so that g̃n is differentiable at x as well.

We have the same bound on the remainder term, so we obatain f(x) differentiable

everywhere, as desired.

We have seen this level of uniformity cannot be improved to u.a.e. for f C1. But

neither can it for f differentiable everywhere, by the following Baire category result:

Theorem 5.12 (Clarkson [10]). If f is differentiable, then for each interval I, either

(f ′)−1(I) is empty, or is of positive measure.

This allows us to extend our nonexistence result to the following:

Theorem 5.13. There does not exist f differentiable such that f ′(x) ≥T ∅′ uniformly a.e.

Proof. Any uniform reduction y ≥T ∅′ fails on densely many intervals of y. By Darboux’s

theorem, f ′ has the intermediate value property. We may assume f ′ is nonconstant, so

the values of f ′ cover a whole interval, of which we may find a subinterval where the

reduction y ≥T ∅′ fails. By Clarkson’s theorem, f ′ pulls back this interval to a non-null

set.

5.5 Removing the point from the oracle

Our definition of computation Schnorr-layerwise uniform in x uses x as an oracle, so it

might be reasonable to ask if a reduction of the form x ⊕ f ′(x) ≥T ∅′ can be obtained

u.a.e.

61

Theorem 5.14. There does not exist f differentiable almost everywhere such that x ⊕

f ′(x) ≥T ∅′ uniformly almost everywhere.

Proof. Let Ψ be a functional witnessing the uniform computation of ∅′. Viewed as a

functional on R× R, this gives a reduction y1 ⊕ y2 ≥ ∅′ that is valid on some subset of

R × R. We write a program i searching for open boxes I1 × I2 where Ψ converges to 0

and on which there exists a rational secant line of f over I1 whose slope is contained

in I2. When such a point is found, i converges to 1. Then at some point within I1 the

value of f ′(x) lands in I2. Restricting f to I1, the preimage of I2 under f ′ is then a

nonempty subset of I1, and hence of positive measure. So on a positive measure set we

have succeeded in diagonalizing against the reduction x⊕ f ′(x) ≥ ∅′.

In fact, our use of x in our Schnorr-layerwise existence results is somewhat superficial.

Our reductions use the deficiency of x to bound the number of smoothing sets x lies

in, but x itself is only used in order to reconstruct the waveforms where coding on x

failed—in order to subtract away the smoothing waveforms and recover the coding of

the remaining bits of our jump. We can actually avoid the need for this subtraction

entirely by modifying our waveforms.

Both of the following theorems are obtained by modifying previous constructions:

Theorem 5.15. There exists a computable function f , differentiable everywhere, for which

f ′(x) ≥ x′ Schnorr-layerwise uniformly in the deficiency of x.

Theorem 5.16. There exists a C1, computable function f for which f ′(x) ≥T ∅′ Schnorr-

layerwise uniformly in the deficiency of x.

Proof. We follow the same proofs as before, but instead of smoothing by connecting our

piecewise constant segments with linear interpolation, we use a Cantor function (Devil’s

62

staircase). Note that in the previous verifications, we only use that the smoothing

pieces are uniformly computable and continuous, so we obtain the same properties on f

as before.

Observe that in the step-by-step construction of the Cantor function, off of the null

Cantor set, at each step n we define values of the Cantor function which are uniformly

away from 0 in n: that is, if we only consider the part of the domain of the Cantor

function defined up to stage n in the construction, any value of the Cantor function so

far defined has a finite ternary expansion of computably bounded length. In particular,

when values of the Cantor function are added to our coding, we have an upper bound

on the length of the initial segment of bits in the coding that they are able to affect.

Now we rewrite our Schnorr test to cover our tracks. Interweaving the nested pieces

of the Cantor sets within our Schnorr test, the deficiency of x alone determines how

many of the smoothing sets could have contained x and which piece of the smoothing

set it is in: not only do we know which bits of the coding of f ′(x) were missed, but also

which bits could possibly have been lost in the smoothing.

So we can ignore these bits and recover all the coding uniformly off each layer of the

Schnorr test again by the padding lemma.

This construction now also allows us to obtain our C1 function f with f ′(x) ≥T x′

non-uniformly almost-everywhere, as promised before:

Theorem 5.17. There exists a C1, computable function f for which f ′(x) ≥T x′ almost

everywhere (non-uniformly).

