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Abstract

From classical, Fräıssé-homogeneous, (≤ ω)-categorical theories over finite relational

languages (which we refer to as JRS theories), we construct intuitionistic theories that

are complete, prove negations of classical tautologies, and admit quantifier elimination.

The technique we use considers Kripke models as functors from a small category to the

category of L-structures with morphisms, rather than the usual interpretation wherein

the frame of a Kripke model is a partial order. While one can always “unravel” a

functor Kripke model to obtain a partial order Kripke model with the same intuitionistic

theory, our technique is perhaps an easier way to consider a Kripke model that includes

a single classical node structure and all of the endomorphisms of that classical JRS

structure. We also determine the intuitionistic universal fragments of these theories, in

accordance with the hierarchy of intuitionistic formulas put forth in [9] and expounded

on by Fleischmann in [11]. This portion of the thesis (Chapter 1) is the result of joint

work with Ben Ellison, Jonathan Fleischmann, and Wim Ruitenburg, as published (up

to minor structural changes) in [10].

Given a classical JRS theory, we determine axiomatizations of the corresponding in-

tuitionistic theory in Chapter 2. We first do so by axiomatizing properties apparent from

the behavior of the model, and discuss improvements to that axiom system. We then

present another axiomatization, this time by axiomatizing the properties of quantifier

elimination. We discuss improvements to this system, and show how this system and

various subsystems thereof are equivalent to our first axiomatization and corresponding

subsystems thereof.
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In our original construction, the Kripke models contain every endomorphism of the

underlying classical JRS structure and these theories admit quantifier elimination. The

classical structure itself can be viewed as a Kripke model as well; one wherein the only

morphism is the identity morphism. This intuitionistic theory (that also happens to be

classical) also admits quantifier elimination. In Chapter 3, we determine whether other

monoids of endomorphisms of JRS models give rise to single-node Kripke models whose

theories admit quantifier elimination. We first show that if two monoids of endomor-

phisms have the same collection of finite subgraphs, then the intuitionistic theories of the

corresponding Kripke models are the same. In so doing, we introduce a generalization of

“bisimilarity”, the standard notion of equivalence between Kripke models. We then give

sufficient conditions on a monoid so that the intuitionistic theory of the corresponding

Kripke model admits quantifier elimination.

Finally, in Chapter 4, we investigate the ramifications of adding nullary predicates

to the language. Syntactically, this gives us a way to combine a classical JRS theory

and its corresponding intuitionistic theory. Semantically, this gives us an opportunity to

generalize our work to Kripke models with more than one node structure; specifically,

where the node structures all satisfy the same “core” JRS theory, only varying in which

nullary predicates they satisfy. We show that the theories of these multi-node models

again admit quantifier elimination. For a given JRS theory in a language with nullary

predicates, we construct a model that is in some sense universal. That is, all other

multi-node Kripke models meeting certain other conditions in some sense embed into

our model. We briefly discuss a theory that incorporates both a classical JRS theory

and the corresponding intuitionistic version.



iii

Acknowledgements

First and foremost, I need to thank my family. They have always made it clear that

they love me and support me in whatever I do, even something as esoteric as this

thesis. Thanks also to Beth for calmly taking care of everything and putting things in

perspective in the face of wedding plans, surgery, thesis and ER visits.

I would like to thank my thesis advisor, Wim Ruitenburg. Wim went out of his way

to make himself available to me, all the way from Marquette, when my first advisor left

UW. Wim has interesting projects to work on; always creates a healthy, laid-back, and

cooperative work environment; and has tirelessly supported me, especially on days when

I wasn’t at my best. I would also like to thank my UW advisor, Steffen Lempp. Despite

my atypical advisor situation, Steffen enthusiastically supported me in every way, from

teaching assignments to conferences to painstakingly thorough edits of this thesis. His

support of my work in teacher education may well play as important a role in my future

career as this thesis. I am also indebted to Ben Ellison and Jonathan Fleischmann for

their helpful suggestions, previous collaborations, and astute editing. I don’t know if I

could have stood the drives to Milwaukee without Ben in the car. I would also like to

thank Asher Kach for serving in some ways as a mentor, always happy to answer silly

questions on short notice.

Lastly, my work in teacher education has underscored the fact that teachers are often

underappreciated. Looking back, there have been several teachers that have inspired me

and pushed me to reach higher, and I would like to single out a few here. Thanks in



iv

particular to Mike Silver, Patricia Wood, Frank Foley, Fred Rushton, Bertram Bolduc,

and Josh Abrams. I could have not gotten here without you.



v

Contents

Abstract i

Acknowledgements iii

1 Quantifier Elimination for a Class of Intuitionistic Theories 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Classical JRS Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Intuitionistic Theories from JRS Theories . . . . . . . . . . . . . . . . . . 9

1.4 Intuitionistic Quantifier Elimination in ΓM . . . . . . . . . . . . . . . . . 12

1.5 The Universal Fragment of ΓM . . . . . . . . . . . . . . . . . . . . . . . . 19

1.6 Appendix: Kripke Models of Classical Logic . . . . . . . . . . . . . . . . 24

2 Axiomatizations of the Intuitionistic Theory 27

2.1 An Axiomatization of ΓM . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Sharpening the Ha Axiom System . . . . . . . . . . . . . . . . . . . . . . 40

2.3 An Axiom System Motivated by Quantifier Elimination . . . . . . . . . . 43

2.4 Sharpening the Qa Axiom System . . . . . . . . . . . . . . . . . . . . . . 46

3 Monoids of Morphisms 53

3.1 A Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Preserving ΓM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Preserving Quantifier Elimination . . . . . . . . . . . . . . . . . . . . . . 64



vi

4 JRS Kripke Models with Multiple Nodes 73

4.1 Nullary Predicates and JRS Theories . . . . . . . . . . . . . . . . . . . . 74

4.2 JRS Kripke Models with Multiple Nodes . . . . . . . . . . . . . . . . . . 77

4.3 A Somewhat Universal Kripke Model . . . . . . . . . . . . . . . . . . . . 85

4.4 Interaction of Classical and Intuitionistic JRS Theories . . . . . . . . . . 89

Index 93

Bibliography 97



1

Chapter 1

Quantifier Elimination for a Class of

Intuitionistic Theories

Up to minor structural changes, this chapter is joint work with Ben Elli-

son, Jonathan Fleischmann, and Wim Ruitenburg, published as [10].

Abstract: From classical, Fräıssé-homogeneous, (≤ ω)-categorical theories over finite

relational languages, we construct intuitionistic theories that are complete, prove nega-

tions of classical tautologies, and admit quantifier elimination. We also determine the

intuitionistic universal fragments of these theories.

1.1 Introduction

It is often assumed that intuitionistic theories that admit quantifier elimination are

either very close to the classical situation or are essentially non-existent. We show that

this is not the case. We present a straightforward method that converts a broad class of

classical theories that admit quantifier elimination into intuitionistic ones.

Intuitionistic quantifier elimination has been studied before, see [22], [20], and [1]

for example. Smoryński in [22] and Bagheri in [1] focus on intuitionistic theories that
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are in some ways nearly classical. Instead, we expand on the work in [20] and, in gen-

eral, eliminate quantifiers in very intuitionistic theories, which in our case are theories

that prove the negation of certain classical tautologies. Specifically, we start with a

well known class of classical theories over finite relational languages that admit quan-

tifier elimination, are Fräıssé-homogeneous, and are (≤ ω)-categorical. We call these

theories JRS theories, after Jaśkowski, Rabin and Scott, as explained in the next sub-

section. We construct intuitionistic variations of the JRS theories and show these new

theories retain the properties of completeness (Theorem 1.16) and quantifier elimination

(Theorem 1.33), but in general are very intuitionistic. We show that if the morphism

structure of the canonical Kripke model is sufficiently rich, then all formulas are equiv-

alent to particularly simple quantifier-free formulas (Theorem 1.34). Our techniques for

proving intuitionistic quantifier elimination are classical.

In Section 1.5, as part of a deeper investigation into the idea of an intuitionistic

model complete theory, we use the techniques and definitions of [9] to find the intuition-

istic universal fragment of an intuitionistic JRS theory (Theorem 1.43). In the general

intuitionistic case, quantifier-free formulas need not be universal formulas, in a sense

that will be explained in Section 1.5. In our case, however, we show that all formulas

are equivalent to quantifier-free, (intuitionistic) universal formulas (Theorem 1.38).

The authors thank Asher Kach for his helpful suggestions.

1.2 Classical JRS Theories

We review a special family of classical theories that admit quantifier elimination. We

use the single turnstile ` for “intuitionistically proves”; when we wish to indicate a
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classical proof, we use the `c notation. Similarly, we write Th(·) for the intuitionistic

theory generated by a set of formulas or a structure, and Thc(·) for the classical theory.

We write Γ∀ to represent the (classical) universal fragment of the theory Γ. A theory Γ

is consistent if ⊥ /∈ Γ.

1.2.1 What is a JRS Theory?

We consider languages L that have only finitely many predicates {Ri}i<r, all of positive

arity. We use >, ⊥, ∧, ∨, →, =, ∃, and ∀ to form formulas of L. The symbols > and

⊥ are nullary logical operators as well as atoms. The negation symbol, ¬ϕ, abbreviates

ϕ→ ⊥.

Definition 1.1. Given a tuple x = x0, x1, . . . , xn−1 of variables, consider the following

definitions.

1. The set At(x) is the collection of all atoms with all free variables from x.

2. The set At±(x) is the collection of all atoms and negated atoms in x.

(Note that both of these sets are finite.)

3. An At±(x)-type is a subset t ⊆ At±(x) such that its conjunction,
∧
t, also written

πt or πt(x), is consistent.

4. We write t+ for the sub-collection of atoms in t.

5. We define the formula π+
t to be the conjunction of atoms of t+, and σ−t to be the

disjunction of atoms whose negations occur in t.

(So πt ↔ (π+
t ∧ ¬σ−t ) is a tautology.)
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6. The formula πt is called an At±(x)-description. A maximal At±(x)-type is called

a complete At±(x)-type, and its corresponding formula πt a complete At±(x)-

description.

(Each atom of At(x) or its negation occurs in a complete At±(x)-type.)

7. Given a model A and a tuple a ∈ A, a satisfies the complete At±(x)-type tpa =

(Thc(A)∩At±(a))[a/x], where Thc(A) is the theory of A over the language L(A).

(So tpa = {δ(x) : δ ∈ At±(x) and A |= δ(a)}.)

8. Suppose n ≥ 0 (where n = |x|). Up to isomorphism, a complete At±(x)-type

t has a unique smallest model. Specifically, let At be the model formed from the

variables {xi}i<n by taking equivalence classes modulo the equivalence relation xi ∼

xj defined by (xi = xj) ∈ t. We write xi or ai for the equivalence class of xi.

(So given a = a0, . . . , an−1 and an atom δ(x), At |= δ(a) if and only if δ(x) ∈ t, and

At |= πt(a).)

9. The size |At| of the model At is called the level of t. We allow the empty structure.

10. Let u be an At±(xxn)-type. Define d(u) = u ∩ At±(x) = u � x.

(Note that d(u) is an At±(x)-type. If u is a complete At±(xxn)-type, then d(u) is a

complete At±(x)-type.)

11. Given a complete At±(xxn)-type u, define δu to be the sentence

∀x(πd(u) → ∃xnπu).
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We call such a sentence a JRS sentence.

12. A (consistent) theory Γ over L is called a JRS theory if for all xxn and all

complete At±(xxn)-types u that are consistent with Γ (that is, Γ ∪ {∃xxnπu} is

consistent, or Γ∀ 0 ∀xxn¬πu), we have δu ∈ Γ.

As indicated by Bankston [2, page 962], this is not the first time that JRS theories

and sentences have been studied. Gaifman attributes these sentences to Rabin and Scott,

see [12, page 15], while Lynch attributes them to Jaśkowski, see [16, page 94], hence our

choice of name.

1.2.2 Classical Quantifier Elimination

The following are some well known facts about JRS theories.

Definition 1.2. A structure A is Fräıssé homogeneous if isomorphisms between finite

submodels of A extend to automorphisms of A.

Theorem 1.3. Let Γ be a JRS theory. Then, up to isomorphism, Γ has exactly one

model of size ≤ ω. Additionally, this model is Fräıssé homogeneous.

Proof. The proof uses the axioms δu to complete a standard back and forth construction

to extend finite isomorphisms to automorphisms.

Definition 1.4. An existential formula is a primitive formula if its quantifier-free

part is a conjunction of atoms and negated atoms.

Theorem 1.5. Let Γ be a JRS theory, and let ∃xnϕ(xxn) be a primitive formula. Then

Γ `c ∃xnϕ↔
∨
s∈S πd(s), where
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S = {s : s is a complete At±(xxn)-type consistent with Γ and Γ `c πs → ϕ}.

In particular, JRS theories admit quantifier elimination.

Proof. The formula ∃xnϕ is equivalent to
∨
s∈S ∃xnπs, where an empty disjunction is

identified with ⊥. Apply the JRS sentences of Γ: ∃xnϕ is equivalent to
∨
s∈S πd(s).

By the techniques in [13], Henson shows that there are continuum many JRS theo-

ries, even if the language has only one binary predicate. The work [2] of Bankston and

Ruitenburg offers other construction techniques for JRS theories. Countable JRS theo-

ries can be built via certain types of games, and can also be viewed as theories whose

tree of finite substructures satisfies certain properties, see [2, Theorem 5.7]. That is,

given a theory Γ, form the following rooted tree TΓ of types: for each x = x0, . . . , xn−1,

take all complete At±(x)-types of level n that are consistent with Γ (each such type

essentially contains
∧
i<j<n xi 6= xj). When we order these types by set inclusion, we get

a tree with the minimal type {>,¬⊥} as its root, and with finitely many nodes at each

level. Obviously, TΓ is uniquely determined by the universal fragment Γ∀ of Γ.

Definition 1.6. Given a universal theory Π, we define the JRS extension Γ of Π as

the theory axiomatizable by Π and all JRS sentences δu for which Π 0 ∀x¬πu.

For a given universal theory Π, the consistency of the JRS extension is nicely ex-

pressible as a model-theoretic property of the collection of finite substructures At of

Π.

Definition 1.7. A class of models K has the amalgamation property if for all models

A, B, and C in K where A embeds in B and A embeds in C, there is a model D in K

such that B embeds in D, C embeds in D, and this diagram commutes.
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If K includes the empty structure, then the amalgamation property immediately

implies the joint embedding property. This particularly applies to Theorem 1.8.

Theorem 1.8. The JRS extension Γ of a universal theory Π is consistent if and only

if the collection of models of the form At, for t ∈ TΠ, has the amalgamation property. If

Γ is consistent, then Γ∀ = Π.

Proof. First, suppose Γ is consistent. Let A be the unique (up to isomorphism) model

of Γ of size ≤ ω. Consider finite models At, Au, and Av of Γ∀ and suppose that At

embeds in both Au and Av. By an inductive argument, we may assume that u and v

are complete At±(xxn)-types and that t is a complete At±(x)-type. For some a ∈ A, A

satisfies πt(a), δu and δv, so we have A |= ∃xπu(ax)∧∃xπv(ax). Fix a, b and c such that

A |= πu(ab) ∧ πv(ac). Let w = tpabc. Then Aw is the amalgam of Au and Av over At.

Conversely, suppose that the collection of models of Π of the form At has the amalga-

mation property. We sketch a construction of a model A of Γ as the limit of an ω-chain

of models of the form At. Suppose we have a model At of size n. For each complete

At±(xxn)-type u consistent with Π and for all a ∈ At such that At |= πd(u)(a) there is

an amalgam A(u,a) of At and Au over Ad(u). As the next model in the ω-chain, take the

amalgam of all A(u,a) over At. So Γ is consistent.

For the last claim, it suffices to show that every finite structure of Π embeds into

A, the unique largest model of size ≤ ω. Proceed by induction on the number of free

variables in complete types consistent with Π. If u is a complete At±-type consistent

with Π, then so is d(u). By the inductive hypothesis, Ad(u) embeds into A. By the JRS

axiom δu, Au also embeds into A.
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1.2.3 Classical Examples

We present some examples of JRS theories, and construction methods of new JRS the-

ories from old ones.

Example 1.9. Let L be any language with finitely many predicate symbols of positive

arity, and set Π to be the minimal “empty” theory. Since all finite structures are allowed,

amalgamation is obvious. By Theorem 1.8, the JRS extension of Π is consistent. This

is an example of Burris’ “theory of everything” [4].

Example 1.10. Let L be the minimal language (equality is the only relation). The

theory Γ = Γe is the theory of infinite sets, with Γ∀ the “empty” theory. The tree TΓ has

just one node t ⊇ {xi = xj → ⊥ : i < j < n} at each level n.

Example 1.11. Let L be the language based on a new predicate x 6= y for inequality.

The theory of infinite sets Γ = Γne has universal fragment axiomatizable by x 6= y ↔

(x = y → ⊥). This direct translation makes Γne “as JRS as” Γe.

Given a theory Γ, we write ΓUH for the theory axiomatizable by its universal Horn

fragment. Recall that models of ΓUH are, up to isomorphism, submodels of products of

models of Γ. If Γ is a JRS theory, then it is companionable with few existential for-

mulas, that is, for each x, there are only finitely many inequivalent (over Γ) existential

formulas with variables from x. So ΓUH has a model companion (ΓUH)∗ by Burris and

Werner’s work [5].

Example 1.12. It is a simple exercise to show that the theory of the random graph

Γg is a JRS theory such that (Γg)UH = (Γne)UH (where we identify the single binary

predicate R with the binary predicate 6=). Since Γg is model complete, Γg = ((Γne)UH)∗.
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Comparing this with Γe = ((Γe)UH)∗ shows that seemingly trivial changes to language

may significantly affect the derived universal Horn theories and their companions.

Example 1.13. Let L be the language based on x ≤ y. The theory Γlo of dense linear

order without endpoints is a well-known JRS theory.

Example 1.14. Let L be the language based on x ≤ y. Let Γp be the theory of the

random poset. Then it is a standard exercise to show Γp = ((Γlo)UH)∗ (see [8, page 132],

for example). Additionally, Γp = ((∆)UH)∗ where ∆ is the non-JRS but obviously model

complete trivial theory of a two-node linear order.

Note that (ΓUH)∗ need not be a JRS theory, even if Γ is the JRS theory of a finite

model.

1.3 Intuitionistic Theories from JRS Theories

Given a (classical) JRS theory ΓJRS and its unique (up to isomorphism) model AJRS of

size ≤ ω, we construct the Kripke model AM as follows.

Definition 1.15. 1. Following notational conventions in [9], our Kripke models are

functors from small categories to the category of L-structures and morphisms.

2. Morphisms, called homomorphisms in [7], preserve the truth of atoms, but not

necessarily of negated atoms. We write morphisms as upper left superscripts and

compose on the left. So gfa represents the result of first applying the morphism f

and then the morphism g to the tuple a.

3. The underlying category of AM consists of a single node with associated node struc-

ture AJRS.
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4. We include all morphisms from AJRS to AJRS as arrows.

(Technically speaking, the functor A takes the arrow f from node k to node m in the

small category to the morphism Af from classical structure Ak to the classical structure

Am. Whenever possible, we will ignore this distinction and use f to denote the morphism

from Ak to Am, as we are not usually concerned with the structure of the small category

itself.)

5. Let ΓM be the intuitionistic theory of AM.

We can choose AM to be countable and get the same theory ΓM. Instead of including

all morphisms, let A′M have a single node structure AJRS and include only a collection of

morphisms closed under composition such that every finite graph of an endomorphism of

AJRS has a complete endomorphism extension in the collection. A straightforward proof

by induction on sentence complexity shows that AM and A′M have the same intuitionistic

theory ΓM. So our Kripke model can be chosen countable - take a category of countably

many morphisms and a single countable object. See Corollary 3.13 and Section 3.2 for

a more general discussion.

Theorem 1.16. ΓM is complete.

Proof. Let ϕ be an L-sentence. If AM 
 ϕ, then we are done. Otherwise, AM 1 ϕ. But

we have only one node, so AM 
 ¬ϕ.

