
OUTER MODEL THEORY AND THE
DEFINABILITY OF FORCING

By

Robert Owen

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

(Mathematics)

at the

UNIVERSITY OF WISCONSIN – MADISON

2008

i

Abstract

A new notion of class forcing was defined by M.C. Stanley in [6], which is not a priori

definable in the ground model. In this thesis, we explore conditions under which the

Definability Lemma holds for this new notion.

There are two major approaches to this problem, one direct and one indirect. The

direct method makes use of a new complexity class, σ2DFn, which lies intermediate

between Σn/Πn and ∆n+1 in the Levy hierarchy. This class has many nice closure

properties; in particular, it is “weakly” closed under negation and bounded quantifiers,

and is “weakly” self-defining where this notion of “weakness” is inherent in the definition

of σ2DFn. Using this class, one can then show that this new forcing is definable for a

wide range of partial orders.

The indirect approach explores the relationship between forcing over an order and

forcing over a dense suborder. This is trivial when these orders are sets in the ground

model, but the situation is more complicated when both are classes and is in fact false

in general. We prove that, even for this new notion of forcing, dense suborders produce

the expected results for another wide range of partial orders.

ii

Acknowledgements

First and foremost, I would like to thank my advisor Kenneth Kunen for his invaluable

guidance on this work, as well as my readers and the other members of my committee. I

would also like to thank the other members of the department, particularly Bob Wilson

and Joel Robbin, for sustaining me in my studies; and special thanks must go to Bart

Kastermans, whose patience and insight were both invaluable and truly beyond the call

of duty.

Thanks to the graduate students who have alternately challenged and inspired me:

Aaron, Adam, Alex, Andrew, Asher, Ben, Boian, Bret, Chris, Christelle, Dan, Dave,

David, Dilip, Marco, Rikki, Rob and Tom. Thanks also to my undergraduate students

who did likewise: Megan, Jamie and Mindy; Amy and Scott; Patrick, Jason and Jeff;

Noah, Tanya and Sara; and especially Karen and Nicky.

The Wisconsin Emerging Scholars program also deserves special mention. Thanks to

Concha Gomez for letting me teach in it, to all my erstwhile colleagues in the program,

and to all my Student Assistants, particularly Eric and Renee, for helping me become a

better teacher and a better person.

Finally, thanks to Jen for driving me crazy and keeping me sane; Alan, who helped

me realize that toes are optional; and to my parents for all their love, wisdom and

support.

iii

Contents

Abstract i

Acknowledgements ii

1 Introduction 1

1.1 Overview . 1

1.2 Results . 4

1.3 The basic framework . 5

1.4 Partial orders . 7

1.5 Coding . 9

2 Combinatorics of Truth-Genericity 11

2.1 Definitions . 12

2.2 Set-based Orders . 13

2.3 Regularity . 20

2.4 Basic facts about truth-genericity . 23

2.5 Splitting and Embedding . 28

2.6 Dense embedding for definably-generic forcings 34

2.7 Generalizing to truth-genericity . 37

2.8 Uses of pretameness in definably-generic forcings 39

3 Boolean Algebras and the Definability of Forcing 42

3.1 Forcing over boolean algebras . 43

iv

3.2 Extending orders to BAs . 44

4 σ2DFn and the Definability of Forcing 51

4.1 Basics of hyperrecursion and distinguished predicates 51

4.2 Definability and hyperclass recursion . 54

4.3 DFn and σ2DFn . 57

4.4 Regular Complements and σ2DFn . 63

5 Conclusion 67

5.1 Further work . 67

5.1.1 Intuitionistic Logic . 67

5.1.2 Pretameness and tameness for truth-genericity 68

5.1.3 The splitting of completions . 68

5.1.4 Intermediate complexity classes 69

Bibliography 70

1

Chapter 1

Introduction

1.1 Overview

A central question in set theory concerns the power and generality of the forcing method.

There are many ways of formalizing this question, one of the most obvious being: if two

theories are equiconsistent, can this always be witnessed by a forcing argument? Are

there really no limits to the technique beyond the mild restriction that we must always

use a (pre)order?

As this question is almost too general to be comprehended, in the early 1970s Solovay

restricted the question to a more tractable setting: when is a real realizable in a forcing

extension of another? Although it may seem minor to the modern eye, the change of

perspective was crucial here, as it turned what had been a purely syntactic question

about provability into a semantic notion involving actual models of set theory.

Let us recapitulate Solovay’s construction: given two reals x, y ∈ ωω, one can ask

whether one real, in some sense, “forces” the existence of the other. Regarding L, the

constructible sets, as being the ZFC closure of a given set or class, we regard x as a

“stronger” real than y iff

y ∈ L[x]

It is elementary that this induces a preorder on the reals, whose degree structure

2

has been well-studied, and it is also elementary that 0] cannot be realized in any forcing

extension of L. The celebrated “coding the universe in a real” argument of Beller,

Jensen and Welch ([1]) actually shows that there are reals strictly weaker than 0] in the

constructibility order which cannot be realized by any forcing extension, thus completely

ruining any hope of using forcing to somehow surmount the universe.

What has not been well-studied is a more general relationship that relates, not reals,

but actual countable transitive models of set theory. That is, instead of considering

models of the form L[x] as above – which, provided we have sufficient strength in the

universe, we can – we can more generally consider the collection

Mδ = {M : |M | = ω ∧M |= ZFC ∧ o(M) = δ}

the collection of all ctms with ordinals δ. The question is then, how strong is the

forcing method in this collection? Is there a natural ordering on these models akin to the

constructibility degrees and, if so, how does it interact with equiconsistency or forcing

techniques?

This question is of broader interest than it might at first appear. In some sense the

archetypical set theoretic result is a consistency proof: a theory T is consistent with

another T ′. This is a syntactic relation: when all is said and done, one can (in theory)

unravel the semantic concepts of countable transitive models to produce a finitistic

formal proof of the relative consistency of the two theories. Furthermore, these theories

can be given a natural consistency ordering, where T ≡ T ′ iff Con(T) ↔ Con(T ′) and

T < T ′ iff T ′ ` Con(T).

Returning to Solovay’s insight, then, a natural question is: can this notion of con-

sistency strength extend to actual models themselves? In other words, can we extend

3

consistency from the syntactic to the semantic?

The obvious extensions are quickly seen to fail; it is possible for a model to, say,

not possess 0] but have objects whose consistency strength exceeds it.1 The problem

is that, in some sense, we have failed to ask the right question to gauge our model’s

strength. Erring on the side of caution, we could instead try to compare the full theories

of the models to one another, but this is useless since theories are complete, and hence

incomparable. Again, one could try to ferret out particular sentences that represent the

model’s true strength, but this does not seem to be natural, and certainly fails to be

practical.

There is, however, a result by MC Stanley that sheds new light on the subject. In

[6] Stanley proved the following:

Theorem 1.1. Suppose that V is a countable transitive model of ZFC + 0] and let L be

its constructible inner model. Then there is a V -definable, L-amenable partial order P

and an appropriately generic filter (see below) G such that V = L[G].

Thus, restricting our attention to

Zδ = {M : |M | = ω ∧M |= ZFC + 0] ∧ o(M) = δ}

those models which contain a sharp, we now have a possible way of gauging the

consistency strength of models: one model is stronger than another if it can somehow

“induce” a generic filter whose ZFC-closure is the other model. This, and matters like

it, will be explored later.2

1Harvey Friedman’s work on Boolean Relation Theory is filled with such examples.
2Note that we have passed beyond the realm of independence proofs, since the theory ZFC + 0] is

strictly stronger than that of ZFC + V = L. Forcing has become an end unto itself.

4

There is a slight catch, however: Stanley’s result is, on first blush, impossible, flat-

out contradictory to what was stated above. The crucial point is that there are multiple

notions of genericity at the class level, all generalizations of the usual notions of set

genericity but with distinct properties. While it is true that the result is impossible for

the usual notion of class genericity (see [2] for an easy proof), Stanley develops a notion

of genericity which he simply calls “generic”, but which I will call “truth-generic”, for

which this result holds.

Unfortunately, where the usual notion of class genericity satisfies the Definability

Lemma, this new notion a priori does not. This, then, is the central topic of this

dissertation: under what conditions is truth-generic forcing definable? Using this defin-

ability, when can one extend the Solovay ordering of the reals and speak of the relative

consistency strength of models? And what other properties of set- and conventional

class-generic forcing can be ported to this new kind of forcing?

1.2 Results

Although full answers remain elusive, several partial results have been obtained, of

interest in their own rights. They come in two distinct flavors, one direct and one

indirect. First, the indirect, which is of a very combinatorial natural:

Theorem. Suppose that (V ; P,Q) |= ZFC and that P is a dense suborder of Q. If Q is

set-splitting over P, then: there is a natural correspondence between truth-generic filters

G over P and truth-generic filters H over Q; V [G] = V [H] for such filters; and P-forcing

and Q-forcing are identical on sentences of the P-forcing language.

Theorem. If P is a V -amenable partial order, then it has a unique set-completion P @

5

(V ; P) into which P densely embeds.

This latter implies that truth-generic forcing over P is definable whenever P is set-

splitting in its own completion. The exact combinatorial details of when this happens

may be found in Chapters 2 and 3.

On the other hand, attacking the problem head-on yields fruit of its own:

Theorem. There is a complexity class σ2DFn that lies strictly between Σn and ∆n+1

which is weakly self-defining.

Theorem. If P is an amenable partial order such that P is κ-closed for every κ < ∞,

then truth-generic forcing over P is definable.

Theorem. If P is a set-complete boolean algebra then truth-generic forcing over P is

definable.

There is a third, somewhat trivial, class of orders for which forcing is definable:

Theorem. If P is set-based for truth-genericity, then truth-generic forcing over P is

definable.

These represent a vast improvement over the existing results, wherein truth-generic

forcing over P is a priori not definable at all!

1.3 The basic framework

In order to facilitate the exposition of these results, some definitions and conventions

must be established. We work throughout in a V |= ZFC and whatever additional

axioms are required for the relevant objects to exist, e.g. countable transitive models of

6

0]. Countable transitive models (hereafter abbreviated “ctm”) will invariably be denoted

U , V and W ; their common ordinals, though in reality a countable ordinal δ, will be

denoted by ∞. Our models will usually be augmented by predicates, and for this we

have the fundamental definition:

Definition 1.2. A class R ⊂ V is called V -amenable (or just amenable if the context

is understood) iff (V ;R) |= ZFC in the language extended by a predicate for R. Two

classes R1, R2 are said to be simultaneously amenable if (V ;R1, R2) |= ZFC in the

language extended by both predicates, and similarly for additional classes.

It is a basic observation about amenability that while anything definable from an

amenable predicate is itself amenable, two classes R1 and R2 which are separately

amenable may fail to be simultaneously amenable (cf [2]). Since definability is of

paramount importance, we will make the following definitions:

Definition 1.3. A subset A of a ctm V will be called a class of V . Those subsets B

which are definable over V – in other words, those subsets which are classes in the usual

first-order sense – will be called definable classes of V , and the relationship between the

two will be denoted B @ V . Likewise, if B is a definable class in a model V augmented

by a class A, we will write B @ (V ;A).

Since classes play double-duty in what will follow, both predicate and object, we will

sometimes use the restriction operator, �, for more suggestive results. For example, if

P ⊂ Q and H is a filter on Q, we will sometimes refer to H ∩ P as H � P. Likewise, a

statement like “
P=
Q� P” translates as the far more cumbersome: for every p ∈ P and

every ϕ ∈ LP ⊂ LQ, p
P ϕ iff p
Q ϕ.

7

1.4 Partial orders

Now the single most important basic convention and definition.

Definition 1.4. Throughout, P (and Q) will be amenable class partial orders in V .

This means that (abusing notation slightly) the graph of P, considered as a class in V ,

is amenable; alternatively, that ≤P is an amenable class.

There is a natural topological space associated with every partial order P:

Definition 1.5. The Stone Space of P, St(P), is the set of all strongly maximal filters

on P – i.e. those maximal filters G ⊂ P such that p /∈ G implies there exists a q ∈ G

with q ⊥ p – topologized with the open basis Op = {G ∈ St(P) : G 3 p}.

Remark 1.6. Since verifying the strong maximality of the filters will never be an issue

in this paper, we will simply refer to such filters as maximal hereafter.

The following are similar in notation and obviously related as concepts, but which

must be kept straight.

Definition 1.7. For p ∈ P, define:

• p⊥ = {q ∈ P : q ⊥ p}

• [p] = p ↓= {q ∈ P : q ≤ p}. [p] is a subset of P.

• JpK = {G ∈ St(P) : G 3 p} (which is just a more tractable notation for the Op

defined above). JpK is a subset of St(P).

Extend these definitions to sets A ⊂ P in the obvious way:

8

• A⊥ = {q ∈ P : ∀r∈A (q ⊥ r)}

• [A] = {q ∈ P : ∃r∈A (q ≤ r)}.

• JAK = {G ∈ St(P) : ∃p∈A (G 3 p)} as defined above.

