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Abstract

This work is divided in two distinct parts. In both of them, we use different techniques

of Set Theory in the setting of Computability Theory.

In the first part we work with the effective analogues of the localization and pre-

diction numbers, define by Roslanowski-Newilski and Blass, respectively. We use the

effectivization method proposed by Rupprecht in order to work with new computabil-

ity theoretic notions in the effective Cichon’s Diagram. The effective analogue of the

localization numbers are the surviving degrees. The effective analogue of the globally

adaptive prediction numbers are the globally surviving degrees.

At the end of the first part, we used the methods develop in computability theory to

realize a new set theoretic split between these prediction numbers and the localization

numbers.

In the second part we explore the different ways in which a set closed under Turing

equivalence sits inside the real line. We investigate this from the perpective of algebra,

measure theory and orders.

At the end of this part we find an application of a pathological order (achieved by a

set closed under Turing equivalence) to the Turing degrees automorphism problem.
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Chapter 1

General motivations and questions

Of all the applications of forcing that affect the real line we want to focus on two. One of

them, a “global” one, is the ability to add to ZFC different axioms or sets that affect the

real line. For example, demanding that all ℵ1-dense sets of the real line are isomorphic

(as Baumgartner did in [3]) eliminates a number of pathological sets and adds multiple

reals. This work ignite multiple questions about the possible behavior of ℵ1-dense orders

giving birth to a plethora of axioms with different effects over the real numbers (to see

two examples, see Avraham, Rudin and Shelah [1] and Todorcevic [37]).

On the other we can study the “local” differences between models of ZFC. We can

ask ourselves which properties have the reals added by a single forcing (if any) and

find which properties of the forcing makes the special real appear (and which other

properties may avoid it). For example, Sacks studied minimal forcing extensions inspired

by the possibility of having a real such that it can only code ground model reals or reals

equivalent to it (he was inspired by Spector’s work in Computability Theory [34]). From

his work, Sacks’ property was isolated. This property corresponds exactly to the forcings

that keep cof(N ) small.

While thinking of these ideas, it is easy to wonder, can this be done within ZFC?

Furthermore, can this be done within structures that usually are absolute? Like com-

putability?
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In this work we make an approach to these questions. In Chapter 2 we deal with

the “local” line of thought. Based on work done by Rupprecht [27] and by Brendle,

Brooke-Taylor, Nies and Ng [7], we continue to explore relations inside the effective

Cichon diagram. Although there are different ways to explain how this diagram came to

be, there is one that aligns with our line of study: giving that set theoretic forcing can

add a real number with certain properties over the ground model, it is often the case

that effective (or computable) versions of the same forcing construct a real number with

the same property over the computable objects. When studying these computability

theoretic properties, clear analogues to cardinal characteristics are made.

In this sense, in Chapter 2 we study how forcing acts in a computable setting in the

case of localization and prediction numbers.

Now, in Chapter 3 we deal with our “global” line of thinking. In that chapter we

investigate if sets closed under Turing equivalence can have pathological properties with

respect to order or measure; and we also investigate which consequences those patholo-

gies can have within the Turing degrees. A diversity of set theoretic techniques are

applied to sets closed under Turing equivalence, sometime leaving more open questions

than answers.

In the long run, we hope that all these questions can be answered and that the

techniques showed in Chapter 3 find other applications.

About the structure of this dissertation, both chapters have their own introduction

and both have sections giving the necessary background, notation and definition. Ap-

pendix A has two diagrams and a list of definitions related to cardinal characteristics

and the properties in the effective Cichon diagram.

It is important to comment that Chapter 2 is a combination of a solo paper by the
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author (that is under review) [22] and a joint work with Noah Schweber [23] who we

thank for his permission to publish it here. As a trivia fact, those two papers were

originally thought of as one. Nevertheless, due to the different amount of work done by

each author it was convenient that they were publish separately. We are glad that, in

the end, they do appear together somewhere.

At the moment, this text is the first time that Chapter 3 is publish. All the chapter is

work done by the author alone, with some input from UW-Madison faculty and students

(thank you very much). We have plans, for the near future, to publish this chapter in a

journal with, most likely, minor changes.

Finally, we want to thank Paul Tveite for his permission to use the diagrams that

appears in Appendix A which originally were done for his doctoral thesis [38] and a joint

work with the author (under revision) [24].



4

Chapter 2

Localization and prediction numbers

2.1 Introduction

In this chapter we will work with the relations between cardinal characteristic and

computability-theoretic cardinal characteristics of the continuum. Classically, a car-

dinal characteristic is a cardinal which measures how large a set of reals with a certain

“sufficiency” property must be: for example, the least size of a set of functions ω → ω

such that every function ω → ω is dominated by some function in the set. It is possi-

ble that all reasonable cardinal characteristics are equal — this would follow from the

continuum hypothesis — but a rich structure is revealed when we look at consistent

separations: the study of provable (weak) cardinal characteristic inequalities, of possible

simultaneous separations of more than two characteristics at once, and of the interac-

tions between cardinal characteristic inequalities and properties of forcing notions which

preserve or induce them are important aspects of modern set theory.

As is often the case, the theory of cardinal characteristics has an “effective” coun-

terpart. The explicit analogy was first drawn by Rupprecht [27],1 who analyzed the

characteristics occurring in Cichon’s diagram, and was further studied by others includ-

ing Brendle, Brooke-Taylor, Ng, and Nies [7]. Given a relation R ⊆ (ωω)2, an effective

1An early effective analogue of a cardinal characteristic equality was provided by Terwijn and Zam-
bella [36], although they did not draw this connection explicitly.
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cardinal characteristic emerges when we ask a real s to satisfy that cRs for every com-

putable real c. Associated to this question is a corresponding “highness” property, and

Rupprecht showed that these highness properties are often of independent interest in

computability theory. We compare these highness properties by measuring how hard is

to achieve one respect the other: for example, it is harder to produce a set of functions

which dominates every function ω → ω than it is to produce one which escapes every

function ω → ω, and the corresponding inequality on the computability-theoretic side

is “high implies hyperimmune.” Some cardinal characteristics require some appropriate

coding to effectivize, such as cov(N ) = the smallest number of null sets which cover R,

but such coding can be done in a natural way via effective notions of null/meager sets.

Working within the effective Cichon diagram usually allows to study particular forc-

ing notions in a meticulous and thorough way in order to effectivize set theoretic notions.

This is really helpful in order to have a better understanding of the subtleties of each

forcing and is analogous to the analysis done when wondering which kind of reals a

forcing adds (see the contructibility diagram of Switzer [35]). In this chapter we will

work with two chardinal characteristics whose translation to the computability theoretic

setting inspired us to realize a new set theoretic result.

The first of them are the localization numbers. In 1993, Newelski and Roslanowski

defined the k-localization number, Lk (see [20]), as the minimal cardinality of a family

T of k-trees such that every element (k + 1)ω is a branch of a tree in T .2

In their paper, they proved that Lk+1 ≤ Lk and that it is consistent to have Lk+1 <

Lk. In order to do this, they introduce the k-localization property3 that was later studied

2In their work, they originally studied ideals of unsymmetric games. The covering numbers of those
ideals are the ones that we called k-localization numbers.

3The k-localization property says “all the reals in ωω of the generic extension are a branch of a k-tree
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by Roslanowski [26] and Zapletal [39]. These properties were also used by Geschke [11]

to show that it is consistent to have Li = f(i) for any non-increasing function from a

natural number to the cardinals with uncountable cofinality.

These characteristics lend themselves to multiple computability-theoretic interpreta-

tions which we explore, especially in connection with computable traceability. We show

that the various notions so resulting are reasonably distinct, and exhibit a mixture of

strength and weakness: for example, the simplest effective localization notions are “is

not a path through a computable k-branching subtree of (k + 1)<ω” (k-surviving) for

k > 1. We study these in Section 2.4. Our main result in this section is that these

notions form a strict hierarchy, and interact with computable traceability in a nice way:

Theorem 2.1. For each k there is a k-surviving, not (k + 1)-surviving degree which is

computably traceable.

A more complicated picture emerges in Section 2.5 when we consider covering ωω

with closed sets. Here a difficulty arises in the effective setting with no classical analogue:

there is no computable way to pass from a tree which branches at most n times at each

branching node (“n-tree”) to a tree which branches exactly n times at each branching

node (“n-branching tree”). This gives us two separate tracks of cardinal characteristics,

and leads to a somewhat messy picture. We show, for example:

Theorem 2.2. There is a computably traceable degree containing a globally branch sur-

viving function that is not 3-globally tree surviving.

(These notions are defined in the beginning of Section 2.5.)

from the ground model.”
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Theorem 2.3. There is a real A ∈ ωω which is not a path through any computable k-tree

for any k ∈ ω but which does not compute any f ∈ 3ω which is not a path through any

computable 2-branching tree.

It is natural to ask if there is a set theoretic chardinal characteristic that is anal-

ogous to the globally surviving degrees (as the surviving degrees are analogous to the

localization numbers). There is one. In his chapter of the Handbook of Set Theory [6],

Andreas Blass talks about cardinal characteristics related to the concepts of evasion and

prediction. At the end of that section, he introduces 36 variations of these cardinals and

left as an open question to pin down 4 of them whose identity didn’t appear to be one

of the known cardinal characteristic. It turns out that the same proof of Newelski and

Roslanowski shows that one of these variations, specifically the prediction number for

global adaptive k predictors, is not one of the known cardinal characteristics and, actu-

ally, gives countable many cardinal characteristics which, consistently, can take different

values (see Theorem 2.7).

This triggers the following question: are the variation of prediction and the k-

localization number equal? No. As mention in Theorem 2.6 of Brendle-Garcia [8],

you can split them making the localization number strictly less than d. This thesis

shows a different way to separate them keeping all the values of the Cichon diagram

small. It is consistent to have all the prediction numbers mention above at value ℵ2 = c

and all localization numbers and all numbers in Cichon at value ℵ1 (see Theorem 2.61).

To do this we use a forcing that appears in the proof of Theorem 2.3 that Noah

Schweber and the author called accelerating tree forcing. We will show in section 2.7

that countable support product of the accelerating tree forcing has the 3ω-localization

property (defined in Section 2.6).
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It has been pointed out to us that the accelerating tree forcing could be related to

bushy tree forcing (as done by Khan and Miller [15]) or other fast-growing tree forcing (as

done by Ciesielski-Shelah [9]). Nevertheless, this is a forcing of a different kind. Around

the time when [23] was publish, we find out that Miller Lite forcing (which Geschke

uses and describes in [10]) is equivalent to the accelerating tree forcing. Altough both

forcings are equivalent, we decide to keep using the accelerating tree description since it

fits better our needs.

It is also important to remark that countable support iteration and product of forc-

ings with the (k + 1)ω-localization property could also have the (k + 1)ω-localization

property, as the k-localization property (see [39]). Notice that these two properties are

in the same line as the Sacks property. It is unknown to the author if there is a bigger

theory or theorem that handle all of them at once. This, we believe, is an interesting

topic.

About the structure of the chapter, it has a first section with definition and back-

ground. In section 2.3 we explore the ZFC relations between Lk and vgk. Then, we

explore the effective analogues of the cardinal characteristics above describe in Sections

2.4 and 2.5. In Section 2.6, we prove lemmas involving the (k+1)ω-localization property

in order to prepare the splitting. Section 2.7 has the set theoretic split (Theorem 2.61).

The last section has some conclusions and open problems.

2.2 Definitions and background

These first definitions will be useful during the rest of the chapter:

Definition 2.4. 1. We say that T ⊆ ω<ω is a tree if and only if given σ ∈ T we have
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that σ�j ∈ T for all j < |σ|.

2. A k-branching tree, is a tree such that every node has either 1 successor or k of

them. and every node has an extension with more than 1 successor.

3. A k-tree is a tree such that every node has at least 1 successor and no more than

k.

4. We say that r is a branch of T , or r ∈ [T ] if and only if r�n ∈ T for all n ∈ ω.

Now, the following definition is due to [20] (they express it as the covering number

of an ideal):

Definition 2.5. The k-localization number, Lk, is the smallest cardinality of a family

of k-branching trees that cover (k + 1)ω.

Notice that the definition is not trivial for k ≥ 2. Furthermore, Newelski and

Roslanowski showed in [20] that, for k ≥ 2, Lk ≥ max{cov(M), cov(N )}, that Lk+1 ≤ Lk

and that it is consistent that Lk+1 < Lk.

On the other hand, in Blass’s chapter of the Handbook of Set Theory [6] he defines:

Definition 2.6. 1. A k globally adaptive predictor is a sequence of functions π =

〈πn : n ∈ ω〉 with πn : ωn → [ω]k. We say that a function f ∈ ωω is predicted by π

if there is m ∈ ω such that for all n > m, f(n) ∈ πn(f�n).

2. The k globally prediction number, vgk, is the minimal cardinality of a set of k

globally adaptive predictors that predict all functions in ωω.

3. The k globally evasion number, egk, is the minimal cardinality of a set of functions in

ωω such that the whole set is not predicted by a single k globally adaptive predictor.
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It is important to make some remarks about the last definition:

• The ‘adaptive’ part refers to the fact that πn is not constant. Non-adaptive objects

are closer to slaloms (or traces).

• The ‘globally’ part of the definition refers to the fact that we have πn for all n ∈ ω.

It is possible to define predictors using πn for n ∈ D ( ω.

• Blass does not give a notation for this number, so the notation vgk and egk is intro-

duced here.

• These definitions are not trivial for k ≥ 2.

The numbers vgk and egk are mutually dual and, by the work done in [6], we know

that m
σ−k−linked ≤ egk ≤ add(N ). So, by duality, we know that cof(N ) ≤ vgk ≤ c. Also,

from the definition, we have that vgk+1 ≤ vgk.

Reading the definition more carefully we can notice that all the functions that are

predicted by a k-globally adaptive predictor are covered by ℵ0 many k-branching trees,

so vgk is also the minimum cardinal of a set of k-branching trees (or k-trees) that cover

ωω (see the following section for a proof of this).

Furthermore, in [20], we have the following result:

Theorem 2.7. Given k ≥ 2, it is consistent to have ZFC+cof(N ) = vgk+1 < vgk = c.

This theorem is a corollary of the proof of:

Theorem 2.8 (Newelski, Roslanowski [20]). Given k ≥ 2, it is consistent to have

ZFC+cof(N ) = Lk+1 < Lk = c.
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This result comes from two facts: first, that the forcings that were used have the

k-localization property. This is that “every real in ωω is a branch of a k-tree from the

ground model”, this keeps Lk+1 and vgk+1 at ℵ1; and the forcing adds a function in

(k + 1)ω that is not the branch of any k-tree from the ground model. Notice that this

function is also a function in ωω that is not the branch of any k-tree from the ground

model. Once you take a countable support product, this makes Lk and vgk of size c.

The relation between these two cardinal characteristics is more evident once we

realize, as we will do in the following section, that Lk ≤ vgk.

2.3 ZFC relations

In this section, we will exhaust all the relations between Lk and vgk that are true in ZFC.

In order to do this we need to show an equivalent definition for vgk.

Lemma 2.9. Let T be a family of k-subtrees of ω<ω.

vgk = min{|T | : ∀r ∈ ωω∃T ∈ T (r ∈ [T ])}.

Proof. First of all, given a k-globally adaptive predictor π and σ ∈ ωω let

Tπ,σ = {τ ∈ ω<ω : ∀i ∈ ω((τ(i) = σ(i)) ∨ (i ≥ |σ| ∧ τ(i) ∈ πi(τ�i)))}.

Notice that, if f ∈ ωω is predicted by π then there is m such that for all n ≥ m

f(n) ∈ πn(f�n) and this happens if and only if f ∈ [Tπ,f�m].

This shows that

{f ∈ ωω : f is predicted by π} =
⋃

σ∈ω<ω
[Tπ,σ].
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Therefore, if we can cover ωω with certain family of k globally adaptive predictors,

we can change each one of them for countably many k-trees and still cover ωω.

On the other hand, given a k-tree T you can define πT such that given σ ∈ ω<ω, if

σ ∈ T , (πT )i(σ) = {n ∈ ω : σ_n ∈ T} ∪ A where A has extra natural numbers to make

(πT )i(σ) of size k or (πT )i(σ) = k ⊆ ω if σ /∈ T .

This shows that

[T ] ⊆ {f ∈ ωω : f is predicted by πT}.

Therefore, if we can cover ωω with certain amount of k-trees, we can cover it with

the same amount of k globally adaptive predictors.

Joining this two pieces of information we have that

vgk ≤ min{|T | : ∀r ∈ ωω∃T ∈ T (r ∈ [T ])} ≤ ℵ0 · vgk = vgk.

Corollary 2.10. Lk ≤ vgk.

Proof. Notice that if we cover ωω with k-trees we also cover (k + 1)ω.

There is one more ZFC relation between these cardinal characteristics. This relation

restricts greatly the kind of splits that these numbers can have.

Theorem 2.11. The following equality is true vgk = max{vgk+1,Lk}. Furthermore, if

vgk+1 < vgk then Lk+1 < Lk.

Proof. Let vgk+1 = κ. This means that ωω can be covered by κ many k + 1-trees.
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Now, if Lk = λ, this means that (k + 1)ω can be covered by λ many k-trees. Notice

that, given T a k + 1-tree of ω<ω, there is a onto function from (k + 1)<ω to T . This

transforms any cover by k-trees of (k + 1)ω into a cover of k-trees of [T ].

Now, given a cover of ωω with k + 1-trees, we can cover each one of them with λ

many k-trees creating a cover of κ · λ many k-trees of ωω. This means that vgk ≤ κ · λ =

max{vgk+1,Lk}. Since vgk ≥ vgk+1 and vgk ≥ Lk, we have that vgk = max{vgk+1,Lk}.

For the furthermore, if vgk+1 < vgk then Lk = vgk and

Lk+1 ≤ vgk+1 < vgk = Lk

Inspired by the proof above, we can obtain the following result in the flavor of the

contructibility degrees (see [35]):

Lemma 2.12. Given V ⊆ W models of ZFC such that for every a ∈ ωω ∩W there is

a k + 1-tree T ∈ V such that a ∈ [T ] but there is b ∈ ωω ∩W such that for all k-trees

U ∈ V we have b /∈ [U ] then there is c ∈ (k + 1)ω ∩W such that for all k-trees S ∈ V

we have c /∈ [S].

Proof. In W let b ∈ ωω be such that it is not in any k-tree from the ground model. Now,

let T be a k + 1-branching tree from V such that b ∈ [T ]. Notice that, in V , there is a

bijection f : T → (k + 1)<ω so, in W , this induces a function f ∗ : [T ]→ (k + 1)ω.

Notice that f ∗(b) is also not in any k-tree from the ground model. If it were, say in

S, we will have that b ∈ f−1(S), but f−1(S) is a k-tree from V .

