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Abstract

This is a dissertation in the field of Mathematics: Logic: Computability Theory:

Algorithmic Randomness (Mathematics Subject Classification 03D80, 68Q30). Its focus is

relative randomness as measured by rK-reducibility, a refinement of Turing reducibility defined

as follows. An infinite binary sequence A is rK-reducible to an infinite binary sequence B,

written A ≤rK B, if

∃d ∀n . K(A �n|B �n) < d,

where K(σ|τ) is the conditional prefix-free descriptional complexity of σ given τ . Herein i study

the relationship between relative randomness and (standard) absolute randomness and that

between relative randomness and computable analysis.
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CHAPTER 1

Introduction

One of the most popular definitions of absolute algorithmic randomness states that an infinite

binary sequence R is random if it is incompressible, that is, if

∃d ∀n . K(R �n) ≥ n− d,

where K(σ) is the prefix-free descriptional complexity of the string σ. Under this same paradigm

of incompressibility, one can define relative algorithmic randomness as follows. An infinite binary

sequence A is less random than an infinite binary sequence B if A is completely compressible

given B, that is, if

∃d ∀n . K(A �n|B �n) < d,

where K(σ|τ) is the conditional prefix-free descriptional complexity of σ given τ . In this case,

we write A ≤rK B for short and say “A is rK-reducible to B”.1

This dissertation continues the study of relative randomness via rK-reducibility initiated in

[DHL04]. Herein i consider the simplest of questions, at times finding answers, at times finding

nothing but bafflement.

1.1. Summary of Results

Chapter 2 addresses four basic questions on relative randomness via rK-reducibility, namely,

Question ➀: Is there a sequence of minimal relative randomness, that is, a sequence with only

the computable sequences strictly less random (<rK ) than it? Question ➁: Is there a sequence of

maximal relative randomness, that is, a sequence with no sequences strictly more random than

1The ‘rK’ stands for ‘relative Kolmogorov’ complexity, another name for conditional prefix-free descriptional

complexity.
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it? Question ➂: Are there two random sequences, one strictly less random than the other? Ques-

tion ➃: Is every sequence less random than some random sequence? The answer to Question ➀

is YES and the proof, joint with Frank Stephan, is a sneaky variation on the construction of a

Turing minimal sequence. Questions ➁–➃ are left unresolved, though not without a fight. Most

notably and surprisingly, Joseph Miller and i show that the rK-upper cones of random sequences

are countable.

Chapter 3 leaves behind Questions ➀–➃ and pursues the study of relative randomness via

rK-reducibility in the context of computable analysis. Therein i prove that the class of d.c.e.

reals, the class of reals less random than the halting probability Ω, and the class of computably

approximable reals form countable real closed fields, each strictly contained in the next, re-

spectively. The real closure proofs all use the same general method of closure under weakly

computable locally Lipschitz functions. This method can also be used to show that the class of

K-trivial reals form a countable real closed field.

Chapter 4 contains odds and ends that do not fit well with the previous chapters. Among

other things, i show there that, in contrast to the case of the c.e. reals, the rK-degrees of the d.c.e.

reals have no least upper bound and that there exists a repetition-free effective enumeration of

the family of all Σ0
1 classes.

1.2. Notation and Conventions

The following notation and conventions will apply throughout; additional notation and con-

ventions will be introduced when necessary.

N will denote the set of natural numbers {0, 1, 2, . . .}, n2, for a natural n, the set of binary

strings of length n (functions from n to 2), <N2 the set of all binary strings (functions from

initial segments of N to 2), and N2 the set of infinite binary sequences (functions from N to

2). For the most part, ‘string’, ‘sequence’, and ‘class’ without further qualification will mean

‘binary string’, ‘infinite binary sequence’, and ‘set of infinite binary sequences’, respectively. For

strings σ and τ , |σ| will denote the length of σ, and στ or, when that might cause confusion,
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σ ̂τ the concatenation of σ and τ . Also, σn will denote the string σσ · · · σ (n times) with the

understanding that σ0 = ∅, the empty string. σ will denote the string 0|σ|1σ. Also, σ ⊆ τ

and σ ⊂ τ will mean σ is a substring of τ and σ is a proper substring of τ , respectively. By

substring i mean initial segment. A set of strings S is called prefix-free if every string in S

has no proper substring in S. For a string or sequence X and a positive natural n, X � n will

denote the length n initial segment of X, that is, the string 〈X(0),X(1), . . . ,X(n − 1)〉. 〈 〉

will delimit ordered tuples and sequences. For a set of strings W , O(W ) will denote the class

⋃{X ∈ N2 : X ⊃ σ ∧ σ ∈W}, and for a string σ, O(σ) will be shorthand for O({σ}). Finally, µ

will denote the uniform (fair-coin) probability measure on N2.