As usual, we denote the set of (Schoenfield) P-names as V P instead of the fussier

(V ; P)P. When P ⊂ Q we consider V P ⊂ V Q in the obvious manner. Elements of V P will

be denoted with circles above the letter, e.g. å. Since many of the constructions we will

be employing will be recursive over the structure of the name, we make the following

definitions:

Definition 1.8. Fix a model V and an amenable order P. Given a name å, we define:

• The domain of å is the collection of all names appearing in å, i.e.

dom(̊a) = {̊b : ∃p∈P ((̊b, p) ∈ å)}

• The domain closure of å is defined recursively as the union of all names appearing

in the construction of å, i.e.

domcl(̊a) =
⋃
{domcl(̊b) : b̊ ∈ dom(̊a)} ∪ dom(̊a)

• The conditions of å are the elements of P appearing in å, i.e.

cond(̊a) = {p : ∃̊b∈V P ((̊b, p) ∈ å)}

• The support of å is defined recursively as the union of all conditions of elements

of å, i.e.

supt(̊a) =
⋃
{supt(̊b) : b̊ ∈ dom(̊a)} ∪ cond(̊a)

9

• Finally, let å(̊b) = {p ∈ cond(̊a) : (̊b, p) ∈ å}.

As much of what we will be concerned with are dense suborders, we make the follow-

ing notational convention: A ⊂∗ B, where both are subsets of a common order P, means

that A is a dense subset of B. There is a more general notion of dense equivalence that

will not be needed here; suffice to say that A ⊂∗ B in the notation of this paper is a

special case of A and B being dense equivalent, i.e. A dense in B and B dense in A.

We now discuss briefly the notion of “genericity” for filters. For the usual notion of

set genericity, see either Kunen [4] for the order-theoretic exposition or Jech [3] for the

Boolean-algebraic version. The standard text for forcing at the class level is Friedman

[2], whose “generic” is what Stanley terms “definably generic” in [6]:

Definition 1.9. Let (V ; P) |= ZFC with P an amenable partial order. Let G be a

maximal filter on P. Then G is said to be definably generic if, given any dense class

D @ (V ; P) (possibly defined with parameters), G ∩ D 6= ∅. G is said to be internally

generic if, given any predense set E ∈ V , G ∩ E 6= ∅.

There is a third notion of genericity developed in [6] which is the subject of the

present paper; its definition and consequences will be given in the next chapter.

1.5 Coding

The last conventions that must be established concern the coding of sentences and

formulas in various formal languages. Most important is that while the specifics of the

coding of formulas will change occasionally, one rule rises above all: no stupid coding.

In particular, the coding of all predicates should be ∆0 in their parameters, and indeed,

10

considered as a formula, computable in its variables. Beyond that, essentially no details

of the actual coding (e.g. sequences of prime factorizations) will, or need, be given.

The basic language in which we shall work is L = {∈,=}, the language of set theory,

possibly augmented by predicate symbols for amenable classes. Things become trickier

when dealing with the forcing languages. There, our basic language will consist of two

symbols ∈̂ and ⊂̂, to be interpreted in the obvious ways;3 these predicate symbols are

then augmented by constant symbols for every element of V P to form the forcing language

of P, denoted by LP, and may or may not contain a symbol for P itself depending on

context. As before, if P ⊂ Q, we regard LP sentences as LQ sentences as well; and indeed,

for notational convenience, we will simply write LP for the collection of LP sentences, so

this may be written more compactly as LP ⊂ LQ.

Finally, the strict adherence to the hat over ∈̂ and ⊂̂, and the circle over å, may seem

unnecessarily fussy, but it is enormously helpful when dealing with equations involving

the F function defined in the next chapter.

3As the cognoscenti will doubtless recognize, forcing for partial orders is more naturally defined with
the subset relation than with equality, which is a somewhat irritating extra predicate.

11

Chapter 2

Combinatorics of Truth-Genericity

The basic mechanics of set-forcing are well-understand and rather easy to implement:

one decides upon a property to be witnessed in the extension model and then cooks

up dense sets or maximal antichains that will force this property to be realized. These

techniques port very well to the definably-generic case, as one might expect, since the

basic property of genericity – intersecting dense things one can define in a more or less

arbitrary fashion – remains the same. For example, the following is a trivial exercise

with definable genericity:

Lemma 2.1. Suppose G is definably generic and q /∈ G. Then there is an r ∈ G such

that q ⊥ r.

The key is that the set D = {q}∪q⊥ is both dense and definable. When working with

truth-genericity, however, the argument fails: we are guaranteed the intersection of some

dense classes, but only those of a specific type, namely F (ϕ) for some ϕ in the forcing

language. As such, there are a wealth of combinatorial results about truth-generic filters

that must be re-established using new techniques that translate our desired property

into, not dense sets, but sentences of the forcing language.

12

2.1 Definitions

Herewith is the definition of forcing as found in Stanley [6], used as the precursor to

defining syntactic forcing:

Definition 2.2. For any partial order P, we define, by hyperrecursion, the following

subclasses of P:

F+(̊a ∈̂ b̊) :=
⋃

d̊∈dom(̊b)

(
[̊b(d̊)] ∩ F+(̊a⊂̂d̊) ∩ F+(d̊⊂̂å)

)
F−(̊a ∈̂ b̊) := F+(̊a∈̂̊b)⊥

F−(̊a ⊂̂ b̊) :=
⋃

c̊∈dom(̊a)

(
[̊a(̊c)] ∩ F−(̊c∈̂̊b)

)
F+(̊a ⊂̂ b̊) := F−(̊a⊂̂̊b)⊥

F+(ϕ ∧ ψ) = F+(ϕ) ∩ F+(ψ)

F+(∃xϕ(x)) =
⋃

å∈V P

F+(ϕ(̊a/x))

If F±(ϕ) has already been defined by the above, let F∓(ϕ) = [F±(ϕ)]⊥.

We then say

p
 ϕ iff F+(ϕ) is dense below p

and that G is truth-generic if

V [G] |= ϕ⇔ ∃p∈G (p
 ϕ)

Remark 2.3. Note that the definitions of F−(̊a∈̂̊b) and F+(̊a⊂̂̊b) are redundant given

the definition of negation. We include them only to make the arguments in Chapter 4

more readable.

13

There is an equivalent notion, termed “semantic genericity” by Stanley. We repeat

the definition from Chapter 1 for completeness’ sake:

Definition 2.4. The Stone Space of P is the collection of all maximal filters on P

topologized by the open basis JpK = {G : G 3 p}. Let Mod(ϕ) = {G : V [G] |= ϕ}; then

p ||= ϕ iff Mod(ϕ)∩ JpK is comeager in JpK. Once again, we say that G is (semantically)

truth-generic if it satisfies V [G] |= ϕ⇔ ∃p∈G (p ||= ϕ).

A straightforward recursion argument shows that syntactic and semantic forcing are

identical, so we shall denote both by
. Although we will primarily be concerned with

the former, the latter will sometimes be employed for ease of use; and provided one is

careful, this will not impact the definability of the relevant properties.

2.2 Set-based Orders

The following is an incredibly useful example – or, perhaps, counter-example – illustrat-

ing the distinction between forcing at the set level and forcing at the class level. Given a

uniform sequence of partial orders 〈Pα : α <∞〉, define the so-called lottery preparation

of the orders to be P =
⊔
{α} × Pα with a unique maximal element dominating each

of the Pα. The slanted lottery preparation is given by the same underlying class, but

ordered so that 1α ≤ 1β whenever β < α, where 1i is the maximal element of Pi.
1 For

our purposes, it will suffice to consider Pα = Fn(ωα+1, 2), which we will call the Cohen

lottery and slanted Cohen lottery preparations respectively.

1One could obviously adapt this for orders that do not have a maximal element but it eases the
exposition to assume that they do – and, indeed, the Cohen orders have them natively.

14

Lemma 2.5. Letting P be the Cohen lottery (resp. the slanted Cohen lottery prepara-

tion), P is neither κ-complete for every κ, nor is set-splitting in its own completion (cf

Chapter 3).

Proof. The first is obvious. For the second, pick any p ∈ Pα and look at ¬p ∈ P; this

clearly bounds every q ∈ Pβ where β 6= α, and hence does not set-split over P.

So P defies the techniques that will be laid forth in the following chapters. This

should not be worrying, though, as it seems as if P “ought” to be behave just like

ordinary Cohen forcing, and hence ought to be definable; and indeed it is.

Theorem 2.6. Forcing over P is definable.

The proof of this is slightly more complicated than it might appear at first blush.

Proposition 2.7. The following hold for the Cohen Lottery P:

1. Any (maximal) filter on P restricts to a unique (maximal) filter on a single Pα;

conversely, any (maximal) filter on Pα extends to a unique (maximal) filter on P.

Furthermore, St(P) ≈
⊔

St(Pα).

2. Generic filters on P restrict to generic filters on Pα, while generic filters on Pα

extend to generic filters on P, for either truth or definable genericity.

3. p
P ϕ iff p
Pα ϕ′, where ϕ′ is the result of hereditarily deleting all conditions

in ϕ (i.e. all conditions in the support of every name in ϕ) that are incompatible

with Pα.

4. p
Pα ϕ is uniformly definable in p and α for fixed ϕ, where we again delete

conditions in ϕ that are incompatible with Pα.

15

Hence forcing is definable for P.

Proof. Although this may be proven directly from the combinatorics of F , it is much

easier to do so using semantic forcing. Let 1α denote the largest element of Pα; then the

neighborhoods J1αK ⊂ St(P) are disjoint. This means that if p ∈ Pα, then any comeager

neighborhood of JpK in St(P) is necessarily a comeager neighborhood of JpK in St(Pα)

and vice versa, so p
P ϕ iff p
Pα ϕ̃, where we can delete “inappropriate” elements of ϕ

again by comeagerness. This deletion can be defined uniformly in α and so the forcings

can be defined uniformly in α also. Hence G is generic over P iff G is generic over Pα.

The essential point here is that forcing over P is somehow “set-based”: there is a

uniform sequence of Pα ⊂ P such that p
P reduces to p
Pα , where the latter relation

is a) set-forcing and b) uniformly definable. As such, we have the following notion:

Definition 2.8. A partial order P is strongly set-based if there is a uniform collection

of orders Pα ⊂ P such that

1. Each Pα is a set, i.e. Pα ∈ V

2. Every maximal chain on P intersects at least one Pα.

Remark 2.9. The “strongly” here denotes that every maximal filter intersects one of

these Pα. See Theorem 2.15.

We can now generalize the previous theorem.

Theorem 2.10. If P is strongly set-based, then
P is definable.

16

This is not quite as trivial as it might first seem; essentially, we need to confirm that

Pα=
α is the same as
P. To that end, we will prove several propositions first.

Proposition 2.11. If Q ⊂ P is open, there is a canonical homeomorphism π : St(Q) ≈

JQKP given by H 7→H ↑P, and whose inverse is given by G 7→ G ∩Q.

Proof. To begin, let us show that this map is well-defined. Note that if G is a filter on P

then G ∩Q is a filter on Q because Q is open. Now suppose that H is a maximal filter

on Q and let G be its upward closure in P. If G is not maximal, then there is a G′ ⊃ G.

Clearly G′ ∩Q is a filter on Q which contains H, and since H is maximal we must have

G′ ∩Q = H. Hence, if G′ 6= G, there is some p ∈ G′ \G and therefore a q ∈ G′ ∩Q with

q ≤ p; but then p ∈ G, which is a contradiction. Conversely, let H be a maximal filter

on Q containing G ∩Q. By the above, there is a unique maximal filter on P containing

H, but G is a maximal filter on P containing H, so π is actually a bijection.

Finally, to prove it is a homeomorphism, it suffices to establish that π is an open,

continuous map. Let p ∈ P be given; then (abusing notation slightly) π−1JpKP =
⋃
{JqKQ :

q ∈ Q ∧ q ≤ p}, so π is continuous, while π is open because πJqKQ = JqKP.

As an aside, the reader may recall a similar theorem from boolean algebra theory,

which states that if P,Q are both boolean algebras and Q ⊂∗ P, then St(Q) ≈ St(P).

This statement does not hold for arbitrary partial orders, however. Consider the follow-

ing example, which is extraordinarily simple if one draws a picture:

• Let P0 and P1 be copies of 2<ω

• Let σ0 be the rightmost branch of P0 (i.e. σ0 consists of all sequences of only 0s in

P0) and σ1 be the leftmost branch of P1 (i.e. σ1 consists of all sequences of only

1s in P1); and let Qi = Pi \ σi.

17

• Glue the orders together starting at the 17th places of σ0 and σ1 respectively; that

is, let P = P0 ∪ P1 and regard (0n)P0 ≡ (1n)P1 .

• Let Q = Q0 ∪Q1 ∪ {00000P0} ∪ {11111P1}

• Let G = σ0 ∪ σ1.