Theorem 1.16 in no way implies that ΓM proves classical logic. For example, if there

is an endomorphism of AJRS which is not an embedding, then for some Ri and some

a we have AM 1 Ri(a) ∨ ¬Ri(a), so AM 
 ¬∀x(Ri(x) ∨ ¬Ri(x)). In [20], Ruitenburg

introduces one concept of a very intuitionistic theory to distinguish theories that are
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somehow even more “not classical”. The two theories in [20], involving equality and

linear order, are both examples of very intuitionistic theories. In general, suppose that

instead of just one non-embedding endomorphism, we have two endomorphisms f and

g, tuples a and b, and formulas ϕ and ψ such that AM 
 ϕ(fa) and AM 1 ψ(fb), as

well as AM 1 ϕ(ga) and AM 
 ψ(gb), as holds for the two examples from [20]. Then

ΓM ` ¬∀xy((ϕ(x)→ ψ(y)) ∨ (ψ(y)→ ϕ(x))), and therefore ΓM is a very intuitionistic

theory.

However, if AJRS is such that every endomorphism is also an embedding, then the

theory ΓM is not of new interest to us, since:

Theorem 1.17. If all endomorphisms of AJRS are embeddings, then ΓM = ΓJRS, and so

ΓM is a classical theory.

Proof. Since ΓJRS admits quantifier elimination, it is model complete. Thus, all em-

beddings of ΓJRS models are elementary embeddings. Apply Theorem 1.44 in the Ap-

pendix.

The examples from [20], as well as the examples from Subsection 1.2.3 satisfy the

following special condition.

Definition 1.18. 1. We say that a model A is morphism homogeneous if when-

ever a, b ∈ A are such that tp+
a ⊆ tp+

b then there is an endomorphism f of A such

that f(a) = b.

2. A classical JRS theory ΓJRS is morphism homogeneous if its unique countable

model AJRS is.



12

We show in Theorem 1.34 that if AJRS is morphism homogeneous, then ΓM admits a

particularly elegant kind of quantifier elimination.

Example 1.19. Not all AJRS are morphism homogeneous. Let L be the language with a

unary predicate P (x) and a binary predicate x < y, and let ΓJRS be the (classical) theory

of the finite model AJRS with domain AJRS = {a, b} such that AJRS |= ¬P (a) ∧ P (b) ∧

(a < b) and no other nontrivial atomic sentences. We have that tp+
a ⊆ tp+

b (in fact,

tp+
b = tp+

a ∪{P (x)}). However, there is no morphism of AJRS taking a to b. That is,

assume f is a morphism such that f(a) = b. Then we must have AJRS |= f(a) < f(b).

But this is not true if f(a) = b, as AJRS |= ∀x ¬(b < x).

1.4 Intuitionistic Quantifier Elimination in ΓM

Recall that a theory has few (quantifier-free) formulas if for all x = x0, x1, ..., xn−1 there

are finitely many non-equivalent (quantifier-free) formulas with all free variables from

among x. All classical theories over the finite relational language L have few quantifier-

free formulas. So by quantifier elimination, ΓJRS has few formulas. We show that the

intuitionistic theory ΓM admits quantifier elimination and also has few formulas. Our

methods are classical.

Given a finite list of variables x = x0, x1, . . . , xn−1, we first consider the complexity

over ΓM of the collection of quantifier-free formulas with all free variables from x.

Definition 1.20. 1. Let C(x) be the following Kripke model. As nodes for the un-

derlying category C(x) we take all complete At±(x)-types t that are (classically)

consistent with ΓJRS.
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2. We turn C(x) into a poset category as follows. Given a pair of nodes t and u, we

set t ≤ u exactly when there are a ∈ AJRS and an endomorphism f of AJRS such

that t = tpa and u = tpfa. That is, AJRS |= πt(a) ∧ πu(fa).

(Note that t ≤ u implies t+ ⊆ u+.)

3. To each node t we associate the finite classical model At.

4. If t ≤ u, then the morphism sends the equivalence class xi(t) of xi in At to the

equivalence class xi(u) of xi in Au. We write xi for the “global” element t 7→ xi(t)

of C(x).

The collection of nodes |C(x)| is finite. Note that AJRS is morphism homogeneous

exactly when t+ ⊆ u+ implies t ≤ u for every t and u in |C(x)|.

Lemma 1.21. Let ϕ(x) be quantifier-free, and a ∈ AJRS. Then AM 
 ϕ(a) if and only

if tpa 
 ϕ(x(tpa)).

Proof. We complete the proof by induction on the complexity of ϕ for all elements a

simultaneously. The case for atoms and the induction steps for ∧ and ∨ are easy. Let ϕ

equal ψ → θ.

Suppose AM 
 ψ(a) → θ(a). Let tpa ≤ u be such that u 
 ψ(x(u)). It suffices

to show that u 
 θ(x(u)). There is an endomorphism f such that u = tpfa. By the

inductive hypothesis, AM 
 ψ(fa). By supposition, AM 
 θ(fa). So again by the

inductive hypothesis, u 
 θ(x(u)).

Conversely, suppose tpa 
 ψ(x(tpa)) → θ(x(tpa)). Let f be an endomorphism

such that AM 
 ψ(fa). It suffices to show AM 
 θ(fa). By the inductive hy-

pothesis, tpfa 
 ψ(x(tpfa)). By Definition 1.20.2, tpa ≤ tpfa so, by supposition,
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tpfa 
 θ(x(tpfa)). Again by the inductive hypothesis, AM 
 θ(fa).

Definition 1.22. For each quantifier-free formula ϕ(x), define Jϕ(x)K be the set

{t ∈ |C(x)| : t 
 ϕ(x(t))}.

We can rewrite Lemma 1.21 above as: AM 
 ϕ(a) exactly when tpa ∈ Jϕ(x)K. The

sets Jϕ(x)K form a finite Heyting algebra of upward closed subsets of the poset C(x)

given by:

Jϕ ∧ ψK = JϕK ∩ JψK,

Jϕ ∨ ψK = JϕK ∪ JψK, and

JϕK ∩ JψK ⊆ JθK if and only if JϕK ⊆ Jψ → θK,

where we write JϕK as short for Jϕ(x)K, et cetera.

Definition 1.23. 1. Subsets of the form Jϕ(x)K are definable.

2. Upward closed subsets of C(x) form the open subsets of the usual poset topology.

So definable subsets are open. Below we show that open subsets are definable.

Lemma 1.24. For all quantifier-free formulas ϕ(x) and ψ(x) we have ΓM ` ∀x(ϕ→ ψ)

exactly when Jϕ(x)K ⊆ Jψ(x)K. Modulo provable equivalence over ΓM, there are for each

x only finitely many quantifier-free formulas with all free variables from x.

Proof. Suppose that AM 
 ∀x(ϕ(x) → ψ(x)). Let t ∈ Jϕ(x)K. It suffices to show

t ∈ Jψ(x)K. There is a ∈ AJRS such that t = tpa. By Lemma 1.21, AM 
 ϕ(a). By

supposition, AM 
 ψ(a). Again by Lemma 1.21, tpa ∈ Jψ(x)K.
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Conversely, suppose Jϕ(x)K ⊆ Jψ(x)K. Let a ∈ AJRS be such that AM 
 ϕ(a). It

suffices to show AM 
 ψ(a). By Lemma 1.21, tpa ∈ Jϕ(x)K. By supposition, tpa ∈

Jψ(x)K. By Lemma 1.21 we get AM 
 ψ(a).

So JϕK = JψK exactly when ΓM ` ∀x(ϕ ↔ ψ). The second claim now follows, as

|C(x)| is finite.

Given t ∈ |C(x)|, we have the following definitions.

Definition 1.25. 1. Let t̂ be the set {u ∈ |C(x)| : t ≤ u}.

2. Let ť be the set {u ∈ |C(x)| : u � t}.

So t̂ is the smallest open subset containing t, and ť is the largest open subset not

containing t. Clearly, t̂ ⊆ Jπ+
t (x)K

Lemma 1.26. Let t ∈ |C(x)|. Then ť = Jπ+
t (x)→ σ−t (x)K.

Proof. Suppose s ≤ t. Then there are a ∈ AJRS and an endomorphism f such that

s = tpa and t = tpfa. So AM 
 π+
t (fa) and AM 1 σ−t (fa). Thus, AM 1 π+

t (a)→ σ−t (a).

By Lemma 1.21, s = tpa /∈ Jπ+
t (x)→ σ−t (x)K.

Conversely, suppose s � t. There is a ∈ AJRS such that s = tpa. It suffices to show

that AM 
 π+
t (a)→ σ−t (a). Let s ≤ u and let f be an endomorphism such that u = tpfa

and AM 
 π+
t (fa). Then by supposition, u 6= t and therefore there is an atomic formula

δ such that (¬δ) ∈ t and AM 
 δ(f(a)). So AM 
 σ−t (fa).

For t ∈ |C(x)|, the following formulas play a crucial role in quantifier elimination.

Definition 1.27. 1. Let
∧
{π+

u → σ−u : u ∈ |C(x)|, t+ ⊆ u+ and t 6≤ u} be the

formula ρ−t .
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2. Let π+
t ∧ ρ−t be the formula ρ+

t .

In some sense, the formula ρ+
t keeps track of the “global” morphism behavior of AM.

Consider a tuple a such that AM 
 ρ+
t (a). Since π+

t (a) is forced, it is possible that

t = tpa. It is also possible that there is more positive information true of a, that is,

that u = tpa where t+ ⊆ u+. However, not every u such that t+ ⊆ u+ is a viable

candidate for tpa. In non-morphism homogeneous theories, there can be types u such

that t+ ⊆ u+, but t � u. (“Locally” there is a morphism from the finite model At to the

finite model Au, but this morphism does not extend to a global endomorphism of A. See

Lemma 3.18 for a broader discussion of these concepts.) The formula ρ+
t excludes such

u’s as candidates for tpa. That is, for such a u, if AM 
 ρ+
t (a)∧π+

u (a), then AM 
 σ−u (a),

whereby u 6= tpa.

Note that over a morphism homogeneous theory, ρ+
t is equivalent to π+

t . The follow-

ing lemma shows that ρ+
t defines the upward closure of t in C(x).

Lemma 1.28. Let t ∈ |C(x)|. Then t̂ = Jρ+
t (x)K. So all open subsets of C(x) are

definable.

Proof. To show t̂ ⊆ Jρ+
t (x)K, it suffices to show t ∈ Jρ+

t (x)K. Obviously, t ∈ Jπ+
t (x)K.

Let u be such that t+ ⊆ u+ and t � u. Then, by Lemma 1.26, t ∈ Jπ+
u (x) → σ−u (x)K.

And thus t ∈ Jρ+
t (x)K.

Conversely, suppose v ∈ Jρ+
t (x)K. There is a ∈ AJRS such that v = tpa. Then

AM 
 ρ+
t (a). So AM 
 π+

t (a) and t+ ⊆ tp+
a . Let u be such that t+ ⊆ u+ and t � u.

Then AM 
 π+
u (a)→ σ−u (a). By Lemma 1.26, tpa 6= u. Thus t ≤ tpa = v.

The second claim follows from the fact that all open sets are finite unions of t̂’s.
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Definition 1.29. 1. An open subset U is called prime if whenever U is the union

U = V ∪W of two open subsets, then U = V or U = W .

2. A prime open subset has depth n if there is a sequence of prime open subsets

U0 ⊆ U1 ⊆ . . . ⊆ Un such that Ui 6= Ui+1 for all i and Un = U , but there is no

longer sequence with these properties.

So the empty subset has depth 0. The following is now obvious.

Lemma 1.30. In C(x), each open subset equals a finite union of prime open subsets.

A nonempty open subset is prime if and only if it is of the form t̂, for some t ∈ |C(x)|.

Proof. All open subsets in the poset topology are finite unions of sets of the form t̂, so

it suffices to prove that sets t̂ are prime. This is immediate since t̂ ⊆ U is equivalent to

t ∈ U .

Corollary 1.31. Over ΓM, every quantifier-free formula ϕ is equivalent to the formula∨
{ρ+

t : t ∈ JϕK}.

Proof. Immediate from Lemmas 1.30 and 1.28.

Lemma 1.32. For all formulas ϕ(xxn), and for all t ∈ C(xxn), ΓM includes the sen-

tence:

∀xxn(ϕ ∧ ρ+
t → (σ−t ∨ ∀xn(ρ+

t → ϕ))).

Proof. Fix ϕ, t ∈ C(xxn) and a, b ∈ AJRS and suppose AM 
 ϕ(ab) ∧ ρ+
t (ab). If

AM 
 σ−t (ab) then we are done, so suppose not. Then t = tpab. We need to show

that for an arbitrary c ∈ AJRS and an arbitrary endomorphism f , if AM 
 ρ+
t (f (a)c)

then AM 
 ϕ(f (a)c). Fix such an element c and endomorphism f . Then tpf (a)c ∈ t̂ by
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Lemma 1.28. So tpab ≤ tpf (a)c and there is a morphism g such that tpg(ab) = tpf (a)c. By

the first supposition, AM 
 ϕ(g(ab)). By Fräıssé homogeneity, there is an automorphism

h such that hg(ab) = f (a)c, so AM 
 ϕ(f (a)c).

We are now ready to prove our main result:

Theorem 1.33. The theory ΓM admits quantifier elimination.

Proof. We eliminate quantifiers from formulas of the form ϕ ∧ θ where θ is quantifier-

free (we recover all formulas by letting θ be >). By Corollary 1.31, θ is equivalent to a

formula of the form
∨
t∈S{ρ

+
t } for some set S ⊆ |C(x)|. Thus, each ϕ∧θ is equivalent to∨

t∈S{ϕ ∧ ρ
+
t }. So it suffices to eliminate quantifiers from formulas of the form ϕ ∧ ρ+

t ,

where t ∈ S. Fix such a formula, and proceed by induction on the depth of Jρ+
t K and

the number of free variables of ϕ.

Given ϕ ∧ ρ+
t , if we have no free variables in ϕ, then by Theorem 1.16, ϕ ∧ ρ+

t is

equivalent to a quantifier-free formula (namely ρ+
t or ⊥). Otherwise, apply Lemma 1.32.

There are two cases.

In the first case, we get ϕ ∧ ρ+
t ∧ σ−t . As above, we use Corollary 1.31 to rewrite

ϕ ∧ (ρ+
t ∧ σ−t ) as

∨
u∈R(ϕ ∧ ρ+

u ) for some set R ⊆ |C(x)|. Since
∨
u∈R ρ

+
u → (ρ+

t ∧ σ−t ),

each ρ+
u implies ρ+

t . By Lemma 1.24, for each u ∈ R, Jρ+
u K ⊆ Jρ+

t K. Likewise, since

each ρ+
u implies σ−t , Jρ+

u K ⊆ Jσ−t K. By Lemma 1.30, each Jρ+
u K is prime, and therefore

Jρ+
u K ⊆ JδK for some atom δ found in σ−t . So Jρ+

u K 6= Jρ+
t K. By our inductive hypothesis

on depth, each ϕ ∧ ρ+
u is equivalent to a quantifier-free formula, and therefore ϕ ∧ ρ+

t is

equivalent to a quantifier-free formula.

In the second case, we get ϕ∧ ρ+
t ∧∀xn(ρ+

t → ϕ), which is equivalent to the formula

∀xn(ρ+
t → ϕ)∧ ρ+

t . By the inductive hypothesis on free variables, this is equivalent to a
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quantifier-free formula.

As a corollary we obtain the following.

Theorem 1.34. Let ϕ(x) be a formula. Over ΓM, ϕ is equivalent to a disjunction of

formulas of the form ρ+
t with t ∈ |C(x)|. If ΓJRS is morphism homogeneous, then ϕ is

equivalent to a disjunction of conjunctions of atoms, specifically, ϕ is equivalent to a

disjunction of formulas of the form π+
t , with t ∈ |C(x)|.

Proof. The first claim is immediate from Corollary 1.31 and Theorem 1.33. If ΓJRS is

morphism homogeneous, then for each t, ΓM ` π+
t ↔ ρ+

t . So every quantifier-free formula

ϕ is equivalent to
∨
{π+

t : t ∈ JϕK}, and therefore to a disjunction of conjunctions of

atoms.

As an illustration of Theorem 1.34 in the presence of morphism homogeneity, see the

quantifier elimination results about the two theories in [20].

1.5 The Universal Fragment of ΓM

Every classical model complete theory is uniquely determined by its universal fragment.

Given the universal fragment, one can then recover the model companion as the largest

inductive theory preserving this universal fragment (a theory is inductive if its class of

models is closed under unions of chains). As a start to a generalization of this process to

intuitionistic theories, we find the universal fragments of our intuitionistic theories that

admit quantifier elimination. We first need to explain what we mean by an intuitionistic

universal sentence. The definition is motivated by Theorem 1.37 below, see also [9].
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Recall that a Kripke model is essentially a functor A from a (small) category A

to the category of classical L-structures and morphisms. That is, to each i in |A| we

assign a classical structure Ai, and to each arrow f : i→ j in A we assign a morphism

Af : Ai → Aj.

Definition 1.35. A is a Kripke submodel of B, written A ⊆ B, if and only if

A ⊆ B as categories, and all morphisms and node structures of A are restrictions of the

corresponding morphisms and node structures of B.

Definition 1.36. A sentence is universal if it can be built from the atoms using the

operations ∧, ∨, → and ∀, with the restriction that no implications or universal quan-

tifications occur in negative places.

Theorem 1.37. An intuitionistic theory ∆ is axiomatizable by universal sentences if

and only if its class of Kripke models is closed under Kripke submodels.

Proof. Immediate from [9, Theorem 4.1].

Note that in the absence of Excluded Middle, not every quantifier-free formula is

equivalent to a universal formula. Therefore, the following is an addition to Theo-

rem 1.34:

Theorem 1.38. Let ϕ(x) be a formula. Over ΓM, ϕ is equivalent to a quantifier-free

universal formula.

Proof. This easily follows from Theorem 1.34 since each ρ+
t is a universal formula.

Next, we axiomatize the universal fragment of ΓM.
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Lemma 1.39. Let t ∈ |C(x)|. Then the theory ΓM includes the universal sentence

∀x(π+
t → (σ−t ∨ ρ−t )).

Proof. Fix a ∈ AJRS and suppose that AM 
 π+
t (a). If AM 
 σ−t (a), we are done,

so suppose AM 1 σ−t (a). Then t = tpa. Suppose we have an endomorphism f and

u ∈ C(x) such that t+ ⊆ u+, t � u, and AM 
 π+
u (f(a)). Since t � u, u 6= tpf(a). So

AM 
 σ−u (f(a)).

Lemma 1.40. Let t /∈ |C(x)|. Then ΓM includes the universal sentence ∀x(π+
t → σ−t ).

Proof. Fix a ∈ AJRS and suppose that AM 
 π+
t (a). Since AJRS 6|= πt(a), we have

AJRS |= σ−t (a). So AM 
 σ−t (a).

Note that the formulas ∀x(π+
t → σ−t ) from Lemma 1.40 axiomatize the universal

fragment of the classical theory ΓJRS.

Definition 1.41. 1. A formula is positive existential if it is built from the atoms

and the connectives ∧, ∨ and ∃.

2. A sentence is geometric if it is the universal closure of a formula of the form a

positive existential formula implies another positive existential formula.

Geometric sentences in some sense are the largest class of sentences that are treated

the same both classically and intuitionistically. This idea is made more precise in the

following well known lemma.

Lemma 1.42. Let B be a Kripke model and ϕ a geometric sentence. Then B 
 ϕ if

and only if for each node k ∈ |B|, the node structure Bk |= ϕ.
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The schemas from Lemmas 1.39 and 1.40 suffice to axiomatize the universal fragment

of ΓM.

Theorem 1.43. The axiom schemas

∀x(π+
t → σ−t ) for all x and t /∈ |C(x)|, and

∀x(π+
t → (σ−t ∨ ρ−t )) for all x and t ∈ |C(x)|

together axiomatize the universal fragment of ΓM.

Proof. Let ∆ be the set of all universal sentences described above. Let B 
 ∆ be a

Kripke model. By the completeness of intuitionistic logic for rooted Kripke models (see

[23, Theorem 2.6.8], for example) and because L is countable, we may suppose that B

is a tree (poset) of height ω, and for all i ∈ |B| the domain of the node structure Bi is

at most countable. Let r ∈ |B| be the root of B. We construct a rooted Kripke model

D with root r such that B ⊆ D and D 
 ΓM.