Corollary 2.13. If a forcing doesn’t add a function in ωω that escapes all k + 1-trees

of the ground model but it adds a function in ωω that escapes all ground model k-trees

then this forcing adds a function in (k + 1)ω that escapes all ground model k-trees.
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In order to start thinking about computability theory, let’s do a mental exercise.

In the lemma above, instead of thinking about V and W as models of Set Theory, we

can see them as the computable reals (the analogue for V ) and reals computed from a

non-computable real (analogue for W ).

Lemma 2.14. If a Turing degree has the property that every total function it computes

is a branch of a k+ 1-branching computable tree but it computes a function that escapes

every k-branching computable tree then it computes a function in (k + 1)ω that escapes

every k-branching tree.

Proof. The same proof of the above theorem works, once we define a computable function

from T ⊆ ωω, a computable k-branching tree, to (k + 1)<ω.

Let’s think of f : T → (k + 1)<ω as a partial function from ω<ω to (k + 1)<ω. First

of all σ ∈ dom(f) if and only if σ ∈ T .

Now, we will demand that |f(σ)| = |σ| and that if τ is a successor of σ then f(τ) is

a successor of f(σ). Finally, if τ is the i-th successor of σ to halt (in other words, the

i-th successor of σ to enter T ), then f(τ)(|σ|) = i.

This function f is computable.

Notice that, in order to make the proof work, f cannot be a bijection anymore.

This kind of small changes are common in the translations from set theoretic result to

computability results. But deeper changes can be seen, although it does not affect these

results. In general, we need to be careful between k-trees and k-branching trees in the

effective setting (more on that on section 2.4 and 2.5).

Finally, we want to end this section showing the translation of vgk = max{vgk+1,Lk}

to the effective Cichon diagram. Although this is a trivial result, it makes clears that



15

we need a better language to talk about these degrees.

Lemma 2.15. Any Turing degree that computes a function f ∈ ωω that escapes all k

computable trees either computes a function that escapes all k+ 1 computable trees (that

same f) or a function g ∈ (k + 1)ω that escapes all k-computable trees (the image of f

under a certain computable function).

2.4 Surviving degrees

Following Rupprecht’s analogy, the computability-theoretic version of the localization

number is the following highness property:

Definition 2.16. A function f ∈ (k+ 1)ω is k-surviving if it is not a path through any

computable k-branching subtree of (k+ 1)<ω. We say that a Turing degree is k-surviving

if it computes a k-surviving function.

We call these k-surviving degrees since they are the ones that go into the forest of

k-branching trees and are able to escape it: they survive the experience. Note that this

definition requires k > 0 to make sense, and for k = 1 trivializes: “1-surviving” is just

“non-computable.” So we are only interested in k ≥ 2.

Before we begin analyzing the k-surviving degrees, there is a subtlety here which will

matter later.

Classically, the localization numbers can be equivalently defined in terms of k-trees

rather than k-branching trees, and on the computability-theoretic side we can effectively

pass from a k-tree contained in n<ω for finite n to a k-branching tree containing it, so

this is not an issue at the moment. However, in general a computable k-tree merely
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contained in ω<ω may not be contained in a computable k-branching tree, as we will see

below; this will give us two distinct computable analogues of the class globally adaptive

prediction numbers in ω<ω in section 2.5.

As an initial observation, it is easy to see that the k-surviving degrees form a hierarchy

as k varies:

Lemma 2.17. Given k ≥ s ≥ 2, a k-surviving degree is also an s-surviving degree.

Proof. Fix a surjection g : k + 1 → s + 1, and let g∗ : (k + 1)<ω → (s + 1)<ω and

ĝ : (k+ 1)ω → (s+ 1)ω be the induced computable surjections on the corresponding sets

of finite or infinite strings. If T ⊆ (s + 1)<ω is a computable s-tree, then (g∗)−1[T ] ⊆

(k+1)<ω is a computable k-tree. This means that if A ∈ (k+1)ω is a k-surviving function

then ĝ(A) ∈ (s+ 1)ω is an s-surviving function: if ĝ(A) were in some computable s-tree,

then pushing this forward we would have a computable k-tree containing A.

The above result is an anologue for to Lk+1 ≤ Lk proved by Newelski and Roslanowski

[20]. Furthermore, we can also mimic in the computable sidet that for all k ≥ 2,

Lk ≥ max{cov(M), cov(N )}, and that it is consistent that Lk+1 < Lk. Lemma 2.17 is

an analogue for Lk+1 ≤ Lk.

Since, all the subsets of nω that are covered by a k-branching computable tree (with

k < n) are effectively meager and null, we obtain the following result (using notation

from [7] that you can also find in appendix A):

Theorem 2.18. All the degrees that compute a Schnorr random real are k-surviving for

all k ≥ 2. In particular, there is a k-surviving degree that is DNC and a k-surviving

degree that is not computable traceable.
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Theorem 2.19. All the degrees that compute a weak 1-generic (equivalently, all hyper-

immune degrees) are k-surviving for all k ≥ 2. In particular, there is a k-surviving

degree that is weakly Schnorr engulfing.

Since there is a Schnorr random which is hyperimmune-free (see e.g. [7] §4.2 (2)) and

a hyperimmune degree that does not compute a Schnorr random (See e.g. [21] Theorem

1.8.37) we have:

Corollary 2.20. For all k ≥ 2 there is a k-surviving degree which does not compute a

Schnorr random.

Corollary 2.21. For all k ≥ 2 there is a k-surviving degree which is hyperimmune free.

Notice that Theorem 2.18 and Theorem 2.19 are the effective analogues of Lk ≥

cov(M) and Lk ≥ cov(N ) respectively.

Finally, we turn to the converse of Lemma 2.17: we show that the k-surviving degree

are truly hierarchical, i.e., that there are k-surviving degrees that are not s-surviving,

with s > k. This is the computable analogue of the conditional consistency of Lk+1 < Lk.

Theorem 2.22. Given k ≥ 2, there is a k-surviving degree that is not `-surviving for

` ≥ k + 1. Furthermore, it is possible to make this degree computable traceable.

Proof. We will force with computable trees, T , in (k + 1)<ω such that for every s ∈ T

there is t extending s such that t has more than one successor and, for all s ∈ T , we

have that |{t ∈ T : s < t &|t| = |s|+ 1}| is either 1 or k + 1.

We will construct a function A : ω → k + 1 that satisfy two types of requirements:

• Re: Given the e-th computable k-tree in (k + 1)<ω, A is not one of its branches.
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• Pe: ϕAe is either partial or is a branch of a computable k + 1-tree of ω<ω. In

particular, if ϕAe : ω → `+ 1 with ` ≥ k + 1 then ϕAe is not `-surviving.

We begin at stage s = 0 by setting T0 = (k + 1)<ω. Now suppose that at stage

s+ 1 we have a computable k + 1-branching tree Ts such that every branch satisfies all

requirements Rj and Pj for j < s.

To satisfy Rs we just need to extend the current stem (or root), rs, in such a way

that it is not longer in the s-th k-tree in (k+ 1)<ω. This is possible because Ts has k+ 1

options every time it branches.

Satisfying Ps is more complicated, however, and we have two cases which need to be

handled separately. The first case happens if there is t ∈ Ts and n such that rs ⊆ t and

ϕt
′
s (n) diverges for all t′ ⊃ t. Setting Ts+1 to be the subtree of Ts consisting of nodes

comparable with t then trivially satisfies Ps.

Now suppose we are unable to force partiality in this way. For all t ∈ Ts extending rs

and n ∈ ω there is a t′ ∈ Ts extending t such that ϕt
′
s (n) converges. Now we will create

Ts+1 in such a way that for all branches A of Ts+1 we have that ϕAs is total. Furthermore,

we can find a computable k+1-tree, Us, such that for all branches of Ts+1, ϕAs is a branch

of Us. For convenience we will describe Ts+1 as a function (k+1)<ω → (k+1)<ω, denote

by tσ, and Us as function (k + 1)<ω → ω<ω, denote by uσ.

Before starting the construction we can assume one more hypothesis: for all τ ∈ Ts

there exist τ0, ..., τk in Ts extending τ and n ∈ ω such that ϕτis (`) converges for all

i < k + 1 and all ` < n. Also, we need that ϕτis �n 6= ϕ
τj
s �n for all i 6= j < k + 1.4

If there is a τ extending rs such that the above hypothesis is false, that means that

ϕAs can have at most k different values as long as τ is an initial segment of A. Therefore,

4The use of τ in this paragraph instead of t will simplify the reading later.
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defining Ts+1 the subtree of Ts extending τ , we can find a computable tree Us with at

most k branches such that ϕAs , with A ∈ [Ts+1], is always one of those branches.

Now, back to the construction, our strategy will be define for each node: first find

an extension that splits; then, look for extensions of each node in the split (there are

exactly k + 1 of them) that makes the function ϕte different to each other, with that we

keep the k + 1-branching and we can use the information to define Us.

Bringing the strategy to work, at the first stage, let rs = t∅. Then look for for the first

split above t∅ and call those nodes τ0, ..., τk. Next, look for t0, ..., tk extending τ0, ..., τk

respectively and n∅ ∈ ω with 0 < n∅ such that ϕtis �n∅ 6= ϕ
tj
s �n∅ for all i 6= j < k + 1 and

ϕtis (`) converges for all i < k + 1 and all ` < n∅. Define u∅ = ∅ and ui = ϕtis �n∅ .

In general, given tσ with σ ∈ (k + 1)<ω, look for the first split above tσ and call

those nodes τσ0, ..., τσk. Next, look for tσ0, ..., tσk extending τσ0, ..., τσk respectively and

an nσ ∈ ω with |σ| < nσ such that ϕtσis �nσ 6= ϕ
tσj
s �nσ for all i 6= j < k + 1 and ϕtσis (`)

converges for all i < k + 1 and all ` < nσ. Define uσi = ϕtσis �nσ .

Since Ts is computable we have that both Ts+1 and Us are computable. Furthermore,

each split in Us is at most of size k + 1 so it is a k + 1-tree and, by construction, given

a branch A of Ts+1 we have that ϕAs is a branch of Us.

Furthermore, if A ∈ [Ts+1] and ϕAs is total then we can define a computable trace

φs : ω → [ω]<ω such that φs(n) is the n-th level of Us. Notice that |φs(n)| ≤ (k + 1)n

and that for all branches A of Ts+1 we have that ϕAs goes through φs.

Finally, A ∈
⋂
s∈ω[Ts] is a k-surviving degree that is a computably traceable degree

and not k + 1-surviving (or `-surviving for ` ≥ k + 1).

Corollary 2.23. Given k ≥ 2, there is a k-surviving degree that is not DNC and not

weakly Schnorr Engulfing.
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Notice that the above construction for k = 1 give us a non-computable set that is

not a 2-surviving degree.

To further pin-point the location of the surviving degrees in the effective Chichoń

diagram it is necessary to compare them to the DNC degrees. This question is still open:

Question 2.24. Is there a DNC degree that is not k-surviving?

In the same spirit, we may also ask:

Question 2.25. Is it possible to make a k-surviving degree that is not k + 1 surviving

and not computable traceable?

2.5 Globally surviving degrees

As seen in the proof of theorem 2.22, it is possible to have degrees such that all their

functions f : ω → ω go through a k-subtree of ω<ω. Therefore, we can define degrees

that survive k-trees in ωω. Here, however, we run into the subtlety mentioned earlier:

that since we are no longer working with trees over a finite set, “computable k-branching

tree” and “computable k-tree” may behave differently. This leads to two separate tracks

of highness notions:

Definition 2.26. 1. A function g : ω → ω is k-globally branch surviving if it is not

a path through any computable k-branching tree; a Turing degree B is k-globally

branch surviving if it computes a k-globally branch surviving function.

2. A function g : ω → ω is globally branch surviving if it is k-globally branch

surviving for every k ∈ ω; a Turing degree B is globally branch surviving if it

computes a globally branch surviving function.
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3. A function g : ω → ω is k-globally tree surviving if it is not a path through any

computable tree; a Turing degree B is k-globally tree surviving if it computes a

k-globally tree surviving function.

4. A function g : ω → ω is globally tree surviving if it is not a path through any

computable k-tree for any k ∈ ω; a Turing degree B is globally tree surviving if it

computes a globally tree surviving function.

The distinction between k-branching trees and k-trees is significant. Trivially a k-

globally tree surviving degree is also k-globally branch surviving, and similarly a globally

tree surviving degree is globally branch surviving. However, no other coarse implication

exists.

We begin by showing that global branch and global tree survival differ wildly on the

level of individual functions. Although they are the same for k = 2 (a 2-tree is the same

as a 2-branching tree), there is no other coincidence for larger k:

Proposition 2.27. There is a globally-branch surviving function that is not 3-globally

tree surviving.

Proof. We will define a computable 3-tree of ω<ω which is not covered by any computable

k-branching tree. The right most path of this 3-tree will be globally-branch surviving

but, since it is a branch of a 3-tree, it is not 3-globally tree surviving.

We will define T by stages, beginning with T0 = ∅ and obeying the following rules:

1. If p ∈ Ts then p0 ∈ Ts+1.

2. If p ∈ Ts, then for each i < s + 1 we will decide whether p_i = pi ∈ T at stage

s+ 1.
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3. We will fix a computable permutation that maps ω with all the pairs 〈e, k〉 with

k > 2. If p ∈ T , |p| = n = 〈e, k〉, the successors of p will deal with ϕe as if it were

a k-branching tree. In particular, if ϕe is a k-branching tree then the right most

successor of p is not in it.

(Strictly speaking, at a given stage we have a tree together with a finite set of forbid-

den nodes, but for simplicity we speak of just building a tree and making declarations.)

Assume that at stage s we have p ∈ Ts, |p| = n = 〈e, k〉. There are now three cases:

Case 1 No successor of p is in Ts other than perhaps p0.

If ϕe,s does not look like a k-branching tree containing p, then we set pi 6∈ T for all

0 < i ≤ s. Otherwise, we check whether p0 ∈ ϕe,s; if it is not, we declare that ps /∈ T .

If p0 ∈ ϕe,s, we further check if ps ∈ ϕe,s. If it is then we declare ps /∈ T ; if ps /∈ ϕe,s

then we declare that ps ∈ Ts+1.

Case 2 There are exactly two successors of p in Ts (one of which is p0).

Being in this case means that, at some stage, ϕe looked like a k-branching tree and

that p0 ∈ ϕe,s. If there are not exactly k-many successors of p in ϕe,s then we declare

that ps /∈ T ; otherwise, we put ps ∈ Ts+1. Note that ps 6∈ ϕe,s by use constraints, so we

are free to make this decision at this time.

Case 3 If there are three successors of p in Ts we declare ps /∈ T .

The union
⋃
s∈ω Ts is a computable 3-tree whose right-most path is not in any com-

putable k-branching tree, and this finishes the proof.

At a first glance, it may appear that the rightmost branch through the tree con-

structed above has significant computational power. Interestingly, this is not quite true:
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Theorem 2.28. There is computably traceable degree that computes a globally branch

surviving function that is not 3-globally tree surviving.

Proof. We will use the same tree as in the proof of Proposition 2.27, with a slight

modification. Having, as above, an effective enumeration {〈ei, ki〉 : i > 0} of ω× ω≥3 —

note that we do not include a 0th term, for notational convenience below — we will fix

a computable sequence in which every natural number > 0 occurs infinitely often; we

use

1, 1, 2, 1, 2, 3, 1, 2, 3, 4, ...

The terms in this sequence tell us what levels of our tree will deal with each pair in

ω× ω≥3. For example, 〈e1, k1〉 will be dealt with at levels 0, 1, 3, ... and 〈e2, k2〉 at levels

2, 4, 7, ....

We build a sequence of triples 〈p, T, g〉 with the following properties:

• p ∈ ω<ω.

• T is a computable 3-tree that is not covered by any computable 3-branching tree,

with p ∈ T (indeed we may assume that p is the stem of T ).

• g : T → ω is such that: for all σ ∈ T, n ∈ ω, there is an extension τ ∈ T of σ with

g(τ) = n.

• Finally, if ϕe is a k-branching tree, then there are infinitely many nodes in T with

a successor not in ϕe.

Here, p is the initial segment of the function we are constructing, T is the tree of

possible future extensions (so the real we produce is a branch of T ), and if g(σ) > 0
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then the successors of σ deal with ϕeg(σ) as if it were a kg(σ)-tree (where {〈ei, ki〉 : i > 0}

is as above) — that is, the labelling function g assigns tasks to each node of the tree.

To start, fix (noneffectively) an enumeration of all computable branching trees (i.e.,

k-branching trees for some k ∈ ω). During the construction of A we want to satisfy two

families of requirements:

• Re: If ϕe is a k-branching tree for any k ∈ ω then A is not a branch of it. This

will make A a globally branch surviving degree.

• Pe: If ϕAe is total then it goes through some computable trace bounded by f(n) =

3n. This will make A computably traceable.

We will start our construction with 〈p0, T0, g0〉 = 〈∅, T, g0〉 with T as described in

the first paragraph and g0 being constant at every level, and mapping nodes on the ith

level to the ith term of the sequence

〈1, 1, 2, 1, 2, 3, 1, 2, 3, 4, ....〉.

Our construction breaks into even and odd stages, handling the R- and P -requirements

respectively. The former are easily satisfied, while the latter require a construction.

Even stages. At stage s = 2e we have 〈ps, Ts, gs〉. Given the e-th computable

3-branching tree, we look for an extension of ps that avoids it. To do this, we look for r

such that the e-th branching tree is a kr-branching tree and is describe by ϕer (we are

using 〈er, kr〉). Now, we look for an extension of ps in Ts, called it τ , such that gs(τ) = r,

we focus on the successor of τ that avoids ϕer . That successor will be ps+1. We define

Ts+1 to be the subtree of Ts that extends ps+1 and we let gs+1 to be 0 for all the initial

segments of ps+1 and be the same as gs for the other members of Ts+1.
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Odd stages. At s = 2e + 1 we have 〈ps, Ts, gs〉. If there is τ ∈ Ts such that ϕAe is

not total for all branches A of Ts extending τ then we define ps+1 = τ and we make Ts+1

and gs+1 as in stage 2e. If there is not such an extension, we define ps+1 to be the first

node extending ps such that gs(ps+1) = 1. To define Ts+1, we want to prune Ts in such a

way that ϕAe is in a computable trace bounded by 3n whenever A is a branch, and gs+1

should then be defined accordingly.

Specifically, under the assumption above we define Ts+1 and gs+1 by the following

steps:

1. At every stage t there is at most one node entering Ts+1,t that is a successor of a

node with gs+1 6= 0.

2. At every stage t, if we declare that σ ∈ Ts will belong to Ts+1 and σ is not the

successor of a node with gs+1 6= 0 then σ ∈ Ts+1,t+1.

3. We will fix an enumeration of ω<ω. After adding the nodes of the rule above, we

will give an opportunity to the nodes that are successors of a node with gs+1 6= 0

by the order of the enumeration.