Proof. Almost every x is GL1, so for almost every x, x ⊕ ∅′ ≥T x′. We can modify the

construction of f in Theorem 5.7 to code x locally into the sequence of even ternary bits

63

(that is, the sequence obtained by looking at every other bit in the ternary expansion of

f ′(x)). Note we can always do this much local coding continuously, because there are no

late entries in x: coding for a bit in x, we add only 1 linear function of height a = 3−2n.

So x⊕f ′(x) ≥T x⊕∅′ ≥T x′ almost everywhere. We see in Theorem 5.16 that the use of

x is not necessary, and so we can obtain f C1 with f ′(x) ≥T x′ almost everywhere.

5.6 Summary

Although the individual results and the techniques used are of interest in themselves,

taken together they form a striking picture of a three-way interaction between analytic

conditions, computational complexity, and paradigms of computation. We considered

questions of the form: “does there exist a computable real-valued function f with a

given smoothness property such that, with a given level of computational uniformity,

f ′(x) ≥T ∅′, or f ′(x) ≥T x′?”

The smoothness classes we considered were the class of almost-everywhere differen-

tiable functions, the class of functions which are differentiable everywhere, and finally

the class C1 of smooth functions. The notions of computational uniformity we con-

sidered were reductions given uniformly almost everywhere, and reductions which were

Schnorr-laywerwise uniform.

The preceeding results, together with some of the observations, answer all the ques-

tions raised by combining these notions. By Theorem 5.9, there exists f computable

such that f ′(x) ≥T x′ uniformly almost everywhere. Such an f cannot be made to

be differentiable everywhere by Theorem 5.13. And by Remark 5.1 on the mean value

theorem, such a reduction cannot be improved to a uniform reduction.

64

However, by Theorem 5.15, there exists f computable and differentiable everywhere

such that f ′(x) ≥T x′ Schnorr-layerwise in the deficiency of x. This cannot be improved

to a uniformly almost-everywhere reduction by our remark on Clarkson’s theorem.

By Theorem 5.16, there exists f computable and C1 such that f ′(x) ≥T ∅′ Schnorr-

layerwise in the deficiency of x. This cannot be improved to f C2 by the result of Pour-El

and Richards, cannot be improved to uniformly almost everywhere by Theorem 5.13,

and cannot be improved to ≥T x′ by the remark on non-GL1 Schnorr-randoms.

Another way to understand how these results fit together is to consider the “best”

reduction achievable for a computable function with a given analytic property, where

we consider uniform almost everywhere (u.a.e.) “better” than Schnorr-layerwise in the

deficiency of x better than (non-uniform) almost-everywhere reductions (a.e.): then

for f differentiable almost everywhere, the best we can do for either f ′(x) ≥T ∅′ or

f ′(x) ≥T x′ is a u.a.e. reduction. For f differentiable everywhere, the best we can do

for either f ′(x) ≥T ∅′ or f ′(x) ≥T x′ is a layerwise reduction. For f C1, the best we can

do for f ′(x) ≥T ∅′ is a layerwise reduction, and the best we can do for f ′(x) ≥T x′ is an

a.e. reduction.

In what we’ve said above, note that Schnorr-layerwise and u.a.e. reductions are in-

comparable: Schnorr layerwise reductions are not uniform on any particular set of full

measure, but at each Schnorr-random x we eventually obtain a reduction for f ′(x),

whereas u.a.e. reductions may entirely fail at some Schnorr randoms. However, note

that in each case where we obtain a u.a.e reduction, we separately obtain a Schnorr

layerwise reduction by virtue of our stronger results constructing f differentiable every-

where, and hence certainly differentiable almost everywhere. In this sense, none of these

“best” types of reductions can be improved to a stronger uniformity notion.

65

To go from f differentiable almost everywhere to f differentiable everywhere, we

must sacrifice uniformity in the complexity of f ′ for some sort of layerwise uniformity.

To go from f differentiable everywhere to f C1, we must further sacrifice local complexity

f ′(x) ≥T x′ for a lower fixed complexity f ′(x) ≥T ∅′.

It remains open what happens when f is required to be twice-differentiable, but

not twice continuously differentiable. We know that when a computable f is C2, f ′ is

computable, so it is not possible to obtain f ′(x) ≥T ∅′ for any positive measure set of x.

But we wonder what happens to Theorem 5.16 in the weaker case where f is required

only to be twice differentiable, not C2.