Then G is a maximal filter on P, Q is dense in P, but G∩Q = {00000P0}∪{11111P1}

isn’t actually filter on Q since they have no common extension in Q. The best one can

say is that G∩Q is “maximal” in the sense that no filter on Q properly contains it. The

reason for this discrepancy is that when P and Q are boolean algebras, any filter on one

order is guaranteed to have the same witnesses to its “filterdom” on the other (namely

their mutual meet); it fails to work here because Q may be arbitrarily complicated inside

P while still remaining dense.

Returning to the topic at hand, the next proposition, though trivial, is ubiquitous:

Proposition 2.12 (The Renaming Lemma). Suppose Q ⊂ P and let H = G ∩ Q.

Suppose further that there is a map η : V P → V Q such that, for every å ∈ V P, we have

åG = (η(̊a))G = (η(̊a))H

Then:

1. V [G] = V [H]

2. If we let ϕ̃ = η(ϕ), i.e. the result of replacing all å ∈ ϕ by η(̊a), then

V [G] |= ϕ⇔ V [H] |= ϕ̃

3. π[ModP(ϕ)] = ModQ(ϕ̃)

18

Proof. V [H] ⊂ V [G] automatically, and η guarantees that V [G] ⊂ V [H]. The latter

parts follow from the definition of the forcing language and induction on the complexity

of ϕ.

Naturally, if P is set-based, we can produce such a map η.

Lemma 2.13. Suppose Q ⊂ P is both open and a set and G is a maximal filter that meets

Q. Letting H = G ∩Q, one can uniformly define an η as in the previous proposition.

Proof. This is a special case of the Regularization Lemma so we will somewhat abbre-

viate the proof. Given a name å ∈ V P, we will recursively map every condition p ∈ P

to e+p = {q ∈ Q : q ≤ p}. Since G ∩ Q 6= ∅, it follows that G ∩ ep 6= ∅ iff p ∈ G, where

ep = {q ∈ Q : q ≤ p ∧ q ⊥ p} is dense in Q. Hence, letting b̊ be the result of this

renaming, åG = b̊G = b̊H as required. The definition is uniform because the map p 7→ e+p

is uniform in p and Q.

The reader who is unsatisfied by the above proof is encouraged to read ahead to

Lemma 2.37, where all the details are accounted for.

Theorem 2.14. Suppose that Q ⊂ P is both open and a set. Then, for every q ∈ Q and

for every sentence ϕ ∈ LP, we have

q
P ϕ iff q
Q ϕ̃

where ϕ̃ is defined as above.

Proof. This follows immediately from the previous results. Since q ∈ Q and Q is an open

subset of P, it follows that π : JqKP ≈ JqKQ and hence ModP(ϕ) ∩ JϕKP is homeomorphic

to ModQ(ϕ̃) ∩ JqKQ. Thus the sets computed in P are comeager iff the sets computed in

Q are comeager, proving the theorem.

19

Proof of Theorem 2.10. Since
α is uniformly definable, and since every maximal filter

intersects some Pα, by the previous theorem we can define

p
 ϕ iff {q ∈ P : q ∈ Pα ∧ q
α ϕ̃α} is dense below p

is dense below p, where we let ϕ̃α denote the regularization of ϕ into Pα.

Note that we can generalize the theorem still further, using an identical proof:

Theorem 2.15. Say that a partial order P is set-based for a type of genericity G if there

is a uniform collection of orders Pα ⊂ P such that

1. Each Pα is a set, i.e. Pα ∈ V

2. Every G-generic filter intersects at least one Pα.

Then G-forcing is definable over orders that are set-based for G.

Hence, for example, if A ⊂ P is a definable maximal antichain such that [a] ∈ V for

each a ∈ A, then definably-generic forcing over P is definable.

The lottery preparations illustrate even more strangeness that can occur at the class

level:

Theorem 2.16. Let P be the Cohen lottery and Ps the slanted Cohen lottery. Then:

• There is a natural correspondence between predense sets in Ps and collections of

predense sets on the Pα, but there are no predense sets at all in P. Therefore, there

is a natural correspondence between internally generic filters on Ps and collections

of internally generic filters on Pα, but every filter is internally generic filter on P.

• The maximum principle fails for P, for any notion of genericity.

20

Proof. The first is obvious, so we only need to check the latter. Let R = P(ω)V and

consider the following sentence:

ϕ(x) ≡ x ⊂ ω ∧ x /∈ Ř

This asserts the existence of a new real in the extension model. Trivially, 1
 ∃xϕ(x)

and by the regular maximal principle in V it is clear that, for any p ∈ Pα, there is a

åp such that p
 ϕ(̊ap). However, given any particular name å, it is not the case that

1
 å 6= ∅ (let alone that it is a new real) since any such name is bounded which means

that they will evaluate to the empty set under “most” maximal filters. This can be

formalized as need be for any of the three notions of genericity as required.

2.3 Regularity

We now move back to the general context of order theory and forcing.

Definition 2.17. If X ⊂ P then we say that X is open iff it is closed downwards, i.e. if

∀p∈X ∀q[q ≤ p→ q ∈ X]. We say that it is regular iff it is closed under “dense below”,

i.e. whenever X is dense below p then p ∈ X.

Remark 2.18. Regular open is also equivalent to the property: p /∈ X implies there is

a q ≤ p with q ⊥ X.

A few basic facts about regularity are in order, whose proofs are standard:

Lemma 2.19. 1. If P is separative then [p] is regular for any p ∈ P

2. If Xi are regular, so is
⋂
Xi

21

3. Given any class X ⊂ P, regular or not, X⊥ is regular open.

4. If X is regular open, then (X⊥)⊥ = X.

5. Given any class X ⊂ P, there is a least regular class reg(X) ⊃ X given by reg(X) =

(X⊥)⊥.

6. If P happens to be a sufficiently complete boolean algebra, then reg(X) = [
∨
X]

7. Regularity is absolute: (V ; P) |= “X is regular in P”⇔ V |= “X is regular in P”

We recapitulate a definition from the introduction for completeness’ sake:

Definition 2.20. If X, Y ⊂ P then we say X ⊂∗ Y iff X ⊂ Y and X is dense in Y ;

that is, ∀y∈Y ∃x∈X [x ≤ y].

Hence our earlier definition of forcing may be rewritten as:

Definition 2.21. p
 ϕ iff F+(ϕ) ⊂∗ [p]

We now prove a few simple lemmas on density, most of which will be used in Chapter

4.

Lemma 2.22. 1. If A ⊂∗ B ⊂∗ C then A ⊂∗ C.

2. If Ai ⊂∗ Bi then
⋃
Ai ⊂∗

⋃
Bi. Note that this applies even if I =∞.

3. If Ai ⊂∗ Bi, i ∈ I, and P is |I|-closed, then
⋂
Ai ⊂∗

⋂
Bi.

4. A ⊂∗ reg(A) for any A.

And a few simple lemmas on the perp and density:

22

Lemma 2.23. 1. A ⊂ B implies B⊥ ⊂ A⊥.

2. If A ⊂∗ B, then A⊥ = B⊥.

3. If A ⊂∗ B, then A⊥⊥ = B⊥⊥ = reg(A) = reg(B).

4. (
⋃
Ai)

⊥ =
⋂
A⊥i

5. (
⋂
Ai)

⊥ = reg(
⋃
A⊥i)

Hence

Corollary 2.24. For any sentence ϕ ∈ LP,

{p : p
 ϕ} = reg(F+(ϕ)) = F+(¬¬ϕ)

Here is now the first important lemma concerning density and regularity:

Lemma 2.25. Suppose, in any of the quantifier-free clauses of the definition of F , we

replace a class of the form F±(ϕ) with another class X ⊂∗ F±(ϕ). Then the resultant

class G(ϕ) ⊂∗ F (ϕ) for all quantifier-free sentences. If, in addition, quantification and

negation applied to quantified formulas remains unchanged, then G(ϕ) ⊂∗ F (ϕ) for all

sentences.

A quick word on what this means is in order: say, for example, in the clause for

membership

F+(̊a ∈̂ b̊) :=
⋃

d̊∈dom(̊b)

(
[̊b(d̊)] ∩ F+(̊a⊂̂d̊) ∩ F+(d̊⊂̂å)

)
we replace (for a given å, d̊) the class F+(̊a⊂̂d̊) by a class X ⊂∗ F+(̊a⊂̂d̊). Then this

new class, which we will (temporarily) denote G+(̊a ∈̂ b̊) ⊂∗ F+(̊a ∈̂ b̊); and furthermore,

we may replace any number of classes in this way provided the replacement is done

23

uniformly. This will give us tremendous flexibility when defining forcing in the next

chapters.

Proof. For quantifier-free formulas, note that ⊂∗ is preserved under all the clauses of

the definition because there are at most finitely many intersections, and any non-trivial

partial order P is closed under finite descending chains. The quantification step follows

immediately from the fact that density is preserved under ∞-unions (Lemma 2.22) and

the fact that A ⊂∗ B implies A⊥ = B⊥.

2.4 Basic facts about truth-genericity

While it is natural, in definably-generic forcing, to deal with the forcing relation, the

definition of truth-generic forcing suggests that we look at F . Note the following, though:

Lemma 2.26. q
 ϕ iff q ∈ F+(¬¬ϕ).

Proof. q
 ϕ iff F+(ϕ) is dense below q iff q is in the regular closure of F+(ϕ) iff

q ∈ [F+(ϕ)]⊥⊥ iff q ∈ F+(¬¬ϕ).

Looking directly at F , now, one of the most basic questions is when a set is forced

to be empty. To that end, we should look at the relationship between F and names

relative to ∅.

Lemma 2.27. The following equalities hold:

1. F+(̊c∈̂∅) = ∅

2. F−(̊c∈̂∅) = P

24

3. F−(∅⊂̂c̊) = ∅

4. F−(̊c⊂̂∅) = [cond(̊c)]

5. F+(̊c=̂∅) = [cond(̊c)]⊥

Proof. This is a simple matter of following the definitions. For the first, the definition

of F+
∈ requires quantifying over conditions in the second coordinate, which is vacuous

here. The second is obtained by applying ⊥ to the first. The third is similar to the first

as the quantifier is vacuous. The fourth is marginally trickier:

F−(̊c∈̂∅) =
⋃

d̊∈dom(̊c)

[̊c(d̊)] ∩ F−(d̊∈̂∅)

=
⋃

d̊∈dom(̊c)

[̊c(d̊)] ∩ P

=
⋃

d̊∈dom(̊c)

[̊c(d̊)]

= [cond(̊c)]

The final one requires following the observation:

F+(̊c=̂∅) = F+(̊c⊂̂∅) ∩ F+(∅⊂̂c̊)

= [F−(̊c⊂̂∅)]⊥ ∩ P

= [cond(̊c)]⊥

Corollary 2.28. q
 c̊ = ∅ iff cond(̊c)⊥ is dense below q iff q ⊥ cond(̊c).

We also have the following facts:

Lemma 2.29. 1. F+(̊a∈̂̊b) ⊃ [̊b(̊a)]

25

2. If å ⊂ b̊ then F+(̊a⊂̂̊b) = P.

3. If p ∈ F+(̊a∈̂̊b) then there is a d̊ ∈ dom(̊b) such that p ∈ F+(̊a=̂d̊)

Proof. We prove the first two by a double induction. Assuming the second

part is true, we have

F+(̊a ∈ b̊) =
⋃

c̊∈dom(̊b)

[̊b(̊c)] ∩ F+(̊a⊂̂c̊) ∩ F+(̊c⊂̂å)

⊃ [̊b(̊a)] ∩ F+(̊a⊂̂å)

= [̊b(̊a)]

where we recall that [̊b(̊a)] = ∅ if å /∈ dom(̊b).

Conversely, assuming the first part is true, we have

F−(̊a⊂̂̊b) =
⋃

c̊∈dom(̊a)

[̊a(̊c)] ∩ F−(̊c∈̂̊b)

Now, if å ⊂ b̊, then c̊ ∈ dom(̊b) too, [̊a(̊c)] ⊂ [̊b(̊c)]; and F+(̊c ∈ b̊) ⊃ [̊b(̊c)], so

F−(̊c ∈ b̊) ⊂ [̊b(̊c)]⊥. This means that

[̊a(̊c)] ∩ F−(̊c∈̂̊b) ⊂ [̊b(̊c)] ∩ [̊b(̊c)]⊥

= ∅

as required.

The third clause simply restates the definition of the membership relation.

The following is included as a useful, though trivial, observation:

26

Proposition 2.30. If F+(ϕ) is regular, then p
 ϕ iff p ∈ F+(ϕ). In particular, for

any two names å, b̊, p
 å ⊂ b̊ iff p ∈ F+(̊a⊂̂̊b).

Which in turns leads to the following, more useful for its technique than its substance:

Proposition 2.31. Suppose that ϕ, ψ are sentences in the forcing language such that

1. F+(ψ) is regular.

2. ` ϕ→ ψ, where provability is with respect to a) classical logic over b) some theory

T such that 1
 T .

Then F+(ϕ) ⊂ F+(ψ).

