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Abstract

We generalize the notion of approximate truth (=4p ) studied by Henson ([15])
and Fajardo and Keisler ([7]) to a language L4 that allows countable conjunc-
tions, negation, and bounded existential quantification over infinitely many vari-
ables. We study approximation principles relating F4p and = in metric struc-
tures. Let Lpps be the smallest subset of L4 containing the atomic formulas
and closed under countable and finite conjunction, finite disjunction, and exis-
tential and universal bounded quantification over countably many variables. Let
Lp be the smallest subset of L4 containing the atomic formulas and closed under
countable and finite conjunction, finite disjunction and universal bounded quan-
tification. Let (Lp U EI_'LP){/\’_'} be the smallest subset of L4 containing the
formulas o(Z,7) and 37 € K’w(f, y)) for ¢ € Lp and closed under countable
conjunction and negation. Finally, let L 44 be the smallest subset of L4 contain-
ing Lppa, (Lp U EI_'LP){/\’_'} and closed under countable conjunction, countable
disjunction and existential bounded quantification over countable many variables.
We prove the following weak approximation principle: For every metric structure
E | for every sentence ¢ that is in Lay, if E = ¢ then E E4p ¢. We prove: For
any structure E , for every sentence in (Lp U EI_'LP){/\’_'}, EEo¢iff E Eap ¢.
We introduce the notion of complete and uniform classes of models of L4. For
those classes and the notion of E=4p we prove a Model Existence Theorem. This

result generalizes the usual Compactness Theorem for first order logic, and the

Compactness Theorem for |=4p obtained by Henson ([19]) for finitary positive
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bounded formulas. We prove the following equivalence result: for every complete
class of models M axiomatixed by a formula in L4, for every universal sentence
¢ € La, VE € M, E =4p ¢) iff (VE € M, E |E ¢). We give examples where
existential sentences ¢ are omitted in complete classes of models in the following
sense: VE € M, E |Eap ¢ but 3E € M, E |= ~¢. We prove an omitting theo-
rem for d formulas in L 4. Finally, we show two applications of those results. The
first a uniform version of the celebrated Krivine’s representation theorem in func-
tional analysis. For the second application we give a generalization of the classical

Omitting Types Theorem to infinitary formulas.
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Notation and Symbols

The notation A C B means that A is a subset of B. R denotes the real numbers
and @ the rationals. The image of a map F' is written as Im(F'). Likewise the
domain of F'is Dom(F'). In general we reserve the symbols p, d for metric functions
and ||.|| for norms.

The symbols E , B ,... refer to models. Furthermore ¢, ¢ refer to positive real
numbers. We reserve the symbol = for logical formulas. Given to formulas ¢ and
Y in a logic L, ¢ = v states that ¢ and ) are identical formulas.

We fix a collection of variables Var = {x; : ¢« € w1}. Given a logic L, and a
formula o € L, the notation (%) means that the free variables of o are among the
variables in the vector Z. Occasionally, for a vector of function symbols f, we will
write o(Z) [f] This means that the function symbols appearing in o are among the
function symbols in f For any collection of formulas ¥ in I and any connective 4,
we denote by §¥ the set of formulas {fo : o € X}. Likewise, for any quantifier A,
we denote by AY the set of formulas {AZo(Z,7) : o(Z,7) € ¥}. Finally, given a
set of connectives and quantifiers Q, we denote by X% the smallest set of formulas
in L that contains ¥ and is closed under the connectives in ).

Given any countable set F' and a fixed enumeration of F', F' T n denotes the set
made of the first n elements of F'. We write A;cpy, for a finite conjunction indexed
by the first n elements of I. Likewise, A;cp denotes a conjunction indexed by all

the elements of F.

The symbol O is used to mark the end of a definition, example or statement.
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Likewise, m is used to mark the end of a proof.

Given a vector ¥ = (&1, 22...2,), |¥| stands for the arity of the tuple. If the
vector ¥ = (&1, ..¢,, ...) has countable arity then |7| = w.

There are some fixed metric spaces that appear so often in this work that they
deserve a fixed name. We denote by (R, d) the metric space of the reals with the
usual distance based on the absolute value. Likewise, (%, maz) denotes the real
plane with the metric of the max.

For every p € [1,00) £, is the Banach space of all the functions f : w — R

such that 3272, (f(7))? is finite. The norm in this case is given by:

171 = ¢ S0y

By /., we denote the Banach space of all functions [ : w —— R that are bounded

in the sense:
sup{f(i)|r € w} < o0
The norm is given by:
Lf1] = sup{f(2)|i € w}
The subspace of /., generated by the sequences that converge to 0 is denoted by
Co-
Given two Banach spaces (E, ||.||), (F,|.|), we say that E, F' are K-isomorphic

iff there exists a linear onto map 7' : ' —— [ such that for every x in E:

1
CIT(@)] < llall £ KT ()
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Chapter 1

Introduction

The main purpose of this thesis is to develop model theoretic tools to study ap-
proximation principles for infinitary formulas in metric spaces.

One of the most successful and widely applied techniques in analysis is the
notion of proof by approximation. To prove that a statement P is true in a
metric structure E it is often showed that the approximations of P hold, and then
special properties of the structure (i.e., compactness) are cited to conclude that
the statement is true.

The natural semantic framework to study approximation proofs in metric struc-
tures is given by the notion of approximate truth of a formula in a metric space.
In 1976 Henson in [15] introduced a logic of positive bounded formulas in Banach
spaces to study the relationship between a Banach space E and its nonstandard
hulls H(E). This logic Lpg is based on a first order language L containing a bi-
nary function symbol +, unary predicate symbols P and () to be interpreted as the
closed unit ball and the closure of its complement and, for every rational number
r, a unary function symbol f,. to be interpreted as the operation of scalar multi-
plication by r. Lpp is closed under finite conjunction, disjunction and bounded
quantification of the form (Jx)(P(x)A....) or (Va)(P(x) =...).

For any formula ¢ in Lpg and for every natural number n it is possible to define



in a purely syntactical way a formula ¢, in Lppg, called the n-approxzimation of ¢.
Intuitively, ¢, is the formula that results from metrically weakening the predicates
that appear in ¢ in such a way that as n tends to oo, ¢, approaches ¢. From
this notion of approximations of formulas follows the definition of approximate
truth: A formula ¢ € Lpp is approximately true in a Banach space F (denoted by
El=ap @) iff for every integer n, £ |= ¢,.

[t is interesting to note that |=4p is a concept that appears naturally in anal-
ysis. For example, “The normed space E is isometrically embedded in the normed
space I is approximately true in F'iff E is finitely represented in F'. Likewise
the continuous map 7' : £ —— FE has a fixed point” is approximately true in F iff
T has an almost fixed point ([1]).

The above definition of E4p is the starting point of the model theory of Banach
spaces that has been developed in a series of papers by Henson, Heinrich and Iovino
([16, 17, 18, 14, 19]). The logic Lpp has been extended to have a language of n-
ary function symbols (to be interpreted as uniformly continuous functions from
E™ to E) and n-ary real valued relation symbols. The notions of approximate
formula and approximate truth are generalized naturally, and nice model theoretic
theorems (compactness, Lowenheim-Skolem,...) are obtained.

Of particular interest to us is the interplay between the notions of approximate
truth and truth. It is easy to see that the following weak approximation principle

holds in any model I and for any formula ¢ € Lpg:

]fE|: qb then E|:Ap qb



On the other hand, Henson proved the following approximation principle (Hen-
son’s Compactness Theorem ([19]) for particular collections of models (we will call

those collections classes of models):

Model Existence Principle. [For any class of models in Lpg, for
any ¢ € Lpg, if every approximation of ¢ holds in some model of the
class, then there is a model in the class where all the approximations

of ¢ and ¢ itself hold. O

Furthermore, Henson in [15] obtained the following strong approximation result

for nonstandard hulls:

Henson’s Strong Approximation Principle. For any nonstandard
hull E of a Banach space, and for any formula ¢ in Lpg, FlEap ¢ <

EE= ¢ O

In 1986 Anderson in [2] introduced a logic L’ for metric spaces that is very
similar to the one previously defined by Henson. This logic is also closed under
finite conjunction, finite disjunction and bounded quantification. The main dif-
ference between these two logics is that the sets bounding the quantifiers (we will
call them the bounding sets) are interpreted in the metric space as being compact
sets. Anderson also introduced a notion of approximate formulas for this logic and

proved the following strong approximation principle:

Anderson’s Strong Approximation Principle. For any metric

structure . and any sentence ¢ in L' the following is true:

EEo¢iff E Fap o



Let us say that a structure E is rich for a language L if for every sentence in
L, = and [E4p coincide. In a series of papers, Keisler in [25] and later Fajardo
and Keisler in [7, 8] extended Anderson’s Approximation Principle to very general
families of metric spaces and bounding sets (the neometric families; see [§]). They
introduced, for such family of spaces, a logic L (closed under countable conjunc-
tions, finite disjunctions and bounded quantification) and a notion of approximate
truth (Fap ) for a formula that extends the previous definition. They obtained
the following approximation principle for neometric families and for formulas in

this logic:

Keisler & Fajardo’s Strong Approximation Principle. For any
sentence ¢ and any neometric space N', ¢ is approvimately true in N
if and only if ¢ is true in N'. In other words the neometric spaces are

rich for L.O

Since the models considered by Anderson and the nonstandard hulls are neometric
structures, this approximation principle generalizes the previous ones obtained by
Henson and Anderson.

In [25], [4] and in [7] this approximation principle is used to prove new exis-
tence results in Stochastic Differential Equations. The strategy is as follows: set
the problem in a metric space that belongs to a neometric family, show that the
statement “There exists a solution of the equation” is approximately true and use

the fact that the neometric structures are rich to conclude that the statement is



true. The main interest of the above strategy is that |=4p is weaker that | . It
follows that in rich spaces proofs are “easy”.

It is clear from the above account that the study of approximation principles
in analysis has yielded useful results. First, |=4p is the “natural” semantic notion
to study metric structures from the model theoretic point of view (since most
classical model theoretic results hold for |=4p but not for |= ). Secondly, |Fap is
a concept that appears naturally in analysis. Finally, with |=4p one can construct
rich spaces, spaces where proofs are easy.

However, a main limitation on the applicability of the approximation prin-
ciples studied above is that the languages studied lack expressive power. Most
of the relevant properties in analysis require infinitary logical operations defined
using the negation symbol. For example, reflexivity in Banach spaces requires
countable disjunctions to be defined. Likewise, compactness and continuity also
require countable disjunctions in theirs definitions. The principal obstacle to the
extension of the above approximation principles to logics with negation is the dif-
ficulty in obtaining a notion of 4p that extends the previous ones to infinitary
formulas with negation while preserving its most important properties.

Furthermore, the previous work on the interplay between E4p and = has
overlooked the study of any such relationship at the level of classes of models. For
example, in functional analysis many interesting questions ask about the existence
of pathological metric spaces: metric spaces where the approximation principles
mentioned above do not hold. In particular, those problems have the following

pattern:

(*) if every structure in a fixed collection of models approximately



satisfies a sentence ¢, does it follow that every model of the collection

also satisfies @7
Examples of such relevant questions are the following:

e The Subspace Problem. This famous question of Banach asked if it is true
that every infinite separable Banach space contains an infinite dimensional
subspace isomorphic to one of the £, (p € [1,00)) or ¢o. It can be seen that in
every infinite separable Banach space the finite dimensional approximations
of the above statement are true. This question was finally solved by Tsirelson
([43]) in 1974 in the negative: There exists a infinite dimensional separable
Banach space whose subspaces are not isomorphic to one of the ¢, (p €

[1,00)) nor to ¢.

e The Fixed Point Property for Super-Reflexive Spaces. This problem asks
if for every super-reflexive Banach space F, for every bounded, closed and
convex subset K of £ and for every nonexpansive mapping 7' : K — K
(ie., Va,y € K, ||T(x) — T(y)|| < ||z — y||) there exists & in K such that
T(x) = . It can easily be seen that in every Banach space, every map T

that verifies the previous conditions has an “almost fixed point” (see [11]).

e The Distortion Problem. Given any infinite dimensional Banach space (F, ||.||)
and any A > 1 we say that F is A-distortable if there exists an equivalent
norm|.| in X such that for every infinite dimensional vector subspace Y of
E,sup{lyl/|z| : v,z € Y, |lyll = ||z]| = 1} > A. F is arbitrarily distortable
if it is A-distortable for every A > 1. FE is distortable if it is A-distortable

for some A. It is known that in every infinite dimensional Banach space the



finite dimensional approximations of the above property are not true ([32]).
The distortion problem for ¢, ( if ¢, is distortable) was recently solved in the
affirmative by Odell and Schlumprecht ([36]). An open question concerning
the notion of distortion is whether every uniformly convex space is arbitrarily

distortable.

As the previous examples show, the study of approximation principles at the
level of classes of models is important for its applications in analysis. In particular,
note that every equivalence between [=4p and = at the level of classes of models
for infinitary formulas could be seen as a bridge between the validity of infinite
(dimensional) statements and the validity of finite (dimensional) ones. Any such
relationship is of independent interest in fields like geometry of Banach Spaces
([3]). On the other hand, if =4p and |= are not equivalent for classes of models,
this implies the existence of non-rich models in the class.

Our aim is to start a systematic study of the approximation principles in metric
spaces for a very expressive logic that includes negation, countable conjunction
and bounded quantification over countable many variables. We want to unify and
generalize all the previous approaches to a fully infinitary logic. We isolate four

main approximation principles to be studied:

e Weak Approximation. For every property P and every model E , if

E |: PthenE |:Ap P

e Rich Models: Existence of structures E£ where approximate truth is equiv-

alent to truth for every formula in the language.

e Model Existence: If every approximation of a property P holds in a model,



then there is a model where the formula is approximately true and is also

true.

e Class Approximation: Every model of a collection of model M approxi-

mately satisfies a property P iff every model of the class satisfies the formula.

In Chapter 2 we introduce an infinitary logic L4 for metric spaces closed un-
der countable conjunction, negation and bounded existential quantification over
countable many variables. This logic contains all the previously mentioned logics
(Lpp, L', etc.) as fragments. Furthermore, any model of Lpg and any neometric
space can be seen as a model of L 4. Likewise the classical first order structures
can be seen as structures of L4 with the discrete metric.

We also define a notion of approximate truth (F4p ) for formulas in L4 based
on approximations by finitary formulas. Recall that the natural way to obtain the
analytic sets from the closed sets of a Polish space is using the “Souslin operation”
S on countable collections of closed sets (see [24]). Roughly speaking, for every

collection A={App|h € I Ap € J} of closed sets indexed by [ x .J,

S(A)=U () Anp

hel ped

In an analogous way, we obtain the approximation of a formula ¢ € L4 by ap-
plying a Souslin operation & to a recursively defined collection of finitary for-
mulas A={¢p.|h € I(¢) A n € w} so that the approximation of ¢ is S(A) =
Vier(e) Anew @hn- In other words, we associate to every formula in L4 a tree of
finitary formulas. A formula will be approximately true in a structure iff for one
of the branches of the tree, all the approximations along this branch hold in the

structure. We call every h € I(¢) an approximation path of ¢ or a branch of



the approximation tree. When the formula belongs to Lpg, we show that the ap-
proximation tree reduces to a single branch, and our definition of F4p coincides
with the previous one by Henson.

In Chapter 3 we study some elementary properties of Eap in L4 and use these
to obtain the basic approximation principles for formulas in L 4.

Let us introduce first the three main collections of formulas that we are going
to deal with in the rest of this work. Let Lpga4 be the smallest subcollection of
L4 containing the atomics formulas and closed under infinite conjunction, finite
disjunction and existential and universal bounded quantification over countably
many variables. We call Lpgs the positive bounded formulas of L4. Let Lp
be the smallest subset of L4 containing the atomic formulas, and closed under
countable conjunction, finite disjunction, universal quantification over countable
many variables. Clearly Lp C Lppa. Let (LpU EI_'LP){/\’_'} be the smallest subset

of L4 containing:
o the formulas in Lp.
e The formulas of the form 3% € Iz’(—'qb(:ff, y)) for &(Z,y) € Lp.

and closed under countable conjunction and negation.

Let Lay = ((LpU EI_'LP){/\’_‘} U LPBA){/\’\/’EI} be the smallest subcollection of
L4 containing the Lpga, the (Lp U EI_'LP){/\’_'} and closed under countable con-
junction, countable disjunction and infinite existential quantification. Examples of

formulas in L4, are:

e The quantifier free formulas of L 4.
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e Formulas of the form

37 € K \ Vg € Dii( &, 7:)

=1

with the ¢; in Lp.
We obtain the following weak approximation principle (Theorem 3.3.10):

Weak Approximation principle for L4,

Fiz a model E of La. Let ¢(¥) € Lay. Then for every d in E with

@ = |2, i E = 6(@) then E Fap ¢(d). D

@

We remark that the above theorem does not hold for arbitrary formulas in L4 (see
Chapter 3).

We then look for stronger approximation principles holding for subsets of L 4.
We obtain a strong approximation principle for the class (Lp U EI_'LP){/\’_'}. The-

orem 3.3.8 states that:

Strong Approximation Principle for (Lp U EI_‘LP){/\’_'}

Let ¢(2) € (Lp U EI_'LP){/\’_'}. Then for every model E , for every

vector b in F , E Eap qb(g) i E E qb(g) O

We conclude Chapter 3 by studying approximation principles in classical first or-
der structures, i.e., structures where the metric is trivial (can only take the values
of zero or 1). it is easily seen that any classical first order structure can be in-
terpreted as a metric structure with the trivial metric. We will call first order

formulas (L. ) all the formulas belonging to the smallest subset of L4 containing
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the atomic formulas and closed under finite conjunction, negation and existential
quantification over finitely many variables. Let then (LWM){/\’ﬁ} be the smallest
subset of Ly that contains all the first order formulas L, and is closed under

countable conjunction and negation. Theorem 3.4.3 states the following:

Strong Approximation Principle

Let (&) € (LWM){/\’ﬁ}. Then for any classical first order model E |

and for every @ in E |, E |= ¢(d) if and only if E Eap ¢(d). O

In Chapter 4 we study the third type of approximation principle. We begin
by looking at a particular type of collections of models: The complete collections
of models. Complete collections of models are collections of all models of L4
that share the same uniform continuity requirements for the function symbols of
the language, and the same “uniform” bounds for the predicate symbols of the
language. Given a complete collection of models W a complete class of models
in W is defined as the subcollection of W of all the models that satisfy a fixed
sentence ¢ in L4. Let us remark that most of the usual collections of models
appearing in analysis and first order logic are complete classes of models. For
example the collection of normed spaces, the collection of Banach spaces, the
collection of Banach spaces that are reflexive, the collection of Hilbert spaces, and
any collection of first order models axiomatized by countable first order sentences
are complete classes of models. In Chapter 4 we use complete classes to prove a

Model Existence Theorem (Theorem 4.2.7) along the following lines:
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Model Existence Theorem

Let M a complete class of models axriomatized by a sentence o . Let ¢
a sentence in La. If there exists a path h € [(¢ N ) such that every
approzimation of the formula v A @ along the path h has a model in M,
then there exists a model E/ in M such that: E Eap ¢. Furthermore,

Eap and E coincide in E . O

This theorem extends the classical Compactness Theorem for first order logic to
infinitary formulas, and the Compactness Theorem obtained by Henson for Lppg
([19]). As a direct byproduct of the above theorem we obtain a result concerning

the second approximation principle mentioned above:

Rich Models for L4

Let W a complete class of models axiomatized by a sentence in L.
There exists a rich structure for L4 in M, that is, a structure E € M

such that E = ¢ (ff E Eap ¢ for every ¢ € Ly.