4. At stage t = 0, ps+1 ∈ Ts+1,0, gs+1,0(σ) = 0 for all σ ≺ ps+1 and gs+1(ps+1) =

gs(ps+1) = 1. Here we start the next stage.

5. If q just entered Ts+1,t and it is a successor of a node with gs+1 6= 0, we will look

for τσ ∈ Ts extending σ, for each leaf σ of Ts+1,t, and τ ∈ Ts extending q such that

there is n,m ∈ ω with m > |q|, n < m and ϕτe(n) 6= ϕτσe (n): Also, we want ϕτe and

ϕτσe to converge for the whole interval [0,m]. Finally, gs(τσ) = gs+1(σ).
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6. For every leaf σ of Ts+1,t we declare that the nodes between σ and τσ will be in

Ts+1, that there is no split between these nodes, and that gs+1(ρ) = 0 for such a

node. We also change the value of gs+1(σ) to 0 and set gs+1(τσ) = gs(τσ).

7. Given τ from step 5 (the one extending q), we look at the subsequence 〈gs+1(q�im)〉

made by all the nonzero values of 〈gs+1(q�i) : i < |q|〉 and we look for an extension

of τ , called it q′, in Ts such that 〈gs+1(q�im)〉 _ gs(q
′) is an initial segment of

〈1, 1, 2, 1, 2, 3, ...〉.

8. Given q and q′ as the rules above, we declare that q′ ∈ Ts+1,t as well as all its

successors in Ts and initial segments; we also declare that gs+1(q′) = gs(q
′) 6= 0;

that there are no splits in Ts+1 between q and q′, and that gs+1(σ) = 0 for all

q � σ ≺ q′. Now we start the next stage.

This construction produces a triple 〈ps+1, Ts+1, gs+1〉 with the desired form. More-

over, the function gs+1 changes value from gs at each node at most once and will not

change once a successor of the node enters Ts+1. Since all nodes of Ts+1 have a successor,

gs+1 is computable. Furthermore, by step 5 we know that ϕAe is total whenever A is a

branch of Ts+1. So to complete the proof we just need to check that there is a single

computable trace capturing all this functions. This is provided by

Ue = {ϕσe �n : n ∈ ω, σ ∈ Ts+1}.

That is, we claim that the nth level of Ue has size at most 3n. This is because Ts+1 is a

3-tree, so the only way this could fail would be if there were splitting nodes in Ts+1 which

saw no new convergence of ϕe (since then by waiting for more splittings further up the

tree, we could produce more than 3n values of the computation and hence more than
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3n-many nodes on Ue of height n). However, by construction we generate new values of

ϕσe exactly when we split, so this cannot happen.

So the degree of the function A =
⋃
n∈ω pn is as we desired.

Question 2.29. Is there a globally-branch surviving degree that is not 3-globally tree

surviving?

Question 2.30. Is it true that k, s ≥ 3 there is a k-globally branch surviving degree that

is not s-globally tree surviving?

Clearly, a globally-branch surviving degree is a k-globally branch surviving degree.

Also, a globally-tree surviving degree is a k-globally tree surviving degree. To really

show that this degrees make a hierarchy, we need to make the following observations.

Lemma 2.31. Given k ≥ s ≥ 2, a k-globally tree surviving degree is also an s-globally

tree surviving degree.

Proof. By definition, an s-tree is also a k-tree, so, if you survive all k-trees, in particular,

you survive all s-trees.

Lemma 2.32. Given k ≥ s ≥ 2, a k-globally branch surviving degree is also an s-globally

branch surviving degree.

Proof. Given k ≥ s notice that if A is not an s-globally surviving degree then all the

total functions that it computes are the branch of a computable s-branching tree. Now,

notice that we can make a computable s-branching tree of ωω into a k-branching tree in

a uniform way, so all the total functions that A computes are a branch of a k-branching

tree.

This shows that A is not k-globally surviving.
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Note that contrary to what the name suggests, being k-globally surviving is weaker

than being k-surviving: a function that is k-surviving is also k-globally surviving since

(k+1)<ω ⊆ (ω)<ω and the fact that if T ⊆ (ω)<ω is a k-branching tree then T ∩(k+1)<ω

is a k-tree. We have:

Lemma 2.33. If A is a k-surviving degree then it is a k-globally surviving degree.

The converse fails badly, however:

Theorem 2.34. There is a Turing degree A that is globally tree surviving but not 2-

surviving.

Proof. As before, we will do forcing with stems and trees, but this time we will use

accelerating subtrees of ω<ω.

Definition 2.35. An accelerating tree is a subtree T ⊆ ω<ω such that if σ ∈ T is a

splitting node with n splitting initial segments, then σ has more than n + 2 immediate

successors.

We will force with conditions of the form 〈p, T 〉 were p ∈ ω<ω and T is a computable

accelerating subtree of ω<ω extending p.

We will construct A ∈ ω<ω with the following two requirements:

• Re,k: A is not a branch of the e-th computable k-subtree of ω<ω. This will make

A a globally tree surviving degree.

• Pe: ϕAe is either not total or there is n such that ϕAe (n) ≥ 3 or there is a computable

2-branching tree of 3<ω such that ϕAe is a branch of it. This will make A not a

2-surviving degree.
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We will set 〈p0, T0〉 = 〈∅, ω<ω〉.

At stage s = 2〈e, k〉, if Ue is the e-th computable k-branching subtree of ω<ω then

we look for an extension of ps that has at least k+ 1 successors and we define ps+1 to be

the successor that is not in Ue. We define Ts+1 to be the subtree of Ts extending ps+1.

Since Ts is computable, given ps+1, Ts+1 is computable.

At stage s = 2e+ 1 we have four cases:

Case 1 If there is σ ∈ Ts extending ps such that ϕσe is not total, then let ps+1 = σ

and define Ts+1 to be the subtree of Ts extending ps+1. Here we satisfy Pe by avoiding

totality.

Case 2 If there is σ ∈ Ts extending ps and n ∈ ω such that ϕτe(n) ≥ 3, then let

ps+1 = σ and define Ts+1 to be the subtree of Ts extending ps+1. This satisfy Pe.

Case 3 If there is σ ∈ Ts extending ps such that there a no τ1, τ2 ∈ Ts extending σ

such that ϕτ1e 6= ϕτ2e . In this case we will satisfy Pe by the fact that ϕAe with A extending

σ is computable if it is total.

Case 4 For this case, we need that the other three cases are not happening. We will

define ps+1 = ps and we will prune Ts.

We will define this prune by levels, here nodes at level n will have exactly n splits

before them. Furthermore, during the prune we will define a Ue a 2-tree (remember that

a 2-tree and a 2-branching tree are the same) such that for all the branches A of Ts+1,

ϕAe is a branch of Ue.

At level 0 we will have a unique node: ps+1. Furthermore, we will add ∅ to Ue.

Now, assume that τ ∈ Ts is a node in level n − 2 with n ≥ 2. We know that there

are exactly n− 2 splits before τ and that, in order to make Ts+1 accelerating, the next

split should have at least n nodes.
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To do this we will take σ ∈ Ts extending τ that has at least 3n successors τ 0
0 , ..., τ

0
3n−1

in Ts. We will look for m ∈ ω, and σi ∈ Ts extending τ 0
i such that ϕσie (t) ↓ for t < m

and that there are i0, j0 < 3n such that ϕ
σi0
e �m 6= ϕ

σj0
e �m.

Let m0 < m be the minimal number such that there are i.j < 3n with ϕσie (m0) 6=

ϕ
σj
e (m0). Since we know that ϕσie (m0) < 3, we have that there is k0 < 3 with at least

3n−1 σi such that ϕσie (m0) = k0.

We will define τ ′0 to be one of the σi such that ϕ
τ ′0
e (m0) 6= k0 and we will define

τ 1
0 , ..., τ

1
3n−1 to be 3n−1 of the σi with ϕσie (m0) = k0.

To clarify, at this moment we have τ ′0 ∈ Ts (that is a candidate to be a member of the

n-th level) and 3n−1 nodes of Ts, τ
1
0 , ..., τ

1
3n−1 , such that for i, j < 3n−1 ϕ

τ1i
e �(m0 + 1) =

ϕ
τ1j
e �(m0 + 1), ϕ

τ1i
e (m0) 6= ϕ

τ ′0
e (m0) but ϕ

τ1i
e �m0 = ϕ

τ ′0
e �m0.

We can repeat the process to get m1 ∈ ω, m1 > m0, τ ′1 ∈ Ts and τ 2
0 , ..., τ

2
3n−2 ∈ Ts all of

them extending one of the nodes τ 1
j and have similar properties as the above paragraph.

In other words: for i, j < 3n−2 ϕ
τ2i
e �(m1 + 1) = ϕ

τ2j
e �(m1 + 1), ϕ

τ2i
e (m1) 6= ϕ

τ ′1
e (m1) but

ϕ
τ2i
e �m1 = ϕ

τ ′1
e �m1.

Repeating this process n times, we get m0 < ... < mn−1 ∈ ω, τ ′0, ..., τ
′
n−1 ∈ Ts all

of them extending τ (even more specifically, they all come from a single split above τ)

such that ϕ
τi0
e �mj = ϕ

τi1
e �mj for all j ≤ i0, i1 < n. In particular, if we find τi extending

τ ′i such that ϕτie (t) ↓ for t < mn + 1, we have that the tree created by ϕτie �mn is a 2-tree.

Notice that for all i < n, τi have exactly n splits before it and the n-th split has n

successors. At this moment, we include τi at level n and we include ϕτie �mn to Ue. There

will be no more extension of τ in level n.

We now define Ts+1 to be the subtree generated by all the levels describe above. Ts+1

is an accelerating tree and for all the branches A of Ts+1, ϕAe is a branch of Ue. This
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satisfy the requirement Pe.

The above argument shows that the Turing degree of A =
⋃
n∈ω pn is globally tree

surviving but not 2-surviving, so we are done.

At the same time, the two notions are not too far apart in some sense.

Theorem 2.36. Given k ≥ 2, there is a k-globally surviving degree that is not `-globally

surviving for ` ≥ k + 1. Also, this degree is computable traceable.

So despite the difference between the two, there is a parallel between survival and

global survival (the proof is the same as in Theorem 2.22).

Finally, we rewrite the final results of section 2.3 with all of our new terminology:

Lemma 2.37 (2.14). If a Turing degree is not a k+ 1-globally surviving degree but it is

a k-globally surviving degree, then it is a k-surviving degree.

Lemma 2.38 (2.15). Any Turing degree that is a k-globally surviving degree either is a

k + 1-globally surviving degree or a k-surviving degree.

2.6 Combinatorial lemmas and localization proper-

ties

In this section we are going to build tools that will help us split Lk and vgk (see section

2.2. For this setting it is better to understand some of the processes as combinatorial

principles instead of parts of a forcing argument. Because of that, the following lemmas

come in pairs: one is a combinatorial statement and the following one is the forcing

result. The first pairs of result has a big resemblance with the proof of Theorem 2.34.
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Lemma 2.39. Given {fi : i ∈ I} ⊆ 3ω with |I| = 3n you can find S ⊆ I with |S| = n

such that {fi�n : i ∈ S, n ∈ ω} is a 2-tree.

Proof. We will do the proof by induction.

For n = 0 and n = 1 it is trivially true.

Now, assume that it is true for n, we will prove it for n+ 1.

Given {fi : i ∈ I} ⊆ 3ω with |I| = 3n+1 if all of them are the same function then

take the first n+ 1 of them, they make trivially a 2-tree. On the other hand, if there are

two of them that are different, find the first natural number m such that two of them

differ. Notice that, using a pigeon hole principle, there is a value k ∈ 3 such that there

is J ⊆ I, with |J | ≥ 3n such that for all i ∈ J we have fi(m) = k.

Now, take i0 ∈ I such that fi0(m) 6= k and let S ′ ⊆ J be the index set of size n given

after using the induction hypothesis over J . Notice that {fi0�j : j ∈ ω} ∪ {fi�j : i ∈

S ′, j ∈ ω} forms a 2-tree and that S = S ′ ∪ {i0} has size n+ 1.

Lemma 2.40. There is a forcing notion that adds a function from ω to ω that is a

branch of any k-tree from the ground model but such that all reals in 3ω are a branch of

a 2-tree in the ground model.

Proof.

Definition 2.41. We say that T ⊆
⋃
m∈ω

m∏
n∈m

(n + 1) is an accelerating tree if and only

if it is a subtree of
⋃
m∈ω

m∏
n∈m

(n + 1), if every node has an extension that splits and given

σ ∈ T such that there are ki ∈ ω, i < n, such that σ�ki is a splitting node (i.e., σ has n

splits before it) then σ has either 1 successor or at least n+ 2.5

5During the conference ’Set Theory of the Reals’, BIRS-CMO Oaxaca, August 2019, it was brought
to our attention that this forcing was originally defined by Geschke in [10] as Miller Lite Forcing.
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Let P be the forcing notion whose conditions are of the form 〈τ, T 〉 with τ ∈⋃
m∈ω

m∏
n∈m

(n + 1) and T an accelerating subtree of
⋃
m∈ω

m∏
n∈m

(n + 1) extending τ . We say

that 〈τ ′, T ′〉 ≤ 〈τ, T 〉 if and only if τ ⊆ τ ′, T ′ ⊆ T and τ ′ ∈ T .6

For a node ρ ∈ T , let

Tρ = {τ ∈ T : τ ⊆ ρ ∨ ρ ⊆ τ}.

Notice that given any k-tree U ⊆ ω<ω and a condition 〈τ, T 〉, there is ρ ∈ T that is

not a node in U (for example, go to a split with k + 1 nodes, one of them is not in U).

Furthermore, if we take the condition 〈ρ, Tρ〉, none of the branches of Tρ are branches of

U . This shows that forcing with accelerating tree forcings adds a function from ω to ω

that is not a branch of any k-tree from the ground model.

Now, we need to argue that all reals in 3ω are a branch of a 2-tree in the ground model.

Notice that the forcing is the set theoretical version of the forcing used in Theorem 2.34

(originally appear in [23] joint work with Noah Schweber). From that proof, translating

from computability theory to set theory, as follows, give us the desired result: instead

of talking about a Turing functional ϕe we will talk about a name of a function ḟ , then

we change all requirements that ask ϕτe to do “blah” to finding a condition 〈τ, Tτ 〉 that

forces ḟ to do “blah”.

The final part of the theorem is also a corollary of Lemma 2.48 letting κ = 1.

Lemma 2.42. Given {f ji : i ∈ I, j ∈ k} ⊆ 3ω with k ∈ ω, |I| = N(n, k) a big enough

number and m ∈ ω such that

(a) {f ji �l : i ∈ I, j ∈ k, l ∈ m} is a 2-tree and

6We decide to define the acceleration tree forcing using pairs to create a stronger resemblance to the
effective analogue of accelerating trees of ωω . Furthermore, this will allow us to easily define (T )0 in
Lemma 2.48.
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(b) such that if f ji �m = f ts�m with t 6= j we have that f ji = f ts

then you can find S ⊆ I with |S| = n such that {f ji �l : i ∈ S, j ∈ k, l ∈ ω} is a 2-tree.

Proof. We will prove this by induction over k.

At k = 1, we need N(n, 1) ≥ 3n so that we can use Lemma 2.39 to be done.

Now, assuming we have the case for k we will prove it for k + 1. We need N(n, k +

1) ≥ 3N(n,k), with this we can use Lemma 2.39 over {fki : i ∈ I} to get J ⊆ I such

that |J | = N(n, k) and {f ti �l : i ∈ J, t = k, l ∈ ω} is a 2-tree. Now, we can use

our induction hypothesis over {f ti : i ∈ J, t ∈ k} to get S ⊆ J of size n such that

{f ji �l : i ∈ S, j ∈ k, l ∈ ω} is a 2-tree.

We just need to show that

{f ji �l : i ∈ S, j ∈ k + 1, l ∈ ω} = {fki �l : i ∈ S, l ∈ ω} ∪ {f ji �l : i ∈ S, j ∈ k, l ∈ ω}

is a 2-tree.

Assume that we have a ∈ ω and 〈i, j〉, 〈s, t〉, 〈g, h〉 ∈ S × (k + 1) different between

them such that f ji �a = f ts�a = fhg �a. We have to show that

|{f ji �(a+ 1), f ts�(a+ 1), fhg �(a+ 1)}| ≤ 2.

Taking into account that {f ji �l : i ∈ I, j ∈ k + 1, l ∈ m}, {fki �l : i ∈ S, l ∈ ω} and

{f ji �l : i ∈ S, j ∈ k, l ∈ ω} are 2-trees, the only case left to check is when a ≥ m and

j, t and h are not all the same but at least one of them is equal to k. Without lost of

generality, assume that h = k and j 6= k.

Since a ≥ m we have that fkg �m = f ji �m. Using the fact that j 6= k, and our

theorem’s hypothesis, we have that fkg = f ji , so

{|f ji �(a+ 1), f ts�(a+ 1), fhg �(a+ 1)}| ≤ 2.
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It is important to remark that in these combinatorial lemmas it is never used that

the domain of the functions is ω, so these lemmas are also true for 3n.

The following definitions will facilitate our technical discussion.

Definition 2.43. A forcing notion has the k-localization property if and only if every

function in ωω in the generic extension is a branch of a k-tree from the ground model.

Definition 2.44. A forcing notion has the (k + 1)ω-localization property if and only

if every function in (k + 1)ω in the generic extension is a branch of a k-tree from the

ground model.

Two examples of simplification done by this definitions can be seen in Corollary 2.13

and Lemma 2.40 since they can be rewritten as

Corollary 2.45 (2.13). If a forcing has the k + 1-localization property but it does not

have the k-localization then it do not have the (k + 1)ω-localization property.

Corollary 2.46. If a forcing notion has the k+1-localization property and the (k+1)ω-

localization property then it has the k-localization property.

Lemma 2.47 (2.40). There is a forcing notion with the (2 + 1)ω-localization property

but without the k-localization property, for any k ∈ ω.

Newelski and Roslanowski, in [20], define the k-localization property. This property

was deeply study later by Roslanowski, in [26], and by Zapletal, in [39]. They found

that the k-localization property is preserved under most of the used countable support

product and iteration of proper forcings.
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Our forcing does not have the 2-localization property, it will have a version of that

for 3ω: the 3ω-localization property. Our proof will resemble the one did by Newelski

and Roslanowski, nevertheless, it is possible that there are results in the lines of the

other two papers.

Lemma 2.48. Countable product of the accelerating tree forcing has the 3ω-localization

property.

Proof. First, given a tree and n > 0, we let (T )n be the set of all nodes such that they are

the successors of the n-th split. As a convention, given p = 〈s, T 〉 a forcing condition, we

have that (T )0 = {s}. Now, given elements of the accelerating tree forcing we will define

for n ≥ 1, p = 〈s, T 〉 ≤n p′ = 〈s′, T ′〉 if and only if 〈s, T 〉 ≤ 〈s′, T ′〉 and (T ′)k = (T )k, for

all 1 ≤ k ≤ n, and p ≤0 p
′ if and only if p ≤ p′. Notice that, since these are subtrees of⋃

m∈ω

m∏
n∈m

(n+ 1), these orders have the fusion property and satisfy Axiom A (as in [4]).