First we construct an intermediate rooted Kripke model C with C = B, Bi ⊆ Ci ∼=

AJRS for every i ∈ |C|, and Cf � Bi = Bf for every f : i → j in C. The construction

is by induction on the height of C. Let Cr = AJRS. By Lemmas 1.40 and 1.42, every

node structure Bi is a model of (ΓJRS)∀. So up to isomorphism, Bi ⊆ AJRS for every

i ∈ |B|. So without loss of generality, we may suppose that Br ⊆ Cr. Now suppose that

Ci is defined for some i ∈ |C|, with Bi ⊆ Ci ∼= AJRS. Let j ∈ |C| be any immediate

successor of i, and let f : i → j be the unique arrow from i to j in C. Without loss of

generality, we may suppose that Bj ⊆ Ci. We claim that there exists a Cj ∼= AJRS such

that Bj ⊆ Cj, and a morphism Cf : Ci → Cj such that Cf � Bi = Bf . Let L∗ be the



23

language L extended by a new function symbol f ∗, and let

Θ = Thc(Ci)∪{f ∗(b) = Bf(b) : b ∈ Bi}∪(Thc(Ci)∩At(Ci))[c/f
∗(c), c ∈ Ci],

where Thc(Ci) is the theory of the classical model Ci over the language L(Ci). Let Θ0

be any finite subset of Θ. Then

Θ0 ⊆ Thc(Ci)∪{f ∗(b) = Bf(b) : b ∈ b}∪(Thc(Ci)∩At(Ci))[c/f
∗(c), c ∈ Ci],

for some finite b ⊆ Bi. Obviously, t = tpb is consistent with ΓJRS. Let u = tpBf(b).

Then, since Bf is a morphism, we have t+ ⊆ u+. Assume that t 6≤ u. Then

B 
 ∀x(π+
t → (σ−t ∨ (π+

u → σ−u ))). Since i 
B π+
t (b), i 
B σ−t (b) ∨ (π+

u (b) → σ−u (b)).

Since Bi |= πt(b), we have i 6
B δ(b), for every ¬δ ∈ t. So i 6
B σ−t (b). So we must

have i 
B π+
u (b) → σ−u (b). Since Bf is a morphism, we have j 
B π+

u (Bf(b)). By

the definition of forcing, j 
B σ−u (Bf(b)). So j 
B δ(Bf(b)) for some ¬δ ∈ u. So

Bj |= δ(Bf(b)) for some ¬δ ∈ u. Contradiction. So t ≤ u. So there is an endomorphism

f ∗ : Ci → Ci such that f ∗ � b = Bf � b. Let C∗i be the expansion of Ci to L∗ where f ∗ is

interpreted as this endomorphism. Then C∗i |= Θ0. So by compactness, Θ is consistent.

Let C∗j be a countable model of Θ, and let Cj be the L-reduct of C∗j . Then Ci � Cj,

and f ∗ : Ci → Cj is a morphism such that f ∗ � Bi = Bf . (Note that f ∗ is a total

function on Cj, but it is only a morphism on Ci ⊆ Cj.) Set Cf = f ∗. Since AJRS is the

unique model of ΓJRS of size less than or equal to ω, we have Cj ∼= AJRS. So the claim

is proven. This completes the construction of C. Clearly, B ⊆ C.

Let D be the extension of C generated by adding for each i ∈ |C| all possible mor-

phisms from Ci to itself. Then for all ϕ ∈ L(AJRS) we have D 
 ϕ if and only if AM 
 ϕ,

by a straightforward induction on the complexity of ϕ. So D 
 ΓM. Also B ⊆ D. So by
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Theorem 1.37, B forces the universal fragment of ΓM. So ∆ axiomatizes the universal

fragment of ΓM.

1.6 Appendix: Kripke Models of Classical Logic

It is well known that Kripke models satisfy classical logic exactly when all morphisms

between node structures are elementary embeddings. See [22, page 110] for one direction.

For the reader’s convenience, we include a full proof. Recall that classical predicate logic

CQC is axiomatizable over intuitionistic logic by the schema ∀x(ϕ(x) ∨ ¬ϕ(x)).

Theorem 1.44. Let A be a Kripke model. Then the following are equivalent:

1. Every morphism f in A is an elementary embedding. That is, for all morphisms

f from the structure at node k to the structure at node m and all L(Ak)-sentences

ϕ(a):

Ak |= ϕ(a) if and only if Am |= f (ϕ(a)).

2. For all nodes k ∈ |A|, and every L-sentence ϕ:

CQC `c ϕ implies k 
 ϕ.

3. For every node k and for every L(Ak)-sentence ϕ(a), we have:

Ak |= ϕ(a) if and only if k 
 ϕ(a).

Proof. 2 ⇒ 3: We proceed by induction on the complexity of sentences. 3 holds for all

atomic sentences, while the induction steps for existential statements, conjunctions, and

disjunctions all follow directly from the definitions.
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Given a node k, suppose Ak |= ψ → θ, where 3 holds for ψ and θ. If Ak |= ψ, then

Ak |= θ. By the inductive hypothesis, k 
 θ, and so k 
 ψ → θ. Otherwise, Ak 6|= ψ.

Then by the inductive hypothesis, k 1 ψ. By 2, k 
 ψ ∨ ¬ψ, so k 
 ¬ψ. So k 
 ψ → θ.

Now suppose that k 
 ψ → θ, where 3 holds for ψ and θ. If Ak |= ¬ψ, then

Ak |= ψ → θ trivially. Otherwise, Ak |= ψ. By the inductive hypothesis, k 
 ψ, so k 
 θ.

By the inductive hypothesis again, Ak |= θ. So Ak |= ψ → θ.

Suppose Ak |= ∀xψ(x), where 3 holds for ψ(a), for all a ∈ Ak. Then, Ak |= ψ(a) for all

a ∈ Ak. By the inductive hypothesis, k 
 ψ(a) for all a ∈ Ak. Assume k 1 ∀xψ(x). Then

there exists f : k → m where m 1 fψ(b), for some b ∈ Am. By 2, m 
 fψ(b) ∨ ¬fψ(b),

so m 
 ¬fψ(b). Therefore m 
 ∃x¬fψ(x). Now, k 
 ∃x¬ψ(x) or k 
 ¬∃x¬ψ(x) (again

by 2). The latter cannot hold, since m 
 ∃x¬fψ(x), so k 
 ∃x¬ψ(x). So, k 
 ¬ψ(a) for

some a ∈ Ak, a contradiction. Thus, k 
 ∀xψ(x).

Finally, suppose k 
 ∀xψ(x). So k 
ψ(a) for all a ∈ Ak. By the inductive hypothesis,

Ak |= ψ(a) for all a ∈ Ak. So Ak |= ∀xψ(x).

3 ⇒ 2: If CQC `c ϕ, then B |= ϕ for all classical models B. Thus, given a node k,

and a sentence ϕ proven by CQC, we have Ak |= ϕ. By 3, k 
 ϕ, proving 2.

3⇒ 1: Let f be a morphism from the structure at node k to the structure at node m,

and suppose Ak |= ϕ(a). By 3, k 
 ϕ(a), and so m
 f (ϕ(a)). By 3 again, Am |= f (ϕ(a)).

1 ⇒ 3: We again proceed by induction on the complexity of sentences. By the

definition of forcing, 3 always holds for atomic sentences, and the inductive steps for

conjunctions, disjunctions, and existential statements are easy.

Suppose Ak |= ψ → θ. Let f be a morphism from the structure at node k to the

structure at node m such that m 
 fψ. By the inductive hypothesis, Am |= fψ. By 1,
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Am |= fψ → fθ, hence Am |= fθ. By the inductive hypothesis, m 
 fθ, so k 
 ψ → θ.

Suppose k 
 ψ → θ. If Ak |= ψ then, by the inductive hypothesis, k 
 ψ. Then

k 
 θ, so by the inductive hypothesis again, Ak |= θ. Thus, Ak |= ψ → θ.

Suppose Ak |= ∀xψ(x), with 3 holding for fψ(b), for all b ∈ Am, where m is a node

and f is a morphism from the structure at node k to the structure at node m. Given

such an f , by 1 we have Am |= ∀xfψ(x). Then, for all a ∈ Am, Am |= fψ(a). By the

inductive hypothesis, for every a ∈ Am we have m 
 fψ(a). As f is arbitrary, we have

that k 
 ∀xψ(x).

Finally, suppose k 
 ∀xψ(x). Then for all a ∈ Ak we have k 
 ψ(a). By the inductive

hypothesis, Ak |= ψ(a) for all a ∈ Ak. So Ak |= ∀xψ(x).
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Chapter 2

Axiomatizations of the Intuitionistic

Theory

The goal is, given a classical JRS theory ΓJRS, to build an axiomatization of the corre-

sponding intuitionistic theory ΓM. We do this in different ways below. One axiomatiza-

tion approach is motivated by studying the structure AM and its morphism properties.

Our second approach is motivated by examining the quantifier elimination properties

of ΓM. For both approaches, we show that our schemas axiomatize ΓM (Theorems 2.16

and 2.24), and we go on to analyze axiom systems equivalent to the main schemas

(Theorems 2.17, 2.20, and 2.39).

2.1 An Axiomatization of ΓM

We begin by examining the properties of the canonical Kripke model AM of ΓM. Since

AM is such that all node structures are classical models of the same theory ΓJRS, we look

to the geometric fragment of ΓJRS (see Definition 1.42 and Lemma 1.42). The first two

axiom schemas below are geometric.

By Theorem 1.8, we may think of the classical JRS model AJRS as the amalgamation
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of its finite submodels. Each such submodel is of the form At for some complete At±(x)-

type t where t is classically consistent with ΓJRS. If we consider the tree of all finite

L-structures, the following axiom schema essentially removes all those nodes inconsistent

with ΓJRS.

∀x(π+
t → σ−t ) for all complete At±(x)-types t not classically consistent

with ΓJRS

This schema classically axiomatizes the universal fragment of ΓJRS, and is geometric.

Since AM is a ΓJRS-local Kripke model, this schema holds in ΓM as well, see Lemma 1.40.

However, this schema does not suffice to axiomatize the intuitionistic universal frag-

ment (recall Definition 1.36) of ΓM, as it does not fully describe the morphism re-

lationship between finite submodels of AJRS in JRS theories that are not morphism

homogeneous. In order to keep track of the morphism behavior, we add the following

schema.

∀x(π+
t → (σ−t ∨ ρ−t )) for all complete At±(x)-types t classically consistent

with ΓJRS

To be more specific, for any a ∈ AJRS such that AM 
 π+
t (a), it is possible that

AJRS |= πu(a) for some complete At±(x)-type u with t+ ( u+, in which case AM 
 σ−t (a).

On the other hand, if t = tpa, then we get that AM forces not only π+
t (a), but also ρ−t (a),

which lists local morphisms from At that do not lift to global endomorphisms of AJRS.

See the discussion following Definition 1.27.

These two schemas together axiomatize the intuitionistic universal fragment of ΓM;

see Theorem 1.43.
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We also include an intuitionistic version of the JRS axioms themselves. For each

JRS sentence ∀x[(π+
d(u) ∧ ¬σ

−
d(u)) → ∃xn(π+

u ∧ ¬σ−u )] with u ∈ |C(xxn)|, we include the

following schema, which is essentially the Buss translation of this JRS sentence. In [6],

Buss shows that the intuitionistic theory of the class of all Kripke models wherein every

node satisfies a classical theory Γ is axiomatized by certain translations of all sentences in

Γ. We suppress further detail, as we do not quite meet all of Buss’ hypotheses. We show

directly any properties we need. Note that the following schema is classically equivalent

to the JRS axiom δu if we let ϕ be ⊥.

∀xy[(π+
d(u) ∧ (σ−d(u) → ϕ) ∧ ∀xn(π+

u → (σ−u ∨ ϕ))) → ϕ] for all formulas

ϕ(xy) in which xn is not free

Lastly, we axiomatize Fräıssé homogeneity. A useful property of the classical JRS

theories is that the formulas πt isolate the corresponding types. That is, if AJRS |=

πt(a)∧ψ(a)∧ πt(b), then AJRS |= ψ(b). We axiomatize the corresponding intuitionistic

behavior with the following schema.

∀xyxn[ψ ∧ ρ+
u → (σ−u ∨ ∀xn(ρ+

u → ψ))] for u ∈ |C(xxn)| and all formulas

ψ(xyxn)

To be more specific, if we have AM 
 ψ(abc) ∧ ρ+
u (ac), then it is possible that

AJRS |= πv(ac) for some complete At±(xxn)-type v with u+ ( v+, in which case

AM 
 σ−u (ac). Otherwise, u = tpac, so by the argument in Lemma 1.32 we get that for

any d ∈ AJRS such that AM 
 ρ+
u (ad), we have AM 
 ψ(abd).

We collect the above schemas into the Ha axiom system. The choice of name denotes

our first axiom system reflecting the homogeneity properties of AM; we introduce the
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axiom systems Hb and Hc in Section 2.2. The axiom systems Qa and Qb of Sections 2.3

and 2.4 reflect the process of eliminating quantifiers from ΓM.

Ha1 ∀x(π+
t → σ−t ) for all t /∈ |C(x)|

Ha2 ∀x(π+
t → (σ−t ∨ ρ−t )) for all t ∈ |C(x)|

Ha3 ∀xy[(π+
d(u) ∧ (σ−d(u) → ϕ) ∧ ∀xn(π+

u → (σ−u ∨ ϕ)))→ ϕ] for all u ∈ |C(xxn)| and

all formulas ϕ(xy) in which xn is not free

Ha4 ∀xyxn[ψ ∧ ρ+
u → (σ−u ∨ ∀xn(ρ+

u → ψ))] for all u ∈ |C(xxn)| and all formulas

ψ(xyxn)

We write ΓHa for the intuitionistic theory axiomatized by Ha1 through Ha4.

Below, we show that these four schemas suffice to axiomatize ΓM, that is, we show

that ΓHa = ΓM. Our strategy is to show that ΓM ` ΓHa. Then we show that ΓHa admits

quantifier elimination. Since > and ⊥ are the only quantifier-free sentences, ΓHa must

be complete and therefore ΓHa = ΓM.

Lemma 2.1. ΓM ` ΓHa.

Proof. Together, the schemas Ha1 and Ha2 form the universal fragment of ΓM; see

Lemmas 1.39 and 1.40. That ΓM proves Ha4 is just Lemma 1.32. It remains to show

ΓM ` Ha3.

Assume that AM forces the left hand side of Ha3, and fix tuples a and b in AJRS. If

AM 
 σ−d(u)(a), then AM 
 ϕ(ab) and we are done. So suppose AM 1 σ−d(u)(a). Since

AM 
 π+
d(u)(a) and AM 1 σ−d(u)(a), d(u) = tpa. Since u is consistent with ΓJRS, we can
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find a c ∈ AJRS such that u = tpac. So AM 
 π+
u (ac) and AM 1 σ−u (ac) and we must

have AM 
 ϕ(ab). So AM forces Ha3, and therefore ΓM ` Ha3.

Lemma 2.2. Let t be a complete At±(xxn)-type. Then

` π+
t → π+

d(t) and ` σ−d(t) → σ−t .

Proof. Both tautologies immediately follow from d(t) ⊆ t.

We use the term p-morphism in the next theorem. We direct the unfamiliar reader

to Segerberg’s paper [21].

Theorem 2.3. For all xxn, the map d from |C(xxn)| to |C(x)| is onto, and extends to

a poset morphism d : C(xxn) → C(x). Additionally, d is a so-called p-morphism, that

is, for any u ∈ |C(xxn)|, if d(u) ≤ t, then there is v ∈ |C(xxn)| such that u ≤ v and

d(v) = t.

Proof. The claims are trivial when n = 0. Suppose n > 0. Onto is immediate by taking,

for each t ∈ |C(x)|, the unique u ∈ |C(xxn)| containing t ∪ {xn = x0}. The poset

morphism claim that u ≤ v implies d(u) ≤ d(v) follows from Definition 1.20.2. Finally,

suppose t ≥ d(u). There are a ∈ AJRS and an endomorphism f of AJRS such that

t = tpf(a) and d(u) = tpa. There is b ∈ AJRS such that u = tpab. Set v = tpf(ab).

Lemma 2.4. For u, v ∈ |C(x)| with u+ ⊆ v+ we have

` σ−v → σ−u , and ` π+
v → π+

u .

If additionally we have u ≤ v, then ` ρ+
v → ρ+

u .

Proof. All follow tautologically from the definitions.
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Given s ⊆ At(x) and a theory ∆, let 〈s〉∆ = Th(∆∪ s)∩At(x). That is, 〈s〉∆ is the

closure of ∆ ∪ s under intuitionistic derivation restricted to atoms in x.

Lemma 2.5. Let s ⊆ At(x) \ {⊥}. Then there is a unique complete At±(x)-type t such

that 〈s〉∅ = t+.

Proof. Given s, let u = 〈s〉∅ and let t = u ∪ {¬δ : δ ∈ At(x) \ u}. As ⊥ /∈ s,

u is consistent. We must show that t is a complete At±(x)-type. So assume that t

is classically inconsistent. That is, assume πu ∧
∧
δ∈t−(¬δ) `c ⊥. Fix δ ∈ t−. By the

completeness of intuitionistic logic for rooted Kripke models (see [23, Theorem 2.6.8], for

example), we get a rooted Kripke model Aδ such that Aδ 
 πu(a) and Aδ 1 δ(a) (such a

model exists, otherwise δ ∈ u). The classical root structure of Aδ satisfies πu(a)∧¬δ(a).

Let A be the product of these root structures over all δ ∈ t−. Then A |= πu ∧
∧
δ∈t− ¬δ,

which contradicts our assumption.

In a general intuitionistic context, we rarely have that every quantifier-free formula

can be written in conjunctive or disjunctive normal form. We show in Theorem 2.14

that over ΓHa, every quantifier-free formula has both a conjunctive and a disjunctive

equivalent. We use these forms to eliminate the ∀ and the ∃ quantifiers, respectively. In

the next lemma, we use
∧
s as shorthand for

∧
{δ : δ ∈ s}.

Lemma 2.6. For any x and any s ⊆ At(x) \ {⊥}, we have

Ha1 `
∧
s↔

∨
{π+

u : u ∈ |C(x)| and 〈s〉+∅ ⊆ u}

and

Ha1 ∪ Ha2 `
∧
s↔

∨
{ρ+

u : u ∈ |C(x)| and 〈s〉+∅ ⊆ u}.
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Proof. By Lemma 2.5, we choose t ∈ |C(x)| such that 〈s〉∅ = t+, and replace
∧
s with

π+
t in both claims. We write ψ for the formula

∨
{π+

u : u ∈ |C(x)| and t+ ⊆ u}, and θ

for
∨
{ρ+

u : u ∈ |C(x)| and t+ ⊆ u}.

For the first claim, it suffices to prove Ha1 ` π+
t → ψ. We prove the claim by reverse

(strong) induction on the number of atoms in t+. If t ∈ |C(x)|, then ` π+
t → ψ and

we are done, so consider t /∈ |C(x)|. If t+ has the maximal number of atoms, we get

Ha1 ` π+
t → (π+

t ∧ σ−t ). But by the maximality of t+, σ−t is ⊥, so Ha1 ` π+
t → ⊥ and

therefore Ha1 ` π+
t → ψ. For a non-maximal t /∈ |C(x)|, Ha1 ` π+

t → (π+
t ∧ σ−t ), which

is equivalent to Ha1 ` π+
u →

∨
δ∈t−(π+

t ∧ δ). For each δ ∈ t−, 〈t+∪{δ}〉∅ has more atoms

than t+, so by Lemma 2.5, we can apply the inductive hypothesis. In all cases, we get

Ha1 ` π+
t → ψ.

For the second claim, it suffices to show Ha1∪Ha2 ` π+
t → θ. We proceed via reverse

(strong) induction on the number of atoms in t+. If t+ has the maximal number of atoms,

then either t ∈ |C(x)| so ` π+
t ↔ ρ+

t , or t /∈ |C(x)| so Ha1 ` π+
t → ⊥ as above. For all

other t’s, we have two cases. If t ∈ |C(x)|, then by Ha2 we get π+
t ↔ (ρ+

t ∨ (π+
t ∧ σ−t )).