For computability-theoretic notions i will mostly follow the notation and conventions of

[Soa87]; i will assume you are very familiar with computability theory. I will also assume you

are fairly familiar with the rudiments of absolute algorithmic randomness as described in [DH],

say. See also Appendix A for a brief review. From here on out a sequence is random (more

precisely, 1-random) if it is incompressible (via prefix-free descriptional complexity), typical (via

Σ0
1 tests), or unpredictable (via Σ0

1 supermartingales).

One last remark. C.p.f. will abbreviate ‘computable partial function(s)’ and p.c.p.f. will

abbreviate ‘prefix-free computable partial function(s)’; a prefix-free computable partial function

is a (oracle) computable partial function with prefix free domain (regardless of the oracle), or

prefix-free first-coordinate domain in the case of binary functions.
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CHAPTER 2

Basic Questions

As i mentioned in the introduction, the study of relative randomness via rK-reducibility

began with [DHL04]. In that article Downey, Hirschfeldt, and LaForte proved the following

fundamental facts about the ≤rK relation (which is fairly easily seen to be reflexive and transi-

tive), all of which we will use throughout.

2.0.1 Theorem ([DHL04]). For A,B ∈ N2, A ≤rK B is equivalent to both of

• ∃d ∀n . C(A �n|B �n) < d

• ∃c.p.f. ϕ ∃d ∀n ∃i<d . ϕ(i, B �n) = A �n

and implies all three of

• ∃d ∀n . K(A �n) ≤ K(B �n) + d

• ∃d ∀n . C(A �n) ≤ C(B �n) + d

• A ≤T B

Proof. The first two bullets follow easily from the definitions of conditional C and K.

Still, let us show that the first bullet implies A ≤rK B to better familiarize ourselves with

these definitions. Suppose there exists a natural number d such that for all natural numbers n,

C(A � n|B � n) < d. Let ρ0, . . . , ρe−1 be a listing of the strings of length < d, and let θ be the

p.c.p.f. defined by

θ(ρ, τ) =





ϕ̂(ρi, τ) if ρ = ρi for some i < e

↑ else.

Here ϕ̂ is the universal binary c.p.f. defined in Appendix A. Then for any n, θ(ρi, B � n) =

ϕ̂(ρi, τ) = A � n for some i < e (by construction and hypothesis). So up to an additive constant

independent of n, K(A �n|B �n) ≤ Kθ(A �n|B �n) ≤ e (by the optimality of K), as desired.
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For the third bullet, suppose there exists a natural number d such that for all natural

numbers n, K(A �n|B � n) < d. Let θ be the p.c.p.f. defined by

θ(ρτ) = ψ̂(ρ, ψ̂(τ, ∅)).

Then given n, there is a ρ of length < d such that

θ(ρ (̂B �n)∗) = ψ̂(ρ, ψ̂((B �n)∗, ∅)) = ψ̂(ρ,B �n) = A �n,

where σ∗ stands for the length-lexicographic least string such that ψ̂(σ∗, ∅) = σ. So up to a

uniform additive constant,

K(A �n) ≤ |ρ (̂B �n)∗| ≤ d+K(B �n),

as desired. A similar argument proves the fourth bullet.

For the fifth, choose d least such that there exists a c.p.f. ϕ with ∀n ∃i<d . ϕ(i, B �n) = A �n.

Working with a witness ϕ for d, notice that by the minimality of d

W := {n : ∀i<d . ϕ(i, B �n)↓ }

is infinite. Since W is also B-c.e., it contains an infinite B-computable subset C. Thus T , the

downward closure of

{ϕ(i, B �n) : n ∈ C ∧ i < d},

is a B-computable subtree of <N2 with < d paths. Since T has only finitely many paths, each

path is computable from T and so computable from B.1 Since A is one of these paths, A ≤T B,

as desired. �

Let us reflect on this theorem. Notice that the second bullet says that ≤rK really is a re-

ducibility in the computability-theoretic sense; from B there is a way to compute A. Moreover,

it implies that every computable sequence is rK-reducible to any given sequence. Also, from the

1We will use this fact often: that every isolated path in a tree is computable from the tree.
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fifth bullet, any sequence rK-reducible to a computable sequence is itself computable. So the

computable sequences are those of least relative randomness, as they should be.