Assume that we have a countable support product of the accelerating tree forcing of

length κ. Call the final partial order Pκ, as notation we will express q ∈ Pκ as q = 〈r, T 〉

and q(α) = 〈r(α), T (α)〉.

Given F ∈ [κ]<ω and η : F → ω, we define p ≤F,η q if and only if p ≤ q and for

all α ∈ F we have that p(α) ≤η(α) q(α). Furthermore, given σ ∈
∏

α∈F (T (α))η(α) and

p ∈ Pκ we define (p ∗ σ)(β) to be p(β) if β /∈ F and (p ∗ σ)(β) = 〈σ(β), Tσ(β)〉 if β ∈ F

(following the notation of Lemma 2.40).

The orders ≤F,η have the fusion property under the following conditions: given

pn+1 ≤Fn,ηn pn with
⋃
n∈ω Fn =

⋃
n∈ω supp(pn) and limn→∞ ηn(α) = ∞ for all α ∈⋃

n∈ω Fn we have that there exist q ∈ Pκ such that q ≤Fn,ηn pn for all n ∈ ω.

In order to complete the proof, it is enough to define the following concept and show
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the following claim:

Definition 2.49. Given 
P “ḟ ∈ 3ω”. We say that the 5-tuple 〈q, F, η,m,A〉 consoli-

dates ḟ if and only if the following is satisfied:

1. q = 〈r, T 〉 ∈ Pκ, F ∈ [κ]<ω, η : F → ω, m ∈ ω.

2. A ⊆ 3<m is a 2-tree, q 
 “ḟ�m ∈ A”.

3. For each σ ∈
∏

α∈F (T (α))η(α) there is g ∈ A such that q ∗ σ 
 “ḟ�m = g”.

4. If there is a condition q∗ ≤F,η q, M ∈ ω, h ∈ 3M and σ1 6= σ2 ∈
∏

α∈F (T (α))η(α)

such that q∗ ∗ σ1 
 “ḟ�M = h” but q∗ ∗ σ2 
 “ḟ�M 6= h” then there is g ∈ A such

that q ∗ σ1 
 “ḟ�m = g” and q ∗ σ2 
 “ḟ�m 6= g”.

Claim 2.50. Working in V , suppose that 
P “ḟ ∈ 3ω” and that 〈q, F, η,m,A〉 con-

solidates ḟ . Then there are M ′ > m, A′ ⊂ 3<M
′+1 a 2-tree with A = A′ ∩ 3<m and

q′ = 〈r′, T ′〉 ≤F,η q such that 〈q′, F, η + 1,M ′, A′〉 also consolidates f .

If we prove this claim, given p ∈ Pκ such that p 
 “ḟ ∈ 3ω” we can define qn, Fn,

ηn, An, mn as follows:

1. q0 = p, A0 = {∅} and m0 = 0.

2. We write supp(q0) = {αi0 : i ∈ ω} and let F0 = {α0
0}.

3. We let η0(α0
0) = 0. Clearly, 〈q0, F0, η0,m0, A0〉 consolidates ḟ .

4. We define qn+1, An+1 and mn+1 as the result of the claim using qn, An, Fn, ηn and

mn.
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5. We write supp(qn+1) = {αin+1 : i ∈ ω} and let Fn+1 = Fn ∪ {αjnin} with 〈in, jn〉

following the usual enumeration of ω × ω.

6. Finally, we let ηn+1(α) = ηn(α) + 1 for α ∈ Fn and ηn+1(αjnin ) = 0. Again, notice

that 〈qn+1, Fn+1, ηn+1,mn+1, An+1〉 consolidates ḟ .

With this, we can use the fusion property with qn+1 ≤Fn,ηn qn and get q ∈ Pκ such

that q ≤Fn,ηn qn for all n so we have that q 
 ‘̇‘ḟ ∈ [
⋃
n∈ω An]”.

This shows that all the functions in 3ω in the extension are a branch of a ground

model 2-tree.

It is important to notice that the properties given to the 2-tree in the above definition

and claim align with those in the hypothesis of Lemma 2.42. Specifically, clauses 1− 3

of the definition make A a tree like the one ask in part (a) of the lemmas hypothesis.

Furthermore, clause 4 aligns with hypothesis (b). It should be no surprise that we will

use Lemma 2.42 in the proof. In order to do that, we need a couple of observations and

reductions.

Below we assume that 〈q, F, η,m,A〉 consolidates ḟ and we fix β ∈ F . Let ν : F → ω

such that ν(α) = η(α) if α 6= β and ν(β) = η(β) + 1. To show Claim 2.50 we will look

for q′ ≤F,η q such that 〈q′, F, ν,M ′, A′〉 consolidates ḟ (instead of 〈q′, F, η + 1,M ′, A′〉).

This is enough since, changing the β we are using, we can go from η to η + 1 using |F |

intermediate ν functions.

Let n = ν(β) + 2 and we let k =
∣∣∏

α∈F (T (α))η(α)
∣∣. We will also use N(n, k) as

defined in Lemma 2.42.

Notice that, pruning the trees of q if necessary, we can find p0 = 〈r0, T0〉 ≤F,η q such
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that for each t ∈ (T0(β))η(β) = (T (β))η(β) we have that

|{s ∈ (T0(β))ν(β) : s extends t}| = |{s ∈ (T0(β))η(β)+1 : s extends t}| = N(n, k).

It is important to remark that, in general, p0 6≤F,ν q.

Observation A Suppose M ∈ ω and σ ∈
∏

α∈F (T0(α))ν(α). Then there exists

q∗ ∈ Pκ such that q∗ ≤F,ν p0 and q∗ ∗ σ forces a value to ḟ�M .

Proof. First find p∗ ≤ p0 ∗ σ that forces a value to ḟ�M . Afterwards, carefully define q∗

in such a way so that q∗ ∗ σ = p∗ and whenever τ ∈ σ ∈
∏

α∈F (T0(α))ν(α) do not share

any coordinate with σ then (q∗ ∗ τ)(α) = p0(α) for α ∈ F . For a full detailed proof, see

Lemma 1.7 of [5].

Observation B For M ∈ ω there exists there exists q∗ ∈ Pκ, q∗ ≤F,ν p0, such that

for every σ ∈
∏

α∈F (T0(α))ν(α) we have that q∗ ∗ σ forces a value to ḟ�M .

Proof. You can apply observation A finitely many times. For a full detailed proof, see

Corollary 1.10 of [5].

Now, given p ≤F,ν p0 and M > m we define

zp,M = |{a ∈ 3M : ∃σ ∈
∏
α∈F

(T (α))ν(α)(p ∗ σ 
 ḟ�M = a)}|.

Notice that zp,M ≤ k · N(n, k). Therefore, we can find p+ = 〈r+, T+〉 ≤F,ν p0 and

M ′ > m such that zp+,M ′ has the maximum value.

Passing to a≤F,ν condition we may also demand that for every σ ∈
∏

α∈F (T+(α))ν(α) =∏
α∈F (T0(α))ν(α), the condition p+ ∗ σ forces a value to ḟ�M ′.
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Observation C Suppose that σ0, σ1 ∈
∏

α∈F (T+(α))ν(α), M ′′ ≥ M ′, p ≤F,ν p+ and

a0, a1 ∈ 3M
′′
. If a0 6= a1 and

p ∗ σ0 
 ḟ�M ′′ = a0 and p ∗ σ1 
 ḟ�M ′′ = a1

then a0�M ′ 6= a1�M ′.

Proof. Suppose towards a contradiction that a0�M ′ = a1�M ′. We can find p′′ ≤F,ν

p ≤F,ν p+ ≤F,ν p0 such that for every σ ∈
∏

α∈F (T+(α))ν(α), the condition p′′ ∗ σ forces

a value to ḟ�M ′′. Then, zp′′,M ′′ > zp+,M ′ , a contradiction.

For every σ ∈
∏

α∈F (T+(α))η(α) =
∏

α∈F (T (α))η(α) there are N(n, k) many ρσ ∈∏
α∈F (T+(α))ν(α) =

∏
α∈F (T0(α))ν(α) such that for all α ∈ F \ {β} we have that σ(α) =

ρσ(α). Fix an enumeration of these ρ and define σ_i = ρσi (if we have σ1(β) = σ2(β)

then ρσ1i = ρσ2i for all i).

Given σ ∈
∏

α∈F (T+(α))η(α) and i ∈ N(n, k), define fσi ∈ 3M
′

to be such that

p+ ∗ σ_i 
 “ḟ�M ′ = fσi ”. Since 〈q, F, η,m,A〉 consolidates ḟ , we have that {fσi �l : i ∈

N(n, k), t ∈
∏

α∈F (T+(α))η(α), l ∈ m} ⊆ A is a 2-tree such that if fσ1i �m = fσ2j �m with

σ1 6= σ2 we have that fσ1i = fσ2s .

Furthermore, using observation C, we ensure clause (4) of the definition of consoli-

dation. So any condition below p+ will still satisfy it.

Now we can use Lemma 2.42 on {fσi : i ∈ N(n, k), σ ∈
∏

α∈F (T+(α))η(α)} so we can

find S ⊆ N(n, k) of size n such that

{fσi : i ∈ S, σ ∈
∏
α∈F

(T+(α))η(α)}

is a 2-tree.

To complete the claim, we use:
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• M ′,

• A′ = {f ti �l : i ∈ S, t ∈ k, l ≤M ′} and

• q′ ≤F,η q define as q′(α) = p+(α) for all α 6= β and q′(β) = 〈r′(β), T ′(β)〉 where

r′(β) = r+(β) and T ′(β) is an accelerating subtree of T+(β) such that

(T ′(β))ν(β) = {ρσi (β) : σ ∈
∏
α∈F

(T+(α))η(α), i ∈ S}.

Corollary 2.51. Countable support product of accelerating tree forcing has the (k+1)ω-

localization property for all k ≥ 2.

Proof. To prove this, it is enough to show that the (k + 1)ω-localization property is

implied by the (s+1)ω-localization property for k ≥ s ≥ 2, then, the result is a corollary

of Lemma 2.48.

Fix a surjective function f : (k + 1) → (s + 1). Notice that this function induces a

surjective function f ∗ : (k + 1)ω → (s+ 1)ω. Now, working in a generic extension given

a s-tree T from the ground model, (f ∗)−1[T ] is a k-tree from the ground model.

Therefore, if in the generic extension (s+ 1)ω is covered by s-trees from the ground

model, then (k + 1)ω is covered by k-trees from the ground model.

Now, the following definition can let us expand our last result a little more.

Definition 2.52. Forcing with k-branching trees of k<ω is the forcing notion that uses

subtrees of k<ω such that every node has either 1 or k successors.

This forcing is used in [20] where Newelski and Roslanowski showed that this forcing

has the k-localization property, i.e., that every function of ωω in the generic extension
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is the branch of a k-tree from the ground model. Notice that this property implies

the (k + 1)ω-localization property. A first step in order to investigate if the countable

support products of forcings with the (k+1)ω-localization property still has the (k+1)ω-

localization is true for a bigger spectrum of forcings than the accelerating tree forcing is

to show the following lemmas, that are analogues of Lemma 2.42 and 2.48:

Lemma 2.53. Given {f ji : i ∈ I, j ∈ a} ⊆ (k + 1)ω with a ∈ ω, |I| = N(n, a) a big

enough number and m ∈ ω that makes {f ji �l : i ∈ I, j ∈ a, l ∈ m} a k-tree such that if

f ji �m = f ts�m with t 6= j we have that f ji = f ts then you can find S ⊆ I with |S| = n

such that {f ji : i ∈ S, j ∈ l} is a k-tree.

Proof. This follows from the proofs of Lemma 2.39 and Lemma 2.42, in those lemmas

we had k = 2. The same reasoning will give us this lemma.

Lemma 2.54. Countable support product of alternating accelerating tree forcing and

forcing with k-branching trees of k<ω has the (k + 1)ω-localization property.

Proof. Notice that the orders ≤n also make sense when forcing with k-branching trees

of kω.

The proof in full detail will have the same extension as the proof of Lemma 2.48.

Nevertheless, here we give a sketch of how to combine the technique used in [20] and

the proof of 2.48.

Everything works the same changing 2 for k and 3 for k + 1. Now, to show the

analogue of Claim 2.50 we will have two cases:

1. If you are extending a node that comes from an accelerating tree, then use Lemma

2.54 instead of Lemma 2.48. Everything else works the same.
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2. If you are extending a node that comes from a k-branching tree instead of using

Lemma 2.54, it is enough to find a condition like p+. Since the next split only has

k successors, they naturally form a k-tree. Everything else works the same as the

proof of Claim 2.50 or you can use the technique used in [20].

2.7 The split

This first results is the result of a conversation with Corey Switzer during the XIX

Graduate Student Conference in Logic in Madison, Wisconsin, April 2018.

Lemma 2.55. The accelerating tree forcing has the Sacks property.

Proof.

Definition 2.56. Given a function f : ω → ω \ {0} an slalom of growth f is a function

s : ω → [ω]<ω such that |s(n)| ≤ f(n) for all n. We say that g ∈ ωω goes thorugh s if

and only if g(n) ∈ s(n) for all n.

Definition 2.57. [30] We say that a forcing has the Sacks property if and only if there

is g ∈ V , g : ω → ω \ {0} that diverges to infinity, such that for all f ∈ ωω ∩ V [G] there

is a tree T ∈ V such that f is a branch of T and the n-th level of T has size g(n).

Notice that, given an slalom of growth f , we can generate a tree T such that its n-th

level has size
∏n

i=0 f(i).

To show that the accelerating tree forcing has the Sacks property we will show that

every real in ωω ∩ V [G] goes through an slalom s ∈ V such that |s(n)| ≤ n!.
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Let P be the accelerating tree forcing. From Lemma 2.48 we know that given a

name ḟ such that 
P ḟ ∈ ωω then there is a condition 〈p, T 〉 ∈ P such that given

σ ∈ T n (notation defined in Lemma 2.48) we have that there is τσ ∈ ωn such that

〈σ, Tσ〉 
 ḟ�n = τσ.

In V define s : ω → [ω]<ω such that

s(n) = {τσ(n) : σ ∈ T n}.

Since T is accelerating, we have that |s(n)| ≤ n!.

It is important to mention that in August 2019 it was brought to our attention

that, in [10], Geschke showed indirectly that the accelerating tree forcing has the Sacks

property7. We hope that this more direct proof is both more convinient for the reader

and, maybe, useful for future works.

Theorem 2.58. In the forcing extension generated after forcing with a countable support

product of accelerating tree forcing cof(N ) = ℵ1.

Proof.

Theorem 2.59. (from [6]) cof(N ) is the cardinality of the smallest family F of slaloms

of growth f (for f : ω → ω \ {0} increasing and diverging to infinity) such that all reals

in ωω go through a slalom in F .

Theorem 2.60. (from [30]) The countable support product of forcings that have the

Sacks property have the Sacks property.

Notice that, if a forcing has the Sacks property then cof(N )V = cof(N )V [G].

7He forced the Dual Coloring Axiom and showed that this axiom implies cov(N ) = ℵ1.
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Since the accelerating tree forcing has the Sacks property, this shows that the model

generated in Theorem 2.61 satisfies cof(N )V [G] = ℵ1.

In Theorem 2.62 we can also get the same using the fact that forcing with k-branching

trees also has the Sacks property.

Theorem 2.61. It is consistent with ZFC that ∀k ≥ 2(cof(N ) = Lk < vgk = c).

Proof. Starting with a model of ZFC+GCH we can make a countable support product

of ℵ2 accelerating tree forcing described in Lemma 2.40. Using Axiom A, as in [4], we

know that the product preserves cardinals and that c = ℵ2. Also, by Lemma 2.48, the

resulting model will have Lk = L2 = ℵ1. Furthermore, by Lemma 2.58, cof(N ) = ℵ1.

We just need to show that in the extension vgk = ℵ2 = c. In order to do this, we will use

the tree equivalence show in Lemma 2.9 instead of k-globally adaptive predictors.

Let Pω2 =
∏

α∈ω2
Qα be the countable support product of accelerating tree forcings.

Let G = {cα : α ∈ ω2} be generic over Pω2 . Now, for all β < ω1 let k(β) ∈ ω and let

Tβ ⊆ ωω be a k(β)-tree in V [G].

Now, in V , we can find Ṫ (β) a Pα(β)-name for some α(β) ∈ ω2. So, there is γ ∈ ω2

such that α(β) < γ for all β. Therefore, we have that Tβ ∈ V [{cα : α < γ}] for all

β ∈ ω1.

Notice that if T is an accelerating tree in V , then at the split k(β) + 1 it has a

node that is not in Tβ in V [{cα : α < γ}]. Then avoiding Tβ is a dense condition (in

V [{cα : α < γ}]) for accelerating trees from V .

Since cγ is a V -accelerating forcing generic over V [{cα : α < γ}], then cγ is not a

branch of any k-tree in V [{cα : α < γ}], k ∈ ω. Therefore, cγ is not a branch of any Tβ.

This shows that, in V [G], ωω is not cover by {Tβ : β ∈ ω1}. Since this was an
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arbitrary collection we have that vgk = ℵ2 for all k ∈ ω.

This theorem proves that it is consistent that vgk 6= Lk and answers the question from

Blass about the identity of vgk: they indeed are a different cardinal characteristic from

the ones that are known.

Furthermore, we can see that there are more ways to do this split:

Theorem 2.62. For all s ≥ 2 it is consistent with ZFC that ∀k ≥ 2(cof(N ) = Ls+1 <

Ls = vgk = c).

Proof. Following the same strategy as above, starting with a model of ZFC +GCH we

can make a countable support product of the accelerating tree forcing alternated with

forcing with s+ 1-branching trees of (s+ 1)ω. Just as before, we know that the product

preserves cardinals and that c = ℵ2. Also, by Lemma 2.54, the resulting model will have

Ls+1 = ℵ1 and by the final comment of Lemma 2.58, cof(N ) = ℵ1. We just need to

show that, in the extension, Ls = vgk = ℵ2 = c.

Let Pω2 =
∏

α∈ω2
Qα be the countable support product of accelerating tree forcings,

when α is even and forcing with s+ 1 subtrees of (s+ 1)ω when α is odd. Let G = {cα :

α ∈ ω2} be generic over Pω2 .

To see that vgk = ℵ2 = c, we can do the same as Theorem 2.61, above. Now, showing

that Ls = ℵ2 = c can be found in [20]. Nevertheless, for convenience to the reader, we

give an argument here:

For all β < ω1 let Tβ ⊆ (s + 1)ω be an s-tree in V [G]. In V , we can find Ṫ (β) a

Pα(β)-name for some α(β) ∈ ω2. So, there is γ ∈ ω2 such that α(β) < 2 · γ + 1 for all β.