Proof. We will again use semantic forcing to establish this result. By the previous

proposition p ∈ F+(ψ) iff p
 ψ and we may assume without loss of generality that the

same holds for ϕ. Now suppose G is a truth-generic filter containing p. Since p
 ϕ, we

must have V [G] |= ϕ, whence V [G] |= ψ because this is a ZFC-provable consequence of

ϕ. Since generic filters are comeager, we conclude that p semantically forces ψ, whence

p
 ψ, whence p ∈ F+(ψ) as required.

Corollary 2.32. Let å, b̊, c̊ ∈ V P. Then F+(̊a⊂̂̊b) ∩ F+(̊b⊂̂c̊) ⊂ F+(̊a⊂̂c̊). Also,

F+(̊a=̂̊b) ∩ F+(̊b=̂c̊) ⊂ F+(̊a=̂c̊).

Proof. One can either prove this directly or via this previous proposition, since all the

sets in question are regular.

For the next result, we will need a number of very small lemmas as preamble.

Lemma 2.33. For any filter G:

27

1. x̌G = x for any x ∈ V .

2. If a ∈ b then ǎG ∈ b̌G and V [G] |= ǎ ∈ b̌.

3. If a /∈ b then ǎG /∈ b̌G and V [G] |= ǎ /∈ b̌.

Lemma 2.34. For any partial order P and a, b ∈ V :

1. If a ∈ b then F+(ǎ∈̂b̌) = P and hence F−(ǎ∈̂b̌) = ∅.

2. If a /∈ b then F−(ǎ∈̂b̌) = P and hence F+(ǎ∈̂b̌) = ∅.

Proposition 2.35. Suppose e ⊂ P is a set, i.e. e ∈ V , that is predense below some

p ∈ P, and that G is a truth-generic filter containing p. Then G ∩ e 6= ∅.

Proof. Consider the P-name b̊ = {(∅, ri) : ri ∈ e}. G ∩ e 6= ∅ is thus equivalent to

showing that V [G] |= b̊ 6= ∅ or, alternatively, V [G] |= b̊ 6⊂ ∅. By truth-genericity, this is

equivalent to showing

G ∩ F+(̊b⊂̂∅) = ∅

Let us consider F−(̊b⊂̂∅). By the inductive definition, we have

q ∈ F−(̊b⊂̂∅) ⇔ q ∈
⋃

c̊∈dom b̊

(
[̊b(̊c)] ∩ F−(̊c∈̂∅)

)
⇔ ∃̊c∈dom b̊

(
∃r∈ran b̊ [(̊c, r) ∈ b̊ ∧ q ≤ r ∧ q ∈ F−(̊c∈̂∅)]

)
⇔ q ≤ e ∧ q ∈ F−(∅∈̂∅)

⇔ q ≤ e

because F−(∅∈̂∅) = P.

Suppose now that r ∈ G∩F+(∅⊂̂∅). This means that r ∈ F−(∅∈̂∅)⊥ = e⊥. Since e is

predense below p, this means that r ⊥ p, which is a contradiction. By truth-genericity,

G ∩ F−(∅⊂̂∅), which means that there is some q ∈ G with q ≤ e, so G ∩ e 6= ∅.

28

2.5 Splitting and Embedding

The basic scenario for this section is a pair of partial orders P ⊂∗ Q. Such partial orders

should, it seems reasonable, give rise to the same extensions and the same notions of

genericity, as is true in the set case. One cannot make this claim without additional

restrictions on the orders, though. The problem is that (unlike with set forcing) Q-names

might not translate to P-names; so to that end, we introduce the workhorse lemmas for

such translations, followed by a notion that will let us take advantage of it.

Lemma 2.36 (Splitting Lemma). Suppose that å = {(̊a′α, pα) : α < κ} and that eα ⊂ [pα]

is predense below pα for each α. Let b̊ = {(̊a′α, qα) : qα ∈ eα ∧ α < κ}. Then

1. F−(̊a⊂̂̊b) = F−(̊b⊂̂å) = ∅

2. F+(̊a=̂̊b) = P

3. åG = b̊G for every generic G

Proof. One can demonstrate the proposition for ordinary forcing as follows: let G be

generic. For each α, pα ∈ G iff G ∩ eα 6= ∅, and hence åG = b̊G. Since generics are

comeager, it follows that
 å = b̊.

To get the more precise results, consider first F−(̊a⊂̂̊b). This is given by

F−(̊a⊂̂̊b) =
⋃

å′∈dom(̊a)

[̊a(̊a′)] ∩ F−(̊a′∈̂̊b)

Let å′ ∈ dom(̊a) be arbitrary and consider F−(̊a′∈̂̊b). Since å′ ∈ dom(̊b) by con-

struction, we have F−(̊a′∈̂̊b) ⊃ b̊(̊a′)⊥ = å(̊a′)⊥ by Lemma 2.29 and the fact that b̊(̊a′) is

predense below å(̊a′) again by construction. It then follows that

[̊a(̊a′)] ∩ F−(̊a′∈̂̊b) ⊂ [̊a(̊a′)] ∩ å(̊a′)⊥ = ∅

29

proving the first equality. The second is proven in an identical fashion, making

use of the fact that [̊b(̊a′)] ∩ å(å′)⊥ is again the empty set by predenseness. The other

conclusions are trivial consequences of the first.

The Splitting Lemma means that we are free to split the conditions in names as we

see fit, provided we do so in a predense fashion. The power lies in the arbitrary nature

of the splitting; in particular, it allows us to prove the following:

Lemma 2.37 (Regularization Lemma). Let å ∈ V P and suppose that, for each p ∈

supt(̊a), we specify a predense ep ⊂ [p]. Then there is a name b̊ such that

1. F−(̊a⊂̂̊b) = F−(̊b⊂̂å) = ∅

2. supt(̊b) =
⋃
ep

3. åG = b̊G for all generic filters G

We call such a b̊ a regularization of å via the map p 7→ ep.

Remark 2.38. Although it would be nice if such a regularization were unique, this will

depend on the combinatorics of P and the chosen predense sets. It is, however, “unique

enough” for our purposes, and as such we will often refer to b̊ as the regularization of

å, invariably constructed as in the proof below.

Proof. Define b̊ by recursion, replacing each p ∈ supt(̊a) by ep. To be formal about it,

define a map η : domcl(̊a)→ V P recursively by

η(̊c) = {(η(d̊), r) : d̊ ∈ dom c̊ ∧ ∃p[(̊a, p) ∈ c̊ ∧ r ∈ ep]}

30

and letting b̊ = η(̊a). This is exactly the same map as in the Splitting Lemma, simply

applied hereditarily to å. We clearly have Y =
⋃
ep; to show the relevant equalities, we

will actually prove the stronger

F−(̊c⊂̂η(̊c)) = F−(η(̊c)⊂̂c̊) = ∅

for every c̊ ∈ domcl(̊a).

The proof is similar to that of the Splitting Lemma. Suppose the theorem is true for

all d̊ ∈ dom(̊c). First, note that

F+(d̊∈̂η(̊c)) =
⋃

η(d̊′)∈dom(η(̊c))

[{η(̊c)}(η(d̊′))] ∩ F+(d̊=̂η(d̊′))

Now F+(d̊=̂η(d̊′)) = F+(d̊=̂d̊′) ∩ F+(d̊′=̂η(d̊′)) = F+(d̊=̂d̊′) by induction. Further-

more, {η(̊c)}(η(d̊′)) = ε(̊c(d̊′)) where ε(p) = ep and is extended to sets of conditions in

the obvious manner. This therefore reduces to:

F−(d̊∈̂η(̊c)) =
⋃

d̊′∈dom(̊c)

[ε(̊c(d̊′))] ∩ F+(d̊=̂d̊′)

and so

F−(̊c⊂̂η(̊c)) =
⋃
d̊b∈̊c

[̊c(d̊)] ∩ F−(d̊∈̂η(̊c))

=
⋃

d̊b∈ dom(̊c)

[̊c(d̊)] ∩

 ⋃
d̊′∈dom(̊c)

[ε(̊c(d̊′))] ∩ F+(d̊=̂d̊′)

⊥

Fix now d̊ ∈ dom(̊c) and consider what happens if d̊′ = d̊ in the summand above.

Then F+(d̊=̂d̊′) = P, so this becomes [̊c(d̊)]∩ [ε(̊c(d̊))]⊥ = ∅ because ep is predense below

p for every p ∈ cond(̊c). Since each summand is empty, the union as a whole is empty,

proving the claim. The other case is entirely similar and will be left to the reader.

31

The simplest case in which one can apply these lemmas are when Q splits nicely over

P:

Definition 2.39. If P ⊂ Q then we say that Q is set-splitting over P iff given any

element q ∈ Q, there is an e ⊂ P such that e ⊂ [q] is predense below q. We sometimes

say that e is a (set-)splitting of q in P.

As an aside, note that if one is worried about the use of Choice, one can pick a

canonical splitting of q: let e = Vα∩ [q] where α is chosen minimal so that e is predense.

We now state and prove the Dense Embedding Theorems:

Theorem 2.40. Suppose (V ; P,Q) |= ZFC, P ⊂∗ Q and Q is set-splitting over P. Then

there is a natural correspondence between truth-generic filters G ⊂ P and H ⊂ Q given

in the obvious manner

G 7→ G↑Q

H � P ←[H

and furthermore (V ; P,Q)[G] = (V ; P,Q)[H].

Proof. Trivially, if å ∈ V P then åG = åH by a direct computation. For the other

direction, let b̊ ∈ V Q be given, and let å be the regularization of b̊ via the splittings of

supt(̊b) in P. Then, by the Regularization Lemma, b̊G = b̊H = åH as required.

We can say more:

Theorem 2.41. Suppose (V ; P,Q) |= ZFC, P ⊂∗ Q and Q is set-splitting over P. Let ϕ

be a sentence in the P-forcing language, and also regard it as a sentence of the Q-forcing

language. Then

F+
P (ϕ) = F+

Q (ϕ) � P

32

Hence if p ∈ P, p
P ϕ iff p
Q ϕ.

This will be proven once we have established the following two lemmas.

Lemma 2.42. Given any quantifier-free sentence ϕ using å, b̊ ∈ V P, i.e. P-names only,

F±
Q (ϕ) � P = F±

P (ϕ). In other words:

1. Any p ∈ P with p ∈ F+
P (̊a∈̂̊b) is also in F+

Q (̊a∈̂̊b) (and other quantifier-free sen-

tences mutatis mutandis);

2. Any q ∈ Q in F+
Q (̊a∈̂̊b) has a p below it also in F+

Q .

Proof. The second part of the lemma is trivial since F is always closed downwards and

P ⊂∗ Q, so we need only show that F+
P and F+

Q are computed in the same way on these

basic sets. This will naturally proceed by induction: suppose that the lemma is true for

all å, b̊ sufficiently small; then, for the first of the inductive arguments:

p ∈ F+
Q (̊a∈̂̊b) ⇔ p ∈

⋃
c̊∈dom(̊b)

(
[̊b(̊c)] ∩ F+

Q (̊a⊂̂c̊) ∩ F+
Q (̊c⊂̂å)

)
⇔ p ∈

⋃
c̊∈dom(̊b)

(
[̊b(̊c)] ∩ F+

P (̊a⊂̂c̊) ∩ F+
P (̊c⊂̂å)

)
⇔ p ∈ F+

P (̊a∈̂̊b)

where the middle implication follows from the induction hypothesis and the fact

that b̊ ∈ V P, not just V Q. A similar argument works for F−(̊a⊂̂̊b), and the negation

and conjunction follows from the fact that interchapter and ⊥ play nice with dense

subsets.

To tackle the quantification step, we use the Regularization Lemma:

33

Lemma 2.43. Suppose b̊ ∈ V Q and let c̊ ∈ V P be its regularization. Then, for any

å ∈ V P

1. F+
P (̊c ∈ å) ⊂∗ F+

Q (̊b ∈ å)

2. F−
P (̊c ∈ å) = F−

Q (̊b ∈ å) � P

3. F−
P (̊c ⊂ å) ⊂∗ F−

Q (̊b ⊂ å)

4. F+
P (̊c ⊂ å) = F+

Q (̊b ⊂ å) � P

Proof. We will prove the first and third by double induction, the other two being imme-

diate consequences. Consider the membership clause first:

F+
P (̊c ∈ å) =

⋃
å′∈dom(̊a)

[̊a(̊a′)]P ∩ F+
P (̊c = å)

=
⋃

å′∈dom(̊a)

[̊a(̊a′)]P ∩ F+
Q (̊c = å) � P

⊂∗
⋃

å′∈dom(̊a)

[̊a(̊a′)]Q ∩ F+
Q (̊c = å)

⊂∗ F+
P (̊c ∈ å)

The other clause is entirely similar.

Corollary 2.44. Suppose å ∈ V P. Then

⋃
c̊∈V P

F+
P (̊c∈̂̊a) =

⋃
b̊∈V Q

F+
Q (̊b∈̂̊a) � P

Hence forcing coheres for dense suborders over which the original order setsplits.