Question ➀: Is there a sequence of minimal relative randomness, that is, a

sequence with only the computable sequences strictly less random (<rK ) than

it?

Flipping this around,

Question ➁: Is there a sequence of maximal relative randomness, that is, a

sequence with no sequences strictly more random than it?

Notice that the third bullet implies that rK-reducibility preserves absolute randomness, that is,

if A is random and A ≤rK B, then B is random (since K(B � n) ≥ K(A � n) > n, up to an

additive constant independent of n), as should be the case.

Question ➂: Are there two random sequences, one strictly less random than

the other?

Also,

Question ➃: Is every sequence less random than some random sequence?

These questions are the thrust of this chapter.

2.1. Question ➀

This section is joint work with Frank Stephan and also appears as [RS].

2.1.1 Definition. The rK-degrees are the members of the partial order 〈N2/ ≡rK,≤〉, where

a ≤ b iff A ≤rK B for some (all) A ∈ a and B ∈ b

Indeed, there is a sequence of minimal relative randomness. Phrased in terms of the rK-

degrees, we have

2.1.2 Theorem. There is a minimal rK-degree.
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Proof. Tweaking the proof of the existence of a minimal Turing degree, we construct a

special binary tree, suitable paths of which will have minimal rK-degree. Roughly speaking,

we make the set of splitting nodes of our tree very sparse so that any noncomputable path

of hyperimmune-free Turing degree can be recovered in two guesses from its image under an

rK-reduction.

More precisely, we build a Π0
1 tree T (a tree whose complement is computably enumerable)

such that

(1) T has no computable paths;

(2) for every computable partial function Φ :⊆ N → N (thought of as a functional) and for

every path X of T there is a string ? ⊂ X such that either

(a) for every path Y of T extending ?, ∀t ∀n . ΦY
t (n)↓ ∧ ΦX

t (n)↓→ ΦY
t (n) = ΦX

t (n),

or

(b) for every path Y,Z of T extending ?, ΦY and ΦZ are incompatible;

(3) the set S of splitting nodes of T is very sparse, to wit, for all computable functions

g : N → N we have

∀∞σ∈S ∀τ ∈S . σ ⊂ τ → g(|σ|) < |τ |.

Constructing T . We build T in stages, beginning with the full binary tree and pruning

it computably. To describe this pruning we use moving markers in the style of [Ste01]. For

notational niceness, stage subscripts are suppressed whenever possible.

Let {mσ : σ ∈ <N2} ⊆ <N2 denote the set of markers of T . These are/lie on the splitting

nodes of T . At stage zero, T = <N2 and each mσ = σ. At later stages when necessary T is

pruned via the Cut procedure. For σ ⊂ τ , Cut(mσ,mτ ) cuts off all paths of T that extend mσ

but not mτ and then updates the positions of all the markers, preserving their order, as follows:

mσ moves to mτ , each mσε moves to mτε, and all other markers stay put. Since Cut is the only

action ever taken, T will be a perfect tree without leaves at every stage.
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At stage s > 0 the construction runs as follows, where each check is performed only when

the markers involved have indices of length ≤ s; also, the computations involved are only up to

stage s.

(i) If there exist σ, i < 2, and e ≤ |mσ| such that for all x ≤ |σ|, Φe(x) = mσi(x), then

Cut(mσ,mσ(1−i)).

(ii) If there exist σ, τ , and e, x ≤ |σ| such that σ ⊂ τ , Φmσ
e (x) ↑ , and Φmτ

e (x) ↓ , then

Cut(mσ,mτ ).

If there exist σ, δ, ε, and e ≤ |σ| such that Φmσ0
e and Φmσ1

e are compatible for all arguments

≤ |σ|, but Φmσ0δ
e and Φmσ1ε

e are incompatible at some argument ≤ |σ|, then Cut(mσ0,mσ0δ)

and Cut(mσ1,mσ1ε).

(iii) If there exist σ, τ , ν, and e ≤ |σ| such that σ ⊂ τ ⊂ ν and |mτ | ≤ Φe(|mσ |) < |mν |, then

Cut(mτ ,mν).