If t /∈ |C(x)|, then π+
t ↔ (π+

t ∧ σ−t ) by Ha1. For either case, apply Lemma 2.5 and the

inductive hypothesis. This proves the claim.

Lemma 2.7. Let s ∈ |C(x)| and let t be an At±(x)-type. Then

Ha1 ∪ Ha2 ` (ρ+
s ∧ π+

t )↔
∨
{ρ+

v : s ≤ v and t+ ⊆ v}.

Proof. By Lemma 2.4, it suffices to prove the left to right direction. We claim that for

s ∈ |C(x)| and t an At±(x)-type,

Ha1 ∪ Ha2 ` (ρ+
s ∧ π+

t )↔ (ρ+
s ∧

∨
{π+

v : s ≤ v and t+ ⊆ v}).
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It suffices to show the left to right direction of this claim. Without loss of generality,

we may assume that s+ ⊆ t+. We proceed via reverse (strong) induction on the number

of atoms in t+. Lemma 2.6 gives us

(ρ+
s ∧ π+

t )→ (ρ+
s ∧

∨
{π+

v : v ∈ |C(x)| and t+ ⊆ v}).

If t ∈ |C(x)| and s ≤ t then we are done. If s � t, then ρ+
s tautologically implies

π+
t → σ−t , and we get (ρ+

s ∧ π+
t ) → (ρ+

s ∧
∨
δ∈t−(π+

t ∧ δ)). Apply Lemma 2.5 and

the inductive hypothesis. If t /∈ |C(x)|, then we get π+
t → (π+

t ∧ σ−t ) by Ha1 and thus

(ρ+
s ∧π+

t )→ (ρ+
s ∧
∨
δ∈t−(π+

t ∧δ)). Again, apply Lemma 2.5 and the inductive hypothesis.

If t+ has the maximum number of atoms, then σ−t is the empty disjunction, which is

just ⊥. This proves the claim.

To prove the lemma, it suffices to show that

Ha1 ∪ Ha2 ` (ρ+
s ∧ π+

t )→ (ρ+
s ∧

∨
{ρ+

v : s ≤ v and t+ ⊆ v}).

We again proceed via reverse (strong) induction on the number of atoms in t+.

Without loss of generality, we may assume that s+ ⊆ t+. First, suppose t+ has the

maximal number of atoms. If s ≤ t, then (ρ+
s ∧ π+

t )→ ρ+
t . If s � t, then because σ−t is

equivalent to ⊥, we have either Ha1 ` π+
t → ⊥ or Ha2 ` (ρ+

s ∧ π+
t )→ ⊥. Now suppose

that t+ does not have the maximal number of atoms. We may assume that s ≤ t by the

claim. By Lemma 2.6, we rewrite ρ+
s ∧π+

t as
∨
{ρ+

s ∧ ρ+
u : u ∈ |C(x)| and t+ ⊆ u}. Fix

such a u. If s ≤ u, we are done. If not, then u+ is a proper extension of t+, so we may

apply the inductive hypothesis to ρ+
s ∧ π+

u . This concludes the proof.

Lemma 2.8. For u ∈ |C(xxn)|, Ha1 ∪ Ha2 ` ρ+
u → ρ+

d(u).

Proof. Obviously, ρ+
u → π+

d(u) is a tautology. Suppose that for some s ∈ |C(x)|, π+
s → σ−s

occurs in ρ+
d(u). Then d(u)+ ⊆ s+ and d(u) 6≤ s. By Lemma 2.7 we have
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Ha1 ∪ Ha2 ` (ρ+
u ∧ π+

s )↔
∨
{ρ+

v : u ≤ v and s+ ⊆ v}.

Pick such a v. Then d(u) ≤ d(v), while s+ ⊆ d(v)+. If s+ = d(v)+, then s = d(v) and

so d(u) ≤ s, a contradiction. Thus, ` π+
d(v) → σ−s . By Lemma 2.2, ` ρ+

v → π+
d(v) and so

` ρ+
v → σ−s . So Ha1∪Ha2 ` ρ+

u → (π+
s → σ−s ), and therefore Ha1∪Ha2 ` ρ+

u → ρ+
d(u).

The following lemma allows us to move between our two canonical forms.

Lemma 2.9. Let U be any open subset of |C(x)|. Then

Ha1 ∪ Ha2 `
∨
u∈U

ρ+
u ↔

∧
s/∈U

(π+
s → σ−s ).

Proof. For the right to left direction, we claim that for v ∈ |C(x)|,

Ha1 ∪ Ha2 ∪

{∧
s/∈U

(π+
s → σ−s )

}
` ρ+

v →
∨
u∈U

ρ+
u .

We prove the claim via reverse (strong) induction on the number of atoms in v+. If

v ∈ U , then ρ+
v →

∨
u∈U ρ

+
u , so suppose that v /∈ U . If v+ has the maximum number of

atoms, then we have π+
v → σ−v . Since σ−v is equivalent to ⊥, the implication is vacuously

satisfied. For any other v+, we have π+
v → σ−v and thus ρ+

v ∧
∨
δ∈v− δ. Lemma 2.7 gives

us

∨
δ∈v−

(∨{
ρ+
w : v ≤ w and (v+ ∪ {δ}) ⊆ w+

})
.

Each such w is such that w+ has more atoms than v+, so we may apply the inductive

hypothesis. This proves the claim.

By applying Lemma 2.6 with s = ∅, we get that Ha1 ∪ Ha2 `
∨
{ρ+

v : v ∈ |C(x)|}.

So Lemma 2.6 together with the claim gives us

Ha1 ∪ Ha2 `
∧
s/∈U

(π+
s → σ−s )→

∨
u∈U

ρ+
u .
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For the left to right direction, fix u ∈ U and s /∈ U . Since s /∈ U , we know u � s. If

u+ ⊆ s+, then ρ+
u tautologically implies π+

s → σ−s . If u+ * s+, then there is an atom

δ ∈ (u+∩s−). Then ρ+
u → δ, so ρ+

u → σ−s and thus ρ+
u → (π+

s → σ−s ). So, for each u ∈ U

and each s /∈ U , we get ρ+
u → (π+

s → σ−s ). Therefore,
∨
u∈U ρ

+
u →

∧
s/∈U(π+

s → σ−s ).

The next two lemmas enable us to eliminate a quantifier from each of our canonical

forms.

Lemma 2.10. For u ∈ |C(xxn)|, Ha1 ∪ Ha2 ∪ Ha3 ` ∃xnρ+
u ↔ ρ+

d(u).

Proof. The left to right direction immediately follows from Lemma 2.8.

We prove the right to left direction using the axiom schema Ha3 and reverse (strong)

induction on the number of atoms in d(u)+. Suppose ρ+
d(u) and consider the schema Ha3

where ϕ is the formula ∃xnρ+
u . We immediately satisfy the first and third clause of the

antecedent of Ha3 as follows. We have ρ+
d(u), and thus π+

d(u). Also, for any xn such that

π+
u holds, apply the schema Ha2. We have σ−u or ρ+

u , the latter implying ϕ. Thus, we

have the first and the third clause of the antecedent of Ha3; it remains to show that the

second clause of the antecedent of Ha3 holds. We claim that (ρ+
d(u) ∧ σ

−
d(u))→ ϕ.

If d(u)+ has the maximum number of atoms, then σ−d(u) together with ρ+
d(u) gives us

⊥, so the claim is satisfied. Otherwise, we get
∨
{ρ+

d(u) ∧ δ : δ ∈ d(u)−}. Fix such a δ.

By Lemma 2.7, we have

(ρ+
d(u) ∧ δ)→

∨
{ρ+

t : d(u)+ ∪ {δ} ⊆ t+}.

Fix such a t. Theorem 2.3 gives us a v ∈ |C(xxn)| such that t = d(v) and u ≤ v. By our

inductive hypothesis, we get ∃xnρ+
v . By Lemma 2.4, the second clause of the antecedent

of Ha3 holds.
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So in all cases, we satisfy all three clauses of the antecedent of Ha3, and therefore

from ρ+
d(u) we deduce ∃xnρ+

u .

Lemma 2.11. For u ∈ |C(xxn)|, Ha3 ` ∀xn(π+
u → σ−u )↔ (π+

d(u) → σ−d(u)).

Proof. From right to left follows from Lemma 2.2. For the left to right direction, suppose

we have ∀xn(π+
u → σ−u ) and π+

d(u) and apply Ha3 with σ−d(u) as ϕ. Then the first clause

of Ha3 is immediately satisfied, the second clause is a tautology, and the third clause

follows from our hypothesis. So σ−d(u) follows by Ha3.

Lemma 2.12. For u, v ∈ |C(x)| such that u ≤ v, we have

ΓHa ` (π+
v → σ−v )→ (π+

u → σ−u ).

Proof. We proceed by induction on the size of x. For the case with no free variables,

(π+
v → σ−v ) ≡ > → ⊥, as v ∈ |C(∅)|. In such a case, the result vacuously holds. For the

inductive step, now suppose we have (π+
v → σ−v ) ∧ π+

u . We must show σ−u .

By Lemma 2.6, our supposition is equivalent to
∨
{(π+

v → σ−v ) ∧ ρ+
w : u+ ⊆ w}. If

u+ ( w+, then we have π+
w ` σ−u . So all that remains is to show that (π+

v → σ−v ) ∧ ρ+
u

gives us σ−u . Apply Ha4, with (π+
v → σ−v ) as ψ. We get

∀xxn[(π+
v → σ−v ) ∧ ρ+

u → (σ−u ∨ ∀xn(ρ+
u → (π+

v → σ−v )))].

It is now enough to show that ∀xn(ρ+
u → (π+

v → σ−v )) gives us σ−u . By Lemma 2.7,

∀xn(ρ+
u → (π+

v → σ−v )) is equivalent to

∀xn (
∨
{ρ+

w : u ≤ w and v+ ⊆ w} → σ−v ) .

This can be rewritten as
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∧
{∀xn(ρ+

w → σ−v ) : u ≤ w and v+ ⊆ w} ,

from which we deduce ∀xn(ρ+
v → σ−v ). Ha2 shows that ∀xn(ρ+

v → σ−v )↔ ∀xn(π+
v → σ−v ).

By Lemma 2.11, ∀xn(π+
v → σ−v ) is equivalent to π+

d(v) → σ−d(v). From our inductive

hypothesis, we deduce π+
d(u) → σ−d(u). By Lemma 2.2, we conclude σ−u .

Lemma 2.13. For all t, u ∈ |C(x)|, we have

ΓHa ` (ρ+
t → (π+

u → σ−u ))→
∧
{π+

v → σ−v : v ≤ u and t ≤ u}.

Proof. Fix t and u and suppose ρ+
t → (π+

u → σ−u ). We may assume t ≤ u. Fix v ≤ u. We

must show π+
v → σ−v . By Ha2, we may replace ρ+

t → (π+
u → σ−u ) with (ρ+

t ∧ ρ+
u )→ σ−u .

With Lemma 2.4, we get ((ρ+
t ∧ ρ+

u ) → σ−u ) → (ρ+
u → σ−u ) since t ≤ u. Again by Ha2,

ρ+
u → σ−u is equivalent to π+

u → σ−u . Apply Lemma 2.12.

We are now ready to show that ΓHa admits quantifier elimination. First, we show

that over ΓHa, quantifier-free formulas are equivalent to formulas of certain forms. We

call these forms “disjunctive normal form” and “conjunctive normal form” - these terms

are perhaps overused, but seem to serve our purpose here. Recall that in general over

intuitionistic logic, quantifier-free formulas have no such canonical forms.

Theorem 2.14. For every quantifier-free formula ϕ(x), there is an open subset U of

|C(x)| such that

ΓHa ` ϕ↔
∨
u∈U ρ

+
u ↔

∧
s/∈U(π+

s → σ−s ).

So every quantifier-free formula has both a disjunctive and a conjunctive normal form

over ΓHa.
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Proof. The proof is by induction on the complexity of ϕ. If ϕ is atomic, then Lemma 2.7

tells us that ϕ↔
∨
{ρ+

v : ϕ ∈ v}. Then Lemma 2.9 gives us a conjunctive normal form

for ϕ. If ϕ ≡ ψ ∧ θ, then we can write ψ ↔
∧
s/∈U(π+

s → σ−s ) and θ ↔
∧
v/∈W (π+

v → σ−v ).

So ϕ↔
∧
z /∈U∩W (π+

z → σ−z ), and again we can use Lemma 2.9 to write ϕ in disjunctive

normal form. The case for ϕ ≡ ψ ∨ θ works similarly by writing each component in

disjunctive normal form.

For the case where ϕ ≡ ψ → θ, we can write ψ ↔
∨
u∈U ρ

+
u and θ ↔

∧
v/∈W (π+

v → σ−v ).

Then

ϕ↔
∧
u∈U

∧
v/∈W (ρ+

u → (π+
v → σ−v )).

By Lemma 2.13, this is equivalent to

∧
u∈U

∧
v/∈W

∧
{π+

w → σ−w : u ≤ v and w ≤ v}.

Therefore, again by Lemma 2.9, ϕ can be rewritten in disjunctive and conjunctive normal

form.

In Chapter 1, we show semantically that every quantifier-free formula has a disjunc-

tive normal form over ΓM (Corollary 1.31). This equivalence played a strong role in

proving that ΓM admits quantifier elimination (Theorem 1.33). That every quantifier-

free formula has a conjunctive normal form can be deduced from Lemma 1.26 using some

basic (finite) topology.

Theorem 2.15. ΓHa admits quantifier elimination.

Proof. We induct on formula complexity. By Lemma 2.14, we rewrite formulas of the

form ∃xϕ, where ϕ is quantifier-free, as ∃x
∨
u∈U ρ

+
u , which is equivalent to

∨
u∈U ρ

+
d(u) by
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Lemma 2.10. By Lemma 2.14, we rewrite formulas of the form ∀xϕ as ∀x
∧
u/∈U(π+

u →

σ−u ), which, by Lemma 2.11, is equivalent to
∧
u/∈U(π+

d(u) → σ−d(u)).

We achieve our goal as a corollary.

Theorem 2.16. The axiom system Ha axiomatizes ΓM.

Proof. By Lemma 2.1, ΓHa ⊆ ΓM. Since L has only > and ⊥ as nullary predicates, over

ΓM, all quantifier-free sentences are equivalent to combinations of > and ⊥. So ΓHa is

complete by Theorem 2.15. Therefore, ΓHa = ΓM.

2.2 Sharpening the Ha Axiom System

The Ha axiom system was chosen to reflect properties of the Kripke model AM, so in

some sense the Ha system can be viewed as a natural axiomatization choice. However,

in the preceding section, and to some extent in Section 1.4, those properties are not used

directly to prove quantifier elimination. In both instances, we more specifically use the

properties that every quantifier-free formula can be put in one of two canonical forms,

and that we can eliminate quantifiers from formulas with matrices of those forms. Now

that we have an axiomatization that works, we can examine other axiom systems that

will perhaps generalize in different ways.

We did not use the full power of the Ha axiom system in Section 2.1. The axiom

schemas Ha3 and Ha4 were used but a handful of times, and thus those schemas are

stated in broader generality than necessary. The axiom schema Ha3 was used twice;

ϕ was replaced by ∃xnρ+
u in Lemma 2.10, and ϕ was replaced by σ−d(u) in Lemma 2.11.
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The schema Ha4 was used only once, with ψ replaced by π+
t → σ−t (where u ≤ t) in

Lemma 2.12.

In classical logic, one often classifies formulas by their place in the hierarchy of for-

mulas, e.g., Ha3 might read “...for all Π0
2 formulas ϕ(x) with xn not free”. There is

no prenex normal form theorem for intuitionistic logic, however, some authors have

proposed hierarchies of intuitionistic formulas; see [3], [18], and [25] for example. Fleis-

chmann, building on work in [9], proposes in [11] several intuitionistic hierarchies of

formulas and uses them to prove some analogs of classical, model-theoretic preservation

theorems. We use his hierarchies and notation to mention the axiom system Hb, be-

fore narrowing the scope of the axiom schemas Ha3 and Ha4 even further in the axiom

system Hc.

Hb1 ∀x(π+
t → σ−t ) for all t /∈ |C(x)|

Hb2 ∀x(π+
t → (σ−t ∨ ρ−t )) for all t ∈ |C(x)|

Hb3 ∀x[(π+
d(u) ∧ (σ−d(u) → ϕ) ∧ ∀xn(π+

u → (σ−u ∨ ϕ))) → ϕ] for all u ∈ |C(xxn)| and

all formulas ϕ(x) ∈ E1 in which xn is not free

Hb4 ∀xxn[ψ ∧ ρ+
u → (σ−u ∨ ∀xn(ρ+

u → ψ))] for all u ∈ |C(xxn)| and all formulas

ψ(xxn) ∈ U1

We write ΓHb for the intuitionistic theory axiomatized by Hb1 through Hb4.

If we prefer to use one of Fleischmann’s other hierarchies, we may replace the E1 in

Hb3 and U1 in Hb4 with, respectively, E∗1 and U∗1 ; or ES1 and US1 . While U1 = U∗1 = US1 ,

we have that E∗1 = E+ 6= E1 and ES1 = E1∩S where S is the set of semi-positive formulas.
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Clearly, ΓHb ⊆ ΓHa. By examining the structure of Lemmas 2.10, 2.11 and 2.12 and

noting that the axiom schemas Ha3 and Ha4 are not called upon elsewhere in the proof

to Theorem 2.15, we get the following corresponding result.

Theorem 2.17. ΓHb admits quantifier elimination.

And again, we get the following as a corollary.

Theorem 2.18. The axiom system Hb axiomatizes ΓM.

While limiting the scope of the schemas Ha3 and Ha4 to the appropriate level in

an intuitionistic hierarchy creates a more specific axiomatization than the Ha system,

we can be even more specific. With Ha3 and Ha4 used so infrequently in the proof of

Theorem 2.15, we create the axiom system Hc by using the schemas in the system Hb

with formulas of the specific form used in the proofs in Section 2.1 already substituted

in.

Hc1 ∀x(π+
t → σ−t ) for all t /∈ |C(x)|

Hc2 ∀x(π+
t → (σ−t ∨ ρ−t )) for all t ∈ |C(x)|

Hc3 1. ∀x[(π+
d(u) ∧ (σ−d(u) → ∃xnρ+

u ) ∧ ∀xn(π+
u → (σ−u ∨ ∃xnρ+

u ))) → ∃xnρ+
u ] for all

u ∈ |C(xxn)|

2. ∀x[(π+
d(u) ∧ ∀xn(π+

u → σ−u ))→ σd(u)] for all u ∈ |C(xxn)|

Hc4 ∀xxn[(π+
t → σ−t ) ∧ ρ+

u → (σ−u ∨ ∀xn(ρ+
u → (π+

t → σ−t )))] for all t, u ∈ |C(xxn)|

with u ≤ t
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We write ΓHc for the intuitionistic theory axiomatized by Hc1 through Hc4.

The axiom schema Hc3.1 is the schema Ha3 with ϕ replaced by ∃xnρ+
u ; compare with

the usage of Ha3 in Lemma 2.10. By Lemma 2.2, the axiom schema Hc3.2 is equivalent to

the schema Ha3 with ϕ replaced by σ−d(u); compare with the usage of Ha3 in Lemma 2.11.

Lastly, the axiom schema Hc4 is the schema Ha4 with ψ replaced by π+
t → σ−t where

t ∈ |C(xxn)| and u ≤ t; compare to the usage of Ha4 in Lemma 2.12. It is again clear

that ΓHb ⊆ ΓHa. As above, we can immediately prove quantifier elimination; in retracing

the proof of Theorem 2.15 we may skip Lemma 2.11 and prove Lemma 2.12 from the

schema Hc3.2.

Theorem 2.19. ΓHc admits quantifier elimination.

Theorem 2.20. The axiom system Hc axiomatizes ΓM.

Again using Fleischmann’s intuitionistic hierarchies (see [11]), we still have that

Hc1 and Hc2 are both universal (U1). Furthermore, the schema Hc3.1 ⊆ U(E1,U2), the

schema Hc3.2 ⊆ U(E0,U1), and the schema Hc4 ⊆ U(U(U1,U0),U0).