34

2.6 Dense embedding for definably-generic forcings

The logical question to ask at this point is whether set-splitting is required for this

relationship to hold. In order to talk about this more easily, we make the following

definition:

Definition 2.45. A combinatorial property (C) respects density if it can replace set-

splitting in the hypotheses of the Dense Embedding Theorems (Theorems 2.40 and 2.41).

That is, if (C) holds relative to P ⊂∗ Q, then generics over P and Q correspond in the

usual way, and forcing over P and Q are the same.

There is a very nice characterization of definably-generic filters which respect density,

although it is unproven in any of the standard literature.2 The central notion is that

of “pretameness” (c.f. [2]) or “predensity reduction” (c.f. [5]). As we will be trying to

extend these concepts to truth-generic filters, we will give the definition in two stages.

Definition 2.46. Let P be a poclass and 〈Si : i ∈ I〉 be a uniformly enumerated sequence

of classes with I ∈ V . We say that p ∈ P reduces or localizes the sequence Si precisely

if there is a sequence 〈si : i ∈ I〉 ∈ V such that

1. si ⊂ Si for each i ∈ I

2. si is predense below p.

The idea behind the name is that the classes Si, which are a global phenomenon, can

be reduced to predense sets locally, i.e. underneath p. Pretameness then becomes:

2We make no claims to originality, of course; it’s simply that the proof itself is not explicit in any of
the standard works.

35

Definition 2.47. P is pretame iff for every uniform sequence of dense classes 〈Di : i ∈

I〉, the class {p ∈ P : p reduces all the Di} is dense in P.

We now prove the following theorem, which is implicit (though unproven) in Fried-

man.

Theorem 2.48. Suppose that (V ; P,Q) |= ZFC and P @ (V ; Q). Suppose further that

P ⊂∗ Q and that Q is pretame. Then there is a natural correspondence between definably

generic filters G on P and H on Q such that V [G] = V [H] for all such G/H, and

P=
Q� P. In other words, pretameness respects density for definably-generic forcing.

Proof. Trivially V P ⊂ V Q, so we get V [G] ⊂ V [H] for free. In the set forcing case

this suffices, as we can define a P-name for H and use minimality to show the reverse

inclusion, but since G and H are classes, they cannot be named by any set name in the

ground model. We must therefore show directly that for any Q-name b̊ ∈ V Q and any

H Q-generic we have a P-name å ∈ V P such that b̊H = åG.

To that end, we will employ two density arguments: the first, via pretameness,

to demonstrate that certain classes of conditions are dense in P and the second, via

genericity, to demonstrate that (at least one) of a particular class of names evaluates

correctly. Given any element q ∈ Q, define the dense set generated by q, Q/q, to be

{q′ ∈ Q : q′ ≤ q ∨ q′ ⊥ q}, i.e. those conditions either below or incompatible with q. Let

X = {qi : i ∈ I} ⊂ Q, and consider the sequence of dense classes Di = Q/qi ∩ P. By

pretameness, given any q ∈ Q we can find a q′ ≤ q such that each of the Di reduces to

a di pretame below q′.

36

Consider now the collection

EX = {q ∈ Q : ∃d[∀i∈I (di ⊂ Di ∧ di predense ≤ q)]}

= {q ∈ Q : ∃d[∀i∈I (di ⊂ Q/qi ∧ di ⊂ P ∧ di predense ≤ q]}

This is a definable subclass of Q, it is of constant complexity (because the map

qi 7→ Di is uniform) and is dense by pretameness as above. This means that there is

a uniform map E : X 7→ EX which we can use to regularize Q-names into P names;

but it does not quite meet the specifications of the Regularization Lemma. Instead,

it follows from the Local Regularization Lemma, proven below. specifically, apply the

Local Regularization Lemma to b̊ relative to q via the map qi 7→ di to produce å.

Lemma 2.49 (Local Regularization Lemma). Fix p0 ∈ P and let å ∈ V P. Suppose that,

for each p ∈ supt(̊a), we specify a predense ep ⊂ [p0]∩P/p. Then there is a name b̊ such

that

1. F+(̊a = b̊) = [p0]

2. supt(̊b) =
⋃
ep

3. åG = b̊G for all generic filters G 3 p0

We say that this regularization is relative to q.

Remark 2.50. Note that the Regularization Lemma is a special case of the Local Reg-

ularization Lemma, taking p0 = 1 and ep ⊂ P.

Proof. The first step is to split the ep into e+p and e−p , the conditions which are either

below or incompatible to p respectively. We now regularize å relative to the map p 7→ e+p ;

37

in other words, b̊ is given by replacing all occurrences of p only by those conditions below

p. We now confirm that this b̊ has the requisite properties. Rather than go through the

combinatorics, which are quite ugly, we will instead use the semantics. Let G be a generic

filter, and suppose that p0 ∈ G. Then for every d ∈ c̊G, (d̊, p) ∈ c̊ for some d̊G = d and

some p ∈ G. Then d̊G = η(d̊)G by induction, while (η(d̊), q) ∈ η(̊c) for every q ∈ e+p

by construction. Now ep is predense below p0, so G ∩ ep 6= ∅, but G ∩ e−p = ∅ because

p ∈ G, so G ∩ e+p 6= ∅ and hence d̊G = η(d̊)G ∈ η(̊c)G. This proves that c̊G ⊂ η(̊cG), and

the other direction is similar.

2.7 Generalizing to truth-genericity

The distinction between definable-genericity and truth-genericity is that one only needs

– and indeed, is only guaranteed – to intersect all dense sets of the form F (ϕ). To

generalize this argument, then, requires finding such a sentence that can encapsulate

the idea of localizing elements.

To that end, let us consider the collection Di = Q/qi defined above. A simple

application of Lemma 2.27 yields the following incredibly fruitful observation:

Q/qi = F (qΓ
i ⊂̂∅)

Recall that F (ϕ) = F+(ϕ) ∪ F−(ϕ); this suggests that any sentential rendition of

localization should be split into two parts, one expressing predensity in F+ and the other

in F−. Accordingly, consider the following sentences:

1. ϕ1 ≡ ¬(̊e1 ∪ e̊2⊂̂∅)

38

2. ϕ2 ≡ e̊1⊂̂∅ ↔ qΓ⊂̂∅

3. ϕ3 ≡ e̊2⊂̂∅ ↔ ¬(qΓ⊂̂∅)

Proposition 2.51. Given ϕi as above, define e+ = cond(̊e1) and e− = cond(̊e2). Then

the following hold:

1. p ∈ F+(ϕ1) implies e+ ∪ e− is predense below p.

2. p ∈ F+(ϕ2) implies [p] ∩ [e+] = [p] ∩ [q] are dense in each other.

3. p ∈ F+(ϕ3) implies [p] ∩ [e−] = [p] ∩ [q]⊥ are dense in each other.

Proof. These all follow directly from Lemma 2.27 and the modified definition of F on

disjunctions. By way of illustration, consider p ∈ F+(̊e1⊂̂∅ → qΓ⊂̂∅) = F−(̊e1⊂̂∅) ∪

F+(qΓ⊂̂∅) = [e+]∪[q]⊥. Hence [p]∩[q] ⊂ [p]∩[e+] and the reverse inclusion is similar.

Corollary 2.52. If p ∈ F+(ϕ1 ∧ ϕ2 ∧ ϕ3) then p reduces Q/q.

Now define

ϕ(e̊1, e̊2, κ) ≡ ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ (e̊1 ∪ e̊2)⊂̂(V P ∩ V κ)ˇ

The parameters e̊1, e̊2, κ are not really parameters of a single ϕ; rather, they parametrize

a family of ϕ, one for each triple. Note also that V P ∩V κ is a set, which we will call V P
κ ,

and hence (after the usual embedding) a constant in the language LP.

Theorem 2.53. Let å ∈ V Q and let ϕi be a sentence of the type given above for every

qi ∈ supt(a). Suppose q ∈ F+(ϕi) for every such ϕi. Then there is a name b̊ ∈ V P such

that q ∈ F+(̊a=̂̊b).

39

Remark 2.54. We have changed the p from the earlier theorem to q here as that is how

it will be used in the sequel.

Proof. As before, let e+i = cond(̊e1i) and similarly for e−i . By the corollary, q reduces

Q/qi ∩ P for every i; hence the proof of Lemma 2.37 goes through as before.

Theorem 2.55. Under the hypotheses of the preceding theorem, let

ϕκ
dense ≡ ∃e : I × 2→ P(V P

κ)[∀i ∈ I(ϕ(e(i, 0), e(i, 1)), κ)]

where ϕ is as above and κ is fixed. If q ∈ F+(ϕκ
dense) and G 3 q is generic, then there

is a name b̊ ∈ V P such that q
 å = b̊.

Proof. The set of individual witnesses to the existential are dense below q, and by the

preceding theorem they all force å = b̊.

We are now in a position to provide a combinatorial condition that respects density

for truth-generic forcing:

Theorem 2.56. The condition “1
 ϕκ
dense” respects density.

Assuming we have truth-genericity for the language augmented by a predicate for the

partial order, we can create a similar sentence ϕdense which will work without a uniform

restriction on the size of the witnesses for the splitting.

2.8 Uses of pretameness in definably-generic forc-

ings

The following theorems are sketched in outline in Friedman; we amplify them here to

motivate (we hope) the definitions for truth-generic forcing. None of the arguments here

40

are original in the slightest.

Proposition 2.57. Suppose that P is V -amenable and for each p ∈ P there is a G 3 p

such that G is definably generic over (V ; P) and (V [G];V,P, G) |= ZF − P. Then P is

pretame.

Proof. We prove the contrapositive: suppose that p ∈ P, 〈Di : i ∈ I〉 @ V witness the

failure of pretameness; we show that Replacement fails in (V [G];V,P, G) where G 3 p

is definably generic over (V ; P). Specifically, let F be the predicate

F (i) = µα[G ∩Di ∩ Vα 6= ∅]

in other words, F (i) is the least α such that G∩Di is non-empty. F (i) exists because

G, being definably generic, intersects all the Di, and F itself is (V [G];V,P, G) definable.

Further, all pieces are necessary: G is obviously needed in the definition of F and we

need V and P to define the Di. This F is thus a class map F : I → ∞ which, by

Replacement, should be bounded in (V [G];V,P, G) since I ∈ V .

Let q ≤ p. We can regard WLOG any predense di ⊂ Di as being Di∩Vα for some α.

Hence, since p is not pretame, q cannot simultaneously reduce all the Di, which means

that for any α there is some i such that Di ∩ Vα is not predense below q. This in turn

means that, for any α there is some i and some r ≤ q such that r ⊥ Di∩Vα. This means

that, for each α, the following is dense below p:

Eα = {r : ∃i∈I (r ⊥ Di ∩ Vα)}

Since p ∈ G and G is definably generic, for each α there is an rα ∈ Eα ∩ G, which

means that rα ⊥ Di ∩ Vα. Suppose now that f(i) < β for every i ∈ I. This means that,

41

for each i, there is q ∈ G∩Di ∩Vβ. Consider rβ: by definition, there is some i such that

r ⊥ Di ∩ Vβ, whence r ⊥ q which is a contradiction.

Careful observation will yield the following important facts:

• We only need a G 3 p definably generic for every p which fails to reduce some

sequence of Di.

• We can break Replacement with a single predicate...

• ...but one which depends, in an essential manner, on being able to exploit V , P

and G.

Unfortunately, at this point, nothing further can be stated.

42

Chapter 3

Boolean Algebras and the

Definability of Forcing

A standard way of attacking the problem of defining forcing is to go about it indirectly.

That is, rather than defining forcing for the order directly by using a complicated double-

recursion argument (see Chapter 4), we embed the order into its boolean completion,

where forcing has a much simpler (and arguably more natural) definition. The key facts

to be established in this process are:

1. Forcing can be easily defined over boolean algebras

2. Every partial order has a boolean completion into which it can be embedded

3. Forcing over the completion is the same as forcing over the original order

Moving to the class level, it is clear that much work must be done before these can

be demonstrated. Crucial in this process is the question of the relationship between

generic filters over the larger order and generic filters over the smaller order; though

the relationship is obvious when one deals with sets or definable genericity, it is a much

subtler question when dealing with truth-genericity.

43

3.1 Forcing over boolean algebras

While the notion of a “complete boolean algebra” is not particularly clear when talking

of class orders – complete with respect to what? – it turns out that there is one condition

that clearly suffices.

Definition 3.1. A boolean algebra B is said to be a set-complete boolean algebra if it

is closed under sups and infs of arbitrary sets of elements.

Theorem 3.2. If B is a set-complete boolean algebra, then
B is definable.

Proof. The key is, very simply, that the structure of the boolean algebra allows the

reduction of the classes in Definition 2.2 to actual elements of B on which ordinary

recursion can operate. Specifically, we will show that given any quantifier-free sentence

ϕ of the forcing language, there is an element bϕ ∈ B such that reg(F±(ϕ)) = [bϕ], and

that such bϕ may be (first-order) recursively defined from ϕ.