It is not difficult to check that each marker eventually settles and that, in the end/limit, T

satisfies properties (1)-(3).

A suitable path of T . Let A be a path of T of hyperimmune-free Turing degree, that is, A

has the property that for every total function f ≤T A, there exists a computable function g

such that for all x, g(x) ≥ f(x). Put more concisely, every total function computable from A has

a computable majorant. Such a path exists by the Hyperimmune-free Basis Theorem ([JS72])

since [T ] is a nonempty Π0
1 class (the set of paths through a Π0

1 tree). We show that A has

minimal rK-degree. By (1), A is noncomputable. Let B ≤rK A be a noncomputable set. We

need to show that A ≤rK B. To this end, observe that B ≤T A, and, in fact, B ≤tt A since A

has hyperimmune-free Turing degree (see [Odi89, page 589]). Let Φ be a computable functional

(total on all oracles) that witnesses the truth-table reduction.

We come now to the heart of the argument: building an rK-reduction from B to A. Let ? be

the magic string of (2) for A. Given B � n for n sufficiently large, run through the computable

approximation (that thins) to T until a stage t is reached such that Tt (the stage t approximation

of T ) has at most two superstrings of ? of length n with extensions in Tt that map to B �n under
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Φ. The key here is that such a stage is guaranteed to exist by Lemma 2.1.3 below. To find these

superstrings and extensions computably from B �n we use the fact that Φ is total on all oracles

and has a computable use function. Output the (at most) two strings of length n found; one will

be A � n. Except for finitely many short lengths, this procedure describes an rK-reduction from

B to A. Extending it to all lengths gives the final reduction. �

2.1.3 Lemma. Let ? be the magic string of (2) for A. For almost all lengths n and almost

all stages t, Tt has at most two superstrings of ? of length n with extensions in Tt that map to

B �n under Φ.

Proof. Let f be the function defined for m ≥ | ? | by f(m) equals the first stage s such

that for all strings ν ⊃ A � m (̂1 − A(m)) either ν 6∈ Ts, or for some x ≤ s, Φν(x) ↓ 6= ΦA(x).

(Notice that all ν extend ?.) For m < | ? |, define f(m) to be 0, say. It is unimportant. Since

B is noncomputable, (2b) for X = A holds, and since Φ is total on all oracles, f is total and

A-computable. Since A has hyperimmune-free Turing degree, f has a computable increasing

majorant g.

Now, fix n bigger than the length of ?, the length that (3) takes effect for g, and the length

of the first splitting node of A on T . Let τ be the last splitting node of T on A �n, and let σ ⊂ τ

be any other splitting node of T extending ?. Then by (3) we have that

s := f(|σ|) ≤ g(|σ|) < |τ | ≤ n.

So by stage s, every string ν ∈ Ts extending A � |σ| (̂1−A(|σ|) = σ (̂1−A(|σ|) will have some

number x ≤ s < n such that Φν(x)↓ 6= ΦA(x) = B(x), so that ν cannot map to B � n under Φ.

Since σ was an arbitrary splitting node of T below the last splitting node of A � n, we see that

only the strings extending the last splitting node of A � n can map to B � n under Φ. So the

result holds. �
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In fact, by a generalized hyperimmune-free basis theorem below, the tree of the proof of

Theorem 2.1.2 has continuum many paths of hyperimmune-free Turing degree. Thus, since every

rK-degree is countable, there are continuum many minimal rK-degrees.

2.1.4 Theorem. Every nonempty computably bounded Π0
1 class with no computable members

has 2ℵ0 paths of hyperimmune-free Turing degree.

Proof. By basic facts from the theory of Π0
1 classes, we can assume without loss of generality

that our Π0
1 class is the set of paths through a binary tree T0 that is infinite, computable, and has

no computable paths. We modify slightly the proof of the Hyperimmune-free Basis Theorem in

[JS72] by way of an extra parameter sequence X. For each sequenceX we construct (computably

in X ⊕ ∅′′) computable subtrees S1 ⊃ T1 ⊇ S2 ⊃ T2 ⊇ · · · of T0 such that their only common

path Y has hyperimmune-free Turing degree. We then show that the map X 7→ Y is one-to-one.

To this end, fix X and, starting from T0, let Se and Te be defined recursively as follows. Let

Ue,x be the computable tree {τ : Φτ
e,|τ |(x)↑ }.