66

Bibliography

[1] Uri Andrews, Hristo A. Ganchev, Rutger Kuyper, Steffen Lempp, Joseph S. Miller,

Alexandra A. Soskova, and Mariya I. Soskova, On cototality and the skip operator

in the enumeration degrees, Submitted.

[2] Oleg V. Belegradek, On algebraically closed groups, Algebra i Logika 13 (1974),

no. 3, 813–816.

[3] Laurent Bienvenu and Christopher P. Porter, Strong difference randomness, Infor-

mal presentation, Computability in Europe 2013.

[4] William W. Boone, Certain simple, unsolvable problems of group theory I-IV, Jour-

nal of Symbolic Logic 22 (1957), no. 4, 372–373.

[5] Vasco Brattka, Joseph S. Miller, and André Nies, Randomness and differentiability,

Trans. Amer. Math. Soc. 368 (2016), no. 1, 581–605.

[6] Douglas Cenzer, Ali Dashti, and Jonathan L. F. King, Computable symbolic dy-

namics, Mathematical Logic Quarterly 54 (2008), no. 5, 460–469.

[7] Douglas Cenzer, Ali Dashti, Ferit Toska, and Sebastian Wyman, Computability of

countable subshifts, Programs, Proofs, Processes: 6th Conference on Computability

in Europe (Berlin, Heidelberg), CiE’10, Springer-Verlag, 2010, pp. 88–97.

[8] , Computability of countable subshifts in one dimension, Theory of Comput-

ing Systems 51 (2012), no. 3, 352–371.

67

[9] Peter Cholak, Noam Greenberg, and Joseph S. Miller, Uniform almost everywhere

domination, The Journal of Symbolic Logic 71 (2006), no. 3, 1057–1072.

[10] J. A. Clarkson, A property of derivatives, Bull. Amer. Math. Soc. 53 (1947), no. 2,

124–125.

[11] Karel de Leeuw, Edward F. Moore, Claude F. Shannon, and Norman Shapiro,

Computability by probabilistic machines, Annals of Mathematical Studies, no. 34,

pp. 183–212, Princeton University Press, 1956.

[12] Jean-Charles Delvenne, Petr Kůrka, and Vincent Blondel, Decidability and univer-

sality in symbolic dynamical systems, Fundamenta Informaticae 74 (2006), no. 4,

469–490.

[13] Osvald Demuth, The differentiability of constructive functions of weakly bounded

variation on pseudo numbers, Comment. Math. Univ. Carolin. 16 (1975), no. 3,

583–599, Russian.

[14] David Diamondstone, Noam Greenberg, and Daniel D. Turetsky, Inherent enu-

merability of strong jump-traceability, Transactions of the American Mathematical

Society 367 (2015), no. 3, 1771–1796.

[15] Rod Downey and Noam Greenberg, Strong jump-traceability II: K-triviality, Israel

Journal of Mathematics 191 (2012), no. 2, 647–666.

[16] Rod Downey, Andre Nies, Rebecca Weber, and Liang Yu, Lowness and Π0
2 nullsets,

Journal of Symbolic Logic 71 (2006), no. 3, 1044–1052.

68

[17] Rodney G. Downey and Denis R. Hirschfeldt, Algorithmic randomness and com-

plexity, Theory and Applications of Computability, Springer, 2010.

[18] Bruno Durand, Leonid A. Levin, and Alexander Shen, Complex tilings, J. Symbolic

Logic 73 (2008), no. 2, 593–613.

[19] Lawrence Feiner, The strong homogeneity conjecture, J. Symbolic Logic 35 (1970),

no. 3, 375–377.

[20] Santiago Figueira, Denis R. Hirschfeldt, Joseph S. Miller, Keng Meng Ng, and André

Nies, Counting the changes of random ∆0
2 sets, Journal of Logic and Computation

25 (2015), no. 4, 1073–1089.

[21] Santiago Figueira, André Nies, and Frank Stephan, Lowness properties and ap-

proximations of the jump, Annals of Pure and Applied Logic 152 (2008), no. 1,

51–66.

[22] Johanna N. Franklin and Keng Meng Ng, Difference randomness, Proceedings of

the American Mathematical Society 139 (2011), no. 1, 345–360.

[23] Péter Gács, Every sequence is reducible to a random one, Information and Control

70 (1986), no. 2–3, 186–192.