Assume that this has been done already by induction. Negation and conjunction are

trivial, being represented by the boolean complement and meet of B, so all that remains

is to show that membership and subset are represented in this fashion. Note first that

if pi ⊂ P for i ∈ I ∈ V , then

reg(
⋃

[pi]) = [
∨

pi]

In a slightly more complex fashion, assuming that pi, qj ⊂ P, note that

reg(
⋃

[pi] ∩ [qj]) = reg(
⋃

[pα
i ∧ q

β
j]) = [

∨
(pα

i ∧ q
β
j)]

with obvious generalizations to set-many interchapters. We can therefore identify

the correct element bϕ ∈ B such that [bϕ] = reg(F±(ϕ)) in a first-order fashion via the

44

usual recursion theorem, and quantifier-free forcing can then be defined as: p
 ϕ iff

p ≤ bϕ. We can then extend to the quantified forcing in the usual way.

The obvious advantage of the boolean algebraic setting is that, as just shown, for any

sentence ϕ there is a single element bϕ which completely encapsulates its truth; indeed,

it is sometimes called the “truth value” [ϕ]. Here, we only have exact truth values for

the quantifier-free sentences because of the class-large union required for quantifiers,

but that suffices. The crux, of course, is that we let the structure of the BA take

over the complexity of the definition for us. Order-theoretic ⊥ becomes the simple BA

complement, and the regular closure becomes the simple BA join. For classes, however,

it is not clear whether there is a boolean completion or whether such completions give

rise to the same notions of forcing, and so it is to those matters we turn.

3.2 Extending orders to BAs

The basic theorem of this chapter is:

Theorem 3.3. If P is V -amenable, there is a P @ (V ; P) such that

1. PP is a Boolean algebra

2. P densely embeds into PP

3. PP is set-complete over V ; that is, every X ⊂ PP with X ∈ V has a sup and an

inf in PP .

4. P and PP are interdefinable over V .

45

Furthermore, this completion is unique, in the sense that any complete embedding of

P into a set-complete boolean order extends to a unique complete embedding of PP .

Proof. We do this by constructing the “set regular open algebra” of P and showing that

it has the requisite properties, which we will do in stages. Each stage Pα will consist of

“set-completing” the orders that came before it, with PP =
⋃

Pα being a set-complete

boolean algebra by virtue of the axiom of replacement. Uniqueness will follow from the

fact that every step of the construction can be replicated in the embedding.

Specifically, given 〈Pβ : β < α〉 with Pγ ⊂ Pβ for γ < β and any A ⊂
⋃

β<α Pβ, define

[∧A] = {p : p ≤ A} = {p : ∀q∈A (p ≤ q)}

[∨A] =
⋃

A ∪ {p : ∀r∈P (r ≥ A→ r ≥ p) ∧ ∀r∈P (r ⊥ A→ r ⊥ p)}↓

[¬A] = {p : p ⊥ A} = {p : ¬∃q∈A ∃r∈P (r ≤ p ∧ r ≤ q)}

then let Pα be the union of all such terms, ordered these by inclusion. To ensure

interdefinability, we will tag each term with the level α at which they arose, though

we will subsequently ignore this fact throughout. Finally, we will embed Pβ into Pα as

downward cones, namely p 7→ [∧{p}]; this will turn out to be equivalent to embedding

it as p 7→ [∨{p}], though this needs to be checked. As per usual, we write [∧p] and [∨p]

when the set X is a singleton.

Remark 3.4. All of this is completely standard; it is essentially the regular closure

restricted to “small” subsets, with a constructive definition of the meet chosen to replicate

the standard, impredicative “least regular open set containing” construction of the regular

open algebra. What is non-standard are the technicalities of the construction.

46

To be precise, we will define by recursion a class Pα = P(α, ·), defined as the equiv-

alence classes (via Scott’s trick) of a base preorder P′α with order ≤α, where a ∼α b iff

a ≤α b ∧ b ≤α a. An element of P′α will be triple (X, ε, α), where ε ∈ 3 ≡ {¬,∧,∨} and

X ⊂
⋃
{Pβ : β < α}, which really means: ∀x∈X ∃γ < α[P(γ, x)].

We now order these elements in a formalization of the informal descriptions above.

For example, thinking of 1 as ¬ and 2 as ∧, we have (X, 1, α) ≤α (Y, 2, α) iff

(X, 1, α) ≤α (Y, 2, α) ⇔ ∀p∈
⋃
{Pβ : β < α} (p ⊥ X → p ≤ Y)

⇔ ∀β < α∀p∈Pβ (p ⊥ X → p ≤ Y)

⇔ ∀β < α[(P(β, p) ∧ p ⊥ X)→ p ≤ Y]

⇔ ∀β < α∀x∈X ∀y∈Y [(P(β, p) ∧ P(β, x) ∧ P(β, y) ∧ p ⊥β x)

→ (p ≤β y)]

since, by construction, x ≤β y iff x ≤γ y whenever β < γ and x, y ∈ Pβ. It is now

a straightforward, though tedious, verification that ≤α is a preorder. Once this has

been established, we will return to the informal definition, remembering (in the words

of Kanamori) that this is merely un façon de parler.

Remark 3.5. Rather than writing out the tedious technical definition of the sup, we will

sometimes paraphrase as follows: p ∈ [∨X] precisely if p is below everything above X,

and so forth.

To confirm that this all works, we must check that a number of conditions are wit-

nessed:

1. Pβ → Pα is order-preserving, hence can be considered as an actual subclass.

2. Pβ ⊂∗ Pα.

47

3. P and
⋃
{Pα : α <∞} are interdefinable.

4. Sups, infs and complements are added correctly at stage α.

5. Sups, infs and complements added at a previous stage β < α remain sups, infs and

complements at stage α.

Only the third and fourth are non-trivial, so we will tackle them in stages. Let us first

check that the cone [∧p] and [∨p] are the same. [∧p] = p ↓= {q ∈ P : q ≤ p}. [∨p], on the

other hand, is defined to be p↓ ∪{p : ∀r∈P (r ≥ A→ r ≥ p) ∧ ∀r∈P (r ⊥ A→ r ⊥ p)}.

If q ≤ p then clearly q ∈ [∨p] so suppose that q 6≤ p. Since P is separative, there is some

r ≤ q with r ⊥ p. This means that q /∈ [∨p] as required.

To check the correctness of the sups and infs, we simply grind through the definitions.

[∧X] should be the least upper bound of all things below X, which is trivially true. [¬X]

should be the maximal element incompatible with every element of X, which again is

trivially true. Furthermore, it is clear that both infs and complements are preserved

when going from Pβ to Pα. For example, if q =
∧Pβ X, then clearly q ∈ [∧X] (and so

[q] ⊂ [∧X]), while if r ∈
∧Pβ{[p] : p ∈ X} then r ≤β X whence q ≥β r and so r ∈ [q] as

required.

The only tricky part – as, indeed, is the only tricky part of the usual construction

– is to confirm that the sup was added correctly and didn’t spoil existing sups. To do

this, we must be quite careful about the nature of the elements that we added at stage

α. Suppose then that X,X ′ ⊂
⋃

Pβ; we must show that, for each of [∨X ′], [∧X ′] and

[¬X ′], if this new element dominates [p] for each p ∈ X and q ∈ [∨X], then q is in this

new element. Throughout the following, p will be an element of X and q an element of

[∨X], and ≤ (or ⊥, mutatis mutandis) will refer to any of the ≤β (⊥β), which all cohere

48

by the induction hypothesis.

Suppose first that [p] ⊂ [¬X ′] for each p ∈ X. This means that p ⊥ X ′ for each

p ∈ X, or in other words X ⊥ X ′. Since q is incompatible with everything incompatible

with X, this in turn means that q ⊥ X ′ whence q ∈ [¬X ′].

Suppose next that [p] ⊂ [∧X ′] for each p ∈ X. This means that p ≤ X ′ for each

p ∈ X, or in other words that X ≤ X ′. Since q is below everything above X, this in

turn means that q ≤ X ′ whence q ∈ [∧X ′].

Finally, suppose that [p] ⊂ [∨X ′] for each p ∈ X. This means that p is below

everything that dominates X ′, and incompatible with everything incompatible with X ′.

The latter condition means that if r ⊥ X ′ then r ⊥ X, which means that q ⊥ r or q is

incompatible with everything incompatible with X ′. The former means that if r ≥ X ′

then r ≥ X, which means that q ≤ r as q is below everything that dominates X, so

that q is below anything that dominates X ′. Put together, this implies that q ∈ [∨X ′]

as required.

As a corollary, note the following:

Theorem 3.6. If P is set-splitting over P, then
P is definable.

In order to apply Theorem 2.40, we need some kind of condition that determines

when a partial order is set-splitting in its own completion. There does not seem to be a

good, full characterization, but there is a sufficient condition of interest.

Theorem 3.7. Let P be separative. Suppose that, given any X, Y ⊂ P with X, Y ∈ V,

there is a predense Z ⊂ [X] ∩ [Y]⊥ and a W ⊂ reg([X]op ∩ ([Y]⊥)op) predense in the

reverse ordering on P, with Z,W ∈ V. Then P set-splits over P and hence is
P is

definable.

49

Proof. Clearly P is set-splitting over itself; we need only show that every Pα is set-

splitting over P. The proof of this is utterly routine, except for the reverse ordering

condition: as complementing reverses the order on P (i.e. p ≤ q iff ¬p ≥ ¬q) we need to

control not just predensity going up but predensity going down.

We note that any condition on P and P that respects density will necessarily be

symmetric in this way, because P is symmetric up and down; more technically, comple-

mentation is an order-preserving involution.

Proof. Let us generalize the hypotheses of the theorem to the condition

Rα : ∀X, Y ⊂ Pα∃Z ⊂ P(Z is predense in reg([X] ∩ [Y]⊥))

and similarly for Rop
α . The theorem will then follow from R∞ (considering P = P∞)

since that will trivially imply that P is set-splitting over P.

Since the situation is symmetric both upwards and downwards, we will restrict our

attention to Rα, and to establish that Rα holds for all α <∞, assume that Rβ holds for

all β < α. To simplify the exposition, call the elements of X the “positive” conditions

and those of Y the “negative” conditions; the idea is to composit the positive and

negative conditions of the elements of Pα into positive (P) and negative (N) conditions

of P, then applying the hypotheses of the theorem.

Specifically, we proceed as follows. Let X, Y ⊂ Pα be given. If p ∈ X is of the form

[
∧
A], add A to P0; if p ∈ X is of the form [¬A], add the set W derived from A from

the hypotheses to N0; and do the opposite for q ∈ Y . These form the basic positive

and negative conditions. To handle positive joins and negative meets, note the following

simple lemma:

50

Lemma 3.8. Let [A] ⊂ P be given, and suppose that B ⊂ [A] is predense. Suppose

further that, for every C ⊂ B, there is a DC ⊂ [C] such that DC is predense in [C].

Then
⋃
DC is predense in A.

To that end, let M be the set of all p ∈ X such that p is of the form [
∨
Ap]. Now,

for every choice f of a subset of Ap – in other words, for every f : M → V such that

f(p) ⊂ Ap – define the set Pf = P ∪
⋃

ran(f), which represent the elements compatible

with exactly Ap. Do similarly for q of the form [
∧
Bq] in the negative conditions, giving

rise to Ng where g is a similar choice function g : N → V. We now apply the hypothesis

to the sets Pf and Ng to produce a Zfg ⊂ P that is predense below [Pf]∪ [Ng]. It is now

routine, though tedious, to confirm that

Z =
⋃
{Zfg : f ∈M ∧ g ∈ N}

is the required predense set.

51

Chapter 4

σ2DFn and the Definability of

Forcing

The simplest approach to defining truth-generic forcing is to show that the second-order

definition is really a first-order definition in disguise, or at least that there is a first-

order definition equivalent to it. Such techniques are common in set theory: consider,

for example, the myriad ways in which large cardinals can be formalized. The problem in

the present case is that there seems to be no compelling “reduction” of the second-order

recursion defining F to a first-order property

In order to circumvent this difficulty, we will define a new collection of complexity

classes – the so-called σ2DFn of the chapter title – and show that these complexity

classes have nice properties. We will then show that these properties can be used to

directly define forcing, provided the partial orders in question meet certain criteria.

4.1 Basics of hyperrecursion and distinguished pred-

icates

Before we can reduce the second-order “hyperrecursion” to a first-order recursion, some

conventions must be established to formalize the relevant notions.

52

The first, and most important, distinction to be drawn is the following:

Definition 4.1. A formula is a syntactic object as per usual. A predicate over a model V

is a formula using parameters from V ; that is, it is a relational symbol to be interpreted

by a formula using parameters over V . A (definable) class is the instantiation of a

predicate over the model, i.e. the actual subset of V determined by the predicate.

Recursion is an operation on sets, formalized via a class function F : o(V) → V

that recurses over a global class function G : V → V . Similarly, hyperrecursion is an

operational on classes, which will (hyper)recurse over a hyperclass function.

Definition 4.2. A predicate functional (hereafter simply functional) Ω over a model V

is a second-order predicate Ω[R] in a single second-order variable with parameters from

V and no second-order quantifiers.

Remark 4.3. Strictly speaking this should be a ∆1
0 predicate functional, but we shall

have no need of higher order functionals.