Therefore, we have that Tβ ∈ V [{cα : α < 2 · γ + 1}] for all β ∈ ω1.
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Since c2·γ+1 is a generic for the forcing using s+1-branching trees (from V ) of (s+1)ω

over V [{cα : α < γ}], then c2·γ+1 is not a branch of any s-tree in V [{cα : α < γ}] (same

reasoning as in Theorem 2.61). Therefore, c2·γ+1 is not a branch of any Tβ.

This shows that, in V [G], (s + 1)ω is not cover by {Tβ : β ∈ ω1}. Since this was an

arbitrary collection we have that Lk = ℵ2 for all k ∈ ω.

Theorem 2.62 shows that in order to have different values for vgk and Lk it is not

necessary that every Ls have the same value.

2.8 Further questions

First, although we have established a number of facts about the effective localization

numbers (or rather, the highness properties corresponding to localization numbers),

there are still important questions left open regarding to their interactions with better-

understood highness properties. For example, we showed that computably traceable

degrees could witness separations between levels of the global survival hierarchy, but

the general role of computable traceability here is open. We do not know whether there

are non-computably traceable degrees which are not k-surviving for k ≥ 2, or whether

“k-surviving for every k” implies not computably traceable. Similarly we can ask about

the role of DNC in these contexts.

Second, returning to the relationship between local and global survivability notions, it

seems likely that the combinatorial arguments of Theorems 2.9 and 3.10 used to establish

that the respective degrees are not surviving can be modified to prove more than was

necessary for those theorems — namely that for every k, every (k+1)-branching subtree

of (k+ 2)<ω (not just element of (k+ 2)ω) computable from the generic added by either
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of the following two forcings is contained in some computable (k+ 1)-branching subtree

of (k + 2)<ω:

• Forcing with computable accelerating trees with explicit stems.

• Forcing with k-branching subtrees of (k + 1)<ω which have a splitting node above

every node, again with explicit stems.

Appropriately relativized, these preservation results would show that forcing with the

product of the forcings above produces a real which is not (k+ 1)-surviving; meanwhile,

by the previous results the real produced is both globally branch surviving and k-

surviving. This would separate the global and local survivability notions in a strong

way.

To finish this first set of effective questions, the following where suggested by the

referee of [23], where these results appeared first:

Question 2.63. Is there a degree which is k-globally branch surviving for every k ∈ ω,

but is not globally branch surviving? Similarly, is there a degree which is k-globally tree

surviving for every k but not globally tree surviving?

Question 2.64. There is also a “dual” notion to survival: say that a k-tree T is weakly

k-engulfing if for every computable f ∈ (k+1)ω there is some path g through T which is

eventually equal to f . What can we say about the degrees of weakly k-engulfing k-trees?

(And we can ask the analogous question for k-branching trees.)

Now, during this chapter, the (k+1)ω-localization property played a really important

role. In order to show that it was preserved the proofs showed above are really case

specific. This is useful for our purposes, but a question arises:
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Question 2.65. Can we show that the (k+ 1)ω-localization property is preserved under

countable support iteration and products?

This is likely to be possible. In [39], Zapletal showed that the n-localization property

is preserved under countable support product and iteration of a broad variety of forcings

(some kind of definable proper forcings).

Finally, notice that vgk is a cardinal characteristic that is usually really closed to c.

This is not true in cardinal arithmetic, but it is true in the Chicon diagram: all of these

numbers are above cof(N ). So, in order to work with them, it is important to use forcing

notions that are tame somehow (they cannot add Cohen or random reals, for example).

In this case, we used a forcing notion with the (k+ 1)ω-localization property but, in the

literature, there are examples of properties like the Sacks property, the n-localization

property and, most recently, the shrink wrapping property (see Guzman-Hathaway [12])

that are also tame with reals. It is important to notice that most of these ‘tameness’

properties relates to the idea of keeping the new reals inside a tree of some sort.

Question 2.66. Is there an underlying theorem (or meta theorem) that relates all (of

some) of this tameness properties?

One possible result could be that all of them are preserved under countable support

product of a variety of forcings, but we do not have any good guess of whether this is

possible or not.
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Chapter 3

Sets of reals closed under Turing

equivalence

3.1 Introduction

Studying sets of reals has been one of the main objectives of set theory since it was

conceived by Cantor (while studying derived sets). Impressively, as remarked by Löwe

[18], not much attention has been given to the study of sets of reals closed under Turing

equivalence (except in a small list of articles mentioned in [18]). Although it looks

simple, this question can have many modifications that span a really rich area of study.

For example, focusing on algebra, we can ask which degrees are needed to form a

field closed under Turing equivalence (or a vector space over Q). Furthermore, given

A ⊆ R we wonder how does the operator of ‘smallest field that contains A’ and the

operator ‘close A under Turing equivalence’ relate to each other. Do they conmute?

Focusing on measure we can ask which degrees are needed to form a measurable set

that is closed under Turing equivalence. Finally, from the order perspective, we wonder

which order types are attainable by sets closed under Turing equivalence.

All these questions are addressed in this work and, surprisingly, we discover that

our work involving order types has an application to the automorphism problem of the
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Turing degrees. This work, as well as recent work in effective cardinal invariants, adds

support to the old standing idea that studying computability related questions with set

theoretic tools, and vice-versa, gives birth to new and interesting results in both areas.

The chapter is organized as follows: the rest of this section will introduce some no-

tation and give some observations that help explain why we choose to study certain

questions in later sections. Sections 3.3, 3.4, 3.5 study sets of reals closed under Turing

equivalence from the perspective of algebra, measure and order (respectively). In Section

3.6 we prove that any Borel function is the countable union of monotone functions (The-

orem 3.43). This theorem is a key component of our application to the automorphism

problem.

Section 3.7 centers on Theorem 3.51. This theorem is a restriction in the way that

nontrivial automorphism of the Turing degrees interact with 1-generic degrees. Finally,

Section 3.8 talks of possible ways to modify, or improve, Theorem 3.51 and Section 3.9

has open questions and conclusions.

3.2 Background and firsts definitions

Given a real number r, the set Rr = {s ∈ R : deg(r) = deg(s)} is countable and dense.

It is countable since we only have countably many Turing operators, it is dense since

changing finite information does not change the Turing degree of a number. These two

properties imply that Rr, as an order, is isomorphic to Q.

On the other hand, given a noncomputable r, Rr is not R0 + r (since 2r ∈ Rr but

2r−r = r /∈ R0) nor r ·R0 (since 0 /∈ Rr and, less triavially, r+ 1
2
∈ Rr but 1+ 1

2r
/∈ R0).

So Rr is not a coset of R0 as a group (either with respect to addition or multiplication),
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it is not a subfield, ideal or a subgroup of R.

Given S a subset of the Turing degrees, our objective is to understand how does

RS =
⋃
deg(r)∈S Rr sit inside R.

3.2.1 Notation

• We will denote real numbers by lower case letters, x, y, z, a, b, c.

• We will denote Turing degrees by bold lower case letters, x,y, z, a,b, c.

• Upper case letters, A,B,E, L, will denote subsets of real numbers.

• ϕe will denote the e-th Turing functional. If no oracle is expressed, we will assume

that we are using a computable oracle.

• D is the set of all Turing degrees.

• Upper case calligraphic letters, S,A,B, will denote subsets of the Turing degrees.

• Rx (Rx) are all the members of the real line, R, that are Turing equivalent to x

(resp. that have degree x).

• Given a subset of reals A, RA =
⋃
x∈ARx.

• Given a subset of Turing degrees S, RS =
⋃

x∈S Rx.

3.3 Algebra

The first question that we will work on is which subsets of the Turing degrees S, make

RS a subfield of the real numbers.
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From Theorem 6 in Rice [25], we know that R0 is a real closed field. In other words,

R0 is an elementary subfield of the real numbers or, equivalently, a field that is linearly

ordered and that has at least one root for all odd degree polynomials. Following the

same proof as in [25], which boils down to showing that finding roots is a computable

process, we can also show that R∧
x is a real closed field, where

∧
x is the lower cone of

x, i.e., all the reals that are computable from x.

Corollary 3.1. For any x ∈ R, the set R∧
x is a real closed subfield of R.

Furthermore, we can be sure that all of these fields are non-isomorphic.

Lemma 3.2. Given S,K ⊆ R real closed subfields of R we have that S can be embedded

into K if and only if S ⊆ K.

Proof. The “if” side of the theorem is clearly true.

For the other implication, assume that S can be embedded into K. Since both are

subfields of the real numbers, we have that Q ⊆ S ∩K. Furthermore, any embedding

between S and K will fix Q.

Now, since these are ordered fields, given x ∈ R, the real number is completely defined

by it’s order relation with respect to elements of Q. Therefore, the only embedding from

S to K is inclusion.

Corollary 3.3. The Turing degrees, with their order, can be embedded into the countable

real subfields of R.

Notice that R∧
x is a subfield that contains Rx. Is it the smallest one? It turns out

that it is.

Lemma 3.4. For any x ∈ R, and y ∈ R∧
x there exists z, w ∈ Rx such that z+w ∈ Ry.
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Proof. Without loss of generality, we will assume that x, y ∈ [0, 1]

Assume that we have sequences of digits 〈ai : i ∈ ω〉, 〈bi : i ∈ ω〉 that represents the

decimal expansion of x and y, respectively, and that are computable from x.

Define s =
∑∞

i=0
ai

104i+1 and t =
∑∞

i=0
bi

104i+3 . Let w = s + t and z = −s. Notice that

you can easily distingish the decimal digits of x and y in w.

Clearly, s and t can be computed from x and y can compute t. Furthermore, we have

that t can compute y and that s and w can compute x.

With all of this, we have that w, z ∈ Rx and that w + z = t ∈ Ry.

Theorem 3.5. Given y ∈ R∧
x we can express y as a finite sum of elements of Rx.

Proof. Notice that, given y ∈ [0, 1] and 〈bi : i ∈ ω〉 that represents the decimal expansion

of y computable from x, we can write y = a1 + a2 + a3 + a4 such that ak =
∑∞

i=0
b4i+k

104i+k
.

So, as we did in the proof of the above lemma, we can find zk, wk ∈ Rx such that

ak = zk + wk. So, we have that y =
∑4

k=1 zk + wk.

Corollary 3.6. R∧
x is the smallest field that contains Rx.

Corollary 3.7. If C is a set of Turing degrees that is linearly ordered under ≤T then

R∧C is the smallest field that contains RC.

Proof. If C has a maximum element, then this follows from the result above. Otherwise,

take 〈ai : i ∈ α〉 ⊆ C a cofinal sequence, with α ∈ {ω, ω1} and notice that
⋃
i∈αR∧ai is a

field.

Now we can answer our first question:
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Theorem 3.8. Given S a set of Turing degrees, we have that RS is a field if an only

if S is and ideal, i.e., S is closed under finite Turing joins (denoted by ⊕) and closed

downward under Turing reduction.

Proof. In one direction, if RS is a field, then given x ∈ RS we have that Rx ⊆ RS .

Therefore, by Corollary 3.6, we have that R∧x ⊆ RS , so S is closed downwards. Now,

if x, y ∈ RS then, using an argument like the one in Lemma 3.4, there are s ∈ Rx and

t ∈ Ry such that s+ t = x⊕ y.

For the other direction, assume that S is downward closed and closed under joins.

First, notice that 0, 1 ∈ RS and that given x ∈ RS we have that 1
x
∈ RS . Finally, if

x, y ∈ R we have that x+ y, x · y ≤T x⊕ y. So, given x, y ∈ RS , since x⊕ y ∈ S, we can

conclude that x+ y, x · y ∈ R∧x⊕y ⊆ RS .

The following result shows that, when studying countable subfields of R closed under

Turing equivalence, it is enough to look at chains of Turing degrees.

Corollary 3.9. Given F ⊆ R a countable subfield closed under Turing equivalence there

is a set C of Turing degrees that is linearly order under ≤T , such that F = R∧C.

Proof. Let F = {ai : i ∈ ω} be a countable subfield closed under Turing equivalence

and denote by ai the Turing degree corresponding to each element. Let C = {
⊕

i∈n ai :

n ∈ ω}. From the theorem above, we know that there is a set S of Turing degrees that

is and ideal such that F = RS .

Notice that C ⊆ S and that S ⊆ ∧C. Therefore, F = RS ⊆ R∧C, RC ⊆ RS = F and

R∧C ⊆ F (since R∧C is the smallest field containing RC).

In view of these result, we can conjecture that the smallest subfield containingRx∪Ry

is R∧x⊕y. Nevertheless, the following result hints to the contrary.



56

Definition 3.10. Given A ⊆ R let 〈A〉Q be the smallest Q-vector space containing A.

Corollary 3.11. Given x ∈ R, 〈Rx〉Q = R∧x.

Proof. This follows from Theorem 3.5.

Theorem 3.12. There are x, y ∈ R such that 〈Rx ∪Ry〉Q 6= R∧x⊕y.

Proof. First of all notice that, if w ∈ 〈Rx ∪ Ry〉Q then there are s ∈ R∧x and t ∈ R∧y

such that w = s+ t. Then, if w computes s it follows that w also computes t.

Using the classic result of embedability of upper semilattices as initial segments of

the Turing degrees, by Lachlan and Lebeuf [17], there are degrees x,y,w such that x

and y are distinct minimal degrees (the only degree below them is 0) and such that

x <T w <T x⊕ y.

Notice that, given w ∈ w, w 6= s + t for any s ∈ R∧x and t ∈ R∧y. To show this,

suppose that w = s+ t. Since w computes s we have that w computes t. We know that

y 6≤T w, therefore t is computable. This means that w = s + t is such that w ∈ Rx

which is impossible since x <T w. This shows that w /∈ 〈Rx ∪Ry〉Q.

Furthermore, it also shows that Rw ∩ 〈Rx ∪Ry〉Q = ∅ and that Rx⊕y 6⊆ 〈Rx ∪Ry〉Q

(although, x⊕y ∈ 〈Rx∪Ry〉Q). In particular, R〈Rx∪Ry〉Q = Rx⊕y∪Rx∪Ry∪R0 6= R∧x⊕y,

since R∧x⊕y = Rx⊕y ∪Rw ∪Rx ∪Ry ∪R0.

Corollary 3.13. There is a collection of Turing degrees S such that 〈RS〉Q is not closed

under Turing equivalence.

Corollary 3.14. There is a Q-vector space, V , inside R such that RV is not a vector

space.
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Thanks to a suggestion from Josiah Jacobsen-Grocott, we can translate these results

to the field case

Theorem 3.15. There are real numbers x, y ∈ R, i ∈ ω such that the minimal field

containing Rx ∪Ry is not R∧x⊕y.

Proof. Let x, y ∈ R be such that 0′ = deg(x)′ = deg(y)′ = deg(x ⊕ y). A construction

of this pair of low degrees can be found making a small modification of the classic Sacks

Splitting Theorem [29].

Notice that the elements of the minimal field containing Rx ∪ Ry are of the form∑n
i=0 siti∑m
j=0 ajbj

with si, aj ∈ R∧x and ti, bj ∈ R∧y.

Since 0′ = deg(x)′ = deg(y)′, we know that 0′ can compute a list {fe}e∈ω with all the

x computable reals, i.e., members of R∧x and a list {ge}e∈ω with all the y computable

reals. Therefore we can make a list of all he =

∑n
i=0 feighi∑m
j=0 fkjg`j

.

Using a diagonalization, there is a real w computable from 0′ such that for all e ∈ ω

w 6= he.

This means that w ∈ R∧0′ = R∧x⊕y, but w is not in the minimal field generated by

Rx ∪Ry.

These few examples do not exhaust the questions related to RS from an algebraic

perspective. Nonetheless, we will leave some open questions and list them in the last

section. Meanwhile, we will study these sets from a different perspective.
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3.4 Measure

One of the firsts examples of pathological subsets of the real line appeared in the early

1900’s when Guiseppe Vitali consruct a set that was not Lebesgue measurable. From

that moment onward, finding strange subsets of the real line has been a usual part of

the mathematical world. And, as we will see multiple times in these sections, there are

examples of sets of reals A that have pathological properties but such that RA does not

have the same properties. Because of this, we believe that ‘exploding’ a set into a set

that is closed under Turing equivalence is an operation that ‘tames’ certain sets.

Definition 3.16. 1. A Vitali set, V ⊆ R, is a set such that for any r ∈ R there is

x ∈ V such that x− r ∈ Q and given different x, y ∈ V , x− y /∈ Q.

2. A multiplicative Vitali set, M ⊆ R, is a set such that for any r ∈ R \ {0} there is

x ∈M such that x
r
∈ Q and given different x, y ∈M , x

y
/∈ Q.

Theorem 3.17 (Folklore). Vitali sets and multiplicative Vitali sets are not measurable.

Theorem 3.18. Given V a Vitali set, RV = R. Analogously, given M a multiplicative

Vitali set, RM = R.

Proof. We will use that addition and multiplication by a computable number is a com-

putable operation.

In the additive case, we know that R = V + Q = {r + q : q ∈ Q, r ∈ V } and that

r + q is Turinq equivalent to r. Therefore, RV = R.

We can do an analogue argument for the multiplicative case.

This shows that there are non measurable sets that become measurable once they

are closed under Turing equivalence.
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In the literature we can find a direct generalization of Vitali sets focussing on groups

different than Q. These examples will behave differently.

Definition 3.19. 1. Given a group G and an action a of G over R, we say that

S ⊆ R is an a-selector (or G-selector when the action is understood) if and only

if for every x ∈ R there is v ∈ S and g ∈ G such that g ·x = v and for all x, y ∈ S,

x 6= y, there is no g ∈ G such that g · x = y.

2. We say that an action a of G over R is paradoxical if and only if every selector

of a is non measurable.

3. If a, an action of G over R, is paradoxical we call the selectors a-Vitali sets and,

in case that the action is clear, we call them G-Vitali sets.

Lemma 3.20 (Folklore). Given a measurable set A, lim
r→0

λ(A ∩ (A + r)) = λ(A) where

λ is the Lebesgue measure (in any dimension) and A+ r = {a+ r : a ∈ A}.

Lemma 3.21. For any computable group G, i.e. a countable group with a computable

bijection with ω such that the group operation is computable, and a computable action a

of G over R we have that for every a-selector set A, RA = R.

Theorem 3.22. There is a group G such that for all its G-Vitali sets, A, RA is non-

measurable.

Proof. Let r ∈ R be noncomputable and let G = r · Q = {rq : q ∈ Q}. This set is

a group under addition and it has a cannonical action over R (again, addition). Since

G is isomorphic to Q as a group, the same proof that shows that any Q-selector is

nonmeasurable shows that any G-selector is nonmeasurable.
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Now, let A be a G-Vitali set. We want to show that RA is nonmeasurable. In order

to do this, we will show that RA ×RA ⊆ R2 is nonmeasurable.