[24] Robin O. Gandy, Georg Kreisel, and William W. Tait, Set existence, Bulletin

de l’Académie Polonaise des Sciences, Série des Sciences Mathématiques, As-

tronomiques et Physiques 8 (1960), 577–582.

[25] Noam Greenberg, Denis R. Hirschfeldt, and André Nies, Characterizing the strongly

69

jump-traceable sets via randomness, Advances in Mathematics 231 (2012), no. 3–4,

2252–2293.

[26] Noam Greenberg and André Nies, Benign cost functions and lowness properties,

The Journal of Symbolic Logic 76 (2011), no. 1, 289–312.

[27] Lance Gutteridge, Some results on enumeration reducibility, Ph.D. thesis, Simon

Fraser University, 1971.

[28] Graham Higman and Elizabeth Scott, Existentially closed groups, London Mathe-

matical Society Monographs, vol. 3, Oxford University Press, New York, 1988.

[29] Mike Hochman and Pascal Vanier, A note on Turing degree spectra of minimal

subshifts, CoRR abs/1408.6487 (2014).

[30] Mathieu Hoyrup and Cristobal Rojas, An application of Martin-Löf randomness

to effective probability theory, Mathematical Theory and Computational Practice.

CiE 2009, Lecture Notes in Computer Science, vol. 5635, CiE, Springer Berlin,

Heidelberg, 2009, pp. 260–269.

[31] , Applications of effective probability theory to Martin-Löf randomness, 36th

International Colloquium on Automata, Languages and Programming, Lecture

Notes in Computer Science, vol. 5555, ICALP, Springer Berlin, Heidelberg, 2009,

pp. 549–561.

[32] Emmanuel Jeandel, Enumeration in closure spaces with applications to algebra,

CoRR abs/1505.07578 (2015).

70

[33] Emmanuel Jeandel and Pascal Vanier, Turing degrees of multidimensional SFTs,

CoRR abs/1108.1012 (2011).

[34] Carl G. Jockusch and Robert I. Soare, Degrees of members of Π0
1 classes, Pacific

Journal of Mathematics 40 (1972), no. 3, 605–616.

[35] Takayuki Kihara and Arno Pauly, Point degree spectra of represented spaces, CoRR

abs/1405.6866 (2014).

[36] Bjørn Kjos-Hanssen, Joseph S. Miller, and Reed Solomon, Lowness notions, measure

and domination, Journal of the London Mathematical Society 85 (2012), no. 3, 869–

888.

[37] Antońın Kuĉera, Measure, Π0
1 classes and complete extensions of PA, Recursion

Theory Week, Lecture Notes in Mathematics, no. 1141, Springer-Verlag, 1985,

pp. 245–259.

[38] Stuart Alan Kurtz, Randomness and genericity in the degrees of unsolvability, Ph.D.

thesis, University of Illinois, 1981.

[39] Angus Macintyre, Omitting quantifier-free types in generic structures, J. Symbolic

Logic 37 (1972), no. 3, 512–520.

[40] Joseph S. Miller, Degrees of unsolvability of continuous functions, J. Symbolic Logic

69 (2004), no. 2, 555–584.

[41] Joseph S. Miller and André Nies, Randomness and computability: Open questions,

Bulletin of Symbolic Logic 12, no. 3, 390–410.

71

[42] Joseph S. Miller and Mariya I. Soskova, Density of the cototal enumeration degrees,

To appear in Ann. Pure Appl. Logic.

[43] Kenshi Miyabe, Characterization of Kurtz randomness by a differentiation theorem,

Theory of Computing Systems 52 (2013), no. 1, 113–132.

[44] Jeanleah Mohrherr, A refinement of low n and high n for the r.e. degrees, Z. Math.

Logik Grundlag. Math. 32 (1986), no. 1, 5–12.

[45] Antonio Montalbán, Computable structure theory: Part 1, Unpublished manuscript

dated 2016.

[46] André Nies, Reals which compute little, Logic Colloquium ’02, Lecture Notes in

Logic, Springer–Verlag, 2002, pp. 260–274.

[47] , Lowness properties and randomness, Advances in Mathematics 197 (2005),

no. 1, 274–305.

[48] , Eliminating concepts, Computational Prospects of Infinity. Part II. Pre-

sented talks (Hackensack, NJ), Lecture Notes Series. Institute for Mathematical

Sciences. National University of Singapore, vol. 15, World Sci. Publ., 2008, pp. 225–

247.