2.3 An Axiom System Motivated by Quantifier Elim-

ination

The axiom system Ha was constructed to reflect important properties of the Kripke

model AM. The systems Hb and Hc are simply more specific versions of Ha. However, by

examining Theorem 2.16, we construct a qualitatively different axiom schema. Consider

the axiom system Qa:
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Qa1 ∀x(δ ↔
∨
{ρ+

t : t ∈ |C(x)| and δ ∈ t}) for all δ ∈ At(x)

Qa2 ∀x(
∨
t∈U ρ

+
t ↔

∧
t/∈U(π+

t → σ−t )) for all open U ⊆ |C(x)|

Qa3 ∀x[(ρ+
t → (π+

u → σ−u ))↔
∧
{π+

v → σ−v : t ≤ u and v ≤ u}] for all t, u ∈ |C(x)|

Qa4 ∀x(∃xnρ+
u ↔ ρ+

d(u)) for all u ∈ |C(xxn)|

Qa5 ∀x(∀xn(π+
u ↔ σ−u )↔ (π+

d(u) → σ−d(u))) for all u ∈ |C(xxn)|

Let ΓQa be the theory axiomatizable by Qa1 through Qa5.

As we show below, the axiom schema Qa1 allows us to put each atom in disjunctive

normal form. The schema Qa2 gives the equivalence of our disjunctive and conjunctive

normal forms. The schema Qa3 is required for the implication step of the inductive

argument showing that all quantifier-free formulas can be put in both normal forms.

And the schemas Qa4 and Qa5 explicitly allow the elimination of quantifiers from these

normal forms. Compare these schemas to the structure of the proof of Theorem 2.16.

Lemma 2.21. ΓM ` ΓQa.

Proof. Given Lemma 2.1, the cases for the schemas Qa2, Qa4 and Qa5 are already

directly proven in Lemmas 2.14, 2.10, and 2.11, respectively. The non-obvious direction

of Qa1 follows from Lemma 2.6.

It remains to show that ΓM ` Qa3. First, the left to right direction. Fix t ≤ u and

v ≤ u and suppose that for some a ∈ AJRS we have

AM 
 π+
v (a) ∧ (ρ+

t (a)→ (π+
u (a)→ σ−u (a))).
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We must show that AM 
 σ−v (a). Assume not. Then, AJRS |= πv(a). Since v ≤ u,

AJRS |= πu(f(a)) for some endomorphism f of AJRS. So AM 
 ρ+
u (f(a)) (by Lemma 1.28,

for example). Since t ≤ u, we have AM 
 ρ+
t (f(a)) and so by supposition, AM 
 σ−u (f(a)).

But then AJRS 6|= πu(f(a)), a contradiction. So AM 
 σ−v (a).

For the right to left direction, fix t, u ∈ |C(x)| and suppose that for some a ∈ AJRS

we have

AM 
 ρt(a) ∧ π+
u (a) ∧

∧
{π+

v (a)→ σ−v (a) : t ≤ u and v ≤ u}.

We must show AM 
 σ−u (a). If t ≤ u, then we are done as

∧
{π+

v → σ−v : t ≤ u and v ≤ u} ` π+
u → σ−u .

So we may suppose that t � u. If t+ ∩ u− 6= ∅, then again we are done, as π+
t ` σ−u . So

we may suppose that t+ ( u+. But then ρ+
t ` π+

u → σ−u . Therefore ΓM ` Qa3.

Lemma 2.22. For every x and every quantifier-free formula ϕ(x), there is an open

subset U ⊆ |C(x)| such that

Qa1 ∪Qa2 ∪Qa3 ` ϕ↔
∨
u∈U

ρ+
u ↔

∧
s/∈U

(π+
s → σ−s ).

Proof. We complete the proof by induction on the complexity of ϕ. The case for atoms

and the induction steps for disjunction and conjunction all easily follow with schemas

Qa1 and Qa2. Suppose ϕ ≡ ψ → θ, where the claim holds for ψ and θ. That is, there

are open subsets U, V ⊆ |C(x)| such that ψ ↔
∨
u∈U

ρ+
u and θ ↔

∧
t/∈V

(π+
t → σ−t ). So

ϕ↔
∧
u∈U

∧
t/∈V (ρ+

u → (π+
t → σ−t )). By Qa3, we get ϕ↔

∧
w∈W

(π+
w → σ−w ) where

W = {w ∈ |C(x)| : ∃u ∈ U∃t /∈ V (u ≤ t ∧ w ≤ t)}.



46

Since W is downward closed, ϕ is equivalent to a formula in conjunctive normal form.

By Qa2, ϕ is also equivalent to a formula in disjunctive normal form. This completes

the induction.

Theorem 2.23. ΓQa admits quantifier elimination.

Proof. Fix an L-formula ϕ and proceed by induction on the number of quantifiers in

ϕ. By the inductive hypothesis, we have two cases; either ϕ ≡ ∃xnψ or ϕ ≡ ∀xnψ

where ψ is quantifier-free. In the first case, we may write ψ as ∃xn
∨
t∈U ρ

+
t for some

open U ⊆ |C(xxn)| by Lemma 2.22. Then ϕ is equivalent to
∨
t∈U ρ

+
d(t) by Qa4. In the

second case, we may write ψ as ∀xn
∧
t/∈U(π+

t → σ−t ) for some open U ⊆ |C(xxn)| by

Lemma 2.22. Then ϕ is equivalent to
∧
t/∈U(π+

d(t) → σ−d(t)) by Qa5.

As above, we again get the following as a corollary.

Theorem 2.24. The axiom system Qa axiomatizes ΓM.

2.4 Sharpening the Qa Axiom System

As with the Ha system in Section 2.2, we consider ways to improve the Qa system. To

this end, consider the Qb axiom system:

Qb1 ∀x(δ →
∨
{ρ+

t : t ∈ |C(x)| and δ ∈ t}) for all atoms δ ∈ At(x)

Qb2 ∀x(
∧
t/∈U(π+

t → σ−t )→
∨
t∈U ρ

+
t ) for all open U ⊆ |C(x)|

Qb3 ∀x[(π+
u → σ−u )→ (π+

v → σ−v )] for all v ≤ u ∈ |C(x)|

Qb4 ∀x(ρ+
d(u) → ∃xnρ+

u ) for all u ∈ |C(xxn)|
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Qb5 ∀x(∀xn(π+
u → σ−u )→ (π+

d(u) → σ−d(u))) for all u ∈ |C(xxn)|

Let ΓQb be the theory axiomatizable by Qb1 through Qb5.

Lemma 2.25. ΓM ` ΓQb.

Proof. Given Lemma 2.1, the schemas Qb1 through Qb5 follow directly from Lem-

mas 2.6, 2.14, 2.12, 2.10, and 2.11, respectively. (More broadly, all but Qb3 follow from

Lemma 2.21.)

We could follow the pattern above and directly prove that ΓQb eliminates quantifiers,

thereby showing the system Qb axiomatizes ΓM. Instead, we will arrive at the same result

by drawing connections between the systems Qa and Qb.

Lemma 2.26. Let U be an open subset of |C(x)|. Then

`
∨
u∈U

ρ+
u →

∧
v/∈U

(π+
v → σ−v ).

Proof. Fix such a u and v. It then suffices to prove ` ρ+
u → (π+

v → σ−v ). If u+ ⊆ v+

then ρ−u tautologically implies π+
v → σ−v . Otherwise, u+ 6⊆ v+, so there is an atom

δ ∈ u+ ∩ v−. Then the following implications are tautologies: ρ+
u → π+

u , π+
u → δ,

δ → σ−v , and σ−v → (π+
v → σ−v ).

Lemma 2.27. The axiom subsystem Qa1 ∪ Qa2 is equivalent to the axiom subsystem

Qb1 ∪Qb2.

Proof. The implication present in Qa1 but absent in Qb1 is a tautology. The implication

present in Qa2 but absent in Qb2 is Lemma 2.26.
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Definition 2.28. For an open subset U of |C(x)|, we write ρ+
U(x) or just ρ+

U to represent

the formula
∨
u∈U ρ

+
u (x).

Lemma 2.29. For open subsets U and V of |C(x)|, we have

` (ρ+
U ∨ ρ

+
V )↔ ρ+

U∪V

and

Qb2 ` (ρ+
U ∧ ρ

+
V )↔ ρ+

U∩V .

Proof. The first claim is a tautology. For the second claim, over Qb2, ρ+
U∩V is equivalent

to
∧
t/∈U∪V (π+

t → σ−t ), which is tautologically equivalent to

∧
t/∈U(π+

t → σ−t ) ∧
∧
t/∈V (π+

t → σ−t ),

which is equivalent to ρ+
U ∧ ρ

+
V by Qb2.

Lemma 2.30. Qb1 ∪Qb2 ∪Qb3 ` Qa3.

Proof. For t, u ∈ |C(x)|, we first claim

`
∧
{π+

v → σ−v : t ≤ u and v ≤ u} → (ρ+
t → (π+

u → σ−u )).

If t ≤ u, then we are done as
∧
{π+

v → σ−v : t ≤ u and v ≤ u} ` π+
u → σ−u . So we may

suppose that t � u. If t+ ∩ u− 6= ∅, then again we are done, as π+
t ` σ−u . So we may

suppose that t+ ( u+. But then ρ+
t ` π+

u → σ−u .

It is left to show

Qb1∪Qb2∪Qb3 ` (ρ+
t → (π+

u → σ−u ))→
∧
{π+

v → σ−v : t ≤ u and v ≤ u}.

Suppose the conjunction is not empty, and fix such a v. We now claim that
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Qb1 ∪Qb2 ` ((π+
u → σ−u )→ (π+

v → σ−v ))↔ ((ρ+
u → σ−u )→ (π+

v → σ−v )).

By Qb1 and Lemma 2.29, π+
u is equivalent to

∨
{ρ+

w : u+ ⊆ w+}, so π+
u → σ−u

is equivalent to
∧
{ρ+

w → σ−u : u+ ⊆ w+}. For each w such that u+ ( w+, we have

π+
w ` σ−u , leaving only the case when w = u. So over Qb1, π+

u → σ−u is equivalent to

ρ+
u → σ−u , and the claim is proved.

To prove the lemma, it suffices to prove our final claim:

((ρ+
u → σ−u )→ (π+

v → σ−v )) ` ((ρ+
t → (π+

u → σ−u ))→ (π+
v → σ−v )).

We have ` (ρ+
u → σ−u ) ↔ (ρ+

u → (π+
u → σ−u )). Also, since t ≤ u, we have

(ρ+
t → (π+

u → σ−u )) ` (ρ+
u → (π+

u → σ−u )) tautologically (with Lemma 2.4). This proves

the final claim.

Lemma 2.31. The axiom subsystem Qa1 ∪ Qa2 ∪ Qa3 is equivalent to the axiom sub-

system Qb1 ∪Qb2 ∪Qb3.

Proof. Clearly, Qa3 ` Qb3. Apply Lemmas 2.27 and 2.30.

The relationship between Qa4 and Qb4 is a bit more complicated. We now introduce

notation and machinery to help show that they are equivalent over Qb1 ∪Qb2 ∪Qb3.

Definition 2.32. For t ∈ |C(x)| and L(x)-formula ϕ, we write t 
3 ϕ as short for

Qb1 ∪Qb2 ∪Qb3 ` ρ+
t → ϕ.

Lemma 2.33. For open subset U of |C(x)| and t ∈ |C(x)| we have t 
3 ρ
+
U if and only

if t ∈ U .
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Proof. If t ∈ U , then clearly t 
3 ρ+
U . If t /∈ U , then notice that ΓM 0 ρ+

t → ρ+
U by

Lemma 1.24. Therefore, t 13 ρ
+
U by Lemma 2.25.

Lemma 2.34. For all t ∈ |C(x)|, all δ ∈ At(x), and all quantifier-free L(x) formulas

ϕ and ψ, we have the following.

1. t 
3 δ if and only if δ ∈ t+.

2. t 
3 ϕ ∧ ψ if and only if t 
3 ϕ and t 
3 ψ.

3. t 
3 ϕ ∨ ψ if and only if t 
3 ϕ or t 
3 ψ.

4. t 
3 ϕ→ ψ if and only if for all u ≥ t, if u 
3 ϕ, then u 
3 ψ.

Proof. Claim 1 follows from Qb1 with Lemma 2.33. Claim 2 is a tautology.

For Claims 3 and 4, by Lemma 2.31, we may apply Lemma 2.22 to get open sets U

and V such that, over Qb1 ∪ Qb2 ∪ Qb3, ϕ is equivalent to ρ+
U and ψ is equivalent to

ρ+
V . Now Claim 3 follows from Lemmas 2.29 and 2.33.

For Claim 4, t 
3 ϕ→ ψ if and only if t 
3 ρ
+
U → ρ+

V , if and only if

Qb1 ∪Qb2 ∪Qb3 ` ρ+
t ∧ ρ+

U → ρ+
V .

Let t̂ be the smallest open set containing t. Then Lemmas 2.29 and 2.4 give us that

` ρ+
t ↔ ρ+

t̂
. Now the statement displayed above is true if and only if

Qb1 ∪Qb2 ∪Qb3 ` ρ+
t̂∩U → ρ+

V ,

if and only if

Qb1 ∪Qb2 ∪Qb3 ` ρ+
u → ρ+

V , for all u ≥ t such that u 
3 ρ
+
U ,

if and only if u 
3 ψ, for all u ≥ t such that u 
3 ϕ.
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Lemma 2.35. For u ∈ |C(xxn)| and for any quantifier-free L(x)-formula ϕ, u 
3 ϕ if

and only if d(u) 
3 ϕ.

Proof. Induct on the complexity of ϕ. The base case as well as the cases where ϕ is a

conjunction or a disjunction all follow from Lemma 2.34. Suppose ϕ ≡ ψ → θ.

Suppose d(u) 
3 ϕ and choose any v such that u ≤ v and v 
3 ψ. By the inductive

hypothesis, d(v) 
3 ψ. Since d(u) ≤ d(v), d(v) 
3 θ. By the inductive hypothesis, v 
3 θ.

Therefore, by Claim 4 of Lemma 2.34, u 
3 ϕ.

Conversely, suppose u 
3 ϕ and choose any t such that d(u) ≤ t and t 
3 ψ.

By Lemma 2.3, t = d(v) for some v ≥ u. By the inductive hypothesis, v 
3 ψ, so

also v 
3 θ. By the inductive hypothesis, t = d(v) 
3 θ. Therefore, by Claim 4 of

Lemma 2.34, d(u) 
3 ϕ.

Lemma 2.36. For every open subset U of |C(x)| and every t ∈ |C(x)| we have

Qb1 ∪Qb2 ∪Qb3 ` ρ+
t ↔

∨
{ρ+

u : t ≤ d(u)}

and

Qb1 ∪Qb2 ∪Qb3 ` ρ+
U ↔ ρ+

d−1(U).

Proof. It suffices to prove the first claim. By viewing ρ+
t as an L(xxn)-formula, Lem-

mas 2.31 and 2.22 give us on open subset V of |C(xxn)| such that

Qb1 ∪Qb2 ∪Qb3 ` ρ+
t ↔ ρ+

V .

Let U = {u ∈ |C(xxn)| : t ≤ d(u)}. For u ∈ |C(xxn)|, Lemma 2.35 gives us u
3 ρ
+
t

if and only if d(u) 
3 ρ
+
t if and only if (by Lemma 2.33) t ≤ d(u). So
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Qb1 ∪Qb2 ∪Qb3 ` ρ+
u → ρ+

t if and only if t ≤ d(u),

and so V ⊆ U . Therefore, we have that Qb1 ∪Qb2 ∪Qb3 proves the following implica-

tions: ρ+
U → ρ+

t , ρ+
t → ρ+

V , and ρ+
V → ρ+

U . Therefore Qb1 ∪Qb2 ∪Qb3 ` ρ+
U ↔ ρ+

V .

We now have enough information to compare Qa4 to Qb4.

Lemma 2.37. Qa1 ∪Qa2 ∪Qa3 ∪Qa4 is equivalent to Qb1 ∪Qb2 ∪Qb3 ∪Qb4.

Proof. Clearly, Qa4 ` Qb4. For each u ∈ |C(xxn)|, Lemma 2.36 gives us

Qb1 ∪Qb2 ∪Qb3 ` ρ+
u → ρ+

d(u).

Therefore,

Qb1 ∪Qb2 ∪Qb3 ∪Qb4 ` Qa4.

The result now follows from Lemma 2.31.

Lemma 2.38. The axiom schema Qa5 is equivalent to the axiom schema Qb5.

Proof. We must show that ` (π+
d(u) → σ−d(u))→ ∀xn(π+

u → σ−u ). Fix xn and suppose that

π+
u and π+

d(u) → σ−d(u) both hold. By Lemma 2.2, π+
u gives us π+

d(u), which by supposition

gives us σ−d(u), which gives us σ−u by Lemma 2.2.

Combining Lemmas 2.37 and 2.38, we conclude the following.

Theorem 2.39. The axiom system Qa is equivalent to the axiom system Qb.

In terms of Fleischmann’s hierarchies (see [11]), we can categorize our axiom schemas

as follows: Qb1 ⊆ U1, Qb2 ⊆ U(U0,U0), Qb3 ⊆ U(U0,U0), Qb4 ⊆ U(E1,U0), and

Qb5 ⊆ U(U0,U1).



53

Chapter 3

Monoids of Morphisms

In Chapter 1, we defined the Kripke model AM to include a single node structure AJRS

and all endomorphisms of that structure. The intuitionistic theory of this Kripke model

admits quantifier elimination. The classical structure AJRS can also be viewed as a

single-node Kripke model: one whose only morphism is the identity morphism. The

(intuitionistic) theory of this Kripke model also admits quantifier elimination. Are there

other monoids of morphisms of AJRS that will yield single-node Kripke models whose

theories admit quantifier elimination? In this chapter, we investigate the ramifications

of changes to the monoid of morphisms in Kripke models with AJRS as their only node.

3.1 A Motivating Example

Starting with a certain classical JRS model, we construct four different single-node

Kripke models by varying the monoid of morphisms in the Kripke models. We will

get four different, complete intuitionistic theories that all admit quantifier elimination.

First, some definitions and a general result.

Definition 3.1. 1. Let A be a classical JRS model in the language L and let B be a

classical JRS model in the languageM. Let R be a unary predicate new to L∪M.

In the obvious way, let AoR(x) B be the classical model with universe A ∪̇B where
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AoR(x) B |= R(x) if and only if x ∈ A.

2. Let Γ1 = Th(A) � L and Γ2 = Th(B) � L. Then we define Γ1 oR(x) Γ2 as the

L-theory of the model AoR(x) B.

Lemma 3.2. AoR(x) B is a JRS model.

Proof. Let C = AoR(x) B, and let Γ = Thc(C). Let t, u and v be At±-types consistent

with Γ such that At embeds into Au and Av. We wish to use Theorem 1.8 and show that

there is a model of Γ∀, which we will call Aw, that is an amalgam of Au and Av over At.

It suffices to assume t is a complete At±(xy)-type and u and v are At±(xyxn)-types,

where t `c R(x) for each x ∈ x and t `c ¬R(y) for each y ∈ y.

Suppose R(xn) ∈ u and R(xn) ∈ v. Then by Theorem 1.8 applied to Th(A), over

At�x, Au�x and Av�x have an amalgam Aw′ . Then w′∪(t� y) generates, over Γ∀, a complete

At±(xyxn)-type w such that Aw is an appropriate amalgam. A similar argument holds

when ¬R(xn) ∈ u and ¬R(xn) ∈ v. Finally, if instead R(xn) ∈ u and ¬R(xn) ∈ v, then

if w is the type generated by (u� xxn) ∪ (v � y), then Aw is an appropriate amalgam.

Therefore, by Theorem 1.8, C is a JRS model.