Notice that, since A+G = R we also have that RA+G = R, then RA×RA+G×G =

R2. This means that, RA ×RA is not of measure zero (since G is countable).

To finish the proof, we would like to show that RA ∩ (RA + qr) = ∅. Nevertheless,

this is not true. Given x ∈ RA and q ∈ Q if x + qr = y ∈ RA then x ⊕ y computes r.

We will have to modify R by a null set to finish our proof.

Let B = RA ×RA \N where

N = {(x, y) : r ≤T x⊕ y}.

The classical proof of Sacks that the upper cone of non-computable reals have measure

zero in R, in [28], also shows that N is a null set of R2 (for non computable r). It is

enough to show that B is nonmeasurable to finish the proof.

Notice that, given h ∈ G×G\{(0, 0)}, (B+h)∩B = ∅. Therefore, for any sequence

from G×G, hi, that converges to (0, 0) we have that lim
i→∞

λ((B+hi)∩B) = 0. If B was

a measurable set, it would have to have measure 0, but we know that B is not a null

set. Therefore, B is not measurable.

Corollary 3.23. There is a measurable set L such that RL is nonmeasurable.

Proof. Let C be the ternary Cantor set. Take a function, f , that bijects 2ω with the

usual Cantor set inside the reals, C, and maintains degree, in other words, given a ∈ 2ω

then deg(a) = deg(f(a)).

This functions shows that C has a representative of every degree in R. Using the set

A from the theorem above, let L = RA ∩ C.
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Since C has measure zero we know that L is a measurable set of measure zero. Now,

since for all real number there is a Turing equivalent real in C we have that RL = RA.

Although it would have been interesting to find a positive measure measurable set

whose closure under Turing equivalence is not measurable, we found out that this is not

possible thanks to a suggestion from James Hanson.

Theorem 3.24. Given A ⊆ R such that λ(A) > 0, we have that RA is measurable.

Proof. Remember that the Lebesgue Density Theorem states that given a measurable

set A, for almost all points of A, lim
ε→0

λ(A ∩ (x− ε, x+ ε))

λ((x− ε, x+ ε))
is either 0 or 1. Furthermore,

if it it the case that for almost all points the Lebesgue density is 0, then A is a measure

zero set.

We will show that if λ(A) > 0 then R \ (Q + A) has measure 0, i.e., Q + A has

full measure. Since Q + A ⊆ RA, we have that RA has also full measure, hence, it is

measurable.

Now, to show that Q+A has full measure we will show that λ((Q+A)∩B) > 0 for

all B such that λ(B) > 0.

Let B be such that λ(B) > 0. Using the Lebesgue Density Theorem, find a ∈ A,

b ∈ B and ε > 0 such that λ(A ∩ (a− ε

2
, a+

ε

2
)) >

3ε

4
and λ(B ∩ (b− ε

2
, b+

ε

2
)) >

3ε

4
.

Now, let r ∈ Q such that λ((a+ r− ε

2
, a+ r +

ε

2
) ∩ (b− ε

2
, b+

ε

2
)) >

3ε

4
. Since each

of the intervals lost at most
ε

4
lenght when intersected, we have that

λ((A+ r) ∩ (a+ r − ε

2
, a+ r +

ε

2
) ∩ (b− ε

2
, b+

ε

2
)) >

2ε

4

and

λ(B ∩ (a+ r − ε

2
, a+ r +

ε

2
) ∩ (b− ε

2
, b+

ε

2
)) >

2ε

4
.
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Therefore,

λ((A+ r) ∩B ∩ (a+ r − ε

2
, a+ r +

ε

2
) ∩ (b− ε

2
, b+

ε

2
)) >

ε

4
.

This shows that λ((A+ r) ∩B) > 0 which implies that λ((A+Q) ∩B) > 0.

We think that it is important to investigate which non-measurable sets become mea-

surable once they are closed under Turing equivalence.

Because it is well known that countable sets have measure zero and that, depending

on set theory axioms, uncountable sets of size strictly less than the continuum are

either measure zero or non measurable, while working on this topic we should focus our

attention exclusively on sets of size c (continuum). Nevertheless, in this work we will

not investigate other examples related to measure.

3.5 Order types

A different question about RS is whether it can be isomorphic to any order type that

sits inside the reals.

A really quick answer for this is “no”. To see this, we need a definition:

Definition 3.25. Given A ⊆ R and a cardinal κ ≤ 2ℵ0 = c we say that A is κ-dense if

and only if for any nonempty interval I we have that |I ∩ A| = κ.

Necessarily, RS is going to be a |S| · ℵ0-dense subset of reals (because each Rx is

ℵ0-dense). Therefore, any order that is not κ-dense is not going to have an isomorphic

copy as RS .

By a classical result of Cantor, we know that every ℵ0-dense subset of reals is order

isomorphic to Q. Now, if there is ℵ0 < κ < c, then the study of κ-dense subsets of
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reals is completely independent of ZFC (see Baumgartner [3]). So we will only focus on

c-dense subsets of the reals (or subsets such that |S| = c).

Even in this situation, we know that we cannot get all possible order types, for

example R\{0} will not be isomorphic to any RS (any RS that contains an interval will

be R).

Trying to characterize which order types can be attained is still an open question.

Towards giving more insight into the problem, we will focus our attention to specific

c-dense subsets of reals.

3.5.1 Luzin and Sierpinski sets

Definition 3.26. We say that A ⊆ R is a Luzin set if and only if A is uncountable and

the intersection of A with any meager set (equivalently, no-where-dense set) is countable.

A is a Sierpinski set if, in the above definition, we replace meager with null (or

measure zero) set.

The following lemma also appears in Löwe [18] with a more complicated proof, since

they work in 2ω instead of the real line. Although we are sure that the results are the

same, this proof shows how different it is to work with sets of real numbers depending

on if you see them as contained in 2ω, ωω or the real line.

Lemma 3.27. There is no S such that RS is a Luzin or Sierpinski set.

Proof. Let C be the ternary Cantor set. As we remark in Corollary 3.23, C has a

representative of all Turing degrees in R.

Notice that, |RS ∩ C| = |S|. Then, if S is countable, RS is also countable, so it is

not Luzin; and if S is uncountable, RS intersects a meager set, C, in uncountably many
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points, so it is not Luzin.

An analogous reasoning shows that it cannot be Sierpinski using that C is a null

set.

We believe that it is important to remark that the above result is not as trivial as it

seems; notice that:

Lemma 3.28. Given a Luzin set L (resp. a Sierpinski set), the set L + Q is also a

Luzin set (resp. a Sierpinski set).

Proof. Let L be an uncountable set and assume that L + Q = {l + r : l ∈ L, r ∈ Q} is

not Luzin. Therefore, there is a meager set M such that M ∩ (L+Q) is uncountable.

Define L + r as {l + r : l ∈ L}. Since Q is countable, there should be r ∈ Q such

that (L+ r) ∩M is uncountable.

Nevertheless, (M − r) ∩ L is uncountable since |(M − r) ∩ L| = |(L + r) ∩M | and

M − r is also meager. This means that L is not Luzin.

In the case for Sierpinski, the argument is the same but replacing M with a null

set.

Taking into account that every uncountable subset of a Luzin (resp. Sierpinski) set

is also Luzin (resp. Sierpinski) set. The above result can be improved to:

Corollary 3.29. Given a set L ⊆ R, we have that L is a Luzin set (resp. a Sierpinski

set) if and only if the L+Q is a Luzin set (resp. a Sierpinski set).

Analyzing the proof of the lemma above we can notice that the key point is that

given M meager, M − r is also meager. If we think of translation by r as a function,

say f , we have that for all meager sets M , f−1(M) is also meager.
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This observation lets us expand our lemma:

Corollary 3.30. Given a countable set F of functions whose inverses preserve category

(resp. measure) closed under composition and a Luzin set (resp. Sierpinski set) L, we

have that the closure of L under F is also a Luzin set (resp. Sierpinski set).

Proof. We can follow the same proof as in Lemma 3.28 using the comments made in the

observation above.

Corollary 3.31. It is consistent with ZFC that there is no countable set F of functions

whose inverses preserve category (resp. measure) closed under composition such that for

all reals, r, we have that Rr is the closure under F of the set {r}.

Proof. Given a countable collection of functions, F , call Fr the closure of {r} under

F . Notice that, since F is countable, Fr is also countable. Given S ⊆ R, we define

analogously FS.

It is consistent with ZFC, regardless of the cardinal arithmetic, that there exists a

Luzin set L (of any desired size).

If F is a countable set of functions whose inverses preserve category and that is closed

under composition. Then, by the above corollary, we have that FL is Luzin.

We can show that it is not the case that for all r ∈ R we have that Rr ⊆ Fr: assume

otherwise, then we will have that RL ⊆ FL. Nevertheless, FL is Luzin and RL is not,

but this is a contradiction. Therefore, there exist uncountably many r ∈ L such that

Fr 6= Rr.

The proof for measure preserving functions is analogous, but it assumes the existence

of a Sierpinski set instead of a Luzin set.
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Corollary 3.32. It is consistent with ZFC that there is no countable set F of functions

whose inverses preserve category (resp. measure) closed under composition such that for

all reals, r, we have that R∧r is the closure under F of the set {r}.

This last corollary can also be shown directly (in ZFC) by constructing a computable

function that does not preserve category or measure. For the measure case, a candidate

is a computable isomorphism between a measure zero Cantor set and a positive measure

Cantor set.

3.5.2 Entangled sets

Definition 3.33. Given a collection of 2-tuples {(xα, yα) : α ∈ I} we say that these

tuples are disjoint if and only if |{xα, yα}| = 2 for all α and {xα, yα} ∩ {xβ, yβ} = ∅ for

all α 6= β.

Given ℵ0 < κ ≤ c, we say that A ⊆ R is κ-2-entangled if and only if |A| ≥ κ and

for every collection of size κ of disjoint 2-tuples of A there are (x1, y1), (x2, y2), (w1, z1),

(w2, z2) such that x1 < x2 and y1 < y2, w1 < w2 but z1 > z2.

If a set is ℵ1-2-entangled we just say that it is 2-entangled.

Notice that, any one-to-one function between two κ size disjoint subsets of a κ-2-

entangled set can be seen as a collection of size κ of disjoint 2-tuples. Then, by the

defining property of κ-2-entangled sets, this one-to-one function cannot be monotone

increasing nor monotone decreasing. This implies that, given any two disjoint subsets

of size κ inside of a κ-2-entangled, the subsets are not order isomorphic.

Lemma 3.34. There is no uncountable S such that RS is |S|-2-entangled.
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Proof. Notice that, for any S, RS + 2 = RS , therefore, ([0, 1] ∩RS) + 2 ⊆ RS and

([0, 1] ∩RS) + 2 ⊆ [2, 3]. Which means that (([0, 1] ∩RS) + 2) ∩ ([0, 1] ∩RS) = ∅.

If S is uncountable, we have that [0, 1]∩RS is uncountable. So the function x 7→ x+2

is a one-to-one order preserving function1 that shows that ([0, 1] ∩RS)+2 and [0, 1]∩RS

are order isomorphic.

This shows that RS is not |S|-2-entangled.

Upon closer inspection of the proof above, we can see that what makes RS not |S|-2-

entangled is that there are order preserving functions that preserve the degree. Making

a slight modification to the definition of an entangled set, we can create an S such that

RS is almost |S|-2-entangled.

Definition 3.35. Given ℵ0 < κ ≤ c, we say that A ⊆ R is layered κ-2-entangled

(or σ-2-entangled if the κ is understood) if and only if |A| = κ and there is a function

ht : A→ κ countable-to-one such that for every collection of size κ of disjoint 2-tuples of

A such that the entries of a given pair have different values of ht then there are (x1, y1),

(x2, y2), (w1, z1), (w2, z2) such that x1 < x2 and y1 < y2, w1 < w2 but z1 > z2.

Notice that any layered κ-2-entangled set contains a κ-2-entangled: every collection

of κ many elements that have different values of ht is κ-2-entangled.

Lemma 3.36. If A is κ-2-entangled and |A| = κ then A+Q is layered κ-2-entangled.

Proof. Let A = {xα : α < κ}, given s ∈ A+Q let ht(s) = min{α : ∃r ∈ Q (s = xα+r)}.

Since Q is countable, this function is countable-to-one. This function makes A + Q

layered κ-2-entangled.

1An order preserving function is a function such that x < y then f(x) < f(y). On the other hand,
an order reversing function is such that if x < y then f(y) < f(x).
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To show this, assume that A + Q is not layered κ-2-entangled. Then, there is a

collection of size κ of disjoint 2-tuples of A+Q such that the entries of a given pair have

different values of ht such that, as a function, call it f , from a subset of A+Q to A+Q

it is order preserving or order reversing.

Without loss of generality, let’s say that it is order preserving. Now, given any

element a ∈ dom(f) there is ra ∈ Q such that a = xht(a)+ra. We know that |dom(f)| = κ,

so, shrinking f , we can find a single r such that for all a ∈ dom(f), a = xht(a) + r. Since

f is one-to-one, we can do the same with range(f), i.e., we can shrink f in such a way

that there is q ∈ Q such that for all b ∈ range(f) we have b = xht(b) + q.

Finally, notice that the function f(x+r)−q is an order preserving one-to-one function

from A to itself with domain of size κ. This contradicts the fact that A is κ-2-entangled.

Corollary 3.37. Given a countable set F of strictly monotone functions closed under

composition and a κ-2-entangled set A of size κ we have that the closure of A under F

is layered κ-2-entangled.

Proof. The proof is the same as above as long as we replace addition by a rational with

other one-to-one monotone function.

From now on, we will fix a bijection between the Turing degrees and c. While working

with collections of Turing degrees our function ht will be the composition of the function

that maps a point to its degree followed by the bijection fixed above. In case that the size

of our set is not c, we create a bijection with the corresponding cardinal. Nevertheless,

to simplify notation, we will refer to ht as the degree of a point.

Given an entangled set A, is it true that
⋃
a∈ARa = RA is layered entangled? At
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this moment we can show this to be true using the, really strong, Proper Forcing Axiom

(PFA, see Chapter 5 section 7 of [16]). Later, using Theorem 3.43, we will see that PFA

was not necessary for this result. Nevertheless, this first approach helps to show which

steps need to be followed.

Corollary 3.38. PFA implies that for every κ-2-entangled set, A, we have that RA is

layered κ-2-entangled.

Proof. PFA implies that any countable-to-one function between subsets of reals is the

union of countably many monotone functions. Now, given a computable function ϕe :

ω → ω we can associate it to fe : R→ R where fe(x) = ϕxe (whenever ϕxe is total). Now,

let De = {x : x ≡T fe(x)}. We have that fe�De is countable-to-one.

Notice that, using the notation of 3.31, F = {fe�De : e ∈ ω} is such that for all

x ∈ R, Fx = Rx. Using PFA, we can change F for a countable collection of monotone

functions. Combining this fact with Corollary 3.37 we are done.

Later we will show in Theorem 3.45 that ZFC implies that given a 2-entangled set

E, RE is layered-2-entangled set. Nevertheless, it is important to remark that we can

get certain control over a layered entangled set with the following techniques:

Recall that, given S a subset of the Turing degrees we define RS =
⋃
deg(a)∈S Ra. We

will write Turing degrees with bold case to differentiate them from real numbers.

Theorem 3.39. Given continuum many Turing degrees, A, there is a continuum size

collection of degrees S ⊆ A such that RS is layered c-2-entangled.

Proof. Let {fα : α < c} be an enumeration of all continuous functions from Gδ subsets

of R to R and let A = {aα : α < c} be an enumeration of continuum many Turing
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degrees. Given a Turing degree a, we will denote by Ra all reals that have Turing degree

a.

We will construct the set S ⊆ A by recursion.

Assume that we already have Sα = {aγξ : ξ < α}. Let

γα = min{β : Raβ ∩ (
⋃
ξ<α

Raγξ
∪Bα) = ∅}

where

Bα = {fξ(v) : ξ < α, v ∈
⋃
ξ<α

Raγξ
}.

We know that R \ (
⋃
ξ<αRaγξ

∪Bα) is of size continuum because∣∣∣∣∣⋃
ξ<α

Raγξ
∪Bα

∣∣∣∣∣ = |α| < c.

This means that there are at most |α| ordinals β such that Raβ ∩ (
⋃
ξ<αRaγξ ∪Bα) 6= ∅

(this is because the Turing equivalent classes are disjoint between them).

The set S = Sc = {aβα : α < c} is the one that we are looking for. To show that RS

has the property that for every collection of size continuum of disjoint 2-tuples of RS such

that each entry of each pair has different degree then there are (x1, y1), (x2, y2), (w1, z1),

(w2, z2) such that x1 < x2 and y1 < y2, w1 < w2 but z1 > z2, we will follow a technique

used by Todorcevic in [37]. We reproduce the argument here for the convenience of the

reader.

Let {(xαξ , xβξ) : ξ < c} ⊆ R2
S be a collection of size continuum of disjoint 2-tuples of

RS such that each entry of each pair has different degree.

Let

K = {xαξ : αξ < βξ < c}.
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We can assume that this set is of size continuum. If not, we can run the argument

interchanging the roles of αξ and βξ.

Now, we can define the function g : K → R such that

xαξ 7→ xβξ .

Furthermore, define the set

K0 = {s ∈ K : |ωg(s)| ≥ 2},

where2 ωg(s) =
⋂
n∈ω g[BK

1
n

(s)] is the oscillation of g at s, i.e., all the accumulation points

of the images (under g) of sequences that converges to s. Notice that |ωg(s)| = 1 if and

only if g is continuous at s.

Recall that any partial continouos function from Rn to R can be extended with a

partial function whose domain is a Gδ set. With this, our construction of RS , and the

fact that Rxαξ
6= Rxβξ

, we have that the set K0 is of size continuum.

Given s ∈ K0 call as, bs two elements in ωg(s). Without loss of generality, we can

assume that as < bs. Let r ∈ Q such that as < r < bs. Since we only have countably

many options, we may shrink K0 in such a way that for all s ∈ K0 the rational number

r is the same. Notice that K0 still has size continuum.

Take t, s ∈ K0 such that t < s and take disjoint intervals It, Is such that t ∈ It and

s ∈ Is. By the definition of at, as, bt and bs there are t0, t1 ∈ K ∩ It and s0, s1 ∈ Is such

that g(t0), g(s0) < r < g(t1), g(s1). Then for the pairs (t0, g(t0)), (s1, g(s1)) we have

t0 < s1 and g(t0) < g(s1); and for the pair (t1, g(t1)), (s0, g(s0)) we have t1 < s0 but

g(t1) > g(s0).

2Here BK
1
n

(s) is the ball of radius 1
n with center s in K, a subset of R.
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The above proof works as an example of how to use the technique and paves the way

for the following theorem.

Theorem 3.40. There are 2c many c-dense order types inside R that are closed under

Turing equivalence.

Proof. Let S be a collection of Turing degrees such that RS is layered c-2-entangled.