The second part of Chapter 4 and Chapter 5 are devoted to the fourth type of
approximation principle. We begin by a weak approximation principle in classes

of models. Theorem 4.4.1 states:

Weak Approximation Principle for Complete Classes

Let M a complete class of models axiomatized by a sentence in L.
Fiz ¢ an arbitrary sentence in L. I[fVE € M E |E ¢, then VE € M

Eap ¢. O
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Using the Model Existence Theorem we show that the converse of the above
theorem holds for universal formulas of the form VZ € [z’qb(:i", y) with ¢(¥,7) €

(LpU EI_'LP){/\’_'} (Theorem 4.4.2):
Strong Approximation Principle for Complete Classes
For every complete class M axiomatized by a sentence in Ly, for

every sentence ¢ = VT € K’;z;(:z;’) with (Z) € (Lp U3-Lp)tAI,

VE € M,E Eap ¢ iff VE € M, E = ¢.

Thanks to the Strong Approximation Principle for Complete Classes, we can obtain
very general results concerning the “uniformity” of the validity of a fixed formula
in classes of models.

In particular, as a consequence of the above result we obtain a uniformity of
paths theorem that can be seen as an equivalence statement between satisfaction
of infinitary formulas in a complete class of models and satisfaction of finitary

formulas in the same class. Theorem 4.4.3 says:

Uniformity of Paths

Fiz a complete class of models M aziomatized by a sentence in Lppa.

Let ¢ € La(®) a universal sentence
¢ =Vie Ky()

with ¢ € (Lp U EI_'LP){/\’_'} ). Then the following are equivalent:
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o [or every model E € M, E = ¢.

o There exists a path h € [($) such that for every model E € M,

E approximately satisfies ¢ along the path h.

We also obtain a weak version of the above result for a bigger class of formulas.

Theorem 4.4.4 states the following:
Weak Uniformity of Paths

Fiz a signature ® and a complete class of models axiomatized by a

sentence in Lppa. Let ¢ be a negative sentence (¢ = —8). If for every

model E € M, E = ¢, then:

For every path h € [(8) there exists an integer n such that for every

model E. € M, E E =(0);,,.0

In other words, if a negative sentence—# holds for every model of a complete
class, then for every path h of 6 there is an integer n such that the approximation
=(0},,) holds for every model of the class.

The strong result on uniformity of paths suggests a way of proving that a
sentence of the form ¢ = V7 € ]2’(9(:]7;’) with 6 € (Lp U _'LP){/\’_'} does not hold for
all models of a complete class M axiomatized by a formula in Lpg4. It would be
enough to show that for every path h € [(¢) there is a model E € M such that
E does not approximately satisfy ¢ along the path h.

The weak result on uniformity of paths can also be seen as a uniformity result.

If a negative statement (for example \/;2; ;) holds for all the models of a complete
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class of models, then it holds uniformly (along the same fixed path) for all models
of the class. In other words, the above theorem gives a general “recipe” to obtain
uniform versions of negative sentences that are known to be true in all the models
of the class, just by decoding the meaning of E4p " Such a general result only
requires the verification that the class of models is a complete class of models,
and that the statement proved for every model of the class is a negative formula.
We close Chapter 4 with an application of this result to Functional Analysis. We
prove a uniform version of the celebrated theorem by Krivine concerning the finite
representability of one of the ¢, (p € [1,00]) or ¢ in every infinite dimensional
Banach space by simply decoding the meaning of “there exists a path, such that
for every normed space structure, Krivine’s Theorem is approximately true along
this path”.

Chapter 5 is devoted to the negative aspects of the following question:

(*) if every structure in a fixed collection of models approximately
satisfies a sentence ¢, does it follow that every model of the collection

also satisfies @7

The results in Chapter 4 imply that the simplest negative instance of question (*)

is when the formula ¢ is existential. A negative instance of (*) will be:
VE e M EEap ¢but IE € M E = ¢

We will say of any such occurrence that ¢ is omitted in M. We use the Model
Existence Theorem to construct structures that OMIT existential sentences in the
above sense. This contrasts with the results in the literature where the Model Ex-

istence Principles are used in one direction only: to obtain rich structures for some
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types of infinitary formulas. Thanks to the expressive power of L 4 it is possible to
obtain from the Model Existence Theorem conditions for the existence of models
that omit existential sentences. We give sufficient conditions on complete classes
of models to have countable models that omit 3 formulas in L4 (Theorem 5.1.3).
Finally, we apply the previous results to first order logic. We obtain an extension
of the classical Omitting Types Theorem to infinitary formulas of the form V (The-
orem 5.2.1). We replace the usual hypothesis of “ local realization” by a statement

that uses approximate truth.
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Chapter 2

Definition of the Logic L4

Our intention is to define a logic whose expressive power captures many of the
concepts in Analysis. Most popular concepts refer to continuous maps between
two different metric spaces. Examples of such maps are the metric of a metric
space, the expected value of a random variable, etc.. In order to accommodate such
functions we need to define a logic that accepts multisorted predicate symbols. The

full description of such a language is as follows.

2.1 The signature ¢

We will distinguish two different types of sorts:

o I'ix a collection S of metric spaces containing at least the real numbers with
the usual metric (R,d). The elements of the collection S are going to be

called the fized sorts of the signature.

o A true sort. Intuitively, the true sort is going to be the metric space associ-

ated with every particular model.

For every signature to be defined, we intend the fixed sorts to be the same for
all models, while the true sort will be different with every model. Every structure

then will consist of an interpretation of the true sort and interpretations of the
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predicate and function symbols. In this way the functions in the model will have
domain the true sort and range the true sort (or one of the fixed sorts metric
spaces).

Abusing the notation we will refer to the interpretation of the true sort in a

model as “the model”.

A signature & = (F,P) is defined as follows:

e F is a collection of symbols of functions such that each element f € F has a
corresponding finite arity ay < w. The sort of f could be the true sort, or a
fixed sort (My, ps) in S. Intuitively, these symbols are going to be interpreted
as maps from the model to itself, or from the model to the sort metric space

(My,pg). We call F the collection of function symbols of ®.

e P is the union of a collection of predicates and a collection of predicate
symbols. Each element C' € P has a corresponding finite arity a¢ < w. The
sort of C' could be the true sort or a fixed sort (M, pc) € S. If C has a fixed
sort (Mc, pc) then C is an unary predicate that is a closed subset of M.
If C' has true sort then ' is a predicate symbol. We call P the collection of

predicates of ®.

e There is a fixed function symbol p € F in every signature with arity 2 and

sort . This symbol will be interpreted as the metric of the model.

Let us see an example of a signature.

EXAMPLE 2.1.1 Typical signatures
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Suppose that the structures that we want to study are the normed spaces with

the following basic operations:
e Sum of two vectors and multiplication by scalars.
e Norm of a vector.

e Estimates of the norms, i.e we want to refer to the relations |.| < ¢ on the

reals for arbitrary positive rational numbers ¢.
A natural signature that will reflect these operations will be:

e Fixed sorts S = {(R,d)}.

e F contains the following symbols of functions:

the function (x + y) with arity 2 and true sort.

— For every real number r, the function symbol r(z) with arity one and

true sort space.

A function symbol ||z|| with arity one and sort space (R, d).

— The metric function p with arity 2 and fixed sort the real numbers.

e P contains for every positive rational ¢ the compact predicate C;, = {z| || <

q} of arity one and sort space (R,d). O

2.1.1 Terms in L4

We define terms and sort spaces of the terms by induction.

DEFINITION 2.1.2 Definition of terms in Ly
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o Let {x;]t € w1} a fixed collection of variables. The variables x; are terms.

Their arity is 1. Their sort is the true sort.

e Given a collection of terms {¢;: ¢ < n} of true sort space, and a function
symbol f of arity n and sort space (My,p;) (or true sort space), f(f) =
f(t1,..t,) is a term with arity given by the cardinality of the collection of

variables in {t; : ¢ < n} and sort space (My, ps) (or true sort space).O

In summary, terms have finite arity and they are of two different types: those
which have fixed sorts and are going to be interpreted as maps from the cartesian
product of the model to the sort space, and those which have true sort and are

going to be interpreted as maps from cartesian product of the model to itself.

2.2 Formulas in L4

Fix a signature ®. We define the formulas of L4(®) by induction. As we will see,
L4(®) admits negation, finite and countable conjunctions and bounded existential
quantification by w many variables.

As usual, for every formula ¢, the notation ¢(¥) means that the free variables
of ¢ are among the components of the vector Z. Likewise ¢(Zy, ¥, ...) means that
the free variables of ¢ are among the components of the vectors 'y, 75, ...

We begin with the atomic formulas.
DEFINITION 2.2.1 Atomic formulas

An atomic formula in L4(®) would be any expression of the form:
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where C' € P and 1 is a vector of terms such that the arity and sort of 7 agree with

the arity and sort of (. O

DEFINITION 2.2.2 Definition of formulas in L4(®P)

e An atomic formula is a formula in L4(®).

o If &1, P2, ... (1<w) is a collection of formulas in L4(®), then for every n,

is in La(®). Furthermore, A2, ¢; is also in L4(®).
o If ¢ is a formulain L4(®) then —¢ is also a formula in L4(®).

e Consider a formula (41, ..U, .., 7) in La(P) where every ¢, (n < w) is a
vector with finite arity a,, < w. Assume also that the set of variables in the
Yy, are all disjoint. Let K = (K1, K, ....) a corresponding vector of predicate

symbols of true sort. The following formula is in L4(®):

(1, Y, ) € (K1y oo Koy ) (@Y1 - iy -, T))

We will abbreviate = A = by \ and =(¢ A =) by ¢ = . To avoid typing very

long formulas we will also abbreviate

(7. T..) € (K1y o By YA, By s )
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by 37 € [z’qb(:i", y). Likewise -3y € [z'—'qb(y_’, Z) will be abbreviated by Vi €
];’qb(y_’, #). Finally, when the signature ® is clear from the context, we will refer to
La(®) by La.

Notice that the formulas in L4 admit quantification over infinitely many vari-

ables. This enhances the expressive power of L4, as the next example shows.
EXAMPLE 2.2.3 FExpressive power of L4

e The map 7 : (X,p) — (X,p) is continuous in the set K. Here let
us assume that we are working with a signature ® = (F,P) that contains
the fixed function symbol p(x,y) (intended to be the distance function) with
arity two and fixed sort R, the function symbol T" with arity one and true
sort and for every integer m the closed predicate # < (1/m) with arity one
and fixed sort . We will assume also that the signature contains a predicate

symbol K with arity one and true sort.

The desired formula is:

Vee K /w\ \W/ Vy e K(p(z,y) <1/m = p(T(z),T(y)) < 1/n)

n=1m=1

e The set K is bounded and infinite dimensional in the normed space
(X, ]-1))- In this case let @ = (F,P) be a signature that contains a norm
symbol ||z || with arity one and fixed sort the reals, a difference symbol (x—y)
with fixed sort and arity 2 and for every integer m the closed predicates
|z| > (1/m) and |z| < m with arity one and fixed sort the reals. Finally, we

also include in the signature a predicate K of arity one and true sort.
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The desired formula is:

\ (Vz e K(0 < |z|| < M)A \/(EI:L’E]&/\ /\2M>||:1;n—:1;m||>1/))
M=1

=1 n=1 m#n

The set K is compact in the metric space (X,p). Assume that the
signature ® = (F,P) contains for every integer m the closed unary predicate
x < (1/m) with fixed sort the reals, and a predicate symbol K with arity

one and true sort.

The desired formula is:

w

Vie KGye K A N\ V plem,y) < 1/k)

k=1n=1m>n

Our next step is to define the semantics for L 4.

2.3

The d

Semantics for L4

efinition of the structures of L 4 is a natural generalization of Henson’s notion

of a Normed Space Structure (see[19]).

Fix a collection S of metric spaces (the fixed sort spaces).

DEFINITION 2.3.1 Definition of a model

Fix a

signature ® for S. A model E for ® is a collection

E= (X,d, F,P)

where:
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e (X,d) is a metric space. p is interpreted as d.

o ['={f*|f € F} with the property that:

Vf € F with arity as and sort space (M, ps) (or true sort) the interpretation
f* is a continuous function (with respect to the product topology induced

by d in X% )from (X%, d*) to (My,py) (or from (X, d*) to (X, d)).

o P={C*|C € P and C has true arity} with the property that:

V(' € P with arity ac and true sort space, the interpretation C'* is a closed
set (with respect to the product topology induced by d in X% )in (Xc,d*).

a

Once the interpretations for the symbols of ® are defined one can define the
interpretations of the terms in the model, ¢°, in the obvious way.

When the model and the interpretations of the elements of the language are
clear from the context we will drop the symbol °.

The definition of validity follows in the standard way.
DEFINITION 2.3.2 Definition of validity

Fix a signature ® for S. Fix a model E= (X, d, F, P) of ®. The truth ()
relation in the model E is constructed by induction in formulas in the natural way
from the truth definition for the atomic case:

Let C'(#(#)) be an atomic formula. Let @ € X1, E |= C(#(a)) iff it is true

that £*(d) € C*. O

Let us give some examples of models in L 4.
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EXAMPLE 2.3.3 Models of Ly

e Classical multisorted models

Let S be an arbitrary collection of discrete metric spaces, i.e. spaces (M, par)
so that Image(pr)={0,2}. Let ® = (F,P) be a signature for S containing
a fixed unary predicate K in P. A model of & = (F,P) is a classical mul-
tisorted model if the predicate K is interpreted as the whole space X and
Im(p) = {0,2}. Any classical first order structure E = (X, F, P) can be
interpreted as a classical multisorted model: Define d : X* —— (R, d) to be
the discrete metric. Under this metric every map is continuous and every set

is closed.

e The standard model of a metric space (X, d) for a signature ®.

Let S be an arbitrary collection of metric spaces. Let ® = (F,P) be a
signature for S such that all C' € P with fixed sort are compact sets. A model
E= (X,d, F, P) is standard for @ if and only every C'* € P is a compact set
in (X,d) orin (X*,7%) (7% is the product topology in X* induced by (X, d)).
The standard model is related to the standard neometric family (see [7]) and

to the models studied by Anderson in [2].

e Normed space structures (Henson).

Let S = {(R,d)}. Let & = (F,P) be a signature for S such that P contains
all the compact subsets of the reals. F contains the special functions symbols
.+ . of arity two and true sort, the function symbol ||.|| of arity one and sort

space (R, d) and for every rational ¢ the function symbols ¢(.) with arity one
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and true sort. Additionally, P contains the collection of unary predicates

symbols (of true arity) {B,| r € @}.

Furthermore, suppose that for every function symbol f in F with arity «a,

for every rational ¢ > 0, for every rational ¢ > 0 we select a real number
0(f,q.€) > 0.

A model E= (X, d, F, P) of ® is a Normed Space Structure with respect

to the collection of reals {§(f, ¢, ¢)|f € F,q,c € @t} if and only if:

1. X is a normed space over the field of reals, and the metric d coincides
with one induced by the norm. Furthermore, + is interpreted as the
sum of two vectors, |[|.|| as the norm of the space, and, for every rational

q, q(.) is interpreted as the multiplication by the scalar ¢.

2. For every rational r, the interpretation of B, is the ball in X of radius

r centered at the origin.

3. Every interpretation of a function symbol f with true sort (or fixed
sort (M, par)) and arity a, is a function f: X* — X (or f: X® —
(M, par)) that is uniformly continuous on every predicate symbol B, in
the following way:

a a

VI( N\ Br(x:) = Vi /\ B:(yi) = ([lei—yil| < 8(f,r.€) = [|f(Z)=f(@)l] < 0)))

=1 =1
for every € > 0 (or

a a

VE(\ Br(w:) = YN\ Bo(yi) = ([lei—yill < 8(f,r €)= pu(F(F), F(§) < €)))

=1 =1
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The normed space structures were introduced by Henson in [19] and exten-

sively studied in [19, 14, 16].

Banach space structures. One particular class of normed space struc-
tures is the class of Banach space structures. A normed space structure
E= (X,d, F,P) is a Banach space structure if the space (X, ]].||]) is a Ba-
nach space. This class has been studied by Henson & lovino ([19]) and by

Henson & Moore ([20]).

Hilbert space structures. Another particular class of normed space struc-
tures is the class of Hilbert space structures. A Banach space structure
E= (X,d, F, P) is a Hilbert space structure if there is a function symbol in
the signature that is interpreted as the inner product. This class was also

defined by Henson & lovino in [19].

Nonstandard Hulls (Fajardo & Keisler ([7])

Fix a nonstandard universe (V(Z),V(*Z),”). We assume that the reader
is familiar with the basic concepts of nonstandard analysis (see [41] for an

introduction to the subject). Let us recall some facts concerning nonstandard

hulls.

Given a *-metric space M = (X, p) , for every z in M let [z] be the equivalence
class of all the elements in M infinitesimally close to . Then for every ¢ in

M, we define the nonstandard hull of M with respect to c as:

H(M,c)={[z]:x € M A p(x,c) is finite}
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and the metric in H(M, c) is given by the relation:

p([«], [y]) =° ple,y)

Let S be the class of all the nonstandard hulls H(M,¢c). Let ® = (F,P) a
signature for S such that any C' € P with fixed sort is the standard part of

*

an internal subset of the galaxy G(M,¢c), for some *-metric space M.

A model E= (X,d, F, P) of ® is a nonstandard hull if and only if:

1. (X,d") = H(N,a) for some *-metric space N, and some a in N.
2. If a function f belongs to F' then f is uniformly liftable.

3. If K € Pthen K is the standard part of an internal subset of the galaxy

G(M ,a) for some *-metric space M and some a in M.

Neometric models (Fajardo & Keisler)

We assume that the reader is familiar with the definition and notation on
neometric families. A good reference for this can be found in [9]. Fix a

nonstandard universe (V(Z), V(*Z),* ). Let S be the class of all metric spaces

(M, p) such that M is a closed subspace of some nonstandard hull //(N, c).

Let & = (F,P) asignature for S such that any C' € P with fixed sort (M, p)
is interpreted as a closed subset in (M, p) C H(M, ). Furthermore we require
C' to be the standard part of the intersection of countable many internal

subsets of the galaxy G(M,c). Any such set is said to be a neocompact set
(see [9]).

A model E= (X, d, F, P) of ® is a neometric model if and only if:
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1. (X,d) is closed subspace of a fixed nonstandard hull H(N,a).
2. If a function f belongs to F' then f is uniformly liftable.

3. If a relation C' belongs to P then (' is a neocompact subset of the galaxy

G(N,a).

The neometric families were introduced and studied in a series of papers by
Fajardo & Keisler (see [7, 8, 9]). It is readily seen that the nonstandard hulls

are particular cases of neometric models.O

As the previous example illustrates the definition of models of L, are wide
enough to encompass most of the usual structures in classical logic and in analysis.
Let us now return to the logic Ls. Our intention is to define a notion of

approximate formula for formulas in L 4.