We may now construct our example. Let B be the JRS model of the theory of

dense linear orders without endpoints in the language with {≤} (see Example 1.13). Let

A = B oR(x) B. We construct four single-node Kripke models, C1 through C4, where

the classical node structure of each Ci is A. The second column of the table in Figure 1

describes the morphisms present in each Ci. For example, the monoid of morphisms

found in C2 consists of all morphisms that preserve ¬R (that is, for every morphism f

found in C2, if A |= ¬R(a), then A |= f (¬R(a))). We take the monoid of morphisms

in C4 to be the monoid of all endomorphisms of A, so C4 is just AM. Note that as C1
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Negated atoms Decidability Decidability

Model (theory) preserved of R in Ci of ≤ in Ci

C1 (Thc(A)) R, ≤ ∀x(R(x) ∨ ¬R(x)) ∀xy(x ≤ y ∨ ¬(x ≤ y))

C2 R ∀x(R(x) ∨ ¬R(x)) ¬∀xy(x ≤ y ∨ ¬(x ≤ y))

C3 ≤ ¬∀x(R(x) ∨ ¬R(x)) ∀xy(x ≤ y ∨ ¬(x ≤ y))

C4 (Th(AM)) ¬∀x(R(x) ∨ ¬R(x)) ¬∀xy(x ≤ y ∨ ¬(x ≤ y))

Figure 1: Properties of different Kripke models with the same node structure

contains all morphisms that preserve negations of atoms built from R and those built

from ≤, the monoid of morphisms of C1 is just Aut(A). By Theorem 1.5, Th(A) is model

complete, so every automorphism of A is an elementary embedding. By Theorem 1.44,

Th(C1) = Thc(A). The results from the following sections will show that each of these

Kripke models has a complete intuitionistic theory that admits quantifier elimination.

With these assumptions, we fill in the table below with sentences forced by the Ci’s,

showing that each of the theories is distinct. (In intuitionistic logic, a predicate R(x) is

decidable over a theory if the theory proves ∀x(R(x) ∨ ¬R(x)).)

3.2 Preserving ΓM

To go about investigating changes to the morphism structure of single-node Kripke

models with a JRS node structure, we first visit some general theorems about Kripke

models.

Definition 3.3. 1. We write F (A) for the collection of all morphisms found in a
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Kripke model A.

2. F (A, k) represents the collection of all morphisms of the structure Ak found at

node k in a Kripke model A.

3. F (A, k, n) represents the collection of all morphisms from the structure at node k

to the structure at node n.

(So F (A, k, n) ⊆ F (A, k).)

4. We write (A, k) 
 ϕ to indicate that the sentence ϕ is forced at node k in a Kripke

model A.

5. We write Th(A, k) for the collection of all L(Ak) sentences forced at the node k in

A.

Definition 3.4. 1. For a classical L-theory Γ, a Kripke model A is locally-Γ if every

node structure of A is (classically) a model of Γ.

2. For a classical L-structure B, a Kripke model A is locally-B if B is the associated

structure of each node of A.

Note that for a locally-B Kripke model A, the intuitionistic theory of A, Th(A) =⋂
k∈|A|Th(A, k) is an L(B) theory.

The model theory of intuitionistic logic lacks a clear analog of the classical notion of

two models being isomorphic. In [24], Visser shows that defining two Kripke models as

isomorphic when their underlying partial orders are isomorphic and the corresponding

classical structures are classically isomorphic is problematic. Instead, model theorists
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Figure 2: A bisimulation diagram

working in both intuitionistic logic and modal logic have settled on the concept of bisim-

ulation.

Definition 3.5. A bisimulation B from a Kripke model A to a Kripke model B (as

defined in [24], translated to our notation) is a collection of quadruples 〈k, i, j,m〉 where

k ∈ |A|, m ∈ |B|, i is an isomorphism from the classical structure Ak at node k to

the classical structure Bm at node m, and j is the inverse of i. B must also meet the

following two requirements, which Visser calls “Zig” and “Zag”:

Zig If 〈k, i, j,m〉 ∈ B and f ∈ F (A, k, k′), then there are i′, j′ and m′ and g ∈

F (B,m,m′) such that 〈k′, i′, j′,m′〉 ∈ B and gi = i′f .

Zag If 〈k, i, j,m〉 ∈ B and g ∈ F (B,m,m′), then there are i′, j′ and k′ and f ∈

F (A, k, k′) such that 〈k′, i′, j′,m′〉 ∈ B and fj = j′g.

The Criterion Zig can be represented in diagram form in Figure 2 (obviously Zag can

be represented with a similar diagram).

Definition 3.6. B is a full bisimulation from A to B if for every k ∈ |A| there is an

m ∈ |B| such that 〈k, i, j,m〉 ∈ B, and vice versa.
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One then proves results like the following, linking bisimilarity to forcing.

Lemma 3.7. Suppose B is a bisimulation from A to B, 〈k, i, j,m〉 ∈ B, and ϕ is an

L-sentence. If (A, k) 
 ϕ, then (B,m) 
 iϕ. Conversely, if (B,m) 
 ϕ, then (A, k) 
 jϕ.

Proof. See [24, Lemma A.4], for example.

We instead choose to work with a slight generalization of the usual definition of

bisimulation, somewhat in the spirit of Po lacik’s bounded bisimulation in [19].

Definition 3.8. Given Kripke models A and B, a graph bisimulation B from A to

B is a set of quadruples 〈k, p, q,m〉 where k ∈ |A|, m ∈ |B|, p is an embedding from

the classical structure Ak at node k to the classical structure Bm at node m, and q is an

embedding from Bm to Ak. B must also satisfy the following conditions.

1. If 〈k, p, q,m〉 ∈ B, then for every f ∈ F (A, k, k′) and L-sentence ϕ, (A, k′) 
 fϕ

if and only if (A, k′) 
 fqpϕ.

2. If 〈k, p, q,m〉 ∈ B, then for every g ∈ F (B,m,m′) and L-sentence ϕ, (B,m′) 
 gϕ

if and only if (B,m′) 
 gpqϕ.

3. If 〈k, p, q,m〉 ∈ B, then for every f ∈ F (A, k, k′) and finite A0 ⊆ Ak, there is

〈k′, p′, q′,m′〉 ∈ B such that there exists g ∈ F (B,m,m′) such that g(p � A0) =

p′(f � A0).

4. If 〈k, p, q,m〉 ∈ B, then for every g ∈ F (B,m,m′) and finite B0 ⊆ Bm, there is

〈k′, p′, q′,m′〉 ∈ B such that there exists f ∈ F (A, k, k′) such that f(q � B0) =

q′(g � B0).
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Figure 3: A graph bisimulation diagram

We can represent Criterion 3 (and 4) diagrammatically in Figure 3, as we did for

Zig and Zag above. Recall, however, that this diagram only commutes for the specific

choices of a morphism f and a finite set A0.

Definition 3.9. A graph bisimulation B from Kripke model A to Kripke model B is a

full graph bisimulation if for every k ∈ |A|, there is an m ∈ |B| and embeddings

p and q such that 〈k, p, q,m〉 ∈ B, and for every m ∈ |B|, there is a k ∈ |A| and

embeddings p and q such that 〈k, p, q,m〉 ∈ B.

Our definition departs from the standard one in two important ways. First, we relate

the corresponding classical structures of the two Kripke models via the embeddings

p and q instead of an isomorphism i and its inverse. Consequently, we need to add

Criteria 1 and 2 to maintain the desired relationship between forcing in A and forcing

in B (Lemma 3.10). The second main departure is that Criteria 3 and 4 demand the

composition of morphisms be equal only on a predetermined finite set, whereas Zig and

Zag require the compositions to be equal everywhere. In many model theoretic proofs, we

only require these properties to hold for the parameters of a given sentence, so Criteria 3

and 4 suffice. This property is what allowed us to build a JRS Kripke model with only

countably many morphisms in Section 1.3; see Corollary 3.13.
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The reader familiar with bisimulations might also notice that our notation has hidden

a third difference between graph bisimulation and the usual notion. Most definitions

of bisimulation are written in the paradigm of Kripke models on partial orders. The

Criterion Zig is often stated as something closer to “If 〈k, i, j,m〉 ∈ B and k ≤ k′,

then ...”, whereas in our paradigm there may be several morphisms from Ak to Ak′ .

Replacing “k ≤ k′” with “there is f ∈ F (A, k, k′)” provides a definition that works in

either paradigm.

Lemma 3.10. Let B be a graph bisimulation between A and B. Then, for every

〈k, p, q,m〉 ∈ B and for every L(Ak)-sentence ϕ, (A, k) 
 ϕ if and only if (B,m) 
 pϕ.

Proof. Fix an L(Ak)-sentence ϕ such that (A, k) 
 ϕ and 〈k, p, q,m〉 ∈ B. We proceed

by induction on the complexity of sentences simultaneously for all quadruples and all

nodes to show that if (A, k) 
 ϕ, then (B,m) 
 pϕ.

If ϕ is an atom, then (B,m) 
 pϕ since p is an embedding. Conversely, if (B,m) 
 pϕ,

then (A, k) 
 qpϕ and therefore (A, k) 
 ϕ by Criterion 1 of graph bisimilarity. The

cases of conjunction, disjunction and existential quantifier are straightforward.

Suppose ϕ ≡ ψ → θ. Fix g ∈ F (B,m,m′) such that (B,m′) 
 gpψ. Then by

Criterion 4 of graph bisimilarity, there is an f ∈ F (A, k, k′), and embeddings p′ and

q′ such that 〈k′, p′, q′,m′〉 ∈ B and fq and q′g agree on the parameters of ϕ. Now, by

Criterion 2, (B,m′) 
 gpψ if and only if (B,m′) 
 p′q′gpψ which, by the inductive

hypothesis, is true if and only if (A, k′) 
 q′gpψ. Since (q′g)p = (fq)p on the parameters

of ϕ, we have (A, k′) 
 fψ by Criterion 1. Since (A, k) 
 ϕ, (A, k′) 
 fθ. By Criteria 1

and 4 again, (A, k′) 
 q′gpθ. By the inductive hypothesis, (B,m′) 
 p′q′gpθ. Criterion 2

implies that for any sentence α, (B,m′) 
 α if and only if (B,m′) 
 p′q′α. So we have
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(B,m′) 
 gpθ. Therefore, (B,m) 
 pϕ.

Suppose ϕ ≡ ∀xψ. Fix g ∈ F (B,m,m′) and b ∈ Bm′ . We must show that

(B,m′) 
 gpψ(b). By Criterion 4 of graph bisimilarity there is an f ∈ F (A, k, k′),

and embeddings p′ and q′ such that 〈k′, p′, q′,m′〉 ∈ B and fq and q′g agree on the

parameters of pϕ. Since (A, k) 
 ϕ, we have (A, k′) 
 fϕ. By Criterion 1, we have

(A, k′) 
 fqpϕ, and so (A, k′) 
 q′gpϕ. Since q′b ∈ Ak′ , (A, k′) 
 q′gpψ(q
′
b). By the in-

ductive hypothesis, (B,m′) 
 p′q′gpψ(p
′q′b). By Criterion 2, (B,m′) 
 gpψ(b). Therefore,

(B,m) 
 pϕ.

As graph bisimulation is clearly a symmetric relation, a symmetric argument shows

that if (B,m) 
 pϕ, then (A, k) 
 qpϕ, and therefore (A, k) 
 ϕ.

Note that the proof of Lemma 3.10 would still work if p and q were simply mor-

phisms. However, the lemma shows that any morphisms p and q must actually be

embeddings, so changing the definition of graph bisimilarity to require that p and q be

morphisms would be no more general than our definition. In [19], Po lacik defines a no-

tion of bounded bisimulation wherein the maps p and q are finite isomorphisms between

Ak and Bm. That approach is appealing, applies to Kripke models with uncountable

classical node structures, and is somewhat similar to the finiteness conditions we impose

in Criteria 3 and 4 in Definition 3.8. In more general settings, Po lacik’s definition seems

overly technical for our purposes here (his notion of bisimilarity is indexed by a triple

of natural numbers corresponding to three pairs of Zig/Zag conditions), though much

of that technical machinery is not needed in our particular situation1. Our goal is to be

1That is, if Ak and Bm are countable JRS models, π is a partial isomorphism such that π and π−1

satisfy Criteria 3 and 4 in Definition 3.8, and π : k ∼0,0,0 m, then by a back and forth argument using
the JRS axioms, π : k ∼∞ m, thereby rendering the triple indexing unnecessary.
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Figure 4: Full graph bisimilarity is transitive

able to justify the argument made in Section 1.3 that JRS Kripke models can be chosen

to have countably many morphisms (see Corollary 3.13); with this in mind, we choose a

notion of bisimilarity more general than Visser’s, but not as broad as Po lacik’s.

Lemma 3.11. Full graph bisimilarity is an equivalence relation.

Proof. Full graph bisimilarity is clearly reflexive and symmetric. Given a full graph

bisimulation B between A and B, and a full graph bisimulation B′ between B and C,

construct the full graph bisimulation B′′ between A and C as follows. Given 〈k, p, q,m〉 ∈

B, for every 〈m, si, ti, ni〉 ∈ B′, add 〈k, (sip), (qti), ni〉 to B′′. Given 〈m, s, t, n〉 ∈ B′, for

every 〈kj, pj, qj,m〉 ∈ B, add 〈kj, (spj), (qjt),m〉 to B′′. Some of these morphisms are

represented in Figure 4.

We sketch the proof that B′′ is a full graph bisimulation. By Lemma 3.10 together

with the symmetry of full graph bisimilarity, (A, k) 
 ϕ if and only if (B,m) 
 pϕ if and

only if (C, ni) 
 sipϕ if and only if (B,m) 
 tisipϕ if and only if (A, k) 
 qtisipϕ, so B′′ meets

Criterion 1 of Definition 3.8. To show that B′′ meets Criterion 3, fix 〈k, p, q,m〉 ∈ B,

f ∈ F (A, k, k′), and finite A0 ⊆ Ak. Fix 〈k′, p′, q′,m′〉 ∈ B′ and g ∈ F (B,m,m′) as in

Criterion 3 applied to B. Now use Criterion 3 in B′ for the finite set f(A0) ⊆ Bm to get
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〈m, s, t, n〉 ∈ B′ and compose arrows in the obvious way.

The following is a corollary of Lemma 3.10.

Corollary 3.12. If Kripke models A and B are fully graph bisimilar, then Th(A)� L =

Th(B) � L.

Let us now return to considering Kripke models with a single classical node structure

(although we do not yet assume that structure is a JRS model). While perhaps not as

technical as some other choices of bisimulation, the notion of graph bisimulation may

not be immediately transparent. It may be easier to think about graph bisimulation and

Lemma 3.10 in less generality, as in the next corollary.

Let B be a locally-A, single-node Kripke model. Choose F (B) such that for every

endomorphism f of A and for every finite subset A0 of A, there is a g ∈ F (B) that

agrees with f on A0. Let C be the locally-A, single-node Kripke model where F (C)

consists of all endomorphisms of A. Then by Lemma 3.10 and Corollary 3.12, we have

that Th(B) = Th(C). This generalizes the argument made in Section 1.3. We can more

generally express this relationship as follows.

Corollary 3.13. Let B and C be locally-A, single-node Kripke models. If the set of finite

subgraphs of morphisms in F (B) is the same as the set of finite subgraphs of morphisms

in F (C), then Th(B) = Th(C).

We also have an easy generalization of Theorem 1.16.

Theorem 3.14. Let B be any single-node Kripke model. Then Th(B) � L is complete.
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Proof. Let ϕ be an L-sentence. If B 
 ϕ, then we are done. Otherwise, B 1 ϕ. As ϕ is

an L-sentence, for every f ∈ F (B), fϕ is the same syntactic object as ϕ. So, for every

f ∈ F (B), B 1 fϕ. Therefore B 
 ¬ϕ.

Finally, we return to considering single-node Kripke models whose classical node

structure is a JRS model.

Definition 3.15. 1. For A a classical JRS model, let M be the monoid of all endo-

morphisms of A.

2. For {id} ⊆ K ⊆ M, let AK be the locally-A, single-node Kripke model where

F (AK) = K.

With this notation, AM is still the Kripke model defined in Section 1.3, and A{id} =

AJRS = A.

A corollary to Lemma 3.10 now answers the question of what monoids of morphisms

preserve the intuitionistic theory ΓM.

Corollary 3.16. Let K be a monoid of endomorphisms of the classical JRS model A.

If the set of finite subgraphs of morphisms in K equals the set of finite subgraphs of

morphisms in M, then Th(AK) � L = ΓM.

3.3 Preserving Quantifier Elimination

Corollary 3.16 gives us a way to change the monoid of morphisms of a single-node Kripke

model without changing the intuitionistic theory of the Kripke model. However, as we

have seen in Section 1.3, if M is non-trivial, then changing the monoid of morphisms
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does effect the theory of the model: ΓM = Th(AM) 6= Th(A{id}) = ΓJRS. However, both

of these theories admit quantifier elimination. In this section, we investigate for what

monoids K Th(AK)� L admits quantifier elimination.

First, a note about classical homogeneity. A standard definition of a countable

homogeneous model (from Marker [17], for example) is that A is homogeneous if for

every finite set B ⊂ A, every partial elementary embedding f : B → A, and every a ∈ A,

there is a partial elementary embedding f ∗ : B ∪ {a} → A such that f ∗ ⊇ f . Other

references ([14] and [15], for example) use the term ultrahomogeneous to describe what

we have called Fräıssé homogeneous (Definition 1.2). In general, homogeneity is a weaker

property than Fräıssé homogeneity. However, in our case the two notions coincide: finite

substructures correspond exactly to complete At±-types, so the proof to Theorem 1.3

shows that classical JRS models are both homogeneous and ultrahomogeneous.

Recall that for monoids K such that K ⊆ M where M is the monoid of all endo-

morphisms of the classical JRS structure A, Kripke model AK is the Kripke model with

single node structure A with F (AK) = K and ΓK = Th(AK)� L. In this section, we look

to find monoids K (besides {id} and M) such that ΓK admits quantifier elimination.

To this end, we essentially retrace the steps we took in Section 1.4 to show that ΓM

admits quantifier elimination. Some of the proofs from that section used properties of

the Fräıssé homogeneity of A, so we will consider monoids K that preserve properties of

this homogeneity.

Definition 3.17. We say that a monoid K such that K ⊆ M satisfies the Fräıssé

condition if it meets the following criterion.

If tpa = tpb, then for every f ∈ K, there is a g ∈ K such that tpfa = tpgb.
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Classically, if two tuples in a homogeneous structure satisfy the same types, then

the tuples satisfy all of the same L-formulas (see [17, Theorem 4.2.11] for example).

Our Fräıssé condition says that if two tuples satisfy the same At±-types then in some

sense they have the same futures in the Kripke model. Lemma 3.18 shows the Fräıssé

condition is enough to prove an intuitionistic version of the classical characterization of

homogeneity for single-node Kripke models.

Lemma 3.18. For all monoids K satisfying the Fräıssé condition, for all tuples a and

b, and for all L(x)-formulas ϕ, if tpa = tpb then AK 
 ϕ(a) if and only if AK 
 ϕ(b).

Proof. By symmetry, it suffices to show only the left to right direction of the bi-

implication. We proceed by induction on the complexity of ϕ simultaneously for all

a and b of the same length. If ϕ is an atom, then AK 
 ϕ(a) if and only if ϕ(x) ∈ tpa(x)

if and only if ϕ(x) ∈ tpb(x) if and only if AK 
 ϕ(b). The inductive steps for ∧ and ∨

are straightforward.

Let ϕ(x) ≡ ∃yψ(xy). Suppose AK 
ϕ(a). Then there is c ∈ A such that AK 
ψ(ac).

Let u = tpac. Since d(u) = tpa = tpb, we have A |= πd(u)(b). By the JRS axiom δu,

there is d ∈ A such that A |= πu(bd). So tpac = tpbd. By the inductive hypothesis,

AK 
 ψ(bd), and therefore AK 
 ϕ(b).

Let ϕ ≡ ψ → θ. Suppose AK 
 ϕ(a). Fix g ∈ K such that AK 
 ψ(gb). Since K

satisfies the Fräıssé condition, we get f ∈ K such that tpfa = tpgb. By the inductive

hypothesis, AK 
 ψ(fa), so AK 
 θ(fa). Again by the inductive hypothesis, AK 
 θ(gb),

and therefore AK 
 ϕ(b).

Let ϕ(x) ≡ ∀yψ(xy). Suppose AK 
 ϕ(a). Fix g ∈ K and d ∈ A. We wish to

show that AK 
 ψ(g(b)d). Since K satisfies the Fräıssé condition, there is f ∈ K
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such that tpgb = tpfa. Let u = tpg(b)d. By the JRS axiom δu, there is c ∈ A such

that tpf (a)c = tpg(b)d. By supposition, AK 
 ψ(f (a)c). By the inductive hypothesis,

AK 
 ψ(g(b)d) and therefore AK 
 ϕ(b).