(i) If for all x, Te ∩ Ue,x is finite, then Se := Te. Otherwise, choose x least such that Ue,x is

infinite and Se := Te ∩ Ue,x.

(ii) Since Se is an infinite tree with no computable paths, it has at least two paths. Let σ be

the length-lexicographic least node of Se such that σ0 and σ1 have paths in Se through

them.

(iii) Te+1 := {τ ∈ Se : τ ⊆ σ ̂X(e) ∨ τ ⊃ σ ̂X(e)}.

By induction each [Te] and [Se] is nonempty, so that
⋂
e[Te] ∩ [Se] is nonempty, being the

intersection of a decreasing sequence of closed nonempty sets in the compact space N2. Choose

(the unique) sequence Y ∈ ⋂
e[Te] ∩ [Se]. It will have hyperimmune-free Turing degree, for fix

a natural number e and consider the function ΦY
e . If for every x, Te ∩ Ue,x is finite, then the

following function is total, computable, and majorizes ΦY
e .

g(x) = max{Φτ
e,|τ |(x) : τ ∈ Te ∧ |τ | = lx},
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where lx is least such that Φτ
e,|τ |(x) is defined for each τ ∈ Te of length lx. If there exists some

x such that Te ∩ Ue,x is infinite, then Φτ
e,|τ |(x) is undefined for infinitely many τ ∈ Te and Se is

the set of all these τ . Since all prefixes of Y are in Se, this means ΦY
e (x) is undefined, so that

ΦY
e is not total.

Also, the map X 7→ Y is one-to-one, for if two sequences X1 and X2 differ, and e is the first

place at which this happens, then the corresponding trees Se(X1) and Se(X2) are the same, but

the intersection of Te+1(X1) and Te+1(X2) is finite since one is all but finitely contained in the

nodes above σ0 and the other in the nodes above σ1. Thus Y (X1)(|σ|) 6= Y (X2)(|σ|). �

A sequence of minimal relative randomness is also minimal in terms of absolute randomness

in the sense of the next proposition. From now on let us call a sequence with minimal rK-degree

a ‘minimal sequence’. Recall from [Cha76] that a set X is computable iff ∃d ∀n . C(X � n) <

C(n) + d.

2.1.5 Proposition. If A is a minimal sequence, then for any computable unbounded nonde-

creasing function g : N → N,

∃d ∀n . C(A �n) < C(n) + g(n) + d and

∃d ∀n . K(A �n) < K(n) + g(n) + d.

In particular, A cannot be random.

We prove this with dilutions.

2.1.6 Definition. For X ∈ N2 and f : N → N increasing, the f -dilution of X is the sequence

defined by

Xf (n) =





X(m) if n = f(m) for some (unique) m

0 else.

Notice that for any sequence X and any increasing computable function f , Xf ≤rK X and

Xf ≡T X.
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Proof of Proposition 2.1.5. Fix A and g as in the hypothesis. The idea is that since

A is a minimal sequence, it is rK-reducible to every one of its computable dilutions. Picking a

dilution appropriate to g will give the desired complexity bound.

We prove the bound for K. The argument for C is identical. Define the function f : N → N

recursively by

f(0) = 0;

f(x) = the least n such that n > f(x− 1) and g(n) ≥ 4x.

Since g is unbounded and nondecreasing, f is well-defined. Also, by construction f is computable,

increasing, and for any given n, if x is greatest such that f(x) ≤ n, then g(n) ≥ 4x.

Since A is minimal, A ≤rK Af via some [ϕ, d]. Now fix n and choose x greatest such that

f(x) ≤ n. Observe that inserting zeros into A � x in the appropriate computable places produces

Af �n. So to describe A � n, besides a few computable partial functions given ahead of time, one

only needs the correct i < d such that ϕ(i, Af �n) = A �n, n, and A � x. This information can be

coded, up to a uniform constant, by a string of length K(n) + 2K(A � x). The factor of 2 comes

from concatenating strings in a prefix-free way. So, up to a uniform additive constant, for all n

K(A �n) ≤ K(n) + 2K(A � x) ≤ K(n) + 4x ≤ K(n) + g(n),

as desired.