2.4 Approximate Formulas in L4

We define a notion of approximate formula for the formulas in L4 that extends
Henson’s definition (see [19]) for first order positive bounded formulas to formulas
in L4. First we introduce the concept of an approximate signature for a fixed
signature. Using this we define a first order collection L4p of formulas: the ap-
proximate formulas of L 4. Finally, we associate to every formula in L4 a tree of

formulas in L 4p.

DEFINITION 2.4.1 Approximate Signature of ®
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Fix a signature ® = (F,P). The approximate signature of ®, denoted by
¢rr = (F, AP) is the following:

AP=PU{K,|K € P and n € w and K,, has same arity and sort as K }.

Furthermore, for any closed predicate C' € P with fixed sort (Y, p), for any

integer n, C, is the following closed predicate in (Y] p):

Co={yeY[Iz€Cply,z) <(1/n)}

The signature ¢ = (F, AP) is intended to have the same function symbols
as @, and for every K € P, to contain the collection of metric “approximations”
K,.

Every model E of ® induces in a natural way a model of @77, the approximate

model of F .
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DEFINITION 2.4.2 Approximate model of E

Fix a signature ®. Let E= (X,d, F, P) be a model of ®. The approximate
model of E , E*?? is a model of ®*"? defined as follows:

E®r = (X, d, F, AP) with
o AP=PU{K,: K € P and n € w} and such that for every K € P, Vn

K, (b) iff there exists & (E = K (&) and A\ d(e;, b;) < (1/n))

=1

We will use ®P? to define in a syntactical way collections of formulas that
approximate the formulas in L4. We want these approximations to be first order
formulas (i.e. to use only finite conjunctions, negation and bounded existential

quantification).
DEFINITION 2.4.3 Definition of Lap

Fix a signature ®. We define the collection L4p(®) of approximate formulas of

La(®) as follows:
e Any atomic formula C({) € La(9%?) is in Lap(®P).

o If ¢; and ¢y are formulas in Lsp(P) then the formula ¢; A ¢y is also in

Lap(®).

o If ¢ is a formula in Lsp(®P), then the formula =¢ is in Lap(P).
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o Let ¢(y,7) be a formula in Lap(®). Let a < w be the finite arity of ¢, and

let K € AP with arity a and true sort. Then the formula
3y € Ko(y,7)

1s In LAP((I)).D

Note that the logic L4p(®) is a finitary multisorted logic. When the signature
® is fixed, we will abbreviate Lap(®) by Lap.

Our intention is to generate approximations of all the formulas in L4 by using
the formulas in L4p as building blocks. Inspired by the Souslin operation used in
classical descriptive set theory (see for example [24]) to generate the analytic sets
from the closed sets in a Polish space, we define a Souslin-type operation for the
formulas in L4p. We intend the approximation of a formula ¢ to be the image of
the Souslin-type operation applied to the collection of approximate formulas of ¢

n LAP-
DEFINITION 2.4.4 The Souslin Operation

Fix an arbitrary signature ® and an arbitrary set [. Let 7 = {¢pn, : h €
I, n € w} be a collection of formulas in L4p indexed by I x w. We will call Z
a Souslin-scheme on L4p. The Souslin operation & applied to Z is the following

formula:

S(Z) =\ A d

heln=1

The final step in our process is to associate to every formula ¢ in L4 a tree of

approximate formulas. Formally, we will associate to every formula ¢ in L4 a set
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of indices I(¢) (the branches of the tree of approximate formulas) and a Souslin
scheme C(¢) = {dnnlh € I[(¢),n € w} of finitary formulas in Lap. Intuitively,
for every branch h € (@), the collection {¢p,|n € w} is going to “imply” ¢ as n

tends to oo.
DEFINITION 2.4.5 Definition of approximate formulas in L4

For any formula ¢(#) in L4 we define:
e A set of paths (o),
e For any h € I(¢) and n € w, a formula ¢;,,(¥) € Lap

The definitions is by induction in formulas as follows:

Atomic. For any atomic formula C(f),
o The set I(C(1)) = {0}
e For every h in I(C(%)), for every integer n, (C(£))h.. = Cp(t)

Conjunction. For any countable collection of formulas in L4, ¢y, ¢s..¢;.., we

define:
o [(AZ, 0:(Z)) =112, I(¢;) (the cartesian product of the I(¢;)).

e For every h in (A2, &), for every integer n,

n

( K i = A (@)

=1

Negation. For any formula ¢ in L4, we have:
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o I(—¢) C (I(¢) x w)¥ is the collection of all maps f = (f1,f2) with the
following “weak” surjectivity property:

Vh e 1(¢) 3s € w, (D)n.fo(s) = (D) fu(s).fa(s)

e For every h in [(—¢(Z)), for every integer n,(=¢)y,, = Ay — (¢h1(i)7h2(i))

Existential For every formula ¢((v4, Us..9;..), ¥), for every vector of bounding sets

K = (K1, Ky, ..K,..) of corresponding arities, we have:
o I(3F € Ko(5,7)) ) = [($(7, 7))
e For every h in [(30 € Iz’qb(ﬁ’, Z))), for every integer n, we have that

(35 € K&, 7)) = 35 € K (S5, 7))

Let us introduce some notation.
We call I(¢) the set of paths of ¢. The formulas ¢}, are the approximate

formulas of ¢, and the collection

C(¢) = {dnn: h € 1(d), n € w}

is the Souslin approximation scheme or the approximation tree of the formula

¢. Finally, the formula

SC@) =\ A dun

hel(g) n=1

is the Souslin approximation of the formula ¢.
Note that if the formula ¢ in L4 is a positive formula (i.e. a formula without

negation) then I(¢) = {#}} has only one element, i.e. there is only one path for the
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approximations of ¢. For formulas that are not positive, the set of possible paths
has cardinality bigger than one (2).

Let us see some examples of approximations of formulas in L 4.
EXAMPLE 2.4.6 Erample of Approximate Formulas

o Let us assume that the signature ® contains for every integer ¢ the predicates

(ly| > 1/2) of arity one and sort (R, d) and an unary predicate K of true sort.

The formula ¢:

o0 o0

EI:JZ"E[;’/\ p(:z;],xn)>1/@

states that there exists an infinite sequence of elements in A" whose mutual

distance is bigger or equal than 1/i.

The reader can verify that the collection of paths I(¢) is exactly:
H H {@}
7=1 (n=1,n

In other words, there is only one possible path for this formula. Using the

previous definition, we have for this h € [(¢), for every integer m,

O =FFERA N plassr) 2 1/i=

i.e. the m-approximation along the only path states that there exists m
elements in the set K such that their mutual distances are bigger or equal

than 1/¢ — 1/m.

e The formula:—¢

-3z c K /\ plaj,x,) > 1/

Jn=ln#j
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states that for every infinite sequence in K there exists two distinct elements
whose distance is smaller than 1/i. This is equivalent to the fact that there

are only finitely many elements in A" whose distance to each other is bigger

than 1/¢.

The reader can verify that the collection of paths I(—¢) is the subset of

I(¢) x w consisting of all the functions f = (f1, f2) : w — [(¢) X w such that
Vh € 1(¢)3s, G o(s) = si(5).1a(s)-
In this case, since [(¢) contains only one path it is easy to see that I(—¢) =

({0} > w).

Using the definition for approximation, we have then that for every function

f: (flva) W {Q)} X W,

for every integer m,

J2
(~@)rm = \ 23T € KA\

m (s)
s=1 7=1

fa(s)
A plaseen) = 1= 1/£(6)
n=1,j#n

This can be rewritten in the following simplified form:

for every s < m:
L () fals)
vie K \/ '\ plzj,z,) <1/i—1/fa(s)
7=1 n=1,n#j
i.e. the m-approximation along the path f of ¢ states that for every s < m for

every collection &y, ...74,(s) of elements in K there exist two distinct elements

such that the distance is strictly smaller than 1/¢ — 1/ f(s). O
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2.5 Approximate Truth

The definition that we give next is a generalization of the definition of approximate

truth for first order positive formulas introduced by Henson in [15].
DEFINITION 2.5.1 Approzimate validity

Fix a model E for a signature ®. Let E*? be the approximate model of E .
Let ¢(%) be a formula in L4 for this signature. Let b a vector of elements of X.

We say that

E Fap o(b)
if and only if

Ih € 1($(F)) ¥n € w, % |= ¢),,(b)
Equivalently,
E feap 6(0)

if and only if the Souslin Approximation of ¢, Vjer(4) Anty thn(g), is true in E*PP .0

We illustrate this definition with an example.
EXAMPLE 2.5.2 [sometric Inclusion

Consider the signature ® described in Example 2.3.3 for the Normed Space
Structures. Recall that By is interpreted in those structures as the unit ball of the
space. By B; we denote the vector: (B1, By, ...... ).

Let (Y,]|.]|) be a separable normed space generated by the countable set of

independent vectors {eq, ey, ...€,,..} of norm 1. It is easy to see that (V,]].]|) is
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isometrically embedded into a normed space structure E= (X, d, F, P) with norm

|.| if and only if:

E 3% e B A A |Zaxz|—l|2aezl|

m=1geQm™ =1

On the other hand the statement

E [4p 37 € By /\ A |Zax2|—||2ael||

m=1geQm™ =1

is equivalent to say (since I(¢) = {0}) that for every integer r

Ewr=3ie B AN Y aw] — 1Y ae| | < 1/r
=1

m=1geQmr i=1

It follows easily that this, in turn, is equivalent to the fact that for every finite
dimensional subspace G of Y and every e there is a finite dimensional subspace
H in E that is e-isomorphic to G. This is exactly the definition of the concept of
finite representability of a normed space Y into X (see [29]).

In summary: the approximate validity of the statement “Y is isometrically
embeddable in E 7 is equivalent to the statement that Y is finitely representable
in £ . It is well known that the two notions are not equivalent (see for example

[29]). This shows that the concept of approximate truth is different from validity.O

The following example shows a formula for which = and E4p coincide in the

collection of normed spaces models.
EXAMPLE 2.5.3 Infinite Dimensional Spaces

Consider the signature ® described in Example 2.3.3 for the Normed Space Struc-

tures.
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The next well known remark follows immediately from the Riez’s Lemma (see
[6]).

REMARK 2.5.4 Infinite Dimensional Normed Spaces

A normed space (X, ]|.||) is infinite dimensional iff there exists a sequence

{x,}°2, whose elements have norm < 1 and such that Vi # j € w ||x; —x;|| > 1/2.

O
It follows that for every infinite dimensional normed space structure E
EE3reB N N\ 1/2 < |jei—a]] <2
n=1:i#;<n
The approximation of this formula is simple since
IAN A 12 < flo—ag]] <2) = {0}
n=1:i#;<n
We get
Fze B N N 172 <|la; — ;]| <2 =
n=1 i#j<n

JFeB N N 1/2—=1/m<|lzi—zj|| <2+ 1/m

n=1:i#j<nlm

i.e. for every integer m there exists m vectors with norm less than one with mutual
distance bigger than 1/2 — 1/m. It is easy to see that this last statement implies
that E is infinite dimensional.

In summary, for every normed space structure F

EE3te B A N 1/2< loi—a]| <2

n=1:i#;<n

if and only if
Erap3ie Bi \ N 1/2< |loi—ajl| <2

n=1itj<n
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We end this chapter with a brief discussion on the relationship between |=4p
and = for formulas in 1 4.

As mentioned in the introduction, the logic Lpg and the logic for infinitary
positive formulas introduced by Fajardo & Keisler satisfy that F4p is “weaker”

that = in the following sense:
For every structure E | for every sentence ¢, E = ¢ implies E Eap ¢.

This is not the case for arbitrary formulas in L. It is not hard to see that
any “decent” definition of =4p (in a logic with negation) that verifies the above
property would verify:

EE¢iff E Fap ¢ (2.1)

i.e.: The notion of =4p would be identical to |= . As the previous examples show,
this is not the case for our definition of |=4p . Hence =4p is not in general weaker
than |= . This is the price paid for the enhanced expressability of L 4. However, we
will see in the next chapter that the above property still holds for large collections
of formulas in L 4. On the other hand, we can weaken the above property to the

following statement concerning collection of models M:

In Chapter 4 we will show that this statement holds for formulas in L4 (under

some assumptions on the collection of models M).
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Chapter 3

Elementary Properties of

Approximate Truth

In this chapter we study the basic properties of the notion of approximate truth.
In the first section we show that approximate truth is a sound semantical concept.
In Section 3.2 we obtain a theorem linking approximate truth and convergence in
metric spaces. In Section 3.3 we use the previous results to obtain basic approxima-
tion principles for some subsets of L 4. Finally in Section 3.4 we study the notion
of approximate truth in classical first order logic and obtain an approximation

principle for a large class of infinitary formulas.

3.1 Soundness of Approximate Truth

We begin by showing that the approximate formulas behave “nicely”. We also

show that every set of paths (¢) has a countable “dense” subset.

LEMMA 3.1.1 Fiz a collection S of metric spaces, and a signature ® over S.

Then for every formula ¢p(Z) € La:

1. For any be X for any integer n and for all h € 1(),

B = ¢t (B) = dnn(D)



42

2. For every formula ¢ there exists a set D(¢) C I(¢) at most countable with

the following property:

D(¢) satisfies that for every h in 1(¢), for every integer n there exists a path

g in D(@) such that: ¢y, (¥) = ¢y .(7) O

PROOF: 1) By induction on the complexity of the formulas and Definition 2.4.5
of approximate formulas. Left to the reader.

2) By induction on the complexity of the formulas in L 4.

e Atomic Formulas. Let C'(f) be an atomic formula. Then we know that

[(C(#) = {0} and ¥n € w¥h € I(C()):
(C(@)nn = Call)

Define then D(C(f)) = I(C(#)). It is easy to see that this set verifies the

desired property.

For the connectives and quantifier steps let us assume as induction hypothesis
that for formulas ¢ of less complexity than the formula ¢, 1(¢) and D(v)

satisfy the desired properties.

e Conjunction. Consider the formula
o) = N\ oi(7)
=1

Recall that
[(Qb) = 1:[ [(Qbi)
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and that for all integers n and for all & € I(¢),

The construction of D(AZ, ¢;) is as follows:

Vn € w, let

P ﬁ D(6) — T1 D(s:)

=1

be the usual projection map. By induction hypothesis, Vi € w, D(¢;) is at

most countable. It is possible then to find, for every integer n, countable sets

Q(n) CTII2, D(éi) C I(AZ, ¢i) such that:

We define D(A2; ¢) = U, Q..

Clearly D(AZ, ¢) C (A2, ¢) and is at most countable. Furthermore, by
induction hypothesis, for every h = (hy, ..h;,..) € [(AZ; ¢:), for every integer
n, there exists (g1, ..9,) € [T, D(¢;) such that:

A = A0

1=1
It follows that there exists g € D(AZ; ¢;) such that:

n

(Zi Gi)hn = N\ (Di)him

=1 %

Il
=

(Di)gim = (7} bi)gun

1

This is the desired result.

e Negation. Consider the formula ¢(¥)= -t (&) in Ly.
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Recall that I(—¢) C ([(¢)) x w)® is the collection of all the functions f =
(f1, f2) with the property that:
Vh € 1(¥)3s, Yn,pa05) = Vi), 1a05)

Recall also that Vn € w Yh = (hy, h2) € [(—9(T))

(“)hn = N\ ~(hy iy o))

=1

The construction of the set D(—)) is as follows:

Let A C I(—) be the collection of all the functions f = (fi, f2) € [(—)
such that I'mage(f1) € D(). From the induction hypothesis it follows that

Vn € w the set (D(¢p) x w)t" is at most countable. For any integer let
proj, : A— (D() x w)md

be the natural projection map. It is possible to find for every integer n a

countable set O(n) C A C (=) C (I(¢)) x w)“ such that
projn(O(n)) = proj.(A)
Let then D(—v) = U2, 0(n).

Let us verify the desired property. First, it is clear that D(—t) is at most

countable. Fix now h = (hq, h2) € I(—%) and an integer n.

By induction hypothesis for every integer s there exists g, € D(1) such that

Vhy () (5) = Lge o (s)

It follows that there exists f € A such that for every integer m

()hm = N\ “(Ds)has) = N\ “() s, 1205) = (78) 5m

s=1 s=1



45

Now, by definition of O(n) C A, there exists g € O(n) such that ¢ T {1,..n} =

F1{1,..n}. We obtain then

but this is the desired result.

e Existential. Fix a formula ¢ in L4 with free variables among the collection
{Zili < w}U{F}. Let K = (Ky, K;....) a corresponding vector of predicate

symbols with true sort. Consider the formula:
(F) = 30 € K¢(7,7)
Recall: I(1) = I(¢). Also, recall that Vn € w¥h € I(y(7)),
((2)) o = 6 € K g, 7)
Define then D(¢) = D(5).
The verification of the desired property is trivial. m

The first welcome consequence of this lemma is the following corollary that

states that the sets [(¢) are non empty.

COROLLARY 3.1.2 Fiz a signature ®. Then for every formula ¢ € La, I(¢)

s nonempty.0

PROOF': By induction on formulas. The only interesting step is the negation
step. Recall that I(—¢) C (I(¢) x w)“ is the collection of all maps f = (fi, f2)

such that:

Yh € [(¢)35 € w, th,fz(S) = ¢f1(5)7f2(5) (31)
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Lemma 3.1.1 states that D(¢) is countable. Hence the set B = D(¢) xw C I(¢) xw
is countable. Let f :w —— I(¢) x w such that Im(f) = B. It is easy to check
using Lemma 3.1.1 that f verifies statement 3.1, hence f € I(—¢). m

The next proposition shows that the notion of approximate truth is well be-

haved with respect to Boolean operations.

PROPOSITION 3.1.3
Fiz a signature ® and a model E of ®. Let ¢(Z), 1, ..¢;,.. be formulas in Ly.

Then the following is true:
L E ap ~3(@) if and only if E f=ap 6(@)
2 E ap N2y 6i(@) if and only if for every integer i, E =ap (@)
3. E Eap 7=¢(@) if and only if E Eap ¢(d).
J. E ap V2, 6i(@) if and only if there cxists an i such that:

E FEap ¢i(d)

5. E Eap (6(d) = ¢(a)) if and only if:

(E Eap o(d)) implies (E Eap ¥(d))

PROOF: 1)

(=): Using the definition of /(—¢) we have the following:

EfFap ~¢(@) = 3h = (ln,hs) € [(=¢), B = N\ N\ = (Bhy(s)ha(s)(@) )

n=1 s=1
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Furthermore, h (see Definition 2.4.5) verifies that for every f € I(¢) 3s € w such

that:
Df ha(s) = Phy(s)hals)
The two observations above imply:
Vf € l(¢)In, B = ~(dy.(d))
but this last statement, by definition of =4p , implies
E /i&AP gb((?)

This is the desired result.

(<): Suppose that
E /i&AP Qb(a)
It follows by definition of =4p that
Ve [()In B = ~(¢5n(@))
Consider then the set
W=A{(f;n)| f € D) N newNE = =¢;,(d)}

By the properties of the set D(¢) listed in Lemma 3.1.1 we know that:

o W is countable (at most).

o If g€ I(¢) and n € w then there exists f € D(¢) such that ¢,, = ¢;..