Working with a monoid K that satisfies the Fräıssé condition, we may now retrace

our steps through Section 1.4. Many of the notions first defined in that section need to

be redefined in order to incorporate their dependence on K.

Definition 3.19. Let CK(x) be the following Kripke model.

1. As nodes for the underlying category CK(x) we take all complete At±(x)-types t

that are consistent with the classical JRS theory Γ.

(So |CK(x)| = |C(x)|.)

2. Turn CK(x) into a poset category as follows. Given a pair of nodes t and u, we set

t ≤ u exactly when there are a ∈ A and f ∈ K such that t = tpa and u = tpf (a).

(So CK(x) is a subcategory of the category C(x) from Definition 1.20.)

Definition 3.20. For each quantifier-free ϕ, let Jϕ(x)K = {t ∈ |CK(x)| : t 
 ϕ(x(t))}.

(Compare to Definition 1.22.)

Definition 3.21. 1. Given t ∈ |CK(x)|, define t̂ = {u ∈ |CK(x)| : t ≤ u}.

2. Let ť be the set {u ∈ |CK(x)| : u � t}.

(Compare to Definition 1.25.)

Definition 3.22. 1. Let
∧
{π+

u → σ−u : u ∈ |CK(x)|, t+ ⊆ u+ and t 6≤ u} be the

formula ρ−t .
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2. Let π+
t ∧ ρ−t be the formula ρ+

t .

(Compare with Definition 1.27.)

The analog of Lemma 1.21 requires an appeal to the Fräıssé condition; this is done

via the use of Lemma 3.18.

Lemma 3.23. Let ϕ(x) be a quantifier-free L-formula, let a ∈ A, and let K satisfy the

Fräıssé condition. Then AK 
 ϕ(a) if and only if tpa 
 ϕ(x(tpa)).

Proof. We complete the proof by induction on the complexity of ϕ for all elements a

simultaneously. The case for atoms and the induction steps for ∧ and ∨ are easy. Let ϕ

equal ψ → θ.

Suppose AK 
 ψ(a)→ θ(a). Let tpa ≤ u such that u 
 ψ(x(u)). It suffices to show

that u 
 θ(x(u)). By Definition 3.19.2, there is f ∈ K and b ∈ A such that tpa = tpb

and u = tpf (b). By Lemma 3.18, AK 
ψ(b)→ θ(b), and therefore AK 
ψ(fb)→ θ(fb).

Since u 
 ψ(x(u)), the inductive hypothesis tells us that AK 
 ψ(fb), so AK 
 θ(fb).

Again by the inductive hypothesis, u 
 θ(x(u)). Therefore, tpa 
 ϕ(x(tpa)).

Conversely, suppose tpa 
 ψ(x(tpa)) → θ(x(tpa)). Let f ∈ K be such that

AK 
 ψ(fa). It suffices to show AK 
 θ(fa). By the inductive hypothesis, we have

tpf (a) 
 ψ(x(tpfa)). By Definition 3.19.2, tpa ≤ tpfa so, by supposition, we have

tpfa 
 θ(x(tpfa)). Again by the inductive hypothesis, AK 
 θ(fa).

The proofs of the following results (Lemmas 3.24 to 3.27) are trivial modifications

of the corresponding proofs in Section 1.4 (those of Lemmas 1.24 to 1.30). As such, we

state the new results, now dependent on the monoid K, and omit the proofs.
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Lemma 3.24. For a monoid K satisfying the Fräıssé condition, there are for each

x only finitely many quantifier-free formulas with all free variables from x, modulo

provable equivalence over ΓK. For all quantifier-free formulas ϕ(x) and ψ(x) we have

ΓK ` ∀x(ϕ→ ψ) exactly when Jϕ(x)K ⊆ Jψ(x)K.

Lemma 3.25. Let K be a monoid satisfying the Fräıssé condition, and let t ∈ |CK(x)|.

Then ť = Jπ+
t (x)→ σ−t (x)K.

Lemma 3.26. Let K be a monoid satisfying the Fräıssé condition, and let t ∈ |CK(x)|.

Then t̂ = Jρ+
t (x)K. So all open subsets of CK(x) are definable.

Lemma 3.27. In CK(x), each open subset equals a finite union of prime open subsets.

A nonempty open subset is prime if and only if it is of the form t̂, for some t ∈ |CK(x)|.

Corollary 3.28. If K satisfies the Fräıssé condition, then over ΓK, every quantifier-

free formula ϕ is equivalent to both the formula
∨
{ρ+

t : t ∈ JϕK} and the formula∧
{π+

t → σ−t : t /∈ JϕK}.

Proof. The first equivalence follows from Corollary 1.31, while the second follows from

Theorem 2.14.

The sentence in the following lemma in some sense axiomatizes the Fräıssé homo-

geneity of the classical JRS structure; see the discussion of axiom Ha4 in Section 2.1. Not

unexpectedly, the proof of the next lemma relies on K satisfying the Fräıssé condition

(via Lemma 3.18).

Lemma 3.29. If K satisfies the Fräıssé condition, then for all L formulas ϕ(xxn), and

for all t ∈ CK(xxn), ΓK includes the sentence:
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∀xxn(ϕ ∧ ρ+
t → (σ−t ∨ ∀xn(ρ+

t → ϕ))).

Proof. Fix ϕ, t ∈ CK(xxn) and a, b ∈ A and suppose AK 
 ϕ(ab) ∧ ρ+
t (ab). If

AK 
 σ−t (ab) then we are done, so suppose not. Then t = tpab. We need to show

that for arbitrary c ∈ AJRS and f ∈ K, if AK 
 ρ+
t (f (a)c) then AK 
 ϕ(f (a)c).

Fix such an element c and such a morphism f ∈ K. Since AK 
 ρ+
t (f (a)c), we have

tpf (a)c ∈ t̂ by Lemma 3.26. So tpab ≤ tpf (a)c. By the definition of ≤, this means that

there is a tuple de and morphism g ∈ K such that tpab = tpde and g(de) = f (a)c. Since

AK 
 ϕ(ab), Lemma 3.18 gives us that AK 
 ϕ(de), and so AK 
 ϕ(g(de)). Therefore

AK 
 ϕ(f (a)c).

We are now ready to prove our main result, quantifier elimination. The proof to

Theorem 3.30 below is identical to the proof of Theorem 1.33, with the exception that

the latter cites Lemmas 3.23 to 3.29 instead of Lemmas 1.21 to 1.32.

Theorem 3.30. If K satisfies the Fräıssé condition, then the theory ΓK admits quanti-

fier elimination.

Now let us re-examine Figure 1 at the end of Section 3.1. By Theorem 3.14, each

theory in the table is complete. Below, we show that each monoid appearing in the table

satisfies the Fräıssé condition. Fix a and b in A such that tpa = tpb.

• F (C1) = Aut(A) satisfies the Fräıssé condition. For every f ∈ Aut(A), tpb =

tpa = tpfa. Since the JRS model A is homogeneous, there is an automorphism g

taking b to fa. (Also notice that {id} trivially satisfies the Fräıssé condition.)
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• F (C4) = M, the collection of all endomorphisms of A, satisfies the Fräıssé condition.

Since A is homogeneous, there is an automorphism h ∈ M such that hb = a. For

f ∈ M, we can choose g to be fh to satisfy the Fräıssé condition.

• F (C2) satisfies the Fräıssé condition. As each f ∈ F (C2) is also an element of M,

consider the morphism g given by the Fräıssé condition in M. We have tpfa = tpgb,

so we need only determine if g ∈ F (C2). We are given that R(x) ∈ tpb if and only

if R(x) ∈ tpa. Since f ∈ F (C2), this occurs if and only if R(x) ∈ tpfa which, by the

Fräıssé condition in M, occurs if and only if R(x) ∈ tpgb. Therefore, g ∈ F (C2).

• The argument to show that F (C3) satisfies the Fräıssé condition is similar to the

one for F (C2).

So each monoid of morphisms mentioned in Figure 1 satisfies the Fräıssé condition.

Therefore Theorem 3.30 applies, and we are justified in concluding that we have found

four different, single-node Kripke models with the same underlying classical structure

that have complete, non-comparable intuitionistic theories.

As a corollary to Theorem 3.30 we obtain the following.

Theorem 3.31. Let ϕ(x) be a formula. If K satisfies the Fräıssé condition, then over

ΓK, ϕ is equivalent to a disjunction of formulas ρ+
t with t ∈ |CK(x)|, as well as to a

conjunction of formulas of the form π+
t → σ−t .

Lastly, we again point out make another small observation. Recall Definition 1.36,

and compare the following to Theorem 1.38.

Theorem 3.32. Let ϕ(x) be a formula. If K satisfies the Fräıssé condition, then over

ΓK, ϕ is equivalent to a quantifier-free universal formula.
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Proof. The result follows from Theorem 3.31 since each formula ρ+
t and each formula

π+
t → σ−t is a universal formula.
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Chapter 4

JRS Kripke Models with Multiple

Nodes

In this chapter, we broaden our definition of classical JRS theories. In so doing, we gain

the ability to create JRS Kripke models with multiple (different) node structures. In

addition to generalizing many of the results of previous chapters, this broadening also

gives us a semantic way to investigate the relationship between a given classical JRS

theory Γ and its corresponding intuitionistic theory ΓM. Further, this change anticipates

future work. A crucial step towards proving that ΓM (or ΓK where K satisfies the

Fräıssé condition) admits quantifier elimination is the fact that every open set in C(x)

(or CK(x)) is a finite union of definable open sets (see Lemmas 1.30 and 3.27). The C(x)

and CK(x) topologies in some sense degenerately meet that requirement, as they are

both finite topologies. Allowing for JRS Kripke models with multiple nodes is a first step

on the path towards constructing Kripke models where the topologies on the associated

auxiliary Kripke models are infinite but satisfy some compactness property. We hope

to generalize our techniques and find a still broader class of intuitionistic theories that

admit quantifier elimination.
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4.1 Nullary Predicates and JRS Theories

To further our investigation of different kinds of intuitionistic JRS theories, we broaden

our notion of a classical JRS theory. We still consider a language L that has finitely

many predicates {Ri}i<r, but we now allow predicates to be nullary.

The inclusion of nullary predicates in our language warrants a brief discussion of the

nature of morphisms. A morphism f from a classical structure A to a classical structure

B is usually thought of as a map from A to B such that for every atomic L(A)-sentence

δ, if A |= δ then B |= fδ. However, in the presence of nullary predicates, determining

the behavior of a morphism by its action on the elements of the domain is no longer

sufficient to deduce its behavior on atoms in the target domain. One way to sidestep

this difficulty is to demand that a morphism f from A to B be a triple (A,B, f ′) where

f ′ is a morphism in the usual sense. The distinction is minor, however, and we will

continue to identify morphisms as functions from A to B while additionally specifying

their behavior on any nullary predicates in L.

All of our notation from Section 1.2.1 remains the same. However, we make a slight

modification to the definition of a JRS theory.

Definition 4.1. Given a universal theory Π, we define the JRS extension Γ of Π as

the theory axiomatizable by Π and all JRS sentences δu for which Π 0c ∀x¬πu.

Theorem 4.2. Let Π be a consistent universal theory. Then the JRS extension Γ of Π

is consistent if and only if the collection of models of the form At, where t is a complete

At±(x)-type such that Π 0c ∀x¬πt, has the amalgamation property. If Γ is consistent,

then Γ∀ = Π.

Proof. First, suppose Γ is consistent. Consider finite models At, Au, and Av of Γ∀ and
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suppose that At embeds in both Au and Av. Without loss of generality, we may assume

that u and v are complete At±(xxn)-types and that t is a complete At±(x)-type. There

is a model A of Γ such that for some a ∈ A, A satisfies πt(a), δu and δv. So we have

A |= ∃xπu(ax)∧∃xπv(ax). Fix a, b and c such that A |= πu(ab)∧πv(ac). Let w = tpabc.

Then Aw is the amalgam of Au and Av over At.

Conversely, suppose that the collection of models of Π of the form At has the amalga-

mation property. We sketch a construction of a model A of Γ as the limit of an ω-chain

of models of the form At. Suppose we have a model At of size n. For each complete

At±(xxn)-type u consistent with Π and for all a ∈ At such that At |= πd(u)(a) there is

an amalgam A(u,a) of At and Au over Ad(u). As the next model in the ω-chain, take the

amalgam of all A(u,a) over At. So Γ is consistent.

For the last claim, it suffices to show that every finite model of Π embeds into a

model of Γ. Let u be a complete At±-type consistent with Π. Then Au is a model of Π

and by the previous paragraph, it embeds into a model of Γ.

Definition 4.3. 1. We say Γ is a JRS theory if there is a consistent universal theory

Π such that Γ is the JRS extension of Π.

2. A model of a classical JRS theory is called a JRS model.

In previous chapters, we defined JRS theories as follows (Definition 1.1.12).

A (consistent) classical theory Γ over L is called a JRS theory if for all xxn

and complete At±(xxn)-types u that are consistent with Γ, we have δu ∈ Γ.

The following theorem shows that Definition 1.1.12 is a special case of the new Defini-

tion 4.3.1.
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Theorem 4.4. Let Γ be a JRS theory such that Γ `c R or Γ `c ¬R for each nullary pred-

icate R. Then, up to isomorphism, Γ has exactly one model of size ≤ ω. Additionally,

this model is Fräıssé homogeneous.

Proof. The proof uses the axioms δu to complete a standard back and forth construction

to extend finite isomorphisms to automorphisms.

The assumption that each nullary predicate is decidable reduces us to the original

Definition 1.1.12. For a JRS theory Γ, each model of Γ∀ with empty domain extends

to a unique (up to isomorphism) model of Γ of size ≤ ω. If L has r nullary predicates

(other than > and ⊥), there are up to isomorphism at most 2r such models.

For the next theorem, recall Definition 1.4 and Theorem 1.5.

Theorem 4.5. Let Γ be a JRS theory, and let ∃xnϕ(xxn) be a primitive formula. Then

Γ `c ∃xnϕ↔
∨
s∈S πd(s), where

S = {s : s is a complete At±(xxn)-type consistent with Γ and Γ `c πs → ϕ}.

In particular, JRS theories admit quantifier elimination.

Proof. The formula ∃xnϕ is equivalent to
∨
s∈S ∃xnπs, where an empty disjunction is

identified with ⊥. Apply the JRS sentences of Γ: ∃xnϕ is equivalent to
∨
s∈S πd(s).

As in Section 3.1, we can build a new JRS theory from other JRS theories. Compare

to Definition 3.1.

Definition 4.6. Let Γ1 and Γ2 be JRS theories over a language L. Let L′ = L ∪ {R}

where R is a new nullary predicate. Then let Γ1oR Γ2 be the L′ theory {R→ γ1 : γ1 ∈

Γ1} ∪ {¬R→ γ2 : γ2 ∈ Γ2}.
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Compare the following result with Lemma 3.2.

Lemma 4.7. Γ1 oR Γ2 is a JRS theory.

Proof. Let Γ = Γ1 oR Γ2, and let u be a complete At±(x)-type over L′ consistent with

Γ. Suppose u = t ∪ {R} where t is a complete At±(x)-type over L (the case where

u = t∪ {¬R} is similar). Then t is consistent with Γ1, so Γ1 `c δt. So Γ `c R→ δt. But

`c δu ↔ (R→ δt), so Γ `c δu.

Corollary 4.8. Let Γ be a JRS theory over language L, and let L′ = L ∪ {R} where R

is a new nullary predicate. Then Γ is a JRS theory over L′.

Proof. By Lemma 4.7, ΓoR Γ is axiomatizable by Γ.

Note, however, that Γ1 oR Γ2 is not complete; the theory does not prove R nor ¬R.

4.2 JRS Kripke Models with Multiple Nodes

We construct an intuitionistic version of our generalized classical JRS theories as follows.

Definition 4.9. 1. Given a language L, let L↓ ⊆ L be the sublanguage of L whose

only nullary predicates are > and ⊥. We call L↓ the core language.

2. Given a classical JRS model A in the language L, let the core JRS model of A,

A↓, be the reduct of A to L↓. Let Γ = Thc(A), and let Γ↓ = Thc(A
↓).

Note that A↓ is again a JRS model, by Theorem 4.2 and the fact that amalgamation

for the finite models of Γ∀ implies amalgamation for the finite models of (Γ↓)∀.

Definition 4.10. Consider a JRS model A in a language L, where L has r many nullary

predicates other than > and ⊥.
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1. Let R = {R0, ..., Rr−1}, the collection of nullary predicates other than > and ⊥.

(So up to isomorphism, there are 2r many countable JRS models that have A↓ as its core

JRS model.)

2. Each k ⊆ R is an At±(∅)-type; as such, the sentence π+
k is defined as in Defini-

tion 1.1.5.

3. The sentence σ−k is defined as the disjunction of all Ri ∈ R such that Ri /∈ k.

4. The sentence πk is defined as π+
k ∧ ¬σ

−
k .

5. Define the classical JRS model kA to be the L-structure with A↓ as its core JRS

model such that kA |= πk.

In Chapter 3, we built a single node JRS Kripke model AM by starting with a

classical JRS model and including all of its endomorphisms. We then investigated Kripke

submodels of AM by changing the monoid of morphisms. We generalize that technique

here.

Definition 4.11. Given a JRS model A in the language L, we define the Kripke model

R as follows.

1. The domain |R| of the underlying category R is P(R), the power set of R.

2. To each node k ∈ |R|, assign the classical JRS structure kA whose core JRS model

is A↓.

3. For every k and m ∈ |R|, let F (R, k,m) be the collection of all morphisms from

kA to mA.
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By an argument similar to Corollary 3.13, we could instead choose to include a

smaller (possibly countable) collection of morphisms and still get a Kripke model with

the same intuitionistic theory as R. We choose not to do so as to keep the results of

this section more straightforward.

As in our work in Chapter 3, we broaden our investigation by allowing changes to

the monoids (and nodes) of R.

Definition 4.12. For any Kripke submodel D of R, and for a tuple a ∈ A, define

the At±(x)-type of a in D at node k, written tpka, as the collection of L-atoms and

negated L-atoms such that δ(x) ∈ tpka if and only if kA |= δ(a) where δ ∈ At±(x).

Definition 4.13. 1. We say that the Kripke model D is a Fräıssé submodel of R

if D is a Kripke submodel of R and for every k and m ∈ |D|, F (D, k,m) satisfies

the Fräıssé condition, that is, if tpka = tpkb, then for every f ∈ F (D, k,m), there is

a g ∈ F (D, k,m) such that tpmfa = tpmgb.

2. Write ΓD for the (intuitionistic) theory of D.

The following two lemmas are straightforward observations, but could play an im-

portant role in future generalizations.

Lemma 4.14. For a Fräıssé submodel D of R, and for k and m nodes of |D|, (D, k) 
 π+
m

if and only if m ⊆ k.

While perhaps the nodes of a Fräıssé submodel D are not definable in the strictest

sense, the next Lemma shows we can still identify nodes using forcing.

Lemma 4.15. For a Fräıssé submodel D of R, and for k and m nodes of |D|, the

following are equivalent.
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1. k = m

2. (D, k) 
 π+
m and for all n ∈ |D| such that m ( n, (D, k) 1 π+

n

Proof. First suppose 1. Then (D, k) 
 π+
k by Lemma 4.14. Fix n ∈ |D| such that k ( n.

Then (D, k) 1 π+
n . Conversely, suppose 2. Lemma 4.14 gives us both that m ⊆ k and

that for all n ) m, n * k. Therefore, k = m.

Definition 4.16. For a tuple x and a Fräıssé submodel D, construct auxiliary Kripke

model CD(x) as follows.

1. Working in the language L, let the underlying category |CD(x)| be the collection

of all complete At±(x)-types t that are (classically) consistent with Γ↓.

(Note that if u is a complete At±(x) ∩ L↓(x)-type consistent with Γ↓, then for every

k ∈ |D|, u∪ {πk} generates a complete At±(x)-type (in the language L) consistent with

Γ↓.)

2. We turn CD(x) into a poset category as follows. Given a pair of nodes t and u,

we set t ≤ u exactly when there is a ∈ A and a morphism f ∈ F (D, k,m) such

that t = tpka and u = tpmf(a).