First, fix two disjoint subsets of size continuum of S, call themA and B. We have that

any one-to-one function between RA and RB is going to be a collection of size continuum

of disjoint 2-tuples of RS such that each entry of the pair has a different Turing degree

(A and B are disjoint), therefore, there are (x1, y1), (x2, y2), (w1, z1), (w2, z2) such that

x1 < x2 and y1 < y2, w1 < w2 but z1 > z2. In other words, the function cannot be order

preserving or order reversing. This shows that RA and RB are not order isomorphic.

Now, assume that A and B are different subsets of S with |A∆B| = c, where a∆b =

(a\ b)∪ (b\a). Without lost of generality, assume that RA\B is of size continuum. Since

RA\B is disjoint from RB, and RS is layered c-2-entangled, we have that RA\B is not

order isomorphic to any subset of RB. Then, there cannot be any order isomorphism

between RA = RA∩B ∪ RA\B and RB. So, again, this shows that RA and RB are not

order isomorphic.

Since there are 2c subsets of size continuum such that |A∆B| = c between any two

of them, we have 2c non-isomorphic order types.

It is interesting to wonder which kind of relation have the Turing degrees of the reals

in the set created in Theorem 3.39. There is the possibility that all of them are inside

a cone or that all of them have some intricate relationship. Because any Turing degree

has, at most, countably many degrees below it, as long as ¬CH holds, there is no way to
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make these degrees a tower. At the end, the relation depends on how S was originally.

Now, it is possible to combine topological or measure arguments with the proof of

Theorem 3.39. For example, assuming that max{cov(M), cov(N )} = c, it is possible to

produce an antichain directly. Although it is possible for S to be an antichain to begin

with in (in Theorem 3.39), the following theorem is an interesting application.

Definition 3.41. Denote by cov(M) the least amount of meager sets that are needed to

cover R. Analogously, cov(N ) denotes the least amount of null sets that cover R.

Corollary 3.42. (max{cov(M), cov(N )} = c) There is a continuum size antichain of

Turing degrees S such that RS is layered c-2-entangled.

Proof. The proof is analogous to the one above.

Let {fα : α < c} be an enumeration of all continuous functions from a Gδ subset

of R to R and let {aα : α < c} an enumeration of all Turing degrees. Given a Turing

degree a, we will denote by
∨

a all reals that have Turing degree that computes a or

that is computed by a.

Notice that
∨

a is both meager and null: it is a well known result that the upper

cones of Turing degrees are meager and null (see [14] and [28], respectively), furthermore,

the downward cone is countable, so, it is also meager and null.

We will construct the set by recursion.

Assume that we already have Sα = {aβξ : ξ < α}. Let

βα = min{β : Raβ ∩ (
⋃
ξ<α

∨
aβξ ∪Bα) = ∅}

where

Bα = {fξ(v) : ξ < α, v ∈
⋃
ξ<α

Raβξ
}.
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Using max{cov(M), cov(N )} = c, we know thatR\(
⋃
ξ<α

∨
aβξ) is of size continuum.

On the other hand, |Bα| = |α| < c. This means that R \ (
⋃
ξ<α

∨
aβξ ∪ Bα) is of size

continuum, so there are at most |α| ordinal β such that Raβ ∩ (∪ξ<αRxξ ∪Bα) 6= ∅.

The set S = Sc = {aβα : α < c} is the one that we are looking for. By construction,

it is clearly an antichain and, using the same proof as above, we have that RS is layered

c-2-entangled, i.e., has the property that for every collection of size continuum of disjoint

2-tuples of RS such that each entry of the pair has different degree then there are (x1, y1),

(x2, y2), (w1, z1), (w2, z2) such that x1 < x2 and y1 < y2, w1 < w2 but z1 > z2.

Another known construction for an entangled set, due to Avraham, is given by taking

a set of ℵ1 many reals that are Cohen generic with respect a countable model of H(θ)

with θ > c, this can be found in [2]. A result of Slaman and Woodin [32], proves that

the degrees of 5-generic reals form an automorphism base for the Turing degrees. In

Section 3.7 we will use an analogous construction to the one done by Avraham to show

results related to the existence of an automorphism of the Turing degrees.

3.6 Absolute decomposition of functions

In this section the letters r, x, y will represent real numbers (either elements of R, 2ω or

ωω) and the letters s, l,m, n will represent natural numbers (unless otherwise stated).

Fix a countable-to-one function ϕ : D ⊆ R→ R such that 〈x, y〉 ∈ ϕ is arithmetical

(or hyperarithmetical) with respect to x and y. In this section we will analyze the

complexity of the sentence:

The function ϕ is the union of countably many monotone functions.
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First, we will analyze how to code a monotone non-decreasing function in a real

number. To code a monotone non-increasing function is analogous.

Notice that, given A ⊆ R and a non-decreasing function g : A → R we can define

a non-decreasing function f : R → [−∞,∞] as f(x) = supy≤x ĝ(y) where ĝ(y) = −∞

whenever x /∈ A and ĝ(y) = g(y) otherwise. Since f�A = g, we can assume that all

non-decreasing functions are from the real numbers to [−∞,∞].

Now, given a non-decreasing function f , we know that it can only have countably

many discontinuities. If we call the discontinuities dn and we enumerate the rational

numbers as qn then we have that:

f(x) = sup ({f(dn) : dn ≤ x} ∪ {f(qn) : qn ≤ x}) .

To show that the above equality is true, given x there are only two options: either

f is continuous at x in which case f(x) = sup{f(qn) : qn ≤ x} (and, even if there is a

sequence of discontinuities that converges at x, by the continuity at x the value should

be the same) or f is not continuous at x so there is some n such that x = dn and,

because f is non-decreasing the above equality is realized.

This means that, given the collection {〈dn, f(dn)〉 : n ∈ ω〉}∪{〈qn, f(qn)〉 : n ∈ ω} we

can decode f . The numbers dn, f(dn) and f(qn) are reals but there are only countably

many of them, so we can code them up in a single real, say, rf .

Notice that, in this situation, y = f(x) if and only if the formula 〈x, y〉 ∈ f is the

same as the following arithmetic (in x, y and rf ) formula:

∀n,m
(

(qn ≤ x↔ f(qn) ≤ y) ∨ (dm ≥ x↔ f(dm) ≥ y)

)
.

Furthermore, we know that it is possible for a single real number to code countably
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many real numbers and, as a result of the above analysis, countably many monotone

functions. Given a real number r, we will call f rn the n-th monotone function that r is

coding. In the case that r do not satisfy the required conditions to code countably many

monotone functions, we let f rn be the constant 0 for all n ∈ ω.

This means that the sentence the function ϕ is the union of countably many monotone

functions can be represented by the following Σ1
2 formula:

∃r∀x, y(〈x, y〉 /∈ ϕ ∨ ∃n〈x, y〉 ∈ f rn)

With this, we can show the following theorem:

Theorem 3.43. (ZFC)For every w ∈ R and every countable-to-one function ϕ : D ⊆

R → R that is Σ1
1[w], i.e, such that 〈x, y〉 /∈ ϕ is a Π1

1[w] formula, ϕ is contained

in a countable union of monotone functions. In particular, arithmetic and computable

functions are the countable union of monotone functions.

Proof. Fix w ∈ R and a countable-to-one function ϕ : D ⊆ R→ R that is Σ1
1[w].

We will show that all models of ZFC that have ϕ satisfy the sentence

The function ϕ is the union of countably many monotone functions.

Given a model M of ZFC, we can take LM [ϕ,w] which is a model of ZFC+CH and

has ϕ. By a result of Avraham-Rudin-Shelah [1], starting from a model of CH, there is

a ccc forcing such that the resulting model, say N , satisfies that given A,B ⊆ R and

f : A→ B countable-to-one function, we have that f is contained in a countable union

of monotone functions.

In particular, since ϕ ∈ LM [ϕ,w] ⊆ N we have that
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N � ∃r∀x, y(〈x, y〉 /∈ ϕ ∨ ∃n〈x, y〉 ∈ f rn)

Since the above sentence is Σ1
2[w] (i.e, Σ1

2 with parameters in L[ϕ,w]) , using Shoen-

field absolutness Theorem, we know that it is absolute. Therefore we have that

M � ∃r∀x, y(〈x, y〉 /∈ ϕ ∨ ∃n〈x, y〉 ∈ f rn).

Corollary 3.44. Given f : D ⊆ R→ R a Borel function, f is contained in a countable

union of monotone functions.

Proof. Fix f a Borel function. Using borel codes, we know that there is x ∈ R such that

f is Σ1
1[x] (actually, ∆1

1[x]). Now we just need to use Theorem 3.43.

Theorem 3.45. Let E be a 2-c-entangled set. Then RE is 2-c-layered entangled.

Proof. Towards a contradiction, assume that we have a 2-c-entangled set E and a one-

to-one monotone function f : D ⊆ RE → RE such that for continuum many x ∈ RE,

f(x) is not Turning equivalent to x.

The idea of the proof is to construct a one-to-one (partial) monotone function g from

E to E such that g(r) is not equal to r for continuum many r ∈ E.

To do this, we want to first take r ∈ E with Rr∩D 6= ∅ to a Turing equivalent x ∈ D

with a monotone function and then send f(x) to a Turing equivalent element of it in E

using a (most likely different) monotone function.

Given r ∈ E and x ∈ Rr ⊆ RE we can use a Turing functional to send r to x.

Since there are only countably many of them, we know that continuum many r ∈ E will
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use the same Turing functional. We would like to use Lemma 3.43 to have a monotone

function. Nevertheless, the problem is that Turing functionals may not be one-to-one,

so we cannot use the Lemma. Fortunately, we can fix this.

Let r ∈ E such that Rr∩D 6= ∅. We know that there exist e, d ∈ ω such that ϕre ∈ D

and ϕ
ϕre
d = r. Since there are only countably many 〈e, d〉 we know that continuum many

r ∈ E use the same pair. Without loss of generality, we can assume that there are

e, d ∈ ω such that for all r ∈ E, ϕre ∈ D and ϕ
ϕre
d = r.

Let B0 = {r ∈ R : ϕ
ϕre
d = r}. This set is arithmetic, so, the function ϕe : B0 → ϕe[B0]

is one-to-one (with inverse ϕd) arithmetic function and, therefore, a Σ1
1 function. Notice

that, since B0 is not computable, it may be the case that ϕe�B0
is not computable.

Nevertheless, it will be Σ1
1.

By Lemma 3.43, ϕ�B0
is contained in the union of countably many monotone func-

tions. One of these functions, call it h0 : C0 → h0[C0], will satisfy that A0 = C0∩B0∩E

is of size continuum and h0�A0
= ϕe�A0

. Notice that h0�A0
is an strictly (one-to-one)

monotone function such that h0[A0] ⊆ D and A0 ⊆ E is of size continuum.

Doing an analogous argument, we can find an strictly (one-to-one) monotone function

such that h1[A1] ⊆ f [h0[A0]] and A1 ⊆ E is of size continuum.

Then, the function g = h0 ◦ f ◦ h−1
1 : h−1

0 [f−1[h1[A1]]] → A0 is a one-to-one mono-

tone function from a subset of E to E. Furthermore, we have that, by construction,

deg(g(r)) 6= deg(r) which means that g(r) 6= r.

There is g′ ⊆ g such that g′ is a one-to-one function between two disjoint size contin-

uum sets of a c-entangled set. Notice that the set of g′ is a continuum size set of disjoint

2-tuples that contradict the property of E being entangled.

Corollary 3.46. There is F , a countable collection of monotone functions, such that
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Fx = Rx for all x ∈ R.

It is important to remark that Theorem 3.43 is a little unexpected since you can

construct computable functions that are not the countable union of measurable mono-

tone functions. The following example is due to Joe Miller and is publish here with his

permission.

Lemma 3.47. (ZFC) There is a computable function that is not the countable union of

countably many measurable monotone functions.

Proof. Let f : D ⊆ (0, 1) → R be such that if x = (x0, x1, ...) has a unique binary

expansion given by (x0, x1, ...) then f(x) = (y0, y1, ...) where y2n+1 = x2n and y2n = x2n+1.

This is a computable function.

Assume that f ⊆
⋃
n∈ω gn where gn is a monotone function for all n. Since f =⋃

n∈ω gn ∩ f , we will show that there is n such that gn ∩ f is nonmeasurable.

Fix n and let x ∈ dom(gn∩f), m ∈ ω and σ ∈ 2<ω such that m+1 is even, |σ| = m+1

and σ is an initial segment of the binary representation of x. Notice that, for any y such

that σ is an initial segment of the binary representation of y we have that |x−y| < 2−m.

For any y00, y01, y10, y11 such that σ00, σ01, σ10, σ11 are initial segments of their bi-

nary representation we have that y00 < y01 < y10 < y11 but f(y00) < f(y10) < f(y01) <

f(y11). This means that for τ equal to σ00, σ01, σ10 or σ11 all the extensions of τ are not

in dom(f ∩gn). We can exemplify this as follows: assume that there is x01 ∈ dom(f ∩gn)

such that σ01 is an initial segments of it and that gn is monotone nondecreasing. Then,

there is no y10 ∈ dom(f ∩ g) such that its binary representation extends σ10 since

x01 < y10 but f(y10) < f(x01). Notice that the size of the interval of all real numbers

such that their binary expansion extends σ10 has length, at least, 2−|σ10|−2 = 2−m−5.
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Now, in any of the cases, if we use λ to denote the Lebesgue measure and we assume

that dom(f ∩ gn) is measurable, we have that

λ((x− 2−m, x+ 2−m) ∩ dom(f ∩ gn))

λ((x− 2−m, x+ 2−m))
≤ 2−m+1 − 2−m−5

2−m+1
= 1− 2−6,

as long as m is big enough for (x− 2−m, x+ 2−m) ⊆ (0, 1).

Since the Lebesgue density of any point in dom(f ∩ gn) cannot be 1 (it is less than

1− 2−6), we have that dom(f ∩ gn) is a null set if it is measurable (see Theorem 3.24 to

read the statement of the Lebesgue density Theorem).

Since λ(dom(f)) = 1, it is not a countable union of null sets but, since dom(f) =⋃
n∈ω dom(f ∩ gn) then there is n such that dom(f ∩ gn) is not measurable.

Recall that there is a model of ZF with a certain amount of choice where all subsets

of reals are measurable. This fact along with Lemma 3.47 seems to contradict Theorem

3.43. Nevertheless, we want to point at the fact that the proof of the Lebesgue Density

Theorem seems to use enough choice to create nonmeasurable sets.

3.7 Towers of Models

Following a result in [2], we can construct an entangled set using a tower of models.

For the convenience of the reader, we reproduce the proof here with more details in

some of the steps that are going to be key for us.

Theorem 3.48 (Avraham-Shelah). Assuming CH there is an uncountable 2-entangled

set of reals.

Proof. We will work with reals as elements of 2ω.
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Let 〈rα : α < ω1〉 be an enumeration of all real numbers.

Let M0 be a countable elementary submodel of H(ℵ2) (the sets whose transitive

closure has size less than ℵ2).

Assuming that we have define 〈eξ : ξ < α〉 and 〈Mξ : ξ ≤ α〉, we define eα to be

a Cohen generic with respect to Mα (which, by the definition of Mξ, will be also an

elementary submodel of H(ℵ2)). Now, if α is a limit ordinal, let Mα =
⋃
ξ<αMξ.

If α = β + 1, let Mα be an elementary extension of Mβ such that Mα is also an

elementary submodel of H(ℵ2), Mβ ∈ Mα looks countable for Mα and, if eβ = rγ, then

rδ ∈Mα for all δ ≤ γ.

The set E = {eα : α < ω1} is the set that we are looking for. We will see this by

contradiction.

Assume that there is an uncountable collection of disjoint pairs

A = {(eαi , eβi) : i < ω1} ⊆ E2

such that whenever eαi < eαj then eβi < eβj .

Without loss of generality, we can assume that given i < j < ω1 we have αi < βi <

αj < βj.

Let N be a countable elementary submodel of H(ℵ2) such that A ∈ N . Now, let

γ0 = ω1 ∩ N and let ξ1 be the first ordinal such that 〈(eαi , eβi) : i < γ0〉 ∈ Mξ1 . This

ordinal exists because every countable sequence can be coded by a single real number,

therefore, the real and the sequence are added at some stage. By our construction of E,

for any αi > ξ1 the pair (eαi , eβi) is Mξ1 generic for the product of two Cohen forcing.

At this moment we need some notation. The expression (f, g) ≤ (r, s) for f, g ∈ 2<ω

and r, s ∈ 2ω means that f is an initial segment of r and g is an initial segment of s.
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Also, in the same context, the expression T ((f, g), (r, s)) means that for any real number

f and g that extend f and g, respectively, we have that f < r if and only if g > s. With

this, notice that the set

{(f, g) : f, g ∈ 2<ω (∀i < γ0(f, g) 6≤ (eαi , eβi)) ∨ (∃i < γ0(T ((f, g), (eαi , eβi))))},

which we will call D, is dense in 2<ω×2<ω and belongs to Mξ1 . By genericity of (eαj , eβj)

over Mξ1 , there is (f, g) ≤ (eαj , eβj) such that (f, g) ∈ D.

Notice that, since N is an elementary submodel of H(ℵ2) and N ∩ A = 〈(eαi , eβi) :

i < γ0〉 we have that for any j < ω1 and for any finite initial segment (f, g) ≤ (eαj , eβj)

there is i < γ0 such that (f, g) ≤ (eαi , eβi). This implies that there is αj > ξ1 and i < γ0

such that eαi < eαj but eβi > eβj .

There is a couple of things that are important to notice.

First of all, it is not necessary to add every single real number to the tower of

elementary models. As long as we add all countable subsequences of the generic sequence,

we can run the argument.

Also, the dense set D can be described in a Σ0
2 way (actually, ∆0

2) given that you

have the sequence 〈(eαi , eβi) : i < γ0〉. Therefore, in the face of it, the full genericity

of the Cohen generic is not necessary, we can use a 2-generic real (or a weak 2-generic,

since the set is open dense). Nevertheless, we can do a little better.

Definition 3.49. Given g ∈ 2ω we say that g is (weak) 1-generic if and only if for every

Σ0
1 (dense) S ⊆ 2<ω there exists σ ∈ 2<ω, σ ≤ g, such that either:

1. σ ∈ S

2. For all τ extending σ, τ /∈ S.
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Lemma 3.50. Given the construction in Theorem 3.48, it is only necessary that (eαj , eβj)

is 1-generic over 〈(eαi , eβi) : i < α0〉 for the proof to work.

Proof. Notice that the following subset of D is Σ0
1 over 〈(eαi , eβi) : i < γ0〉:

S = {(f, g) : f, g ∈ 2<ω∃i < γ0(T ((f, g), (eαi , eβi)))}.

Since for every αj > γ0 we have that (eαj , eβj) is 1-generic over 〈(eαi , eβi) : i < α0〉.