Let then H = (hy,hs) : w — [(¢) X w be any function such that Im(H) = W.
From the previous remarks it follows that such a function exists. Furthermore we

claim:
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Claim: H € I(—¢).
Proof: From the definition of I(—¢) (Definition 2.4.5) we know that it is enough

to check that
H:(Hy,Hy):wr— W CD(@) xwCI(d) Xw

verifies
\V/f S [(qb)EIS cw ¢f7H2(S) = ¢H1(5),H2(5)

Fix then f € I(¢). By hypothesis there exists an integer n such that E**? |= =¢(a) s,
By the properties of the dense set D(¢) mentioned above we know that there exists
h € D(¢) such that: o5, = .

Furthermore, since E? |= =(¢(d)fn) = —(¢nn(d)) we know that (h,n) €
W. By definition of H we know then that there exists an s € w such that
(Hh(s), Ha(s)) = (h,m).

It follows then that

Gfn = Ohon = DH,(s),Ha(s)

but this is the desired result. This completes the proof of the claim.

Finally, from the definition of H € I(—¢) we get:

Er = NN (G (5).a1205) (@)

n=1 s=1
i.e.
E Fap —¢(d)

This is the desired result.
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2) =. Suppose that E E4p A2, ¢:i(d). Then by definition it follows that there

exists (hq, ha,...hn,..) € TI52, I(¢;) such that for every integer n,

B e 6@

=1
We get then that for every integer ¢,
B = A G(@)nn

Invoking now Lemma 3.1.1 we finally get that for every integer ¢,

B = A (4@

n=1

and this is equivalent to saying that for every integer 1,
E Eap ¢i(d)

(«). Left to the reader.
3),4) and 5) follow directly from the previous items, using the definitions of the
abbreviations VV and =-. Left to the reader.m

We can partially extend the previous proposition to the quantifiers in L4.

PROPOSITION 3.1.4
Fiz a signature ® and a model E of ®. Let ¢(Z), 1, ..¢;,.. be formulas in Ly.

Then the following is true:
1. If there exists b = (31,52, ) €EE suchthat E = N2 [&”Z’(l_);) and E Eap qb(g, a)
then:

E Eap 37 € K(Z,a).
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2. If E =ap VZ € K$(Z,a) then:

For every bin E CifE E N ]&”Z’(l_);) then E Eap qb(g, a).

PROOF: 2) is the dual of 1), and follows directly from 1). So let us prove
1). Suppose that there exists b= (31,52, ..) € E such that E £ A2, ]&”Z’(l_);) and
E Eap qb(g, d). then by definition of 4p , there exists h € [(¢) such that for
every integer n,

B = (@b, @)
It follows that for every integer n,

Ewr = 37 € K (H(Z,@)hn, = (37 € KH(Z,))pn

but this is exactly,
E Eap 37 € Ko(7,4)

This is the desired result.m

The above propositions state that 4p is well behaved for the usual connec-
tives and quantifiers. Thanks to it in many of the coming proofs we will not use
the cumbersome definitions of approximate formulas but rather the properties of
Eap proved in Proposition 3.1.3.

In the next section we describe the relationship between approximate truth and

convergence in metric spaces.

3.2 Approximate Truth and Convergence

We introduce some notation needed in this section.
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Let us abbreviate “for all except a finite number of integers &7 by V*k. Likewise
3%k would stands for “there exists infinitely many integers k”.

Let ¢ a formulain L 4. Recall that ¢(#) means that the free variables of ¢ are
among the (distinct) elements of 7.

Let f = (f1,..f...) be a vector of (distinct) function symbols in ¢ with fixed
sort. The arity of ]Fcould be finite or countable. By () [ﬂ we mean that all the
function symbols appearing in (&) are among the elements of f

A vector ¢ of function symbols of fixed sort is similar to ]Fiff for every integer
i, fi,9; have the same sort and the same arity. In this case, given the formula
¢(f)[ﬂ, the formula ¥ (y)[g] denotes the formula in L4 obtained from ;/)(:I;’)[ﬂ
by substituting the occurrences of the variable x; by y; and by substituting the
occurrences of the function symbol f; by the function symbol ¢;.

Note that if ¢ is similar to f then for every formula ¢ € L4, I(¢()] _1) =
1 (7)[4]).

Finally, given any structure E , and any function symbols f,, f with the same
sort, we will say that f,, uniformly converges to f in E (f, — [) iff for every
(d,) in E converging to @ , f.(d,) converges to f(@). In a similar way we say
that the sequence of vectors of function symbols {ﬁ;}go:l uniformly converges to a
vector of function symbols f similar to the ﬁ; iff for every integer i, the sequence
of function symbols of the 7" element of the vectors { ﬁ;}go:l converge uniformly
to the " element of the vector of function symbols f

We are interested, for arbitrary models E | in the class of formulas for which

Eap and the metric notion of convergence are well behaved in E . Let us the

introduce the following definition.
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DEFINITION 3.2.1 Definition of Class of Convergent Formulas

Fix a signature ® and let E a model for ®. The class of the convergent

—

formulas for E is the collection of all the formulas ¢(Z)[f] € L4 verifying the

following property:

e If the sequence {gk}iil converges {g}

o If the sequence of vectors of function symbols { f;;}gozl converge uniformly in

E to the vector ]F

Then the following are equivalent:

Ih € 1($)¥n € Wk, B = (6(bp)[fe])nm

—

E | ¢(b)[f]
The next theorem gives the main property of the classes of convergent formulas.

THEOREM 3.2.2 Classes of Convergent Formulas

Fiz a collection S of metric spaces. Fix a signature ® for S, a and an arbitrary
model E= (X, d, F, P) of ®. Let A the collection of all the convergent formulas for
E .

Then A is a class of formulas closed under countable (and finite) conjunction

and negation.
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PROOF: Fix A the class of all the convergent formulas in E .
Conjunction. Let U(Z¥) = A2, (), with, for every integer i, ¢; € A. Let us
prove that W is also in A. We need to prove that the statements in Definition 3.2.1

are equivalent.
e («<). Direct.

e (=) Suppose that there exists an H € [(V(Z))such that for every integer n
and V*k we have:
B = (A (B D
=1

then Vn € w V*k € w:

n

Er = A (B0 mgom

=1
The last statement implies that for every ¢ € w, for every integer n > 1

and V*k € w B (sz(gk)[ﬁ] )i (i)n- Using 1) of Lemma 3.1.1, we can

transform this statement into:
ViewVnewVhew B = (6(b0)[fi) Viin
Using the fact that the ¢;’s are in A we conclude that E = A7, qbZ(I;)

Negation. Suppose that W(¥) = —¢(¥) and that ¢ € A. Once again, we need

to prove that the statements in Definition 3.2.1 are equivalent.

e («<). Suppose that E |= (ﬁqb(l_)))) Since ¢ € A, this implies that for any

h € 1(¢(Z)) there exists n € w such that:

3%k B e ($(00) il D
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Actually, we have an stronger result:

Claim: for any h € I(¢(Z)) there exists n € w such that:
Tk B (S0 Fi] D (3.2)

Proof: By contradiction. If this was not true, then there would exist a

h € I(¢) and a subsequence ky < kg < ..... of integers such that
In¥"i B = (05[] Jhn

Since {fr,}2, uniformly converges to f and {by, }32, converge to b we can

use the fact that ¢ € A to obtain:
E | ¢(b)[f]

but this contradicts the hypothesis. m

Define now a function H : w — (I(¢(Z)) X w) with the property that:

Image(H) = {(g,n) € (D($(7)) x w) | ¥k € w 7 J= (&(B)[fi] )gun}

(It is possible to define such a function because the cardinality of D(¢(Z)) is

at most countable by Lemma 3.1.1).

The function H belongs to 1(—=¢(¥)) because statement 3.2) implies :
Vg € 1()Ink € w ™ |= ~(&(B)[i] )
Hence, using the fact that D(¢) is a “dense” subset of I(¢) we get that:

Vg € 1(¢)3n3f € D(¢) Yk € w E7 |2 ~(d(by)[fi] Vgin = ~(0(0x)[f1] )1m
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and (f,n) € Image(H).

Finally, from the definition of H it is clear that for every integer n, V*k € w:

B = N\ = ((@(00)[Fxl) o))
=1
In summary: there exists an H € I(—¢(Z)) such that for every integer n,
vk € w:

n
—

B = (N (=B [fi] )

=1

This completes the proof.

e (=). Direct.m

A result similar to Theorem 3.2.2 can be obtained for the collection of rich
formulas for a fixed model . The rich formulas of a fixed model E is the

collection of all the formulas ¢(Z) € L4 such that for every vector bin E :
E | 6(b) il E ap 6(b)

COROLLARY 3.2.3 Fix a collection S of metric spaces. Fiz a signature ®
for S, and an arbitrary model E= (X,d, F, P) of ®. Let I the collection of rich
formulas for E .

Then 1" is closed under negation and countable conjunction.

PROOF': Similar to the proof of Theorem 3.2.2. Left to the reader.m
This result extends similar results by Henson for the case of positive bounded

formulas (see [19]) and of Fajardo and Keisler ([8]).
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3.3 Approximation Principles in L4

We will use the results of the previous sections to obtain approximation principles
for some classes of formulas in L4. We begin with a corollary concerning the

quantifier free formulas in L 4.

COROLLARY 3.3.1 Fix a collection S of metric spaces. Fix a signature ® for
S, and an arbitrary model E= (X,d, F, P) of ®. Let A the collection of all the

convergent formulas for E . The A contains the quantifier free formulas of L 4.

a

PROOF: It follows from Theorem 3.2.2 if we verify that A contains the atomic
formulas. But this follows by definition of model. The predicates in ® are closed,
have finite arity and the functions in ® are continuous with respect to the product
topology induced by the metric.m

The next example shows that the above corollary is not true for arbitrary

formulas in L 4.
EXAMPLE 3.3.2 Corollary 3.3.1 fails in general for the exvistential step

The essential parts of this example are taken from [11].

The collection S of metric spaces contains only the real numbers with the usual
metric. The signature ® = (F,P) on S consists of a symbol for a function T with
arity one and true sort, an unary predicate symbol K with true sort, and a closed
predicate C' = {x € R||x| < 0} of sort (R, d).

Consider the following model E= (X, d, F, P) of ®. X =C[ 0,1] is the space of

continuous real valued functions on [0,1], and the metric d is the sup norm.



Let T': X +— X be such that for every x € X = C[0,1], (T'(z))(t) = t.z(t). It is
easy to see that this map verifies that for every x,y in X, d(T(x),T(y)) < d(z,y).
Hence the map is continuous.

Let K = {x € X : 0=2(0) <a(t) <a(l) = 1}. This set is closed and

bounded.

Note first that the map T" does not have a fixed point in K, i.e. for every x in
K, T(x) # x. If this were not true there would exist an = in K such that for every
0<t< 1, 2(t) =t.x(t): a contradiction.

In other words, we get that:
E -Gz e K Clp(z,T(x)) )

Finally, for every ¢ > 0 select any function & € K with the property that:
YVt € [0,1], |x(t)| < e. Then it is easy to see that d(T'(z),x) < e.
We get then:

Eap dr e K C(p(T(z),)))
This completes the example. O

Nevertheless we can extend Corollary 3.3.1 to some types of universal and

existential formulas. We begin by proving a weak version of Corollary 3.3.1.

LEMMA 3.3.3 Universal/Existential formulas
Fiz a signature ®. Consider a quantifier free formula: ¢(Z,y). Let K a vector

of arity corresponding to ¥ and made of true sort predicate symbols. Then for every

model E , for every bin E , the following holds:

1. IfE |= 37 € Ko(7,b), then E =4p 37 € K (7, b).
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2. If E eap VT € Ko(T,b) then E = V7 € K(7,b)).

PROOF: 1) Suppose that E | 37 € [z’qb(:i", I;) Then we know that there ex-
ists @ in E such that £ E A2, Ki(d;) and E = ¢(a,b). Since ¢ is a quantifier

free formula, we can invoke Theorem 3.2.2 to obtain that E = A2, K;(d;) and

—

E =4p ¢(d,b). We now use Proposition 3.1.4 to obtain that:

—

B ap 37 € K(7,b)

and this is the desired result.

2) Suppose that

E fap V(N Ki(7) = 6(Z,b))
=1
Then by the Soundness Proposition for quantifiers (Proposition 3.1.4) we obtain

—

that: forevery @ € E | if E |E A2, Ki(d;) then E |Eap ¢(d,b).

Since ¢ is a quantifier free formula, we can invoke Theorem 3.2.2 to conclude
that for every @ = (a1, ..a;,..), if E = A2, K;(d;) then E |= ¢(d,b). This is the
desired result.m

It is clear that the converse of this lemma does not need to be true. It could

—

happen that every collection of vectors @ = (a1, ..q,,..) approaches ¢(Z,b) along

different paths so that:
E B VE( )\ Ki(#) = ¢(7,5))
=1

But it is not true that:

E |:AP Vf(;i I(z(fz) = Qb(fv [;))

=1
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However if the formulas we are dealing with have a “minimal” path, the converse

of the above holds.
DEFINITION 3.3.4 Definition of Lppa

Let Lppa, the collection of all the infinitary positive bounded formulas in L 4,
be the smallest subset of L4 containing the atomic formulas, and closed under infi-
nite conjunction (A), finite disjunction (V) and bounded universal and existential

quantification over countable many variables (3% € [z’,‘v’f € [;’) O

The next lemma states that, as expected, every formula in Lpg4 has a “mini-

mal” path.

LEMMA 3.3.5 Fiz a signature ®. Consider a formula ¢(¥) € Lppa. There

evists H € [(¢) such that for every model E , for every d in E |

IFE b ¢(@) then B = 7\ ¢i(@)

n=1

PROOF': By induction on formulas. The atomic case is trivial since there is
only one path.
Conjunction. Consider A2, ¢;. For every i, let H, € I(¢;) be as in the

statement of this lemma. Define

W= (i, ) € THG) = 1A 9)

We leave to the reader to verify that this path has the desired property.
Finite Disjunction. Consider \//_, ¢;. For every i, let H(i) € I(¢;) be as in

the statement of this lemma.
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Claim: For every i < r, for every h; € I(—¢;), there exists an integer
n(h;) > r so that for every model E | for every d in E |

r

i <rEEd¢ = V(h,. .h)e[[1(~¢:), E?" = = /\(ﬁ@)w(m)
=1

=1

Proof: For every i < r, every h € I[(—¢;) is by definition a function h = (f,g) :

w > [(¢;) X w that verifies:

Vg € 1(0:)35 (). a(s) = Panfals)

It follows then that for every h € I(—¢;) there exists integers n, m such that

Define then n(h) = max{n,r}.
Using the induction hypothesis we get then the following claim:
CLAIM: for every model E |, for every @ in E :

(h

)
~(0i(@))n(s)

=1

E (@) = B

Proof: If this was not true, then

n(h)
B = A\ = (i(@))as

s=1

In particular then , by the definition of n(h), there exists an integer m such that:

EP = =(0i(a@)) b (i) m

but this implies, using the induction hypothesis, that £ /j= ¢;(d) contradicting

the hypothesis of the claim. this completes the proof of the claim.
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In summary, for every ¢ < r, for every model E | for every h € I(—¢;), for every

ain E ,
E'|= (@) = Vhe l(=¢:), B = = (26i(@))nnn)

But this implies easily the desired result. This completes the proof of the claim.

Using the claim we define the following. For every h= (hi,..hy) € I(NZy i) =
[T, [(—y), let n(h) = maz{n(hy)]i < r}.

Finally, let H € (=~ A/_; =¢;) be any function H = (F,G) : w — [(A_; ~¢;) ¥
w such that Image(H) = {(ﬁ,n( ))|h € D(ANi—y o)}, It is easy to verify that
such a function exists (using Lemma 3.1.1).

We obtain then for every model E and every @ in E ,

r

V(hy,..h,) € H (=), B = = N\ (=¢i)n, (ki) (by the above claim)
=1
=V € 1A\ ~00), B b= =\ =651
=1 =1
= E = A (= A\ —¢i(@))n,, by definition of approximate formulas.
n=1 =1

This completes the proof of the disjunction step.

Existential. Consider a formula
A7 € Ko(7,7)

Suppose that the desired result holds for ¢. Let ¢ be the “minimal” path on I(¢).
We claim that G is the desired path for 3% € [z’qb(:i", ).

Assume that there exists @ in E such that

E =37 e K¢(7,d)
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Then there exists b € E such that E E AZ, [&”Z’(l_);) and

E = 6(b,d)
By induction hypothesis,
E®r |= K Ki(b:) A Kl(sb(g, @))cn
i=1 n=
It follows that
Ewr = 7{ (37 € Ko(Z,@))en
n=1

and this is the desired result.

Universal. Consider a formula
Vi € Ko(&, 1))

Suppose that the desired result holds for ¢. Let ¢ be the “minimal” path on I(¢).
Let h be any element of /(—¢). By definition, h = (hq, h2) : w — [(¢) X w with

the property that:
\V/g S [(qb)EIS (qb)fu(s),hz(s) = (qb)g,hz(s)

In particular then there exists n(h) such that:

(D) ks (n(r)) (1)) = (D)o ()

Define now H € [(—=37 € Iz’—'qb(:ff, y)) as any function H = (Hy, Hy) : w —
I(—¢)xw such that Image(H) = {(h,n(h))|h € D(=¢)}. Once again, Lemma3.1.1

guarantees that such a function exists.

Claim: H 1is the desired minimal path.
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Proof: Assume, in order to get a contradiction, that E | V& € [z’qb(:i", d) but it
is false that E*? = A®_ (VZ € K (L, @)t m.

It follows that for every bin E , if E E A2, [&”Z’(l_);) then
B o6 (33)

On the other hand, since E** /= A_, (Vi € [z’qb(:i", @))H.m, we know that

there exists an integer m such that:

Ewr = (VY e K AL, d)) g, = (43T € [z’ﬁqb(:i’, )i = \ 73T € K (=(Z, @) 1, (s),Ha(s)
s=1

This is the same as saying that there exists h = (hq, h2) € I(—¢) such that

n(h)
E = 37 € K(=¢(Z, @) )nnmy = IZ € K\ (S, @)y (n(1)) ha(n(h)
s=1

so, in particular,

Ewr = 37 € K’ﬂ(qb(f, 5))G7n(h)

By induction hypothesis on ¢ and the fact that ' is the “minimal” path of ¢ we
obtain that :

EE 37 € K—¢(Z,a)

But this contradicts statement (3.3). This completes the proof of the universal
quantification step and of the Lemma.m
The existence of “minimal” paths is lost in general if we consider formulas that

are not infinite positive bounded.