(As t and u are complete At±(x)-types in the language L, this relation is well-defined

by Lemma 4.15. As before, note that t ≤ u implies t+ ⊆ u+.)

3. To each node t we associate a finite classical L(D)-structure At, as defined in

Section 1.4.
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Note that for each k ∈ |D|, the subcategory of CD(x) consisting of all nodes u

such that u `c πk is isomorphic to the underlying category CK(x) of the auxiliary

Kripke model CK(x) associated to A↓ where K = F (D, k); see Section 1.4. (In fact,

CK(x) is essentially identical to the Kripke submodel formed by restricting CD(x) to the

above subcategory.) For each complete (At± ∩L↓)(x)-type t, the subcategory of CD(x)

consisting of all nodes u such that u `c t is isomorphic to the category D.

The proof of the following result is nearly identical to the proof of Lemma 3.18.

Lemma 4.17. For a Fräıssé submodel D of R, and for all k ∈ |D|, for all tuples a

and b, and for all L(x)-formulas ϕ, if tpka = tpkb then (D, k) 
 ϕ(a) if and only if

(D, k) 
 ϕ(b).

The proof of the next lemma is similar to the proof of Lemmas 3.23 and 1.21.

Lemma 4.18. For a Fräıssé submodel D of R, let ϕ(x) be a quantifier-free L formula,

a ∈ A, k ∈ |D|, and let t = tpka. Then t 
 ϕ(x(t)) if and only if (D, k) 
 ϕ(a).

Proof. We proceed by induction on the complexity of ϕ for all elements a and all nodes

k simultaneously. By construction of CD, the case for atoms is clear. The induction

steps for disjunction and conjunction are also straightforward. Let ϕ ≡ ψ → θ.

Suppose (D, k) 
 ψ(a)→ θ(a). Let t ≤ u such that u 
 ψ(x(u)). It suffices to show

that u 
 θ(x(u)). By Definition 4.16.2, there is m ∈ |D|, f ∈ F (D, k,m) and b ∈ A

such that t = tpkb and u = tpmf (b)
. By Lemma 4.17, (D, k) 
 ψ(b)→ θ(b), and therefore

(D,m) 
 ψ(fb) → θ(fb). Since u 
 ψ(x(u)), the inductive hypothesis tells us that

(D,m) 
 ψ(fb), so (D,m) 
 θ(fb). Again by the inductive hypothesis, u 
 θ(x(u)).

Therefore, t 
 ϕ(x(t)).
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Conversely, suppose t 
 ψ(x(t))→ θ(x(t)). Let m ∈ |D| and f ∈ F (D, k,m) be such

that (D,m) 
 ψ(fa). It suffices to show (D,m) 
 θ(fa). By the inductive hypothesis,

tpmf (a)

 ψ(x(tpmfa)). By Definition 4.16.2, t ≤ tpmfa so, by supposition, tpmfa 
 θ(x(tpmfa)).

Again by the inductive hypothesis, (D,m) 
 θ(fa), and therefore (D, k) 
 ϕ(a).

As in Definitions 1.22 and 3.20, for a given Fräıssé submodel D, the sets JϕK form

a Heyting algebra of definable sets in the poset topology on CD(x). Define the sets t̂

and ť, the formula ρ+
t , and prime open sets as before (Definitions 3.21, 3.22, and 1.29,

respectively). As Lemma 4.18 above, many of the following lemmas will be similar to

those found in Sections 1.4 or 3.3. As in Section 3.3, we will omit those proofs that are

trivial modifications of previous proofs.

Lemma 4.19. For a Fräıssé submodel D of R, let ϕ be an L(x)-formula, let a ∈ A,

and let t = tpka, for k ∈ |D|. Then (D, k) 
 ϕ(a) if and only if t ∈ JϕK.

Lemma 4.20. For a Fräıssé submodel D of R, and for all quantifier-free formulas ϕ(x)

and ψ(x) we have ΓD ` ∀x(ϕ → ψ) exactly when Jϕ(x)K ⊆ Jψ(x)K. Modulo provable

equivalence over ΓD, there are for each x only finitely many quantifier-free formulas with

all free variables from x.

Lemma 4.21. For a Fräıssé submodel D of R, let t ∈ |CD(x)|. Then ť = Jπ+
t → σ−t K.

Proof. Suppose s ∈ |CD(x)| such that s � t. We must show s ∈ Jπ+
t → σ−t K. Fix

u ∈ |CD(x)| such that s ≤ u. Then there are a ∈ A, k and m ∈ |D|, and f ∈ F (D, k,m)

such that s = tpka, u = tpmfa, and (D,m) 
 π+
t (fa). Since s � t, t 6= u, so there is

an atomic formula δ such that (¬δ) ∈ t and (D,m) 
 δ(fa). So (D,m) 
 σ−t (fa).

Therefore, (D, k) 
 π+
t (a)→ σ−t (a). By Lemma 4.19, s ∈ Jπ+

t → σ−t K.
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Now suppose s ≤ t. We must show s /∈ Jπ+
t → σ−t K. There are a ∈ A, k ∈ |D|, and

a morphism f ∈ F (D, k,m) such that s = tpka and t = tpmfa. Then (D,m) 
 π+
t (fa) and

(D,m) 1 σ−t (fa). So (D, k) 1 π+
t (a)→ σ−t (a). By Lemma 4.19, s /∈ Jπ+

t → σ−t K.

Lemma 4.22. For a Fräıssé submodel D of R, let t ∈ |CD(x)|. Then t̂ = Jρ+
t K. So all

open subsets of |CD(x)| are definable.

Proof. To show t̂ ⊆ Jρ+
t K, it suffices to show t ∈ Jρ+

t K. Obviously, t ∈ Jπ+
t K. Fix u such

that t+ ⊆ u+ and t � u. By Lemma 4.21, t ∈ Jπ+
u → σ−u K. Thus, t ∈ Jρ+

t K.

Conversely, suppose v ∈ Jρ+
t K. We must show t ≤ v. Fix a ∈ A and k ∈ |D|

such that v = tpka. Then (D, k) 
 ρ+
t (a) by Lemma 4.19. So (D, k) 
 π+

t (a) and

t+ ⊆ v+. Let u be such that t+ ⊆ u+ and t � u. Because (D, k) 
 ρ+
t (a), we have that

(D, k) 
 π+
u (a) → σ−u (a). But (D, k) 
 π+

v (a) and (D, k) 1 σ−v (a), so u 6= v. Thus,

t ≤ v. The second claim follows from the fact that all open sets are finite unions of sets

of the form t̂.

Lemma 4.23. In CD(x) where D is a Fräıssé submodel, each open subset equals a finite

union of prime open subsets. A nonempty open subset is prime if and only if it is of the

form t̂, for some t ∈ |CD(x)|.

Corollary 4.24. For a Fräıssé submodel D of R, over ΓD, every quantifier-free

formula ϕ(x) is equivalent to both the formula
∨
{ρ+

t : t ∈ JϕK} and the formula∧
{π+

t → σ−t : t /∈ JϕK}.

Lemma 4.25. For a Fräıssé submodel D of R, for all L-formulas ϕ(xxn) and for all

t ∈ |CD(xxn)|, ΓD includes the sentence
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∀xxn(ϕ ∧ ρ+
t → (σ−t ∨ ∀xn(ρ+

t → ϕ))).

Proof. Fix an L(xxn)-formula ϕ, t ∈ |CD(xxn)|, ab ∈ A and k ∈ |D|. Suppose that

` ∈ |D| and f ∈ F (D, k, `) such that (D, `) 
 ϕ(f (ab))∧ρ+
t (f (ab)). If (D, k) 
 σ−t (f (ab)),

then we are done, so we may suppose t = tp`f (ab)
. We must show

(D, k) 
 ∀xn(ρ+
t (f (a)xn)→ ϕ(f (a)xn)).

Fix m ∈ |D|, g ∈ F (D, `,m), and c ∈ A such that (D,m) 
 ρ+
t (gf (a)c). We must

show that (D,m) 
 ϕ(gf (a)c). By Lemma 4.22, tpmgf (a)c
∈ t̂, so tp`f (ab)

≤ tpmgf (a)c
. By

Definition 4.16.2, there is de ∈ A and h ∈ F (D, `,m) such that tpde = tpf (ab) and

h(de) = gf (a)c. Since (D, `) 
 ϕ(f (ab)), Lemma 4.17 gives us (D, `) 
 ϕ(de), and so

(D,m) 
 ϕ(h(de)). Therefore, (D,m) 
 ϕ(gf (a)c).

Theorem 4.26. For a Fräıssé submodel D of R, ΓD admits quantifier elimination.

Proof. The proof is exactly the same as the proofs to Theorems 3.30 and 1.33, with one

exception. In the base case where there are no free variables in ϕ, note that |CD(∅)| =

|D| ⊆ R. So JϕK is an open (in D) subset of R. By Lemma 4.14, ΓD ` ϕ↔
∨
k∈JϕK π

+
k ,

and therefore ϕ ∧ ρ+
t is equivalent to a quantifier-free formula.

Once more, we point out that quantifier elimination gives us quantifier-free formulas

of a simple form. Compare to Theorems 1.38 and 3.32.

Theorem 4.27. Let ϕ(x) be a formula. Over ΓD where D is a Fräıssé submodel of R,

ϕ is equivalent to a quantifier-free universal formula.

Proof. This easily follows from Corollary 4.24 since each ρ+
t (and each formula π+

t → σ−t )

is a universal formula.
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4.3 A Somewhat Universal Kripke Model

Classically, a model A |= Γ is universal if for every B |= Γ such that |B| ≤ |A|,

there is an elementary embedding of B into A. Inspecting the restrictions we put on

our choice for the Kripke model D in Section 4.2 (Definition 4.13), there is an obvious

candidate for a “largest” Kripke model, namely R. In some sense, R (or more precisely,

an “unraveled” version of R) is universal for certain Kripke models that have A↓ as the

core JRS model at each node. We make this idea more precise in Theorem 4.32, but

first a lemma.

Definition 4.28. 1. The type of a tuple a over a classical model A is the set

{ϕ : A |= ϕ(a)}.

(Due to the finite relational language and quantifier elimination, over a JRS model,

every complete At±-type is a complete type.)

2. We call an At±(x)-type t an n-type when |x| = n.

3. For a complete n-type t and a classical model A, we write t(A) for the set

{a ∈ An : t = tpa}.

4. For b ∈ An−1, we write t(bA) for the set {a ∈ A : t = tpba}.

Definition 4.29.

Definition 4.30. Inductively construct a locally-A↓ Kripke model R?, the unraveling

of R, on a rooted partial order R? as follows.

1. Let ∅A be the structure associated to the root node.



86

2. For every k ⊆ R and each f ∈ F (R, ∅, k), we add a node directly above the root

node of R? and associate to that node a copy of kA related to ∅A via that f .

3. For every node mA in the nth level of R? and for every g ∈ F (R,m, n) we likewise

associate a copy of nA above this node via g.

4. Write λ for the cardinality of the set of all endomorphisms of A. That is, λ =

|F (R)|.

So we get the Kripke model R? with an underlying rooted partial order R? that is

λ-branching and countably high.

Lemma 4.31. R is fully graph bisimilar to R?.

Proof. Let B be the collection of tuples of the form 〈s, ik, ik, k〉 where s ∈ |R?|, k ⊆ R,

kA is the structure associated to node s in R?, and ik is the identity map on this classical

structure. We claim B is a full graph bisimulation from R? to R. Criteria 1 and 2 of

Definition 3.8 are trivially satisfied. Note that whenever mA is the structure associated to

node t ∈ |R?|, we have 〈t, im, im,m〉 ∈ B, where im is the identity map on mA. Therefore,

since every possible morphism is contained in each F (R, k), Criterion 3 is satisfied.

Additionally, since every morphism of the structure at node s ∈ |R?| is contained in

F (R?, s), B is a graph bisimulation. B is obviously a full graph bisimulation.

Theorem 4.32. Let B be any Kripke model in the language L meeting the following

criteria:

1. |B| ≤ ℵ0,

2. each classical node structure of B is countable, and



87

3. B is locally-Γ↓.

Then if λ is infinite, B is fully graph bisimilar to a Kripke submodel of R?.

Proof. Note that by Lemma 3.10, for s and t ∈ |R?| and k ⊆ R, if kA is the structure

associated to both s and t, then Th(R?, s) = Th(R?, t) = Th(R, k). In fact, F (R?, s) =

F (R?, t) = F (R, k), that is, for every k ⊆ R, every instance of kA in R? “sees the same

future”. Also notice that since λ is infinite, the second level (and all subsequent levels)

of the partial order R? has λ many nodes, and that for each k ⊆ R, kA is the associated

structure of λ many of those nodes.

Now consider a Kripke model B meeting the hypotheses of the theorem. We will

inductively build a graph bisimulation (indeed, a bisimulation) B′ from (a Kripke sub-

model of) R? to B. Index the nodes of B so that |B| = {bi}i<N where N ≤ ω. As

B is locally-Γ↓, each node structure is isomorphic to some kA for k ⊆ R. For each bi,

choose node si in the second level of R? such that i 6= j implies si 6= sj and hi is an

isomorphism from the associated node structure at si to the associated node structure

at node bi. For each i ≤ N , include 〈si, hi, h−1
i , bi〉 in B′.

Now fix node s in the nth level of R? that is associated via B’ to b ∈ |B|. Write

F (B, b) = {fα}α<κ where κ = |F (B, b)|, and for each α < κ, write fα ∈ F (B, b, bα).

The structure at node bα is isomorphic to nA for some n ⊆ R via isomorphism hα. We

wish to choose a node sα in the (n+1)st level of R? to associate with bα via B′; however,

there are many nodes above s in R? with associated node structure nA. We choose sα

so that it satisfies Criterion 4 of Definition 3.8. That is, choose node sα in the (n+ 1)st

level of R? by following morphism h−1
α fαh from node s; see Figure 5. For each α < κ,

include 〈sα, hα, h−1
α , bα〉 in B′. Since κ ≤ λ, there are enough copies of each kA associated
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Figure 5: Choice of sα in R?

to nodes of the (n + 1)st level in R? for us to choose each sα at every stage such that

α 6= β implies sα 6= sβ. This concludes the construction of B′.

Again, Criteria 1 and 2 of Definition 3.8 are clearly satisfied by B′. Criterion 4

is satisfied by our choices of sα. We satisfy Criterion 3 by considering B′ as a graph

bisimulation from a Kripke submodel of R? to B; namely, the Kripke submodel of R?

that only contains those morphisms explicitly used to choose the nodes of |R?| appearing

in tuples in B′ (the morphism h−1
α fαh in the above diagram, for example) and their

compositions. Note that if f ∈ F (B, bi, bj), then the node bj will correspond to a node

sj in the second level of R?, as well as a node si,α in the third level of R? (above the node

si corresponding to the node bi). In this sense, for each node of B, B′ determines one

copy of that node and its entire future in R? that is entirely disjoint from the (specified)

images of the other nodes and their futures.

Note that on the one hand, we should not call R? a universal Kripke model for

Th(R). It is not true that all Kripke models of Th(R) are locally Γ↓; see the examples

in [20]. However, on the other hand, by Corollary 3.12, we could have chosen R? so that

for every k ∈ |R?|, |F (R?, k)| = ℵ0. Then we would still have B “embed” in (be fully

graph bisimilar to a Kripke submodel of) R?, even though B might be a bigger category
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than R?.

Recall that we call a formula intuitionistically universal if it can be built from the

atoms using the operations ∧, ∨, → and ∀, with the restriction that no implications or

universal quantifications occur in negative places (Definition 1.36). We call the collection

of all universal formulas U1. See Section 1.5 and Fleischmann’s [11] for more information.

Theorem 4.33. Let Kripke model B be as in Theorem 4.32. Then (Th(R) ∩ U1) ⊆

(Th(B) ∩ U1).

Proof. Theorems 4.32 and 1.37 give us that (Th(R?) ∩ U1) ⊆ (Th(B) ∩ U1). By

Lemma 4.31 and Corollary 3.12, Th(R)� L = Th(R?)� L, so the result follows.

4.4 Interaction of Classical and Intuitionistic JRS

Theories

If we return to languages with no nullary predicates, then we have that both a clas-

sical JRS theory Γ and its corresponding intuitionistic theory ΓK (for any monoid K

satisfying the Fräıssé condition) are both complete theories (Theorem 3.14). As long as

the classical JRS model has at least one non-embedding morphism, these two theories

are incompatible. However, in some sense, both theories describe the same underlying

structure. What do these related theories have in common, and how are they different?

We now use the flexibility afforded us by the addition of nullary predicates to build a

Kripke model that gives us a semantic way to partially answer these questions.

Definition 4.34. Given a classical JRS model A in a language L↓ without nullary
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predicates and a monoid K of endomorphisms of A satisfying the Fräıssé condition,

construct the Kripke model B as follows.

1. Add a single nullary predicate R to the language. That is, let L = L↓ ∪ {R}.

2. The partial order category B will have three nodes: |B| = {r, k,m}. The partial

order is given by r ≤ k and r ≤ m (that is, r is the root). The structure at node

k is RA, while the structure corresponding to nodes r and m is {∅}A. (Whenever

possible, we will shorten {R} to R.)

3. Set F (B, r, r) = F (B, r,m) = F (B,m,m) = K. Set F (B, k, k) = idA. Construct

F (B, r, k) by starting with the single morphism that is the identity on A and takes

¬R to R, and close under compositions with morphisms from K. (To be clear,

F (B, k, r) = F (B,m, r) = F (B, k,m) = F (B,m, k) = ∅.)

Lemma 4.35. Th(B, k) ∩ L↓ = Γ.

Proof. Since the only morphism from the node k is the identity, Th(B, k) is a classical

theory by Theorem 1.44. Once we restrict to L↓, the node structure at the node k is

just A.

Corollary 4.36. (B, k) 
 Γ.

Lemma 4.37. For every L↓-formula ϕ, B 
 ∀x(R→ ϕ) if and only if A |= ∀xϕ.

Proof. First, note that ∀x(R→ ϕ) is intuitionistically equivalent to R→ ∀xϕ. For the

right to left direction, suppose A |= ∀xϕ. For any node n ∈ |B|, we need only consider

the morphisms f ∈ F (B, n, k) (if they exist), as k is the only node forcing R. Note that
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f (∀xϕ) is the same syntactic object as ∀xϕ. So by our supposition and Corollary 4.36,

(B, n) 
 R→ ∀xϕ, so each node forces ∀x(R→ ϕ).

For the left to right direction, suppose B 
 ∀x(R → ϕ). Then (B, k) 
 R → ∀xϕ.

Since (B, k) 
 R, we have (B, k) 
 ∀xϕ. Since Γ is a complete L↓ theory, Corollary 4.36

tells us that Γ ` ∀xϕ.

Lemma 4.38. Th(B,m) ∩ L↓ = ΓK.

Proof. The full Kripke submodel of B with root m reducted to L↓ is essentially just

AK .

Corollary 4.39. (B,m) 
 ΓK.

Lemma 4.40. For every L↓-formula ϕ, B 
 ∀x(¬R→ ϕ) if and only if AK 
 ∀xϕ.

Proof. Again, note that ∀x(¬R→ ϕ) is intuitionistically equivalent to ¬R→ ∀xϕ. For

the right to left direction, suppose AK 
 ∀xϕ. For any node n, we need only consider

morphisms sending n to m (if they exist), since m is the only node forcing ¬R. Again,

f (∀xϕ) is the same syntactic object as ∀xϕ. By our supposition and Corollary 4.39,

(B, n) 
 ∀x(¬R→ ϕ).

For the left to right direction, suppose B 
 ∀x(¬R→ ϕ). Then (B,m) 
 ∀x(¬R→

ϕ). Since (B,m) 
 ¬R, we have (B,m) 
 ∀xϕ. Since ΓK is a complete L↓ theory,

Corollary 4.39 tells us that ΓK ` ∀xϕ.

Lemmas 4.37 and 4.40 immediately give us the following results.

Theorem 4.41. The following relationships hold amongst Th(B), Γ and ΓK.

1. Th(B) ∩ L↓ ⊆ Γ ∩ ΓK
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2. (Th(B) ∪ {R}) ∩ L↓ = Γ

3. (Th(B) ∪ {¬R}) ∩ L↓ = ΓK
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