[49] , Computability and randomness, Oxford University Press, Inc., New York,

NY, USA, 2009.

[50] Noopur Pathak, Cristbal Rojas, and Stephen G. Simpson, Schnorr randomness and

the Lebesgue differentiation theorem, Proceedings of the American Mathematical

Society 142 (2014), no. 1, 335–349.

72

[51] Christopher P. Porter, Mathematical and philosophical perspectives on algorithmic

randomness, Ph.D. thesis, University of Notre-Dame, 2012.

[52] Marian B. Pour-El and J. Ian Richards, Computability in analysis and physics,

Springer-Verlag, Berlin, 1989.

[53] Gwenaël Richomme, Kalle Saari, and Luca Q. Zamboni, Abelian complexity of min-

imal subshifts, J. London Math. Soc 83 (2011), no. 2, 79–95.

[54] Linda Jean Richter, Degrees of unsolvability of models, Ph.D. thesis, University of

Illinois at Urbana-Champaign, 1977.

[55] , Degrees of structures, J. Symbolic Logic 46 (1981), no. 4, 723–731.

[56] Hartley Rogers Jr., Theory of recursive functions and effective computability,

McGraw–Hill Book Company, New York, 1967.

[57] Jason Rute, Topics in algorithmic randomness and computable analysis, Ph.D. the-

sis, Carnegie Mellon University, 2013.

[58] Gerald E. Sacks, Degrees of unsolvability, Annals of Mathematics Studies, no. 55,

Princeton University Press, 1963.

[59] Alan L. Selman, Arithmetical reducibilities I, Mathematical Logic Quarterly 17

(1971), no. 1, 335–350.

[60] Stephen G. Simpson, Almost everywhere domination and superhighness, Math.

Logic Quart. 53 (2007), no. 4–5, 462–482.

73

[61] , Medvedev degrees of two-dimensional subshifts of finite type, Ergodic The-

ory and Dynamical Systems 34 (2012), no. 2, 679–688.

[62] Robert I. Soare, Recursively enumerable sets and degrees: A study of computable

functions and computably generated sets, Perspectives in Mathematical Logic,

Springer, Berlin, 1987.

[63] Robert M. Solovay, Draft of a paper (or series of papers) on Chaitin’s work, Un-

published manuscript dated May 1975.

[64] Frank Stephan, Martin-Löf random and PA-complete sets, Technical Report 58

(Heidelberg), Matematisches Institut, Universität Heidelberg, 2002.

[65] Yongge Wang, Randomness and complexity, Ph.D. thesis, University of Heidelberg,

1996.

[66] Klaus Weihrauch, Computable analysis: An introduction, Springer-Verlag New

York, Secaucus, NJ, USA, 2000.

[67] Boris Ya. Solon, Total and co-total enumeration degrees (Russian), Izv. Vyssh.

Uchebn. Zaved. Mat. 49 (2005), no. 9, 56–64.

[68] Boris Ya. Solon, Co-total enumeration degrees, Proceedings of the Second Confer-

ence on Computability in Europe: Logical Approaches to Computational Barriers

(Berlin, Heidelberg), CiE’06, Springer-Verlag, 2006, pp. 538–545.

[69] Martin Ziegler, Algebraisch abgeschlossene Gruppen, Word Problems II (S.I. Adian,

W.W. Boone, and G. Higman, eds.), Studies in Logic and the Foundations of Math-

ematics, vol. 95, North-Holland, 1980, pp. 449–576.

	Abstract
	Acknowledgements
	Introduction
	Cototal enumeration degrees
	Randomness
	Lowness and randomness
	Eliminating randomness
	Slopes of computable real-valued functions

	Applications of the cototal enumeration degrees
	Introduction
	Cototal sets and degrees
	Maximal anti-chain complements
	Enumeration pointed trees
	Minimal subshifts

	The Strong Difference Randoms
	Introduction
	Strict Demuth tests
	Jump domination

	Strong Jump-Traceability and Diagonal Non-Computability
	The strong jump-traceables and randomness
	Strong jump-traceables and DNCs
	The superhigh case

	Slopes of computable functions
	Introduction
	A first construction
	Smoothing things out
	Coding locally
	Removing the point from the oracle
	Summary

	Bibliography