EXAMPLE 3.3.6
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Consider a signature that contains the closed predicate x > 1 of sort space the
reals with the usual metric. Clearly I(—p(x,y) > 1) can be identified with w®,
and it is easy to see that there is no “minimal” path in I(=p(x,y) > 1). For every
f e l(=p(x,y) > 1) there exists g € [(—p(x,y) > 1) such that Vs, g(s) > f(s). We

can find a metric structure £ and (a,b) in E such that:

Eorr = /\(ﬁp(a b) > 1)yn = /\ /\ > 1)gs) &
n=1 n=1s=1

=(pla,b) > 1 —max{l/g(s) : s € w})

but there exists an integer s such that:

EP = (p(a7b) > 1)f(5) = p(a,b) >1- l/f(s)

which implies that:

n

Eapp/iL/\—'pab>1fn_/\/\—| >1)()

n=1 s=1

Using the previous lemma we extend Corollary 3.3.1 to a subclass of L 4.
DEFINITION 3.3.7 Definition of Lp

Let Lp be the smallest subset of Lpps containing the atomic formulas and
closed under finite and infinite conjunction {A, A}, finite disjunction {V} and uni-
versal bounded quantification over countably many variables {VZ € K }. In other

words, Lp is the class of all the positive bounded universal formulas in Lpg,.0

Recall that the notation =Lp denotes the set of formulas: {—o : 0 € Lp}.
Likewise, the notation (Lp U EI_'LP){/\’_'} denotes the smallest set of formulas in

L 4 containing the formulas:
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o o(Z,y)

o 37 € K—o(Z,7)
for o(Z,y) € Lp and closed under A, —. This class is big enough to contain all the
quantifier free formulas in L4, and the formulas of the form A, 37 € [z’—'qbi(:f;’),
Voo, 37 € ];’—'qbz(:i") and V2, Vi € [;’qbl(:ff) with the ¢; positive bounded universal

formulas (i.e. in Lp).

THEOREM 3.3.8

Fiz a signature ® and an arbitrary model E for ®.

1. Consider a formula ¢ is Lp. Then for every vector b in the structure F ,
E =ap ¢(b) off E = ¢(b)

2. Consider a formula ¢ in (Lp U EI_'LP){/\’_‘}. Then for every vector b in the

structure E |

E Eap o(b) iff E | ¢(b)

PROOF: 1) By induction on the formulas in Lp. The only interesting step is

the universal one.

Universal. (=). Suppose that

E |=ap Vi € K ¢(T, D)
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By the Soundness Proposition 3.1.4, it follows that for every @'in E ,if E = A2, K;(d;)
then E =ap ¢(d, I;) Invoking now the induction hypothesis we obtain that for ev-
ery din E,if E = A2, K;(d;) then E |= ¢(d, I;) This is the desired result.
<: Suppose that
E |=VZ e Ko(i,b)
Let H € I(¢) a minimal path as in Lemma 3.3.5 above. It follows that:

—

B Eap V7 € Ké(7,b))

This completes the proof.
2) By item 1) of this theorem we know that the desired property is true for Lp.
Let us prove it for 3= Lp. Fix an arbitrary formula ¢(Z,y) € Lp. Item 1) of this

theorem implies that for every model E= (X, d, F, P) , for every ¢ € X,
E EVie Ko, d)iff E |=ap Vi € Ké(Z,d)
But this is equivalent to the statement:
E = -37 € K-¢(&,d) iff E |=ap -37 € K-(Z, )

Using the properties of the Soundness Proposition (Proposition 3.1.3) we obtain

the following equivalence:
E 37 € K~¢(7,d@) ifl E =ap 37 € K-¢(7, @)

This is the desired result.

The final verification of the desired property for the set (Lp U EI_'LP){/\’_'}
follows by induction on the connectives {A,=}. Left to the reader.m

We close this section with a “weak” approximation principle for a big subcol-

lection of formulas in L 4.
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DEFINITION 3.3.9 Definition of Ly

Let L 44 be the smallest subset of L4 containing (Lp U EI_'LP){/\’_‘} ULpps and
closed under countable conjunction, countable disjunction and existential quantifi-

cation over countably many variables. That is,

LA_|_ = ((Lp U E|_'Lp){/\’_'} U LPBA){/\’V’EI}

L 4y contains for example all the quantifier free formulas, all the formulas in
Lpp4 and all the existential formulas 37 € [;’qb(:i") with ¢ an infinitary quantifier
free formula. It also contain formulas of the form

37 e K \Vie Py, 7)

=1

and of the form

%eﬁ@@fﬁ%@@
i=1
with the ¢; positive bounded formulas in Lpg4. A typical formula that is not in
Lag is:
w€ﬁ§m@)
i=1

where the C"’s are unary predicates with true sort.

The following theorem says that = implies Eap for all the formulas in L4, .

THEOREM 3.3.10 Fiz a signature ® and a model E= (X, d, F, P) of ®. Let

&%) € Lay. Then for every @ € XV,

If E'|= ¢(a) then E [=ap ¢(d)
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PROOF:By induction on formulas. The case for (LpU EIﬁLP){/\’_‘} follows from
Theorem 3.3.8. Likewise, the case for Lpg, follows from Lemma 3.3.5.

Conjunction. Suppose that E = A2, ¢;(@). Then for every i, E = ¢;(d). By
the induction hypothesis for every i, E =ap ¢;(@). Invoking now Proposition 3.1.3
we obtain that £ E4p A, ¢:i(d). This is the desired result.

Disjunction. Suppose that E | V2, ¢;(@). Then there exists ¢ such that
E = ¢;(d). By the induction hypothesis E Eap ¢i(d). Invoking now the Sound-
ness Proposition (Proposition 3.1.3) we obtain that E |=ap V:2, ¢i(@). This is the
desired result.

Existential. Direct. Left to the reader.m

The above Theorem can be seen as an extension of similar weak approximation

results (E = |=ap ) proved by Keisler & Fajardo ([8]) for Lppa.

3.4 Approximation Principles in First Order Logic

In this section we prove some approximation principles for the notion of approx-
imate truth for first order formulas in L4 (i.e. the collection L, of formulas
constructed from the atomic predicates by iterating finite conjunction, negation
and bounded existential quantification) in the classical multisorted models.

Recall the definition of classical multisorted models given in Example 2.3.3:

Let S be an arbitrary collection of discrete metric spaces, i.e. spaces
(M, par) so that Image(par)={0,2}. Let & = (F,P) be a signature for
S containing the fixed universal predicate K in P. E= (X, d, F, P) is

a classical multisorted structure if I'm(d) = {0,2} and for every a in
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E,E [ K(a).

Recall also that every first order model can be seen as a classical multisorted
structure. We remark also that for classical multisorted models, ®**? is essentially
the same as ® since the approximate predicates (), are just identical to C' (for true
sort predicates or fixed sort predicates). In this section we will then omit the **7.

The next lemma shows that as expected, in classical multisorted models, ap-
proximate truth along a specific path is eventually constant for first order formulas

n LA.

LEMMA 3.4.1
Let S be an arbitrary collection of discrete metric spaces, i.e. spaces (M, par)
so that Image(py)={0,2}. Let ¢(x) € Ly C L4 be a first order formula. Let M

be the collection of all the classical multisorted models for ®. The following holds:

1. There exists a finite collection F of formulas in Lap such that Yh € I(¢), Vn

160 € F such that:
VE e MVainE |, EE ¢na(d) < 0(d)
2. Yh € I(¢) Im € w such that for every classical multisorted structure E of @,

Vie E Yn>m, E|E ¢pn(d) & dpm(d)

PROOF: 1) By induction on the collection L, of first order formulas.
Atomic. Direct since the metrics involved are discrete (they take values in

{0,2}) so Vn, (), is equivalent to C' in every classical multisorted structure.
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Finite conjunction. Direct from induction on formulas and the definition of
approximate formulas for AL_; ¢;.

Negation. Let ¢(7) = —¢(#). By induction hypothesis there exists a finite
collection Fy of formulas in L4p satisfying 1) above for ¢. Let F; the collection of
all the formulas in L4p of the form:

A~
=1
where the 0; € Fy and r < |Fy|. This set is clearly finite. Since
VH € 1(=¢), Vn, (=) = N\ = (0)m,(s).1:(s)
s=1
it is easy to see that [y verifies the desired property for —o.

Existential. Direct from the definition of approximate formulas for existential
and the induction hypothesis. Left to the reader.

2) Follows directly from 1) above and Lemma 3.1.1. Left to the reader.m

The previous lemma implies the following approximation principle for first order

formulas.

THEOREM 3.4.2

Let S be an arbitrary collection of discrete metric spaces. Let ® = (F,P) be
a signature for S containing the fired universal predicate K. Let ¢(Z) € Ly, be
a first order formula. Then for any classical multisorted model E , and for every
ae Xl

E | ¢(a) if and only if E Fap ¢(d)
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PROOF: By induction on formulas. The proof for the connective steps is
identical to the proof of Theorem 3.2.2. The remaining case is the existential one.
<: suppose that
E f=ap 37 € Ko(7, @)

By definition there exists h € I(¢) such that for every n,

E (37 € K(7,@))nn = 37 € K($(5.@))1n

Invoking Lemma 3.4.1 (every path of the tree of approximations of ¢ is eventually

“constant”) we get then that there exists a vector b such that for every integer n:

E /\A ZA/\@ME,J

Invoking the induction hypothesis we obtain then

EE( /\A ) A 6(b,d))

and this is the desired result.

=-. Direct. Left to the reader. m

It follows that in classical structures the concept of Eap produces something
new (i.e. different than the usual |= ) only for infinitary formulas.

We can extend in a natural way the previous result to a collection of infinitary
formulas. (wa){/\’ﬁ} is the smallest collection of formulas in L4 closed under

countable conjunction and negation.

THEOREM 3.4.3
Fiz S an arbitrary collection of discrete metric spaces. Let ® = (F,P) be a

signature for S and let M be the collection of all the classical multisorted models

for ®@.
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For every ¢ € (wa){/\’ﬁ}, for any classical multisorted model E | and for every
ae X

E = ¢(d) if and only if E Eap ¢(d)0

PROOF': By induction on formulas. The case for L, was proved in Theo-
rem 3.4.2. The induction steps are left to the reader.m

Notice that the formulas of the form:
%eﬁ§@@
i=1
for ¢; € L., are equivalent (in classical multisorted models) to:
§afeﬁ@@)
i=1
which can be seen as formulas in (wa){/\ﬁ}.

We close this chapter with a final weak approximation principle for classical

multisorted structures. The proof of the following corollary is direct.

COROLLARY 3.4.4 Weak Approzimation for Classical Models

Fiz S an arbitrary collection of discrete metric spaces. Let ® = (F,P) be a
signature for S and let M be the collection of all the classical multisorted models
for ®. For every ¢ € ((wa){/\,ﬁ}){/\,\/,a}} for any classical multisorted model E

and for every @ € X1,

if E E o(d) then E Eap ¢(d)0

The class ((wa){/\,ﬁ}){/\,\/,a} contains, for example, all the formulas of the

form:

3F e K \ Ve Poi(Z, i)

=1



with the ¢; in L.
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Chapter 4

Model Existence Theorem and

Consequences

The aim of this chapter is to prove a Model Existence Theorem for the notion of
approximate truth for formulas in L4. In Section 4.1 we introduce the notion of
a complete class of models for a signature ®. In Section 4.2 we prove a Model
Existence Theorem for complete classes of models. Section 4.3 is devoted to some
“uniformity of paths” results for complete classes of models. In Section 4.4 we use
this result to study the relationship between = and E4p for diverse collections of
formulas in complete classes of models. Lastly, in Section 4.5 we give an application
of the Model Existence Theorem to Functional Analysis.

Finally, since our notion of approximate truth coincides with the one given by
Henson for formulas in Lpg, the Model Existence Theorem proved here can be seen
as a generalization of the Compactness Theorem already obtained in the context

of formulas in Lpg for Normed Space Structures (see [19]).
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4.1 Complete Collections of Models

We want to prove a Model Existence Theorem for L4 along the following lines: In
order to show that a formula ¢ is consistent (i.e. there exists a model E such that
E |= ¢) it is enough to find an h € I(¢) such that for every integer n there exists
a model E ,, such that E ""Pl= ¢, ,,. The first step is to identify the collections of
models that admit this theorem: the complete collections of models.

Intuitively, a complete collection of models is a collection of models satisfying
the same uniform continuity requirements for the interpretations of the function
symbols, and verifying the same uniform “bound” for the interpretation of the

predicate symbols.
DEFINITION 4.1.1 Complete Collections of Models

Fix a countable signature ® = (F,P) over a collection S of complete metric
spaces with the property that all ¢ € P with fixed sort are compact sets in

complete metric spaces. Fix also the following assignments:

e For every function symbol f € F with arity r and true sort,(or fixed sort
(X, p)), for every vector K = (K1,..K,) of true sort predicate symbols with

arity 1, fix a unary true sort predicate symbol KUE) iy p ( or a compact

predicate CE) i (X,p)).

e For every two predicate symbols (), A with true sort and corresponding arities

a,b, fix a unary predicate K94 with true sort.

e For every f € F with arity a and true sort (or fixed sort (Y, py)), for every
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vector K = (K1,..K,) of predicate symbols with arity 1 and true sort, for

every rational € > 0 fix a rational §7Ee > 0.

The complete collection of models for the above assignments, is the collection

of all the models E in ® that satisfy:

1. Uniform bound for function symbols. For every f € F with arity r
and true sort (or fixed sort (Y, py)), for every vector K = (K1,..K,) € P of

unary predicate symbols with true sort,

Vie K KR (f(7))
(or the formula

vie K CcUR(f())

holds in E .

2. P is directed. For every (), A € P with arities a,b and true sort
VEGQ, A\ KO (i) A KON ()
=1
holds in E . Furthermore E verifies that for every a in E there exists r such

that E = K,(a).

3. Uniform continuity for function symbols. For every f € F with arity
a and true sort (or fixed sort (Y, py)), for every vector K = (K1,..K,) of
predicate symbols with arity 1 and true sort, for every rational ¢ > 0,

VI GR, K plesy) < 8959 = p(f(2), (7)) < o)

<a
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(or

VE G, KN plaisys) < 8959 = py (F(F), F(7) <))

<a

holds in E .

Any such collection of models is called a complete collection of models. O

We introduce some notation. If for a fixed structure FE and for a sentence

¢ € Ly there exists h € [(¢) such that
B N g
n=1
we write £ Eap hqb.

A sub-collection M of models in a complete collection W is a complete class

of models in W if there exists a sentence ¢ € L4 such that:
E eMiff (EE¢)and E €W

We also say that M is the complete class defined (or axiomatized) by ¢. Sometimes
we will omit mentioning the complete collection W and refer only to the complete
class M.

Recall that the abbreviation V*k is to be read as saying “for all except a finite

number of integers k”.
DEFINITION 4.1.2 Uniform Sequence of Models

A sequence {E, }°2, in a complete collection of models W is uniform for ¢

iff there exists h € I(¢) such that ¥Vn and V*m,

EPP = (dnn)
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EXAMPLE 4.1.3 Complete Collections of Models

Consider the signature ® = (F,P) of Example 2.3.3 for Normed Space Struc-
tures.

It is easy to see that the collection of normed space structures of ® is a complete
class of models. The predicates in P of fixed sort are by definition compact subsets
of (R,d). Furthermore +, ||.|| and r(.) are uniformly continuous (and bounded)
functions on the balls centered at the origin, and the balls B, (¢ € Q%) form a
directed set that covers the whole normed structure. Finally, the normed space
structures are the models of ® that satisfy the axioms of vector space and normed

space.t

REMARK 4.1.4

Note that in every complete class of models M axiomatized by a positive
bounded sentence ¢ € Lpga, every sequence {E, }22, of models in M is uniform
for ¢.

This is true because Lemma 3.3.5 implies that for every sentence ¢ € Lpga

there exists a path H € I(¢) such that for every model E

If E = ¢ then E |=4p "¢

Since the axioms of normed space can be described by a sentence ¢ € Lppy,
it follows from the above remark that any countable sequence of normed space

structures is uniform for .
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EXAMPLE 4.1.5 Models of Multisorted Classical Logic

Recall the definition of classical multisorted model for a fixed signature ®:

Let S be an arbitrary collection of discrete metric spaces, i.e. spaces (M, pas)
so that Image(par)=10,2}. Let & = (F,P) be a signature for S containing a fixed
unary predicate K in P. A model of ® = (F,P) is a classical multisorted model if
the predicate K is interpreted as the whole space X and Im(p) = {0,2}.

Suppose that all the predicates with fixed sort in @ are compact (i.e. finite) in
the corresponding fixed sort space. Suppose also that for every function symbol f
with fixed sort we assign a finite set C'/ in P with fixed sort (X, p).

Then the collection W of all the classical multisorted structures E for ® that

satisfy, for every function symbol f with fixed arity,
Im(f*) cc’

is a complete collection of models.

The uniform continuity requirements become trivial, the predicates are directed
since all the unary predicates are inside the universal predicate K, and the “uniform
boundness” of the predicates is easy to see.

Furthermore, let M a complete class of classical multisorted models in W
axiomatized by a sentence ¢ = AJZ; 0;, with the 6;’s being first order sentences.
Then any sequence {E,, }°2, of models in M has an infinite subsequence {E,, }32,
(with ny < nsg...) that is uniform for ¢. This holds since Lemma 3.4.1 implies that
for every first order formula # the number of non equivalent paths is finite and

the approximations along every path are eventually constant. It follows from the

pigeonhole principle that one can extract from any sequence of models {E,, }°2, a
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subsequence {FE,, }22, such that for every integer j there exists h; € [(6;) with:

* : h
\V/ 1, Enl — AP ](9]‘

Using the definition of approximate formulas for the conjunction it is easy to see

then that there exists an H € I(AjZ; 0;) such that for every integer n:

Vi, B2 b= (N 0i)mm

i=1

4.2 Model Existence Theorem for L4

Our intention is to prove the a model existence theorem for complete classes of
models using the ultraproduct construction.

Let us recall some notation involving ultrafilters over w. Let (M, p) be a com-
plete metric space, and K a compact set in M. Let s = (s1,82,...84...) be a
sequence of elements of K. It is well known that for every ultrafilter U over w

there exists an unique x € K so that:
Ve>0dpelUViepp(s,z)<e
We will denote the element « by lim;ep s;.

DEFINITION 4.2.1 Ultraproduct Construction

Fix a countable signature ® = (F,P) and a complete collection of models W.

Consider a sequence of models

(B = (X, d, P P i < )
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of W. For every f in F we will denote by f* the interpretation of this function
symbol on the model E; . Likewise for any predicate symbol C in P, C¥ is the
interpretation of C' in E; .

Recall that for every predicate symbol K € P, for every integer n, K, is the
(1/n) metric deformation of K.

Define

X ={g € [[ X;| 3K € P unary predicate with true sort, ¥Vn € w¥*i, E{" = K,(g(1))}

=1
In other words, X is the collection of all the sequences g such that there exists a

unary predicate symbol A with true sort such that:
limiood'(g(i), K') = 0

Given an ultrafilter U over w, we can define on X the following equivalence
relation:

For arbitrary x,y in X, x~yy if and only if for every ¢ > 0 there exists p € U
such that Vi € p d'(z(4),y(7)) < e. It is easy to verify that this is truly an
equivalence relation. We will denote by [z] the equivalence class of x.

The set (X/~y) is endowed with a metric D in the natural way:

For every pair [z], [y], find two representatives z, y such that there exist

K', K% unary predicates with true sort satisfying for every integer i:
B = K (x(i)) A K2 (y(d))

By the property of directed sets of the complete collections we know

that there exists a unary predicate K such that for every integer ¢

Ei = K(x(i)) A K(y(2))
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Invoking again the properties of the complete collections, we get that

there exists a compact set ' in ® such that for every i
E; EVY(z,v) € (K,K)C(d'(z,v))

It makes sense then to define
D([z], [y]) = limieUdi(x(i)v y(i))

It follows from the definition of a complete collections of models that

the metric function is well defined.