We know that there is (f, g) ≤ (eαj , eβj) such that either (f, g) ∈ S or for all (f ′, g′) ≥

(f, g), (f ′, g′) /∈ S.

Nevertheless, notice that, by the definition of γ0, for all (f, g) ≤ (eαj , eβj) there is

i(f,g) < γ0 such that (f, g) ≤ (eαi(f,g) , eβi(f,g) ). Since eαi(f,g) , eβi(f,g) are not eventually 0

or 1 (they are 1-generic), for each (f, g) ≤ (eαj , eβj) there is (f ′, g′) ≥ (f, g) such that

eαi(f,g)�|f
′| + 1 = f ′_1 and eβi(f,g)�|g

′| + 1 = g′_0, then T ((f ′_0, g′_1), (eαi(f,g) , eβi(f,g) ))

and (f ′_0, g′_1) ∈ S. This shows that option two of the definition of 1-generic cannot

be satisfied, so there must be (f, g) ≤ (eαj , eβj) such that (f, g) ∈ S.

Therefore, there is i < γ0 such that T ((eαj , eβj), (eαi , eβi)).

Now, we would like to make an analogous construction of the above proof to show

the following theorem:

Theorem 3.51. Assuming CH, given any non-trivial automorphism of the Turing de-

grees, call it a, there is no family G of 1-generics degrees such that:

1. For every degree y there is a 1-generic degree over y in G.

2. For all x ∈ G, if x is 1-generic over y, then there are x, z ∈ R with deg(x) = x

and deg(z) = a(x) with (x, z) 1-generic over y.
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By a result of Slaman and Woodin [31, 32], all automorphism of the Turing degrees

can be expressed in an arithmetical way. Therefore, assuming that the theorem is false,

there is an automorphism of the Turing degrees that will send a family of 1-generic to

1-generics over them. Our strategy for the proof will be to construct a 2-entangled set of

1-generics such that the image of the entangled set under the automorphism is inside the

entangled set. Then, since all automorphism can be described in an arithmetical way,

using the Decomposition Lemma 3.43, we would generate a monotone function from an

entangled set to itself, which is a contradiction.

This approach will run into one problem if we use the construction in [2]: we could

have the image of a 1-generic be inside the first model where the real appear (since,

elementarity implies arithmetic elementarity). We will be able to solve this by being

more careful with the amount of ZFC that our models satisfy.

Also, it is important to notice that, if we change point (2) of the theorem to demand

full genericity (or n-generic for all n ∈ ω) then the theorem is trivially true. This is,

again, because any automorphism can be expressed in an arithmetical way. If you have

an automorphism a then there is k ∈ ω such that, for all x, a(x) ≤T x(k). Then, a(x)

cannot be k + 1-generic over x. Using stronger results, we believe that changing point

(2) for 3-generic is trivially true. Either way, this highlights the importance of Lemma

3.50 for Theorem 3.51.

We will break this proof into a definition and couple of lemmas.

Definition 3.52. A function f : A ⊆ R→ R is powerful if and only if

1. x ≡T y implies f(x) ≡T f(y).

2. There is a family G of 1-generics degrees such that
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(a) For all x ∈ R, there is y ∈ G and y ∈ y such that y is 1-generic over x.

(b) For all x ∈ G there is x ∈ x such that x ∈ A.

(c) For all x ∈ G, if x is a 1-generic degree over y, then there exist x1, x2 ∈ x

and z ≡T f(x1) such that (x2, z) is 1-generic over y.

Notice that (c), specifically the fact that (x2, z) is 1-generic, implies that if deg(x) ∈ G

then x 6≡T f(x).

Lemma 3.53. (CH) Given a powerful function g, there is a 2-entangled set E, made of

1-generics, such that g(RE) ∩RE is uncountable.

Proof. Let 〈rα : α < ω1〉 be an enumeration of all real numbers. We will start with some

notation: given A ⊂ R a countable set, let OA be one of the followings:

1. The minimal real (in the enumeration) that belongs to the minimal Turing degree

(respect to Turing reduction) such that it can compute all elements of A.

2. If the above one is not possible, then OA will be the minimal real (in the enumer-

ation) such that it can compute all elements of A but does not compute 0′ (zero

jump).

3. If neither of the above ones are possible, OA will be the minimal real (in the

enumeration) such that it can compute all elements of A.

Now, let M0 = H(ℵ0) ∪ C, where C is the set containing all computable subsets of

H(ℵ0). Here, H(ℵ0) is the set of the hereditary finite sets.

Assuming that we have define 〈eξ : ξ < α〉 and 〈Mξ : ξ ≤ α〉. If α = γ+ 2n for γ = 0

or γ a limit ordinal, we define eα to be the minimal real (with respect the enumeration)
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such that it is 1-generic with respect to OR∩Mα and such that deg(eα) ∈ G (the family

associated with the powerful function). Now, let eα+1 be such that (eα, eα+1) is 1-generic

over OR∩Mα and eα+1 ≡T g(xα), where xα ≡T eα. We can do this because g is powerful

and deg(eα) ∈ G.

Throughout the construction we will do a bookkeeping (as in [33]) of the countable

subsets of 〈eξ : ξ < α〉. The objective is that, once we have the sequence 〈eξ : ξ < ω1〉,

we can also enumerate all the countable subsets of it as 〈Bξ : ξ < ω1〉. Notice that

this is possible since every countable subset of 〈eξ : ξ < ω1〉 is a countable subset of

〈eξ : ξ < α〉, for some α < ω1 (and by CH).

To finish the construction, if α is a δ limit ordinal, let Mα =
⋃
ξ<αMξ ∪ C[OBδ ]

where C[OBδ ] is the set of all the computable objects from OBδ . Finally, if α = β + 1,

let Mα = Mβ ∪ C[eβ].

The set E = {eα : α < ω1} is 2-entangled. We will see this by contradiction.

Assume that there is an uncountable collection of disjoint pairs

A = {(eαi , eβi) : i < ω1} ⊆ E2

such that whenever eαi < eαj then eβi < eβj .

As in Theorem 3.48, we can ask that given i < j < ω1 we have αi < βi < αj < βj.

Let N be a countable elementary submodel of H(ℵ2) such that A ∈ N . Now, define

γ0 = ω1 ∩ N and let ξ1 be the first ordinal such that OΓ ∈ Mξ1 , where Γ = {(eαi , eβi) :

i < γ0}. By our construction of E, for any αi > ξ1 the real (eαi , eβi) is 1-generic over

OΓ.

Using the same notiation as in Theorem 3.48, we know that the set

{(f, g) : f, g ∈ 2<ω (∀i < γ0(f, g) 6≤ (eαi , eβi)) ∨ (∃i < γ0(T ((f, g), (eαi , eβi))))},
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which we will call D, is open dense in 2<ω × 2<ω.

By Lemma 3.50, we know that there is αi > ξ1 and j < α0 such that eαi < eαj but

eβi > eβj .

This shows that E is 2-entangled and, by construction, RE ∩ g(RE) is uncountable.

Lemma 3.54. (CH) There is no countable-to-one Σ1
1 powerful function.

Proof. Suppose that there exist such a function. Then, by Lemma 3.53, there is an

entangled set E, made of 1-generics, such that g(RE)∩RE is uncountable. By Theorem

3.45, RE is σ-2-entagled.

Since g is a countable-to-one Σ1
1 function, by lemma 3.43, it contains an uncountable

monotone function, g1, such that g1(RE) ∩RE is uncountable.

Nevertheless, by the obsevation made after the definition of powerful, there are un-

countably many 1-generics in E such that g(x) 6≡T x.

Then we have a strictly monotone function changing uncountably many degrees from

an uncountable subset of a σ-2-entangled set to itself. This cannot happen.

With the above lemmas, we are ready to proof Theorem 3.51.

Proof. By a result in [32], every automorphism has an arithmetic representation, this

is, a function f : A ⊆ R → R such that f is arithmetic, A contains an element from

each Turing degree, x ≡T y if and only if f(x) ≡T f(y) and the change of degree is done

exactly as the automorphism.

Working towards a contradiction, assume that there is an automorphism a and a

family G of 1-generics with the properties enlist in the theorem. The representation f

of a is an arithmetic powerful function. By lemma 3.53, this function does not exist.
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3.8 Modifications and other possible results

It is important to make a couple of remarks about the construction of Lemma 3.53.

First of all, the construction can be stated purely using Turing degrees. The usage of

models was to make the analogy with Theorem 3.48 more direct. Also, we just need the

degree of (eα, eβ) to be 1-generic over the degree of each element of R∩Mα. This means

that the usage of OR∩Mα was not necessary, nevertheless, it reduces writing. Specifically,

because having a degree being 1-generic over countably many degrees does not mean

that you have a single element that is 1-generic over all of them at the same time (or

not in a trivial way), see question 3.64.

Either way, it is possible to show that the set that you get is 2-entangled only

assuming that the degree of (eα, eβ) to be 1-generic over the degree of each element of

R ∩Mα. We could define eα = xα and eα+1 = f(xα+1). Then, using the (e, d) trick in

Theorem 3.45, we get a monotone function from pairs of 1-generic degrees over OΓ (that

is in some R ∩Mα) to (eαi , eβi) . The last thing to do will be to change the definition

of D depending on whether the function is decreasing or increasing. This description is

missing details but, we hope that the reader understands why we choose to make the

proof differently.

In a different (but related) topic, do not believe that the strange definition of OA

was completely for free. It is important to remark that adding OBα , contrary to using

OR∩Mα , is a key point in the proof since we need the subset S of D of Lemma 3.50 to

be an open Σ0
1 set of a single degree.

Finally, if it is the case that g(x) is 1-generic over x whenever x is 1-generic, we can

show that 0′ /∈Mα for any α < ω1. Making 0′ /∈Mα ensures that for any element in Mα
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all the 1-generics, respect to that degree, are not in Mα. Therefore, if we pick 2-generics

instead of 1-generics, for any eα, g(eα) /∈ Mα+1. We didn’t use this in our proof since

g(eα) already had all the wanted properties because g is powerful. Nevertheless, this

could be handy if the definition of powerful is weakened or for other applications, as the

following.

Corollary 3.55. Assuming CH, one of the following is true:

1. The relation “x is 1-generic over y” is not definable in the Turing degrees.

2. For any automorphism of the Turing degrees, call it a, there is no family G of

1-generics degrees such that:

(a) For every degree y there is a 1-generic over y in G.

(b) For all x ∈ G, if x and a(x) are 1-generic degrees over y, then there are

x, z ∈ R with deg(x) = x and deg(z) = a(x) with (x, z) 1-generic over y.

Proof. We can modify the definition of OA so that OA computes 0′′. This way, we

have that, for any automorphism a, a(deg(OA)) = deg(OA) (see [32]). Let f be a

representation of a.

Therefore, if the relation “x is 1-generic over y” is definable, we have that if x is

1-generic over OA then f(x) is generic over f(OA) ≡T OA. So, if 1 and 2 fails, there is

an automorphism a such that (x, f(x)) is 1-generic over OA if x ∈ G.

The rest of the proof follows.

Corollary 3.56. Assuming CH, one of the following is true:

1. The relation “x is 1-generic over y” is not definable in the Turing degrees.
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2. For any automorphism of the Turing degrees, call it a, it is not the case that for

all 1-generic degrees x, if x and a(x) are 1-generic over y, then there is z ∈ a(x)

such that z is 1-generic over y and over x.

Proof. This follows from the previous lemma using the family G to be all 1-generic

degrees.

Notice that, in both proofs, we are not using that “y is 1-generic over x” is definable

but rather that there is a definable relation R such that xRy implies “y is 1-generic over

x” and such that for all x there is a y with xRy. This gives us the following corollary:

Corollary 3.57. Assuming CH, at least, one of the following is true:

1. There is no relation R definable over the Turing degrees such that xRy implies “y

is 1-generic over x” and such that for all x there is a y with xRy.

2. For any automorphism of the Turing degrees, call it a, there is no family G of

1-generics degrees such that:

(a) For every degree y there is a 1-generic over y in G, say g, such that yRg.

(b) For all x ∈ G, if yRx and yRa(x), for some real y ∈ R, then there are

x, z ∈ R with deg(x) = x and deg(z) = a(x) with (x, z) 1-generic over y.

Now, a couple of words dedicated to absoluteness are in place. From the proofs it is

clear that the use of CH, or of the existance of a tower of models with that property, is

essential. Nevertheless, in [32], it was shown that the statement “There is a non-trivial

automorphism of the Turing degrees” was absolute. This does not imply that the above

Theorem, or Corollaries, are absolute since there is the possibility that the definition of
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the 1-generic relation is not absolute. Indeed, that will depend on the proof (or disproof)

of the existence of such a relation.

To see other situations where towers of models can be generated, see the COMA,

defined by Hart and Kunen in [13].

3.9 Questions and conclusions

In this chapter, we studied how do sets closed under Turing equivalance look inside R.

Definitively, not all the questions were solved. Questioning how these sets behave from

an algebraic perspective left some open questions:

Question 3.58. In Theorem 3.15, is the use of 0′ necessary? In other words, are there

reals x, y such that 0′ 6≤T deg(x⊕y) and the minimal subfield of R that contains Rx∪Ry

is not R∧x⊕y?

Question 3.59. Given a field F , is RF also a field?

And, of course, we have questions related to measure like:

Question 3.60. For which subsets S ⊆ R is RS measurable?

Even in the case of order type, which was studied in a much more lengthy way, the

advance was not fundamental. So we can ask:

Question 3.61. Which other c-dense order can be obtained (or cannot be obtained) by

a set of the form RS?

Question 3.62. Is there a topological or model theoretic characterization of all the order

types of the form RS?
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Question 3.63. Is there a collection of countably many monotone functions, F , such

that Fx = R∧deg(x) for all x?

But this approach to subsets of reals showed that it can interact with other important

questions in the area of Computability Theory or, as it has been commented to the

author, in Descriptive Set Theory.

Our approach to the automorphism problem gave some restrictions to the way that

automorphisms interacts with 1-generics, under the Continuum Hypothesis. The result,

as showed in Section 3.8, can be written in multiple ways, but the interactions between

the degrees and the reals inside of them are more subtle than they appear.

For example, one way to improve our result, specifically Corollary 3.56, will be to

show that there is no automorphism such that a(x) is 1-generic over x for a big family

of 1-generics. Nevertheless, if we attempt to prove it, the following question arises:

Question 3.64. Given a Turing degree g that is 1-generic over a and b, under what

conditions is there a real number z, with Turing degree g, such that z is 1-generic over

a and b?

Question 3.65. Given a sufficiently generic degree g over y, is it true that the image of

g under any nontrivial automorphism of the Turing degrees can compute a sufficiently

generic degree over y? Can this degree be 1-generic over g?

Finally, Turing reduction is not the only way to classify the real numbers in degrees

that show you how much information they bear. For example, we could use the enu-

meration reduction (here A ≤e B if and only if A is c.e. over B) or the constructible

reduction (here x ≤c y if and only if x ∈ L[y], these also have countable degrees if you

assume large cardinals).
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Question 3.66. Which of the results in this chapter are still true, or false, if we

change Turing equivalence to enumeration, arithmetic, hyperearithmetic or constructibil-

ity equivalence?

In this same line of thought, we can also wonder about the properties of these sets

in different spaces.

Question 3.67. What can we say about subsets (or subspaces) of the Hilbert cube that

are closed under the continuous degree equivalence (see Miller [19])?
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Appendix A

Cichon and Effective Cichon

Diagrams

The figures in this Appendix originally appeared in [38] and [24]. We want to thank

Paul Tveite for doing them and sharing them with us.

We will first present the diagrams and then list the corresponding definitions or

theorems. All of them can be found either in [16], [27] or in [7].

A.1 Diagrams

In the first diagram, elements to the left or bottom are smaller than the ones right or

above them. In other words, arrows go from small to big.

In the second diagram, elements to the left or bottom are stronger than the ones

right or above them. In other words, arrows represent the usual implication.

In both diagrams, if there is no equal sign between elements it means that there is a

way to split the notions/numbers.
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c

Cov(N ) Non(M) Cof(M) Cof(N )

b d

Add(N ) Add(M) Cov(M) Non(N )

ℵ1

Computes

a Schnorr

Random

Weakly

meager

engulfing

Not low

for weak

1-gen

Not

low for

Schnorr

High
Hyper-

immune

Schnorr

engulfing

Meager

engulfing

Computes

a weak

1-gen

Weakly

Schnorr

engulfing

A.2 Cichon’s diagram elements

Definition A.1. Given an ideal I of subsets of X define

• Add(I) = min{|Y| : Y ⊆ I ∨
⋃
Y /∈ I}
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• Cov(I) = min{|Y| : Y ⊆ I ∨X ⊆
⋃
Y /∈ I}

• Non(I) = min{|Y | : Y ⊆ X ∨
⋃
Y /∈ I}

• Add(I) = min{|Y| : Y ⊆ I ∨ ∀I ∈ I∃Y ∈ Y(I ⊆ Y )}

Definition A.2. We call N the ideal of all measure zero sets (also known as null sets)

of reals.

We call M the ideal of all meager sets (also known as first category sets) of reals.

Definition A.3. 1. Given f, g ∈ ωω we say that g eventually dominates f , write as

f ≤∗ g, if and only if there is n ∈ ω such that for all m ≥ n, f(m) ≤ g(m).

2. b = min{|Y | : Y ⊆ ωω ∨ ∀f ∈ ωω∃g ∈ Y (g 6≤∗ f)}

3. d = min{|Y | : Y ⊆ ωω ∨ ∀f ∈ ωω∃g ∈ Y (f ≤∗ g)}

A.3 Effective Cichon’s diagram elements

Definition A.4. 1. We say that a degree A is high if and only if 0′′ ≤T A′.

2. We say that a degree is hyper-immune if and only if it computes a function f ∈ ωω

such that f 6≤∗ g for all computable functions g.

Theorem A.5. A is a high degree if and only if A computes a function f ∈ ωω such

that g 6≤∗ f for all computable functions g.

Definition A.6. 1. We say that 〈Ue : e ∈ ω〉 is a Schnorr test if and only if Ue is a

c.e. open set such that λ(Ue) = 2−e.
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2. We say that r is an Schnorr random reals if and only if r /∈
⋂
e∈ω Ue for all Schnorr

test 〈Ue : e ∈ ω〉.

Definition A.7. A degree D is DNC if and only if it computes a function f ∈ ωω such

that for all e ∈ ω, f(e) 6= ϕe(e).

Definition A.8. A degree S is weakly meager engulfing if and only if it computes a

meager set containing all computable reals.

Theorem A.9. A degree is weakly meager engulfing if and only if it is High or DNC.

Theorem A.10. A degree is not low for weak 1-generics if and only if it is Hyper-

immune or DNC.

Theorem A.11. A degree is not low for Schnorr if and only if it is non-computably

treaceable.

Definition A.12. A degree S is weakly Schnorr engulfing if and only if it computes a

Schnorr test containing all computable reals.
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