Definition 4.4. Given a functional Ω and a (first-order) predicate ϕ, we define Ω[ϕ]

to be the result of replacing all occurences of R with ϕ in Ω. The free variables of Ω[ϕ]

consist of the (first-order) free variables of Ω and the free variables of ϕ that are not

bound by Ω.

Note that Ω[ϕ] will be a first-order predicate itself since there are no second-order

quantifiers in Ω. We can thus regard Ω as a map from definable classes to definable

classes, i.e. Ω : D(V)→ D(V), and in this way Ω becomes the hyperrecursion analog to

G above.

53

Typical examples of such functionals are:

Ω[ϕ(·)](x) = ¬ϕ(x)

Ω[ϕ(·, ·)](x, y) = ∀z ∈ x[ϕ(z, y)]

Ω[ϕ(·, ·, ·)](x, y) = ∀z∃w ∈ z[ϕ(z, x, w) ∨ ϕ(w, y, w)]

Note that in the latter case that ϕ is a ternary predicate, but Ω[ϕ] is binary. In

general, we will be flexible about the arities involved; for example, Ω[ϕ] = ¬ϕ will be

considered to be a single functional rather than a collection of functionals for each arity.

To begin, note the following obvious lemma which will be assumed implicitly through-

out:

Lemma 4.5. If ϕ↔ ψ, then Ω[ϕ]↔ Ω[ψ].

Definition 4.6. Given a well-founded relation E, say that Ω is E-reduceable if, given

any predicate A and parameters a, Ω[A](a) only requires evaluating A on E-predecessors

of a. If the predicates have a distinguished first tuple (see below), we require that Ω

E-reduces the first non-distinguished coordinate when leaving the coordinates fixed.

Typical examples would be

aEb⇔ a ∈ b Ω[A](x) ≡ ∀y∈x A(y)

(a, b)E(c, d)⇔ (a ∈ c ∧ b ∈ d) Ω[A](x, y) ≡ ∃z∈x ∀w∈y [A(z, w)]

Remark 4.7. There’s nothing special about the choice of “first non-distinguished coor-

dinate”, it’s purely for definiteness’ sake.

Finally, a simple definition:

54

Definition 4.8. Given a standard coding for formulas – which might be the general

coding for Σω or might be specific to the particular class involved – we say that Ω is

computable iff given an index e for ϕ, the index e′ for Ω[ϕ] is computable.

Note that this is a restriction on codings of formulas, not on predicates (which are

allowed to have set parameters). As such, the usual set-theoretic requirement that such

codings be ∆0 has been altered to the more syntactic notion of computability.

4.2 Definability and hyperclass recursion

Throughout, let C be a collection of predicates. Typical examples of such C would be

Σn, Πn, or the soon-to-be-introduced σ2DFn.

Definition 4.9. Given a collection C, we say that:

1. C admits pairing if any formula ϕ(x, u) ∈ C is (computably) equivalent to some

ψ(x, u) ∈ C.

2. C admits parameters if any, for any a ∈ V and predicate ϕ(x, u0, u), ϕ(x, a, u) ∈ C.

3. C is stable if it admits both pairs and parameters.

The point about stability is that the usual sorts of coding tricks apply, so that we

can relate predicates of nominally different arities.

Definition 4.10. A formula ϕ defines a formula ψ if there is some parameter (aka code)

e such that ∀x[ψ(x) ↔ ϕ(e, x)]. We say that ϕ defines a collection of predicates iff ϕ

defines each predicate in the collection. Finally, we say that a collection C is self-defining

if there is a χC ∈ C which defines C.

55

This is the usual notion of universal from Σn and Πn. Such a requirement is too

restrictive for our present purposes, however, so we will weaken what it means to “define”

something.

Definition 4.11. Let ψ(v, x) be a formula with distinguished first tuple. We say that

ϕ(t, v′, x) weakly defines ψ iff there is a code s such that, for every a there is a a′ such

that ∀x[ψ(a, x)↔ ϕ(a′, s, x)]. In slightly more technical format, ϕ weakly defines ψ iff

∃s∀a∃a′∀x[ψ(a, x)↔ ϕ(a′, s, x)]

As before, we say that ϕ weakly defines a collection iff it weakly defines each member

of that collection.

Such formulas and predicates will be called distinguished when we need to speak of

them. The distinguished parameters of any collection of distinguished predicates will be

assumed to have the same arity unless specifically noted otherwise.

Definition 4.12. We say that a collection C is weakly closed under a functional Ω if

there is some χΩ ∈ C such that χΩ weakly defines Ω[C]. More explicitly, C is weakly

closed under Ω if there is some χΩ ∈ C such that, for any ϕ ∈ C there is a code s such

that: given a there is some a′ such that Ω[ϕ](a, u)↔ χC(a′, s, u).

The key distinction here is that the map a 7→ a′ need not be definable within C. This

map is enormously important, however:

Definition 4.13. If ϕ weakly defines ψ, then any map H(a) = a′ producing witnesses

to the weak definability is said to be a weak map of the definition. The complexity of a

weak map is by definition the complexity of H regarding s as a (constant) parameter. If

56

ϕ weakly defines some class C the weak map must be uniform in the parameter s, i.e.

H must satisfy H(s, a) = a′ for all s. If H witnesses C being weakly closed under Ω, we

will sometimes refer to it as the weak closure of Ω.

Note that a weak map will in general not be unique, hence the “weakness” of the

map: it only gets one possible witness, not all.

Weak closures can be composed:

Proposition 4.14. Suppose that C is a stable collection of distinguished predicates, and

is weakly closed under two functionals Ω0 and Ω1. Then C is weakly closed under Ω1Ω0,

and hence under arbitrary finite compositions of functionals.

Proof. We turn to the definition: let ϕ ∈ C and consider Ω0[ϕ]. Because C is weakly

closed under Ω0, there is some χΩ0 and some parameter s depending only on ϕ such that

Ω0[ϕ](a, b, u)⇔ χΩ0(a
′, b′, s, u) ≡ χΩ0(a

′, b′, u′)

where (a′, b′) = H0(s, (a, b)) and we’ve temporarily added s to the parameters u to

get u′. Consider now Ω1Ω0[ϕ]. By the lemma, Ω1[Ω0[ϕ](a, b, u)] ⇔ Ω1[χΩ0(a
′, b′, u′)].

Since C is also weakly closed under Ω1, there is a χΩ1 and a t depending only on that

predicate such that, for any a, b

Ω1Ω0[ϕ](a, b, u)⇔ χΩ1(a
′′, b′′, t, u′) ≡ χΩ1(a

′′, b′′, t, s, u)

where (a′′, b′′) = H1(t,H(s, (a, b))).

Finally, the crux of the matter:

Definition 4.15. Let C be a class of distinguished predicates. C is weakly self-defining

iff there is a χC ∈ C which weakly defines C, and robust iff it is stable and weakly-self-

defining.

57

Remark 4.16. We require that the same χC works for every formula in C, including

ones whose non-distinguished parameters have different arity than χC. This is usually

accomplished by some kind of coding trick, e.g. ϕ(a, u0, u1, u2) ↔ χC(a′, s, u) where

u = (u0, u1, u2), which in turn points to the need for stability.

The key point which distinguishes a weakly self-defining class C from a self-defining

one is that the weak map does not itself have to be in C – or rather, that the composition

of the weak map with the predicates doesn’t have to be in C.

The central theorem of this section can now be stated:

Theorem 4.17 (Weak Recursion). Suppose that C is robust. Further suppose that C is

weakly closed under an E-reduceable functional Ω, where E is a well-founded relation.

Then there is a unique, definable class function F : V → V such that:

χC(F (x), ·) ≡ Ω[χC(F � predE(x), ·)]

In less complicated language, this says that any collection of classes defined by hy-

perrecursion with Ω are in fact first-order definable, with C-code given by F (x).

Proof. This is completely straightforward: since C is weakly closed under Ω, we may

apply the regular well-founded recursion theorem to C-codes for predicates, producing

the desired result.

4.3 DFn and σ2DFn

In order to apply the Weak Recursion Theorem, we will need to find robust collections

that are weakly closed under interesting functionals. To that end, begin by fixing n ≥ 1,

58

so there is a universal truth predicate for Σn formulas Φn ∈ Σn and a universal truth

predicate for Πn formulas Ψn ∈ Πn. We let DFn be the class of all predicates which are

a disjunctive form of Σn and Πn formulas, i.e. ϕ ∈ DFn ↔ ϕ =
∨

(
∧
ψi) where each

ψi is either Σn or Πn. Note that this is exactly like the conventional disjunctive normal

form, only we do not require that each predicate appear in every conjunction.

Lemma 4.18. DFn is computably closed under negation. That is, given a code e for

a DFn formula ϕ, there is a (computable) map e 7→ e′ where e′ is the code of a DFn

predicate ϕ′ such that ϕ′ ↔ ¬ϕ.

Proof. Apply De Morgan’s laws ad libitum and the fact that Σn and Πn are complements

of one another.

Lemma 4.19. DFn is computably closed under boolean combinations.

Proof. Apply the usual results on disjunctive normal form, noting only that the normal-

ity is not required here.

Lemma 4.20. Σn and Πn are computably closed under ∆0 functionals. Hence in par-

ticular, coding and decoding of ordered pairs, functional evaluation, and the like can be

computably absorbed into a Σn or Πn predicate.

Proof. The syntactic manipulations of the closure of Σn and Πn under ∆0 operations

are effective, although the proof of their correctness requires Σn Replacement.

One of the most important techniques in dealing with DFn and the related classes

is “adjusting”, which allows us to modify an existing predicate while preserving its

DFn-ness.

59

Lemma 4.21. If ϕ is a DFn formula and Qi are a series of bounded quantifiers, then

Q0Q1 . . . Qkϕ is equivalent to Q′
0Q

′
1 . . . Q

′
k′ϕ′ where ϕ′ is also DFn and the Q′

i are a series

of bounded, strictly alternating quantifiers. In other words, bounded quantifiers in front

of a DFN formula can be collapsed without changing its complexity.

Proof. We illustrate with a simple example, ∃x∃y∀z[ϕ(x, y, z)∨ψ(x, y, z)]. This is equiv-

alent to

∃x′∀z
[
∃x ∈ T (x′)∃y ∈ T (x′)[x′ = (x, y) ∧ ϕ(x, y, z)] ∨

∃x ∈ T (x′)∃y ∈ T (x′)[x′ = (x, y) ∨ ψ(x, y, z)]

]
because the x′ is common to both clauses, which is (after computably absorbing the

external bounded quantifiers) DFn. The converse is obvious, assuming the decoding is

explicitly (and uniformly) contained in each clause.

We now come to the central definition of this chapter:

Definition 4.22. ϕ is σ2DFn iff ϕ(v1, v2, u) = ∃x∈v1 ∀y∈v2 [ϕ̂(x, y, u)] where ϕ̂ ∈ DFn.

Given a predicate ϕ ∈ σ2DFn, we will always let ϕ̂ be the DFn portion of ϕ.

Remark 4.23. There is a very subtle point worth mentioning here: considered as a for-

mula, the variables v1 and v2 can only occur in the distinguished tuples at the beginning.

Considered as a predicate, the parameters in those positions may, of course, be utilized

in the bound DFn predicate.

Proposition 4.24. There is a formula τ ∈ σ2DFn which weakly defines DFn, i.e. given

any DFn formula ϕ(u) there is a code s depending only on ϕ̂ and an a, b such that

∀u[ϕ(u)↔ τ(a, b, s, u)].

60

Proof. The basic idea for the universal predicate τ is ∃x∈ran s ∀e∈ran x [(e(0) = 0 ∧

Φn(e(1), p) ∨ (e(0) = 1 ∧ Ψn(e(1), p)] where s is the usual code for ϕ. By adjusting the

formulas being used we can see that

τ(v1, v2, u) = ∃x∈v1 ∀y∈v2

[
y ∈ ran(x)→ [y(0) = 0 ∧ Φn(y(1), u) ∨

y(0) = 1 ∧Ψn(y(1), u)]

]
= ∃x∈v1 ∀y∈v2

[
y /∈ ran(x) ∨ [y(0) = 0 ∧ Φn(y(1), u)] ∨

[y(0) = 1 ∧Ψn(y(1), u)]

]
satisfies the requirements with a = ran(s) and b = T (s).

Remark 4.25. In future we will take all trivial rearrangements of the DFn formulas as

read, such as the second version of τ given above. Non-trivial rearrangements will, of

course, be mentioned explicitly.

Lemma 4.26. Assuming AC, ∀x∈a∃y∈b ϕ(x, y, u)↔ ∃f∈ab∀x∈aϕ(x, f(x), u) for any

predicate ϕ.

Proof. The right-to left implication is obvious: set y = f(x). For the reverse implication,

use AC to produce a choice function for the given predicate.

Theorem 4.27. σ2DFn is weakly self-defining, where the weak map is Π2, and the

parameter s depends only on ϕ̂.