Using the set (X/~) we define the interpretations of ®:

e For every function symbol f in F with arity ¢ and true sort we define f :

(X/~u)* — (X[ ~a) by:

V[z] € (X/~u)% [([2]) = [(FNF)), o fIE (), oon)]

The properties of the complete collections of models guarantee that the image

of f is a subset of (X/ ~) and that f is well defined.

e For every function symbol f in F with arity ¢ and sort space (Y, p) we define

[ (X)) — (Y, p) by
V2] € (X[~ [([2]) = limieu fH(2(0)).

The properties of the complete collection of models once again guarantee

that the images of f are well defined.

e For any predicate symbol C' in P with arity a and true sort we define the

interpretation of C' in (X/~y)* as follows:
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[:;] € (' if and only if for every integer n, dp € U such that for
every i € p,

EF = (C(E() Jon
Such structure is denoted by I, E; . O

The following remark follows directly from the previous construction.
REMARK 4.2.2 The ultraproduct construction yields a model in W

Fix ® a signature and W a complete collection of models of ®. Let
(B = (X0 F P i < )

be a sequence of models of W. Let U be an ultrafilter over w. Then the structure

[T/ E; is a model of & in W. O

PROOF': Let us verify first that [],,F; is a model of ®.

Clearly ((X/~u), D) is a metric space. Using the property of uniform continuity
of the complete collection of models W we obtain that the functions f defined on
(X/~y )" are continuous (in the product topology or in the fixed sort spaces). It
is easy to verify that the interpretation of the predicates C' with arity a and true
sort are closed subsets of (X/~)* (in the product topology).

It remains to show that [, F; is in the complete collection W, that is: T[], E; satisfy
the same uniform bounds for the function symbols in @, the same inclusion rela-
tionship for the true sort predicates and the same uniform continuity property for

the function symbols that the models in W. Left to the reader.m
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This ultraproduct construction is a generalization of the ultraproduct construc-
tion for Banach spaces (see for example [1]).
We remark that this ultraproduct construction is in general not well behaved

for formulas in L 4p.
EXAMPLE 4.2.3

Let C' be an unary predicate with true sort in ®. Fix W a complete collection
of models. It could happen that there exists a model E= (X,d, F,P) € W, a

rational r and a sequence ¢ : w —— E satisfying the following:
For every integer n,g(n) & C;

but lim,—. g(n) € C¢.

Clearly, for every nonprincipal ultrafilter i:

g € (IyE ) and (I, E )= Ci(9g)

but for every integer i,

B = ~C,(g(0))

However, the next best property holds for this ultraproduct construction.
We introduce the following notation. Given any model E , any @ = (dy, ..d;, ..)
in £ and any corresponding vector of true sort predicate symbols K = (K’l, ..]Z’Z', ),

by K’(J) we understand:

/\ [(i (62)
=1
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LEMMA 4.2.4 Property of the Ultraproduct

Fiz ® a signature and W a complete collection of models of ®. Let
{E; = (X', d',F',P') |i <w}

be a sequence of models in W. Fiz U a nonprincipal ultrafilter over w. For any
formula ¢(Z) € Ly, for any sequence {ﬁk}iil of vectors whose elements are in

(X/~u), the following are equivalent:
o 3h € [(3)VnVk [T E™ = dnnl )
e Jh € [(¢) such that ¥Vn ¥*k p € U satisfying:

Vi€ p, B = dyn(Fi(i)

PROOF': By induction on formulas.

Atomic Formulas. Direct from the definition of the interpretation of the
predicates in the model [[,,E; , and the fact that the predicates with fixed sort are
closed and the interpretation of the function symbols are continuous functions.

Conjunction. Both directions are direct.

Negation. =. Suppose that 3g € I(=¢)VnV*k [, EX*" |= (=¢(F}))yn. By the
definition of the the negation step for approximate formulas we get that for every
h in 1(¢(Z)) there exists an integer n such that V*k T[T, E{*™" = ﬁthn(ﬁk)

Using the induction hypothesis on the formula ¢, and the fact that ¢/ is an

ultrafilter, we get that for all h in I(¢) In V*k there exists a p in U satisfying:

Vi€ p B = =y (Fili)
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Define then the set
W= {(h.n):h € D(¢) An€wA VkIp Ui € p, B = ~(dpn(Fr(i))}

Using the properties of the dense countable set D(¢) (Lemma 3.1.1) it is easy to
obtain a ¢ = (¢1,92) : w — D(¢) x w such that Im(g) = W. Using the fact that

D(¢) is dense in I(¢) it is a standard procedure to verify that this function is in

1(~¢(7)).
Furthermore, by definition of W, ¥n V*k there exists a p in & such that:

S b (2 Fr(i)))gon

Il
i
S
-
S
-
S
o~
N
N
o
=
—
w
>
&
[v)
=
w
X
N

This is the desired result.

<. Similar to the previous proof. Left to the reader.

Existential. Here we use the full power of the induction hypothesis on arbi-
trary sequences {F}}72 .

=. Suppose that 3h € I(p)VnV*k
[T E™ | 3(F € K$(F, @)

By the definition of approximate formulas, the above statement implies that
dh € I(¢)VnV*k

[LE™ 38 € K($(F @)

It follows that for every integer k there exists a vector

—

Gy,

such that VYnV*k

B | K(G) A dpn(Fy, Gi)
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Using the induction hypothesis, we obtain then that there exists h € (¢) such

that Vn V*k there exists p € U with :
Vi€ p B = Ky o(Gr(i) A dnn(Fi(i), Gi(i))

It is possible now to find for every k a vector of functions Cjk such that each
of its components is in the same equivalence class (for ~) as the corresponding

component in ék, and such that Vn, V*k
Vi€ p Bl R(Qr(D) A drnl Fili), Gu(i)
But this implies that Vn, V*k,
Viep B = 3% € Ko (Fi(i), 7)

This is the desired result.
<: Similar to the previous proof. Left to the reader.

This completes the proof of the lemma. m
REMARK 4.2.5 Property of the Ultraproduct for Lppa

For any ¢ € Lpp4, Lemma 3.3.5 shows that there exists a “minimal” path H

such that for every model E for every @ in E ,
If E |= ¢(d) then E [=4p 7 ()

It can be shown by induction on formulas in Lpg4 that the ultraproduct con-

struction verifies the following stronger property for Lppa:

Fiz ® a signature and W a complete collection of models of ®. Let

{El = (ledlvFlvpl) }?}:1
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a sequence in W. Fiz U a nonprincipal ultrafilter over w. For any

formula ¢(¥) € Lppa let H the “minimal path” for ¢.

For any sequence {I,)?2, of vectors whose elements are in (X/~y),

the following are equivalent:

o VnVk [ EY” = by.0(Fy)

o Vn V*k dp € U such that:

Vi€ p B by (Fi(i))

We use the previous theorem to show that the ultraproduct is a rich model, i.e.

a model where |=4p and |= coincide for all formulas in L 4.

THEOREM 4.2.6 The Ultraproduct is Rich for L4

Fiz ® a signature and a complete collection of models W. Let {E; = (X*,d*, F"', P*) }22,
a sequence of models in W. Fiz U a countably incomplete ultrafilter over w. Then
for every formula ¢(Z) in L and for every g € (X/~y)* (a < w) the following

are equivalent:
o [IuEi Far ¢(9)

o [IuE; = qb(ﬁ)

PROOVF: Recall the definition of the collection of all the rich formulas for

[T E: (above Corollary 3.2.3).
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Let T' the collection of all rich formulas for [],,E; . By Corollary 3.2.3, T is
closed under countable conjunction and negation in every model. To prove that
I' = L4 it is enough then to prove that I' contains the atomic formulas, and is
closed under existential quantification.

However it is easy to verify that the atomic formulas are rich for every model.
We are left then with the verification of the existential closure.

For the existential case, there is only one interesting direction. Suppose that
[l E: Eap 35 € Ko(7,§) with ¢ € T.

From Lemma 4.2.4 it follows that there exists h € [(¢) such that for every

integer n dp € U such that:
vi€p B |2 30 € Kona(7,4(0))

Since the ultrafilter is countably incomplete, it is easy to construct by diago-
nalization a sequence ]Fof vectors of functions (elements of [, E; ) corresponding

to U and such that Vn € w Ipe U Vi p:

—

E = K(F(0) A éna(F(0), ()

We again invoke Lemma 4.2.4 to obtain:

—

[ Ei Ear K(N) A e[ §)
Since ¢ € I' we get
ki = K(f) 7 o(f.9)

and this implies:

[/ E: | 30 € Ko(7,9)
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This completes the proof. m
The main consequence of the previous lemmas is the following Model Existence

Theorem. We recall the definition of a uniform sequence {E, }22; in a complete

class M:

A sequence {E, }22; in a complete class M defined by ¢ is uniform

for ¢ iff there exists h € I(¢) such that for every integer n:

\V/*mv E%?p |: (thJ%)

THEOREM 4.2.7 Model Existence Theorem for L4

Fiz a signature ® and a fived family of sort spaces S. Let W be a complete
collection of models for ®. Let M a complete class in W defined by a sentence
v € Ly. Let ¢ a sentence in Ly . Suppose that there exists a sequence of models
{E, }22, uniform for ¢ and ¢, i.e. there exists paths h € 1(¢) and g € 1(x)) such

that for every integer n , ¥*m,

E%?p |: (th,n A ¢g,n)

Then there exists a rich model E in M with the property that:

ElE¢

PROOF': Select a countable incomplete ultrafilter over the integers and apply

Lemma 4.2.4 to the sequence of models {E,, }>2,. We obtain that

[TuE:i Fap oA
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Applying now Theorem 4.2.6 to [],,E; we get:

[lEi = oA

Finally, it is easy to see that [[, E; is in M (using Remark 4.2.2). This completes
the proof.m
Let us remark that the existence of a uniform sequence of models {E,, }°2, in

a complete collection M and satisfying for every n

E%P = 4p dnn

only guarantees that
[ Ei Fapr ¢

It is not necessarily true that [[;, F; approximately satisfy ¢ along h.

In the rest of this section we obtain some direct consequences of this Model
Existence Theorem. The first corollary concerns complete classes of models ax-
iomatized by positive bounded formulas. In this case we obtain a direct extension

of Henson’s Compactness Theorem for Lpg ([19]):
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THEOREM 4.2.8 Frtension of Henson’s Compactness Theorem

Fiz a signature ® and a fized family of sort spaces S. Let W be the complete
collection of normed space structures. Let M be a complete class of models in W
defined by a positive bounded sentence » € Lppa. Fiz ¢ a sentence in L and let
h € I(¢). Suppose that for every integer n there exists a model E, in M such
that:

E3P = b

Then there exists a rich model E in M with the property that:

ElE¢

Proof: It just follows from the Model Existence Theorem and from Remark 4.1.4
that states that any sequence of models in a complete class of models axiomatized
by a positive bounded sentence b € Lpg4 is uniform for . m

In the same vein we can obtain a compactness theorem for classical multi-
sorted structures. It extends the usual first order compactness result to infinitary
formulas.

Note that for any first order language L, the collection of first order models
in L can be seen as a complete collection of models. Fix S = {(R,d)} and let
¢ = (F,P) be a signature such that F is the collection of function symbols in L
(with true sort) and all the predicate symbols of L are true sort predicates in P.
Suppose also that ® contains an unary predicate K with true sort, and that the

(compact) predicate {0, 1} with fixed sort the reals with the usual metric is in P.
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It is easy to verify that the collection W of all the classical multisorted struc-
tures E for ® such that the predicate K is interpreted as the whole universe is a
complete collection of models. Clearly this collection W can also be seen as the
collection of all first order models for L.

The following theorem follows from the above remark.

THEOREM 4.2.9 FErtension of the First Order Compactness Theorem

Fix L a first order language, and let M the class of all the models of the lan-
guage L that salisfy a senlence of the form N2, 0; wilh the 0; first order formulas.
Fiz ¢ a sentence in La and let h € [(¢). Suppose that for every integer n there

exists a model B, in M such that:

En |: th,n

Then there exists a rich model E in cal M with the property that:

ElE¢

PROOF': Consider, for the language L, the corresponding complete collection
of classical multisorted models W.

The desired result then follows directly from the Model Existence Theorem
and Remark 4.1.5 that states that every sequence {E, }°, in a complete class of
classical multisorted models axiomatized by a sentence of the form ASZ, #; contains
an infinite subsequence that is uniform for A7Z, 6;. m

At this point it is instructive to discuss, for the case of classical multisorted
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structures, the relationship between the notion of rich model and the notion of
wi-saturated model.

Note first that rich implies wy-saturation for classical first order structures. To
see this consider a rich first order structure £ . Fix then a countable collection of
first order formulas {o,,(7)}>2, with |Z| finite. Suppose also that for every integer

n,

EE 37 /\ 0:(Z)
=1
From Corollary 3.4.4 it follows that for every integer n,
E |:Ap Hf/\ O'Z(f)
=1

Now, since the formulas o,(¥) are first order formulas, we know from Lemma 3.4.1
that the number of non equivalent paths for those formulas is finite. It follows
from the pigeonhole principle that for every integer ¢ there exists a path h; € I(0;)

such that for every integer n:

n

E =37 N\ (0:d(@)nn)

=1

It follows from the definition of approximate formulas for countable conjunc-

tions that there exists an H € I(A2, 0;(¥)) such that for every integer n:

o0

B GF N oi@))un

=1
Invoking now the richness of the model E we finally obtain:

E = 38 A oi(7)

=1

This completes the verification of the desired implication.
In the next section we look at some uniformity principles that can be deduced

from the Model Existence Theorem.
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4.3 Uniformity in Complete Classes of Models

Suppose that we know that a sentence ¢ is approximately true in every model of a
complete class M defined by a sentence 1. It is possible then to claim that every
sequence {E, }°2; in M uniform for ¢ is uniform for ¢?

We begin by defining the notion of simple sentence in a complete collection of

models.
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DEFINITION 4.3.1 Simple Sentences

Fix a complete collection of models W for a signature ®. A sentence ¢ € L4 is

simple for W if and only if, for every model E in W,

E | ¢ implies that E [Eap ¢

EXAMPLE 4.3.2

Theorem 3.3.10 shows that any sentence ¢ € L4, is simple for every complete
collection of models.
In the class of all the classical multisorted models, Corollary 3.4.4 implies that

every sentence in ((wa){/\,ﬁ}){/\,\/,a} is simple in this collection of models. O

We also introduce some notation. For a complete class of models M and a
sentence ¢ € Ly we say that M E4p ¢ iff for every model E of M, E =4p ¢.
We are ready now for the following result that settles the question at the

beginning of this section for negative formulas.

PROPOSITION 4.3.3 Uniformity of Paths of Formulas —¢
Fix signature ® and a complete collection of models W.Let M C W be defined
by a sentence v € Ly simple for W. Let ¢ be a sentence in L. The following are

equivalent:

o M [=ap 9.
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o For every sequence {E, }°2, in M uniform for ¢ there exists h € [(—¢)
such that

Vn B = yp "

PROOF: (=). Suppose that for every E € M, E E4p —¢.
We claim that for every sequence {E, }°2, uniform for ¢, for every h € 1(¢)
dk € w such that:

Vn, B = = (fnk)

If this were not true, then there would exist h € I(¢) and, for every integer k, a

model E,,, such that E;‘fbip = ¢nk. Here we consider two cases:

e The collection {ng|k € w} is bounded. It follows then (using the properties
of =4p listed in Lemma 3.1.1) that there exists an integer n such that:
B = A (dnr)

k=1

but this contradicts the assumption that M [E4p —¢.

e The collection {ni|k € w} is unbounded. It follows from the Model Existence

Theorem (Theorem 4.2.7) that there will exist a model B € M such that

B E4ip ¢, contradicting the assumption.

This completes the proof of the claim.

Using the previous claim, define:

W = {(h,k)|h € D(¢p) An € wAIkVn EX? |= = (dpn i)}
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Using again the properties of the dense set D(¢) listed in Lemma 3.1.1 we get
that any function H = (Hy, Hy) : w — D(¢) X w with Im(H) = W is in [(—¢).
Furthermore, for every integer m,

Vn, EP = N\ (o, (5).10(5))

s=1

But this is exactly the statement: there exists H € I(—¢) such that for every m,
VB = (2 ¢)mm

This is the desired result.

< Direct using the fact that ¢ is simple for W.m

One can state the above Property 4.3.3 in a slightly different form that would
be easier to apply. It suffices to decode the meaning of [E4p h—@/) to obtain the

following:

COROLLARY 4.3.4 Fiz a signature ® and a complete collection of models WW.
Let MC W be defined by a sentence ¢ in Ly simple for W. Let ¢ € L. The

following are equivalent:
o« M |:AP —¢.

o for every sequence of models {E,, }°2, in M uniform for, for every h € I()

there exists an integer r such that:

Vi, B = (0,
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We now look at formulas that are not negative. Recall that Lpg4 is the collec-
tion of all the positive bounded formulas. Lpg4 contains the atomic formulas and
is closed under countable conjunction, finite disjunction, universal and existential
quantification.

The following theorem answers the uniformity question in the affirmative for
sentences in the class (Lppa U EI_'LPBA){/\’_'}. This class contains for example all

the quantifier free formulas and the formulas of the form:
37 € K= A\ ¢:(7)
=1
for ¢; € Lppa.

THEOREM 4.3.5 Uniformity of Paths
Fiz a signature ® and a complete collection of models W. Let MC W be defined
by a sentence ¢ € Ly simple for W. Let ¢ a sentence in (Lpga U EI_'LPBA){/\’_'}.

Then the following are equivalent:
o M [=4p ¢.

o lvery sequence {E, }°2, in M uniform for ¢ is uniform for ¢, i.e.: there

exists h € 1(¢) such that

Vn, E, |:AP h(ﬁb)

PROOF: The direction (<) is trivially true since v is simple for W.

(=):By induction on formulas.
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o 0 € Lppa. Fix ¢ € Lpga. We know by induction hypothesis that M Eap ¢.

Let H the minimal path of /(¢) as defined in Lemma 3.3.5. We claim:
CLAIM 1: For every E in M, E E4p By,

Proof: Suppose in order to obtain a contradiction that:

there exists a model FE in M and an integer m such that E*” |= =(¢y )

(4.1)

Consider the ultrapower of E under a countably complete ultrafilter ¢/. Let
us denote this ultrapower E “. By Remark 4.2.2 we know that £ “ is in M.

It follows then that

EY=4p ¢

Since the ultrapower is rich for L4 it follows that:
E Yveri fyo

Since ¢ € Lppy we can invoke Lemma 3.3.5 to obtain:
Et=ap "

Now we can invoke Remark proplpba concerning the property of the ultra-

products for formulas in Lpgy4 to obtain:
Vn, E°PP = ¢,

but this contradicts statement 4.1. This completes the proof of the claim.

From the above claim the direction = follows easily.
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e ¢ € d=Lpgs. Suppose that for every E € M, E E4p 37 € K—0 with 0
in Lpga. Let {E, }°2, a sequence of models in M uniform for ¢ and let

H € I(0) the “minimal” path for 0.

CLAIM 2). There exists an integer m such that:
Vn, Eoee = 37 € K—=(0) 1

Proof: If this were not true, then there would exist a subsequence {E,, }52,

with for every integer 1,
B = YE € K(0)n,
We consider two cases:

— The sequence {ni|i € w} is bounded. In this case there exists an integer
n such that:

Ewr = A\Vie Ky,

=1

It follows from Remark 4.2.5 that for every countably incomplete ultra-

filter over w,

(E, 4)wr= V7 € KO
but this contradicts the hypothesis that M | 3% € K 0.

— The sequence {ni|i € w} is unbounded. In this case there existsd a

subsequence ny < ny < ... such that for every 1,

Ewr = V7 e K(0)n,
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It follows from Remark 4.2.5 concerning the “minimal” paths H in an
ultrapower, that in any ultrapower [];,F; of the sequence {E,. }52, it is
true that:

[ E: Eap 37 € K-0(3)

and [, E; E ¢. But this contradicts the hypothesis on M. This com-

pletes the proof of the claim.

Fix now m as in the above claim.

CLAIM 3): For every h € () there exists an integer r such that:

Vn, E%? =Yz e K( —(0(2)gm = —(0(Z)n,)

PROOF': Suppose that this statement was not true. Then we could again

construct a sequence {E,; }°2, such that for every integer ¢,
B2 = 37 € K(~(0(F)1m) A Onn(F))

Exactly as in the proof of the previous Claim, we can construct from this

assumption a rich model E in M such that
Vi, E? = 37 € K(~(0(F)gm) A (0(F))n,
It follows then, by Remark 4.2.5, that
E =37 € K(0(F) A —0(7))

But this is a contradiction. This completes the proof of the claim.

Finally,let W = {(h,r): h € D(§)An € w and (h,n) as in the previous claim}.

It is easy to see that W is countable. Let G : w —— [(f) X w such that
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Image(G) = W. Using the property of the dense set D(#) (Lemma 3.1.1)
we have that G € I(—0) = [(37 € [z’—ﬂ(i")). Using the last claim we can

also verify that for every integer r,
Vo, B = (37 € K-0(7))a, =37 € K A\ ~(0(Z)) 6 (s).00(5)
But this is the desired result.

We are now ready for the induction steps.

Conjunction: Assume that for every E € M, E E4p A2, ¢;. It follows from
Lemma 3.1.3 that for every integer ¢, for every E € M, E =4p ¢;. By induction
hypothesis we conclude that for every sequence {E,, }°°, in M uniform for v, for

every ¢ there exists h; € I(¢;) such that
hs
Vn, B, Fap "

It follows then by definition of approximate formulas that there exists H € [(AZ, &)
such that
Vn, E, Eap H(;i &)
i=1

This is the desired result.

Negation. Direct from Proposition 4.3.3.m

The rest of the section is devoted to applications of the above results on uni-
formity of paths.

We begin with an application that concerns the complete classes of models
M defined by positive bounded sentences (Lpga). We prove a strong uniformity

principle for negative formulas or formulas in (Lpga U EI_'LPBA){/\’_'}.
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Recall that sentences in Lpgy are simple for any complete collection of models
since they are in the collection L 4. Furthermore, Remark 4.1.4 implies, for any
complete class M defined by a 0 € Lpga, that any sequence {E, }°2, in M is

uniform for ). Hence we get for these classes the following corollary:

COROLLARY 4.3.6 Strong Uniformity Principle
Fiz a signature ® and a complete class of models M defined by a sentence
Y oin Lpga. Let ¢ € Ly be a sentence of the form ¢ = —0 or a sentence in

(Lppa U EI_'LPBA){/\’_'}. Then the following are equivalent:
o M [=4p ¢.
o There exists h € I(¢) such that for every model E € M,

El=ap "o

PROOF: «: Direct.
=: By contradiction. Suppose that Vh € I(¢) there exists an integer n and a

model £ € M such that E*? = —(¢y,,,). Let
W ={(h,n)lh € D(¢p) A\n € wANIE € M, E? |= =(¢p,)}

Note first that W is countable. Furthermore, by the properties of the dense set
D(¢) listed in Lemma 3.1.1 we know that for every f € I(¢) there exists an
(h,n) e W

and a model £ € M such that:

Fapp |: _‘(qbfyn) = _‘(Qbh,n)
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Define now, for every pair (h,n) € W a model E j, in M such that:

Eerr h,n |: _'(th,n)

Clearly the collection {E ;,|(h,n) € W} is countable. Consider then a se-
quence of models in M, {E, }°2, such that for every (h,n) € W there exists an

integer ¢ such that:

E, =E,,

Since M is axiomatized by a sentence b € Lppa that is simple, we know that
every sequence of models in M is uniform for . Invoking then Theorem 4.3.3
(if = =) or Theorem 4.3.5 (if ¢ € (Lppa U I-Lpps)N7}) we know that the
sequence {E, }°2, is uniform for ¢. This implies that there exists an h € I(¢)
such that Vn, E, Eap hqb. However, by the definition of the set W we know that

there exists a pair (g, m) € W such that ¢y, ,,, = ¢, and such that for some n € w,

Er = =(bym) = = (dnm)

But this contradicts the fact that Vn E, Eap hqb. This completes the proof of the
corollary.m

Y

The above corollary is a “uniformity of paths 7 property with respect to the
F=ap . If a sentence ¢ that is negative or belongs to (Lppa U EI_‘LPBA){/\’_'} is ap-
proximately true in every model of a class defined by a positive bounded sentence,
then every model of the class verifies ¢ along the same path.

The next application is a weak uniformity principle for formulas in L 4.

First we introduce some notation. Fix a formula ¢» in L4. By a covering C' of

Y we understand a set

CCIlY)xw



106

with the additional property that for every h € (1)) there exists (hs, ns) € C such

that:

(¢)h,ns = (¢)hs,ns

It is easy to verify that for every H € I(—), Image(H) is a covering of .
From Lemma 3.1.1 we know also that for every covering C of ¢ there exists a
countable covering W of ¢ such that for every (h,n) € C there exists (¢,n) in W

such that:

()rn = ()gn

We are ready for the following theorem.

THEOREM 4.3.7 Weak Uniformity Principle
Fiz a signature ® and a complete class of models M defined by a sentence

Y € Lpga. Let ¢ a sentence in Ly. The following are equivalent:
o« M |:AP }.

e For every countable covering C = {(h,n) : h € I(¢) An € w} of ¢, there

exists a finite I C C such that:

VE e M, B =\ ()nn

(h,n)eF

PROOF: It follows from the Soundness Proposition (Proposition 3.1.3) that

VE € M, E Eap ¢ifand only if VE € M, E Eap ——¢.
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Invoking now Corollary 4.3.4 for the formula —(—¢) and using the fact that
every sequence of models {E, }°2, in a class of models axiomatized by a posi-
tive bounded formula is uniform for this formula, we get that the following two

statements are equivalent:
o forevery E € M, E E=ap ¢.

e for every sequence of models {E,, }°2 . for every g € I(—¢) there exists an

integer r such that:

Vn, B2 = =(2¢)g, == N\ ~(d)ys)

s=1

Finally, using the fact that for every g € [(=¢), Image(g) is a countable

covering of ¢, we obtain the following equivalence:

o forevery E € M, E E=ap ¢.

e For every countable covering C' C {(h,n) : h € I(¢) An € w} of ¢ there

exists a finite F' C C such that:

VE € M, E =\ ()nn

(h,n)eF
But this is the desired result.m

In the next section we use the Model Existence Theorem to get some elementary

results for approximation principles in complete classes of models.

4.4 Approximation Principles in Complete Classes

As mentioned in Chapter 1 we are interested in the following question:
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Given a complete class of models M, for which kind of formulas ¢ € L 4

does the following hold:

M iff M zap o (4.2)

We begin with the following theorem that gives a “weak” answer to the above
question.

Recall that Lpp4 is the smallest subset of L4 containing the atomic formulas
and closed under countable conjunction, finite disjunction and bounded existential
and universal quantification over countable many variables. Likewise, Lp is the
smallest subset of Lpp4 containing the atomic formulas and closed under countable

conjunction, finite disjunction and bounded universal quantification over countable

many variables. Finally, Ly, = ((Lp U3=Lp)tAF U Lpp ) AV3,

THEOREM 4.4.1 Let ® be a signature and let M be a complete class of models
in ® axiomatized by a sentence in Lay. Fix ¢ an arbitrary sentence in L. If M

E ¢, then M [Eap ¢. O

PROOF': Suppose that the statement is not true. Then there exists a model
E € M such that:
E fap ¢
It follows from the soundness properties of approximate truth (Proposition 3.1.3)
that
E FEap —¢
Furthermore, if ¢ defines M, then ¢» € L4,. Theorem 3.3.10 imply that for this

formula ¥, £ =ap 1.
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Clearly then {E,, }°2,, with E, = E for every n, is a sequence in M uniform
for m¢ Atp. Hence we can apply the Model Existence Theorem 4.2.7 to obtain that

there exists a model B € M such that

But this contradicts the hypothesis. m
The converse of this remark is true for a particular class of formulas. Recall

that (Lp U EI_'LP){/\’_'} is the smallest set of formulas in L4 containing:
o Lp.

e The formulas of the form:
37 € K—o(Z, §))for ¢(7,7) € L,

and closed under countable conjunction and negation. The next theorem shows

that the converse of the previous result holds for the class ¥((Lp U EI_'LP){/\’_'}).

THEOREM 4.4.2
Let ® be a signature, and M a complete class of models. The following holds:
Suppose that M is axiomatized by a sentence in Lay. Let ¢(Zy,..75,..) be a
formula in (Lp U EI_'LP){/\’_'}, and let Ky,..K;,.. be a corresponding collection of

elements of P with true sort. Then
M |=ap Vi € Ko(T)

if and only if

M |= Vi e Ko(i)
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PROOF': «: Directly from Theorem 4.4.1.
=-: Suppose that

E |=ap Vi € K ¢(T, D)

Then by the Soundness Proposition (Proposition 3.1.3) we obtain that: for every
ieE il E= N2, K(d@) then E E4p 6(d,b).

Since ¢ € (Lp U EI_'LP){/\’_'}, we can invoke Theorem 3.3.8 to conclude that
for every a@ = (ay,..a;,..), if E = A2, Ki(d;) then E | ¢(d, I;) This is the desired
result.m

In summary, the simplest interesting case where question 4.2 could have a
negative answer is when ¢ = 37 € ];’;/)(:JZ") and 1 is a quantifier free positive
formula.

Let us close this section with an application of the previous results to complete
classes of models defined by positive bounded sentences. We prove an equivalence

principle between satisfaction of an infinitary formula in a complete class M and

satisfaction of a fixed path of finitary approximations.

THEOREM 4.4.3 Strong Fquivalence Principle

Fiz a signature ® and a complete class of models M axiomatized by a sentence
in Lppa. Let ¢ € Ly be an universal sentence (¢ = V& € KO(Z) with § €

(Lp U EI_'LP){/\’_'}) ). Then the following are equivalent:
e ME o

o There exists h € I(¢) such that for every model E € M, E Eap "
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PROOF: Follows directly from Theorem 4.4.2 and Corollary 4.3.6.m

A weak version of the previous result holds for negative formulas.

THEOREM 4.4.4 Weak Uniformity of paths

Fiz a signature ® and a complete class of models axriomatized by a sentence in
Lppa. Let ¢ be a negative sentence (¢ = —=0). If M |= ¢, then:

For every h € 1(0) there exists an integer n such that for every model E € M,

E®? = =(0)n,0-0

PROOF: Assume that VE € M, E |E ¢. Since M is axiomatized by a formula

in Lpgs C L4y we can invoke Theorem 4.4.1 to obtain that:
VE EM,E |:AP¢E_‘(9

Now we use Corollary 4.3.4 to obtain the desired result.m

The above theorems can be used to obtain uniformity statements in complete
classes of models. An universal sentence defined as above holds for all the models
of a complete class axiomatized by a sentence in Lpg, iff the “uniform” version
of the property also holds in all the models of M. We will give an example of the
applicability of this theorem in functional analysis in the next section.

Furthermore, this theorem suggests a way of proving that a sentence ¢ of
the form V¥ € K’;z;(:z;’) or of the form V72, ; does not hold in all the models
of a complete class of models axiomatized by countably many positive bounded
formulas. It is enough to show that for every path h € [(¢) there is a model

E € M such that E FEa4p hqb.
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4.5 Application to Functional Analysis

We begin by giving a brief summary of some fundamental results in Functional
Analysis.

We need first some notation. Let N a normed space, {x,}°2, a collection of
vectors in N, and v = 3 ,cp a;x; and v = 3~ ,cp a;x; where Ey, Fy are subsets of

the integers. We say that u < v iff
VnEE1Vm€E2n<m(1e E1<E2)

Likewise we say that n < w iff Vm € £y m > n. Finally, we say that u has rational
coefficients with respect to {z,}°2, iff Vi € £y a; € Q.

Here are some basic definitions concerning Banach spaces. Most of the state-

ments in this section are taken from the classical book of Lindenstrauss & Tzafriri

([29]).
DEFINITION 4.5.1 Schauder Basis

A sequence (2;)7_; (or (2;)32;) in a Banach space (F,|].||) is a basic sequence
iff there exists a real K" > 1 such that for all integers n,m (with n +m < r in the
case of a finite sequence (z;)/_,), for every @ € R"™:

n n+m
1> aiwill < K| Y aiai]

Clearly the span of every countable basic sequence is an infinite dimensional

Banach space. The minimal value of the constant A is called the basis constant

of the sequence (x;)/_, (or of the sequence (z;)52,). O
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DEFINITION 4.5.2 K-Finite Representability

A Banach space (Y, ].]) is K-finitely representable in a Banach space (X, |.|) if and
only if for every finite dimensional subspace E of Y there exists a linear isomor-
phism 7 : . +—— X with |[|T||||]T7!|] < K. Y is said to be finitely representable in
X if it is K-finitely representable in X for all K > 1.

A sequence {y,}°2, in a Banach space(Y, ||.||) is K-block finitely representable

00
n=1

in a sequence (x,)0%, in a Banach space (X, |.|) if for each integer N there exist,

in the span of (x,)02,, vectors uy < uy < .. < uy such that for every choice of

scalars {a; ¥,

N N N
||;Oéiyz'|| < |nz_:10%uz'| < K||;0éz’yz’||
(For the previous definition it is enough to require the scalars {a, } to be rational).
The sequence u; < uy < .. < uy is called a block sequence of (x,)22;.
A sequence {y,} is block finitely representable in a sequence {x,}°2, if and

o0

only if {y,}°2, is K-block finitely representable in {x,}°2, for every K > 1.0

It is easy to see that finite representability is an approximate property (see
Example 2.5.2). Henson & Moore studied this property for the positive bounded
logic Lpp (see [15, 20]).

Krivine ([27]) obtained the following deep theorem concerning the finite repre-

sentability of the ¢, and ¢ spaces in the infinite dimensional Banach spaces.

THEOREM 4.5.3 Krivine’s Theorem
Let E a Banach space. Let {x,}°2, C E be a sequence whose span is infinite
dimensional. Then the usual basis of one of the spaces l, for p € [1,00) or ¢ is

block finitely representable in {x,}°2,.
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The proof of this theorem can be found in [31].
Lemberg ([28]) and Rosenthal ([39]) obtained a stronger and uniform version

of the above theorem. They proved:

THEOREM 4.5.4 Uniform version of Krivine’s Theorem

Fiz arbitrary K > 1, n € w and € > 0. There exists an m(K,n,¢€) such that
if (x;), is a finite basic sequence in some Banach space with basis constant K,
then there exists 1 < p < oo and a block sequence (y;)'_, of (x;)™, so that (y;)",

is (1 4 ¢€) isomorphic to the unit vector basis of (.0

Let us see how we can get the above result directly from Krivine’s Theorem
using the Weak Uniformity Principle (Theorem 4.4.4) developed in the previous
section.

First notice that Krivine’s Theorem clearly implies the following weak state-

ment:

For every basic sequence ()72, in a normed space (N,||.||), for every

¢ > 0, for every integer n there exists {7, (p € QN [1,00]) such that the

usual basis of the (7 is (1 + ¢)-block finitely representable in (x;):2,.

Consider then the class M of normed space structures. Here we need more

notation. For every real number p € {0} U [1,00) and every integer n let:
o For every @ € Q" if p € [1,00), £(@n,p) = iy Jail

o if p {0}, f(d@n,0) = mar{|a] |i <n}.
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o For every € > 0, let On,p, e](312, 1y biwe, 202, 4y bi, . 2028 1 b)) be the
formula that states that the usual basis of the space £7 is (1 + ¢)-equivalent

to the vectors

q2 q3 In+1
i=q1+1 i=gq2+1 1=gn+1

This can be written as the following positive formula in L 4:

n g5+1
N f(@n,p) <] Z > b))l < (1+¢)f(én,p)
ceQn 7=1 1=q;+1

Using the finite dimensionality of the (7 it can be easily seen that in the
complete class of normed structures, for every n € w,p € Q N [1,00],¢ > 0
there exists an integer w such that the w approximation of the formula
O[n, p, ¢] implies the formula §[n, p, 2¢]. In other words, there exists an integer

w such that:

M= (00, p, )(§))w = Oln, p, 2¢](y) (4.3)

e For every K > 1, let o[K|(Z) be the positive formula in L4 that states that
the sequence (x;)32; is a basic sequence with basic constant K
n+m

/\ /\ ||Zax2|<[x||2axz||

n,mew geQntm =1

We are now ready to write the weak version of Krivine’s Theorem in L4. Let
us call QF the set:{0} U (Q N[l,00)). Likewise for a fixed integer n let ¢ denote a
vector (qi,qa, .-Guy1) of integers such that ¢ < q2 < ...g.41 and let V,, C w™t! be
the collection of all such vectors.

Fix now an enumeration of Q% and an enumeration of V,,. For every integer r,

Q" 1 r denotes the restriction of Q* to the first r elements of its (fixed) enumeration.
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Likewise, V,, T r denotes the restriction of V,, to the first r elements of its (fixed)
enumeration.
The weak version of Krivine’s Theorem just says that for every K > 1, for

every € > 0, for every n € w, VE € M,

E | -3% € By (o[K])(Z)A

% g2 Tnt1
AN N AOnpd( D b, D> b, Y. b))
pEQ! TEVR fegint1 1=q1+1 1=q2+1 1=qn+1

Since M is a complete class of models axiomatized by a sentence in Lppy
(Example 4.1.3) we can invoke the Weak Uniformity of Paths (Theorem 4.4.4).