Proof. Suppose ϕ(a, b, u) is given by ∃w∈a∀z∈b[ϕ̂(w, z, u)]. We can code ϕ̂ as τ(ran(s), T (s), u) =

∃x∈ran(s) ∀y∈T (s) [τ̂(x, y, s, w, z, u)] for some code s as above. This gives us

ϕ(a, b, u)↔ ∃z∈a ∀w∈b ∃x∈ran(s) ∀y∈T (s) [τ̂(x, y, s, w, z, u)]

61

and since s depends only on ϕ̂ we may move its existential quantifier to the front of

ϕ (and hence disregard it)1

ϕ(a, b, u)↔ ∃z∈a ∃f∈ran(s)b ∀w∈b ∀y∈T (s) [τ̂(f(w), y, s, w, z, u)]

which in turn gives us

ϕ(a, b, u)↔ ∃x∈a t ran(s)b ∀y∈b t T (s) [Γ̂(x, y, s, u)]

where Γ̂ is a suitably adjusted τ̂ . Hence

Γ(v1, v2, u) = ∃x∈v1 ∃y∈v2 [Γ̂(x, y, t, u)]

weakly self-defines σ2DFn with weak map H(s, (a, b)) = (a t ran(s)b, b t T (s)), which

is Σ3.

Theorem 4.28. σ2DFn is weakly closed under negation, with weak closure Π2.

Proof. ¬∃x∈a ∀y∈b ϕ⇔ ∀x∈a ∃y∈b ¬ϕ⇔ ∃f∈ab ∀x∈a ¬ϕ, which is in σ2DFn because

DFn is closed under negation.

We can introduce other complexity classes of a similar nature:

Definition 4.29. For any m,n ≥ 1, define the class of σmDFn predicates to be those

obtained by prepending bounded Σm quantifiers in front of a DFn sentence.

But they gain no real strength:

Proposition 4.30. For any n ≥ 1 and m ≥ 2, σ2DFn weakly defines σmDFn.

1If you want a more formal justification of this, regard s and the parameters c substituted for u as
actual constant symbols added to the language. Since s depends only on ϕ̂, which never changes, we
can therefore pull their quantifications outside any series of quantifiers or predicates.

62

Proof. Iterate Lemmas 4.21 and 4.26 to reverse, then collapse, the bounded quantifiers.

Having introduced these classes, we must put them into the appropriate place in the

usual complexity hierarchy.

Theorem 4.31. For any n ≥ 1, the following relations hold:

Σn,Πn (Booln ≡ DFn (σ2DFn (∆n+1

Proof. Only the last relation is non-trivial. First, satisfaction for DFn is definable in

∆n+1 since Σn and Πn are uniformized in ∆n+1 and boolean combinations thereof can be

defined in Σn+1. Since DFn is closed under negations via a computable map, this means

that ¬DFn = DFn is uniformized in ¬Σn+1 = Πn+1 and hence DFn is uniformized in

∆n+1. σmDFn (for any m) is thus uniformized in ∆n+1 because ∆n+1 is closed under

∆0 quantifiers, i.e. SatσmDFn ∈ ∆n+1. But σ2DFn is not self-defining, proving the

theorem.

Theorem 4.32. σ2DFn is weakly closed under boolean combinations, where the weak

map is Σ1.

Proof. Consider ∃x∈a ∀y∈b ϕ(x, y, u) ∧ ∃z∈c ∀w∈d ψ(z, w, u). This is equivalent to:

∃x′∈a′ ∀y′∈b′
[
∃x∈T (a′) ∀y′∈T (b′) (〈0, x〉 ∈ x′ ∧ 〈0, y〉 ∈ y′ → ϕ(x, y, u)) ∧

∃z∈T (a′) ∀w′∈T (b′) (〈1, z〉 ∈ x′ ∧ 〈1, w〉 ∈ y′ → ϕ(x, y, u))

]

and the formula inside the brackets is DFn. Also, a′ = a t c and b′ = b t d, so the

weak closure map is Σ1.

63

In summary, then:

Theorem 4.33. The class σ2DFn is robust and weakly closed under

1. Conjunction and disjunction

2. Negation

3. Bounded quantification

Hence, by the Weak Recursion Theorem, any well-founded hyperclass recursion using

only negation and set-many unions and interchapters over predicates of fixed complexity

is first-order definable.

Note the crucial improvement on the usual Recursion Theorem: one typically recurses

over either Σn or Πn functions, but never both. Here, one can recurse over arbitrary

combinations of Σn and Πn functions, including bounded quantifiers over these combi-

nations. This will allow much greater latitude in defining classes, as we shall see.

4.4 Regular Complements and σ2DFn

Fix now a separative partial order P, amenable over some ctm V . Since we are working

in a partial order, we will primarily be considering elements of DFn and σ2DFn as

classes, i.e. the actual subsets of P that the predicate determines. Looking at the basic

definition of truth-generic forcing, Definition 2.2, note that almost every operation is

an operation under which σ2DFn is weakly closed (viz. Theorem 4.33), saving only the

(order-theoretic) complement ⊥.

64

Regarding ⊥ as a functional Ω[A] = A⊥, the key point about its definition is (abusing

notation) that Ω[A] ∈ Π1¬(A). This means that Ω[Σn] ⊂ Πn, while Ω[Πn] ⊂ Ω[Πn+1].

The trick, however, comes from the basic combinatorial lemmas of the previous chapter:

if our classes happen to be regular open, then the complement of a Σn predicate is Πn,

while the complement of a complemented regular open Σn predicate is itself Σn once more.

In other words, instead of repeatedly complementing, we need complement only once

and remove complements only once, thus keeping the complexity fixed. The problem

is that ⊥ does not distribute properly over Boolean combinations (viz. Lemma 2.23);

accordingly, we will define something slightly different than the usual forcing function F ,

but which (under a mild restriction on the partial order) will produce the same forcing

relation.

To begin:

Definition 4.34. Define the class of good σ2DFn classes to be all σ2DFn classes ϕ with

the following restrictions:

1. All Σn and Πn classes in ϕ̂ are regular open

2. All Πn predicates are given (effectively) as the complement of a Σn predicate.

The latter condition could be met by, for example, requiring that the codes for the

Σn predicates are given as (+, e), where e is a Σn code, and Πn predicates are given as

(−, e) where e is the code for the Σn complement, changing the uniformizing Πn predicate

accordingly. As none of these changes invalidate the earlier results, we will leave the

precise details to the reader and assume that they have been made. Furthermore, by

redoing the proofs from the earlier chapters using good predicates, we have:

65

Theorem 4.35. All the results from Theorem 4.33 apply to the good σ2DFn predicates:

it is a robust class that is weakly closed under boolean combinations and bounded quan-

tification.

In order to make the following definition easier to read, note that good σ2DFn classes

can be rewritten in the following way:

A =
⋃
x∈a

⋂
y∈b

⋃
i

⋂
j

Aij

where the Aij are regular open Σn\Πn classes determined by x, y and whatever other

parameters are floating around.

Definition 4.36. Given a good σ2DFn class A, define

A† =
⋂
x∈a

⋃
y∈b

⋂
i

⋃
j

A⊥ij

The definition for predicates is given in the analogous manner.

Put cutely, A† is what you get if you forget that ⊥ doesn’t distribute over unions.

Proposition 4.37. The good σ2DFn predicates are weakly closed under †.

Proof. The bounded quantifiers may be reversed by Lemma 4.26 as usual; the change

from conjunctive form to disjunctive form also works as usual; and the fact that the

predicate is good means that A⊥ij can be coded as either a Πn predicate (by noting that

it is the complement of the original Σn predicate) or a Σn predicate (by removing the

complement signal).

The key combinatorial lemma is the following:

66

Proposition 4.38. Suppose P is κ-closed for every κ, that A is a good σ2DFn class and

that A ⊂∗ B. Then A† ⊂∗ B⊥.

Proof. To begin with, note that we need only show that A† ⊂∗ A⊥ since, by Lemma

2.23, A⊥ = B⊥. But this follows immediately from Lemmas 2.22 and 2.23, using the

fact that P is sufficiently closed.

We can now define a new function G which is exactly like the original “strong forcing

function” F from Definition 2.2, except that ⊥ is replaced by † in the quantifer-free

clauses.

Proposition 4.39. G is a uniformly definable function over (V ; P).

Proof. Fix any n ≥ 1. The definition of G uses boolean combinations, bounded quanti-

fiers and †, under which the good σ2DFn classes are weakly closed. The atomic classes

used in the construction are of the form [p] which are regular open and of low complexity,

so the base cases are all good σ2DFn. Well-founded weak recursion over σ2DFn thus

shows that G±(ϕ) is definable for quantifier free sentences, and hence G is definable in

general.

Finally, putting all the pieces together, we have:

Theorem 4.40. Suppose that P is a separative, amenable partial order and that P is

κ-closed for every κ. Then truth-generic forcing over P is definable.

Proof. Note that G±(ϕ) ⊂∗ F±(ϕ) for quantifier-free ϕ by repeated applications of

Proposition 4.38 and by Lemma 2.25, so we have p
 ϕ iff F+(ϕ) is dense below p iff

G+(ϕ) is dense below p. But G+(ϕ) is definable by Proposition 4.39, so forcing is thus

definable.

67

Chapter 5

Conclusion

5.1 Further work

Although many results concerning truth-generic forcing have been proven in this paper,

there is still much work to be done before its theory is as elegant as that of ordinary

forcing. Below, I list several areas where further research should prove fruitful.

5.1.1 Intuitionistic Logic

One of the most intriguing aspects of truth-generic forcing is the way in which intu-

itionistic logic is buried almost definitionally inside: p
 ϕ iff p ∈ F+(¬¬ϕ) ⊃ F+(ϕ).

It is not true that F+, the “strong forcing relation” obeys intuitionistic logic as a gen-

eral rule, but there certainly appear to be some connections that one might tease out

with sufficient delicacy, the prototype being Proposition 2.31. The advantage of this

approach is apparent from some of the early theorems in Chapter 2: by removing the

need to repeat basic steps ad nauseum, which is not only tedious but can obscure that

which should be clear, it allows one to focus on the meatier aspects of the argument.

68

5.1.2 Pretameness and tameness for truth-genericity

Pretameness, as a concept, is a very elegant. One simply needs that dense classes reduce

to predense sets in a suitably nice way and not only does this suffice for useful forcing

arguments like the porting of generics, it is also equivalent to preserving ZFC. It is

almost the platonic ideal of “the right notion”.

Truth genericity seems to lack this elegance, though of course a belief in its absence

does not constitute a proof. The central problem is that, while density is a combinatorial

condition placed directly on the other, the classes F (ϕ) are not intuitive. For example,

we do not yet have a good characterization of what classes which are dense, but not

a F (ϕ) for any ϕ, are like. This becomes doubly complex when, as in the definition

of pretameness, one needs a dense collection of dense things; there are limits to the

self-referential formulas we can understand!

Nevertheless, there are reasons to believe that one should be able to extract from

the crude formula-inspired mechanics a more elegant, combinatorial approach to truth

genericity. In addition to a model-theoretic approach as per Woodin’s argument in [6],

wherein one simply adds stratified satisfaction predicates to the language, there are

possibilities involving more direct reflection arguments (e.g. using the indiscernibles) to

try to capture, at the set level, some of what is happening at the class level.

5.1.3 The splitting of completions

Every partial order P embeds into its set-completion. Analogous to other forcing argu-

ments, there should be a good description of those orders whose forcings are equivalent

to their completions – good, if not optimal – but again the “right” description seems

69

elusive. Theorem 3.7 is a good start, and represents one of the oddities of the boolean

algebraic approach: since it is the symmetries of the algebra that allow forcing to be

definable, the hypotheses of such embedding theorems will necessarily have a symmet-

ric flavor. To be more precise, it is the existence of complements in the algebra which

makes forcing definable, as it allows the ⊥ operator to act on elements rather than on

classes, but complementation reverses the order on the algebra; therefore any attempt

at controlling the algebra must control it both in the original order and the opposite

order. Whether this produces something interesting or useful in forcing applications –

which are exclusively concerned about downward extensions – is something that has yet

to be determined.

5.1.4 Intermediate complexity classes

Having defined the classes σmDFn, it is natural to ask other questions: what are their

relationships? Are there any other “natural” complexity classes lurking between Σn and

∆n+1 and, if so, how are they natural and what can they be used for? While certain

relations seem obvious, the subtleties of the bounded quantifiers prevents most of the

standard techniques from applying.

70

Bibliography

[1] R.B. Jensen A. Beller and P. Welch. Coding the Universe. Cambridge University

Press, 1982.

[2] Sy D. Friedman. Fine Structure and Class Forcing. de Gruyter, 2000.

[3] Thomas Jech. Set Theory. Springer, 3rd rev. ed edition, 2006.

[4] Kenneth Kunen. Set Theory. North Holland, 1983.

[5] M.C. Stanley. Invisible genericity and 0]. J. Symbolic Logic, 63(4):1297 – 1318, 1998.

[6] M.C. Stanley. Outer models and genericity. J. Symbolic Logic, 68(2):389 – 418, 2003.