We get:

for every K > 1, for every € > 0, for every n € w, for every path

g € [(0‘[[&7] A /\ /\ /\ —|(9[n,p, 6])

pEQI FEVR FeQint1

there exists an integer r such that for every normed space structure E |

E*P |= =( 37 € By (o[ K](Z)A

q2 q3 In+1
/\ /\ /\ ﬁ@[n,p, 6]( Z bﬂ}i, Z bil'i, .. Z bzl’z)) )gﬂ«
pEQ! TE€EVR FeQint1 1=q1+1 1=q2+1 1=qn+1

(4.4)

Select then, for any € > 0, for every integer n and every K > 1, a function

h:Qﬁanqu"+1l—>w

—

such that h(p, (¢1, g2, .-Gnt1),b) > w, where the w is defined above in statement 4.3

for the fixed values of n, p,c.
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It is easy to see that

(0,h) € I(c[K]A /\ /\ /\ =0[n,p,¢€)

pEQ! JEVn Fegin+1
By the statement 4.4 above, there exists an integer r such that for every normed

space structure E |

E? = =(3% € By o[ K)(&)A

92 In+1
/\ /\ /\ _‘(Q[R,p, 6]( Z bi$i7 . Z bzl'z) )h,r =
pEQ EVR FeQin+1 i=q1+1 i=gnt1
—37 € By (o[K](Z)),A
T q2 In+1
A AN A O d( X biwice D0 b)) =
PEQHr TEValr feQint1 1r 5=1 i=q1+1 i=gn+1

Vi e By (3)((o[K](3)), =

T q2 dn+1
\/ \/ \/ \/ (Q[n,p, 6]( Z bixi? ) Z bixi)h(p7(q1qu+1)7g))
pEQITr FEVRIT feQanti 1y 5=1 1=g1+1 i=¢n+1

and this implies, using property 4.3 and the definition of A,

VE e By ((o[K)(Z)), =

q2 q3 dn+1
VoV Op2d( Y b Y Y b))
PEQH T FEVRTT feQintt qr i=g1+1 imqatl  i=gntl

This last statement can be written as follows:

For every K > 1, for every € > 0, for every integer n, there exists a

finite collection I = {p1,..p,} € QN [l,00)U {0}, an integer m, and a

finite collection of vectors of terms

V = {ud(@) = (ug, ..tuy) : ur(¥) < uz(¥) < uy (&) are terms with variables among (1, ..2m)}

such that for every normed space (F,||.||) and every basic sequence

(), with basic constant K there exists a u(¥) € V and a p € I such
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that the block sequence of vectors uy < uy < ..u, with respect to (x;)™,

is 1 + e-equivalent to the usual basis of {7 (or cg if p=0). O

This is the desired result.
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Chapter 5

Omitting Formulas in L 4

The aim of this chapter is to develop tools to construct countable models that omit

infinitary formulas in L4 in this sense:

Given a complete class of models M and a sentence ¢ such that VE &

M, E [Eap ¢, there exists a countable model B € M with B = —¢.

We already know from Chapter 4 that the above can not happen if ¢ = V7 €
K’;z;(:z;’) with ¢ € (LpU El—'Lp){/\’ﬁ} for a complete class of models M axiomatized
by a sentence in L 44 (Theorem 4.4.2).

It follows that the simplest case where one can omit ¢ in complete classes of
models would be when ¢ is a 3 formula in L 4. In Section 5.1 we prove an omitting
theorem (Theorem 5.1.3) for 3 formulas in complete classes of models. Section 5.2
gives an application of this theorem to classical infinitary multisorted logic. We
show that Theorem 5.1.3 generalizes the Omitting Types Theorem in classical

logic.

5.1 Omitting 4 Formulas in L4

Our intention is to prove a omitting theorem using the notion of approximate

formulas in complete classes of models.



120

We begin with a definition concerning formulas in L 4.

DEFINITION 5.1.1 Limited and Strong Sentences

Fix a complete collection of models W for a signature ®. A sentence 1 is

limited for W if and only if:
e For every model E e W, E = ¢ iff E |=4p ¢.

e Every infinite sequence (E, )22, of models of W that approximately satisfy

tp contains an infinite subsequence (E,, )52, that is uniform for .

A formula (%) in L4 is strong for W iff for every model E € W, for every @ in
E

Y

if £ ap ¢(@) then E = (@)

Next we give examples of limited sentences and strong formulas.

EXAMPLE 5.1.2

Consider the complete collection of all classical multisorted models for a lan-
guage ® = (F,P) where all the fixed sort predicates are compact and for every
fixed sort function symbol there exists a C' € P such that in every model of W,
Im(f*) € C. Then Lemma 3.4.1 and Lemma 3.4.2 imply that every first order
sentence is limited in this class of models (since for those models and formulas,
E and Eap coincide and the number of non equivalent paths of any first order

formula in this class is finite). It follows then that any sentence of the form A2 ¥,
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with the ; first order sentences is also limited in the complete collection of all
the classical multisorted models. For those classes of models, it is easy to verify
that the formulas of the form A2, ¢; are also strong formulas for this collection of
models.

Consider the complete collection of all the normed space structures. The sen-
tence ¥ that states that the normed space is infinite dimensional,

v=Fe BN A len—aull 2 1/2)
n=1 m=1,m#n

is positive bounded, and we know (see Example 2.5.3) that for every normed space

structure F |
EEyiff EEap

It follows then that v is limited for the complete collection of normed space struc-

tures. O

Fix ® a countable signature, and let C' = {¢y, ..¢.....} be a collection of constant
symbols with true sort and not appearing in ®. Let ®(C') be the signature that
extends ® by adding C. Let T be the collection of all variable free terms in
La(®(C)).

Given any complete collection of models W for ® and a countable collection of
unary predicate symbols in @, {P; : ¢ € w}, we can define a complete collection of
models W({P; : ¢« € w}) for ®(C) in the following way:

A model E in ®(C') belongs to W({P,; : i € w}) if and only if
o the restriction of FE to ® belongs to W.

e For every integer i, E satisfies P;(¢;).
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It is easy to verify that such a collection is a complete class of models in ¢(C').
The last step before the omitting theorem is to define some notation. Given
any universal formula V(y, 7) € (K’, ﬁ)e(y_’, Z)in L4 with |§] = r < oo, and given

any arbitrary:
e path h € I(0).
e A vector of terms { = (fl,t_;, L) erTr.
e A function f:w+— w.

by oLEhm5] we mean the following formula in L 4p:

r

AN EAT)) sny = YT € Doy (O(F, )

=1

{:h7n7f]

Intuitively speaking, for every f : w — w, the formulas 6t are approximations

to the formula K’(f) = Vi € 59(5; z).

Recall the definition of a simple sentence for a complete class of models: A
sentence ¢ is going to be simple for M if for every model structa in M, E |= ¢
implies E E4p ¢.

The following theorem gives a tool to decide when a complete class of models

omits an 3 sentence in L 4.

THEOREM 5.1.3 Omutting 3 Formulas in L4
Fiz W a complete collection of models for ®. Let M C W a complete class
of models defined by a sentence @ limited in W. Fixz a collection {P; : 1 € w} of

unary predicate symbols in ® with true sort. Consider the ¥V formula
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in La with 8 simple for W and || = r < oc.

Suppose that the following property is true:

e For every finite collection F' C T", for all functions {fz € w* : fe F}, for
every function H : F'+—— [1(0) and for every sentence A € Lap(C), if ¥n
A A /\ LEH ().n.f7]
ieF

is consistent in M({P; 11 € w}),

then Yq € T7, there exists h € 1(0) and a function g : w — w such that Vn,
A/\ /\ a[ﬁH(t),n,f;] /\e[q‘vhvnvg]
ieF
is consistent in M({P; 11 € w}).

Then there exists a countable model I € M such that

E |= V(3. 7) € (K, D)b(§, 7)

PROOF: List all the elements of T":
Lol

List also all the sentences in Lap(®(C)):
O1y .0, .

We will construct by induction :

e a collection I',, of finite sentences in Lap(®(C')) consistent with M({P, : ¢ €

wl).
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e A function H : w+— ().
e A collection of functions {f; € w¥ : 1 € w}.

with the following properties:

I, CTgq and 'y, is consistent with M({P; : i € w}).
® o, 0r no, 1sin l,.

o ifo,=dy € ﬁqb(f) is in I',, then there exists a vector of constants ¢ in C

such that 5(5’) A @(€) isin T'y,.

o For every 1 < n, for every integer m, {G[ﬁ’H(i)’m’f"]} U I, is consistent in

MUP: i€ w)).

We leave to the reader the verification that such a collection of I',,, and the map
H : w—— [(0) verifying the above properties can be constructed. It is enough to
use the hypothesis of the theorem.

Note that for every integer n, for every integer m,

0[{"’H(n)’m’f"] = /\([(z(t_;))ﬁ,fn(m) = V¥e ﬁfn(m)(e({n,f)}[(n%m) - U F]‘
7=1

i=1
Consider now the sequence (FE, )°2; of models in M({P, : ¢ € w}) such that
for every integer n, E%? |=T',.

Since ¥ is a limited formula for M, it is easy to see that it is also a limited
formula for M({P; : i € w}). Hence there is a subsequence of models (E,; )&,
that is uniform for ¥. Consider now the ultraproduct generated by this family

over a non principal ultrafilter /. Call this ultraproduct [],,F,; . We know that
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[T Eni isin M({P; : i € w}). It follows from the Property of the Ultraproduct

(Lemma 4.2.4) and the properties of the I',; that:

e For every (¢,2) € T" x T* such that [[,,E.; = [;’(q_') A 5(5),
[T Ewi Ear 0(q,7)

Proof: Fix § € 1" such that [[,,E,.; & ];’(q_j Then for every integer n there

exists a p € U such that:

r

Vi€ p, B | N\ (K(t)n

=1

Let § = 1. Since for every m, glin-H(E).m il iy U2, I, it follows from the

above statement, that for every integer n there exists p € U such that:
Vi€ p, B = VT € Doy o) (007, 7)1 1y ) (5.1)

Consider now any vector of elements Zin T°°. Suppose that [T, E.; = AJZ; Dj(z;).
Then by the property of the ultraproduct (Lemma 4.2.4) we get that for every

integer m there exists a p € U such that:

Vie P, Ex* = A (Dj(z))o.m

J=1

From this remark and statement 5.1 we obtain then that for every integer n

there exists a p € U such that:
Y € U, E?f;p |: ((9((7, 5))H(k),n

Invoking the property of the ultraproduct (Lemma 4.2.4) again we finally
get:

[TuEw Far 9(q, 7)

This completes the proof of the statement.
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o [1,,E: Eap ¢ since ¥ is limited.

e The interpretations of the constants ¢; in [T,/ E,; define a submodel of [T, E; (because
the (I';;)72, decide every sentence in L4p(®(C),and have witnesses for ev-
ery existential formula in (I',;)2;). Let us call this submodel B . Since
B CIluE. € WHP : i € w}), it follows that B € W({P, : ¢ € w}.
Furthermore, we leave to the reader to verify by induction on formulas in

La(®(C)) that:
¥ formula ¢(Z) € L4(®(C)), for every @ in B, [Ty Eni Fap ¢ iffB |Eap ¢
From the previous remarks it follows then that:
e For every (£,§) € T" x T such that B |= [z’(ﬂ A 5((7),
B Eap theta(t_; q)

o B |:Ap 77/)

Invoking now the fact that « is limited for M({P; : 1 € w}) and that 6 is strong

for W, we finally get:

o For every ¢ € T such that B | K’(g’),
B Vi e DO(q, %)

o The restriction of B to ® is in M.

But this is the desired result. m
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5.2 Applications to Classical Logic

We show that the previous theorem yields an extension of the Omitting Types
Theorem in classical logic.

In this section we fix S a collection of discrete metric spaces (i.e. (M, par)
so that Image(par)={0,2}). We also fix ® = (F,P) a signature for S contain-
ing a fixed universal predicate K in P and such that every fixed sort predi-
cate is compact. Recall that a classical multisorted model of @ is a structure

E= (X,d, F, P) such that the metric d is discrete, and for every a € X,
E E K(a)

Let W be a collection (complete) of all classical multisorted models for ® with
the property that for every fixed sort function symbol f there exists a compact
predicate of the same sort P such that for every classical multisorted model E €
W, Im(f*) € C. We already know that any such collection W is a complete
collection of models. The Omitting Theorem proved in the previous section can

be stated in a simplified way for W.

THEOREM 5.2.1 FEztension of the Omitting Types Theorem
Let M C W be the collection of all the models that satisfy the sentence ¥ =
N2 ¥i, where the o; are first order sentences. Consider the ¥ formula

vy, 70(y, %)

with 0 in (L., ) Nt and |2| = r < oo (the arity of || can be infinite).

Suppose that the following property is true:
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o For every finite collection I C T", for every function H : F' —— [(0) and
for every sentence A € Lap(C), if ¥n
ANN YO E)) g
ieF

is consistent in M,

then Yq € T7, there exists h € 1(0) such that ¥Ym
ANN YEOE ) @ m) AYT(O(TF))rm)
ieF

is consistent in M.

Then there exists a countable model I € M such that

E = V70(7)

PROOF: Since we are dealing with classical multisorted models, it is clear that

in every such model,
E V7 e K¢(Z,9) iff E = VZ(Z,7)

where K is the universal predicate for the models in W. Similarly the existential
quantification is equivalent to bounded existential quantification. We can the safely
omit the bounding predicates from the existential and universal quantifiers.
Furthermore, we saw in Chapter 3 (Corollary 3.4.4) that every sentence in
(LWM){/\’ﬁ} is simple in W. Likewise, every infinite conjunction of first order for-
mulas is limited in the complete class of classical multisorted models (see Exam-

ple 5.1.2).
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Since in every multisorted model, and for every predicate symbol K, for every

integer n, K,, = K, we can see that:

—

oIl = N (K () fn) = VT € K () (T, @) )
=1

is equivalent, for every n, h € I(0), f € w* and { € T, and for the universal
predicate K, to:

VO, D))

Finally, consider the collection {P; : i € w} of unary predicate symbols with
true sort such that for every 7, P, = K. it is clear that any interpretation of the
constants {¢; : ¢ € w} in any classical multisorted model verifies K(¢;).

From these remarks it is clear that this theorem follows from Theorem 5.1.3.m

let us discuss the relationship between the previous theorem and the classical
Omitting Types Theorem for first order logic.

We show that Theorem 5.2.1 implies the Omitting Types Theorem for classical
multisorted structures.

We begin with a lemma that states that countable disjunctions of first order

formulas behave like first order formulas for its approximations.

LEMMA 5.2.2
Fiz S an arbitrary collection of discrete metric spaces. Let ® = (F,P) be a
signature for S and let W be a the collection of classical multisorted models for ®.
For every countable collection of first order formulas ¢;, for every h € I(\V:2, &)

dm € w such that for every classical multisorted structure E € W, Vd in E

Vn > m E*P = ({7 &i(@))hn = (? Gi(@)),m

=1
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PROOF: For every integer i, Lemma 3.4.1 implies that there exists a finite

collection £} C Lp such that VA € I(=d;), ¥m, 30(i, h,m) € F; such that
VE € M, V@ inE ,E = (=¢:)nm < —0(i, h,m) (5.2)
Fix then H € I(~ A, ~é:). By definition
H = (Hy ) s — <f[11<¢i>> <

with the property that:

Yhe I\ =¢1) 35, (N 205 = (/\ 29 1o.1005)
=1 =1 =1

Using (5.2) and the definition of approximate formulas we obtain for every multi-

sorted structure E

EE (= N\ =0d))un= N\ ~()\ =0i(a))m (s),m05) <
=1 s=1 =1

n Hy(s) n Ha(s) . .
/\ — (_‘Qbi(ai))H1(S,i),H2(S) = /\ - /\ _'0<Z7H1(S7Z)7H2(8)>(ai)
s=1 =1 s=1 =1

n Hz(s)

& N\ V 00, Hi(s,i), Hy(s))(@:)
s=1 =1

Fix k such that Hy(k) is the minimal value of H,. Since 15, F; is finite there

exists an integer m satisfying:

Ha (k) Hy (k)
\V/Sap <m E |: \/ 0<i7H1(57i)7H2(5)> = \/ (9<i,H1(p,i),H2(p)>
=1 =1

and satisfying also that Hsy(p) < Ha(s).
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For every integer n > m and every classical multisorted model E we obtain

then:
n Ha(s)
E%(AwwaHmmqve i\ Hy(s.1), H(s)) (@)
@ﬁaye i Hy(s.1) %@Néﬂﬁbzﬁ@@Mm

This is the desired result. m
Let us now recall one of the classical versions of the Omitting Types Theorem

in classical logic (see [26]):
Omitting Types Theorem

Let L a first order countable language, and let C' be a countable collec-
tion of constants not appearing in L. Suppose that M is the collection

of all models of a countable first order set of sentences 1; in L.

Consider the formula: V@V, 6,(¥) where the |Z| = r < oo and the
0;’s are first order formulas. If for every first order quantifier free and
consistent sentence A (with constants from ') and for every tuple ¢ of

constants in C' with arity r, there exists a 5 such that
A NO;(0)
is consistent, then there is a countable model E in M such that

E | v\ 0(d)
7=1
In order to see that this theorem follows from Theorem 5.2.1 it is enough to

check that the hypothesis of the Omitting Types Theorem implies the hypothesis

of Theorem 5.2.1.
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We begin by noting that the collection of all the classical first order models of
a fixed language L can be seen as the collection of all classical multisorted models
for a signature ® = (F,P) that contain all the function and predicate symbols of
L as true sort function symbols and predicates, and such that the only fixed sort
metric space is the reals with the usual metric. The only fixed sort predicate on the
reals is the set {0,1}. It is easy to see then that the collection of all the classical
multisorted models for ® coincide with the collection of all the classical first order
models for L. Furthermore, this collection, let us call it W, is a complete collection
of models.

Fix then M C W the collection of all models of the sentence ASZ, ¢; with the
¢; first order sentences. As we saw before, the formula AJZ, v; is simple for the
class W. Note also that M is a complete class of models. Consider the formula:
VZ V52, 0;,(2) where the a;’s are first order formulas and |Z| = r.

Assume that the hypothesis of the Omitting Types Theorem are true for these
formulas.

Suppose also that

For every finite collection F' C T, for every function H : F +—

I(VZ, 6;) and for every sentence A € Lap(C), Vn

A, =AAN /\ (<7 Qi({))H(t‘),n

{EF =1

is consistent in M,

Fix an arbitrary ¢in 7T7.

It follows from Lemma 5.2.2 for classical multisorted structures that there exists
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an integer k such that for every m > k,
A, 1s equivalent, for every model in W, to A (5.3)

We can now apply the hypothesis of the Omitting Types Theorem to Ay to

obtain that there exists a 7 € w such that

A N0i(Q)

is consistent in M. This implies that there exists a model E in M and interpre-

tations of the constants of C' appearing in Ay A 0,(¢) such that:
E®? = A A 0;(4)
Since 6 is a first order formula, it is strong for W, i.e.

E =ap 0:(9)

but by the soundness properties of |=4p , this implies that:

E [Eap <7 0:(9)

=1

In summary, there exists h € I(\V:2, 6;) such that for every integer n:

Awwzm@mn

is consistent in M. Invoking now statement 5.3 we finally obtain that for every

integer n,

AN @ = 30NV 0 A (V 0D

{EF =1



134

is consistent in M. But this is the hypothesis of Theorem 5.2.1. We just veri-
fied that the hypothesis of the Omitting types Theorem imply the hypothesis of
Theorem 5.2.1. This completes the proof of the desired statement.

We close this section with some remarks concerning the differences between
Theorem 5.2.1 and the classical Omitting Types Theorem. Note that Theo-

rem H.2.1 omits formulas of the form
V()

where 8 € (LWM){/\’ﬁ} and the arity of & can be countable. The classical Omitting

Types Theorem on the other hand, only works for formulas of the form:
vz \/ 0:(7)
=1

with the 6; first order formulas and the arity of ¥ finite.
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