Letting g(n) = blg(n+ 1)c, say, we see that A cannot be random. �

Using dilutions again, we get

2.1.7 Proposition. Every minimal sequence is rK-reducible to a random sequence.

Proof. Fix a minimal sequence A, and choose a random sequence R ≥wtt A with use

majorized by f(n) = 2n. This is possible since every sequence has such a random sequence

([Kuč85],[Gác86]; see also [MM04] for a more recent proof using martingales). Then R ≥rK

Af ≥rK A, by the minimality of A, as desired. �
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Do all sequences have random sequences rK-above them? This is Question ➃, to which we

return in the next section. We end with one last note, a contrast to Proposition 2.1.7.

2.1.8 Proposition. There is a random sequence with no minimal sequence rK-reducible to it.

Proof. Let R be a random sequence of hyperimmune-free Turing degree. Such a sequence

exists by the Hyperimmune-free Basis Theorem applied to the complement of any member of a

universal Martin-Löf test. Then R has no minimal sequence reducible to it.

To see this, assume (toward a contradiction) there is some minimal sequence A such that

A ≤rK R. Since R has hyperimmune-free Turing degree, so does A and A ≤tt R. Since A is

noncomputable and truth-table reducible to a random sequence, A is Turing equivalent to some

random sequence S (see [Dem88]). Since A has hyperimmune-free Turing degree, S ≤tt A

via some computable partial function with computable use function f . Thus, disregarding floor

functions and uniform constants for ease of reading, we have that for all n

n ≤ K(S �n) (since S is random)

≤ 2K(A � f(n)) (using the tt-reduction)

≤ 2K(f(n)) + 2 lg n (by Proposition 2.1.5)

≤ 2K(n) + 2 lg n (since f is computable)

≤ 4 lg n,

a contradiction. �

2.2. Questions ➁–➃

Whereas Question ➀ concerned lower rK-cones, building sequences rK-below given sequences,

Questions ➁–➃ concern upper rK-cones, building sequences rK-above given sequences, or so it

seems. These questions are more difficult to answer, and i have only partial results here.

The following definition will be useful.
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2.2.1 Definition. For a function ϕ :⊆ d×<N2 → <N2 (usually an rK-reduction), the preim-

age of a string τ under ϕ is

ϕ−1(τ) := {σ ∈ |τ |2 : ∀m≤|τ | ∃i<d . ϕ(i, σ �m) = τ �m}.

With respect to Questions ➁ and ➂, it is tempting to conjecture that all random sequences

are maximal. Nothing should be more random than a random sequence, right? To show this we

would have to fix a random sequence A, suppose that A ≤rK B, and prove that B ≤rK A. To

this end, we might try to reverse the rK-reduction from B to A, call it [ϕ, d]. The simplest way

to do this is to show that, as a function of n, |ϕ−1(A � n)| is bounded (by a constant). This

bound will then be the constant of the reverse reduction. Indeed, this is the case for a norm-1

reduction. By the norm of an rK-reduction i mean its constant.

2.2.2 Proposition. If A is random and A ≤rK B via a norm-1 reduction, then A ≡rK B.

Proof. Fix A and B as in the hypotheses and let ϕ be a norm-1 rK-reduction witnessing

A ≤rK B. We need to show that B ≤rK A.

Consider the function f : <N2 → N defined by

f(σ) = |ϕ−1(σ)|.

f is computably approximable from below and, since ϕ has norm 1, for all σ,

f(σ0) + f(σ1) = |ϕ−1(σ0)| + |ϕ−1(σ1)| ≤ 2|ϕ−1(σ)| = 2f(σ).

So f is a Σ0
1 supermartingale. Since A is random, there exists a natural number e such that

∀n . f(A �n) < e, that is,

∀n . |ϕ−1(A �n)| < e.
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Since B � n ∈ ϕ−1(A � n) for all n, B ≤rK A via a norm-e reduction. Specifically, let θ be the

c.p.f. defined by

θ(i, σ) =the (i+1)st new string

that appears in the enumeration of ϕ−1(σ).

Then B = [θ, e]A. �

2.2.3 Remark. The proof above can easily be modified to show that if A is random and

A ≤sw B, then B ≤rK A. Here A ≤sw B means that B Turing computes A with use bounded by

the identity function plus a constant.

When we move to norm-2 reductions, however, the reversal strategy of Proposition 2.2.2

fails.

2.2.4 Proposition. There is an rK-reduction [ϕ, 2] such that for every random sequence A,

|ϕ−1(A �n)| is an unbounded function of n.

Proof. Firstly we set ϕ(0, σ) = σ for all strings σ. Secondly we recursively define ϕ(1, σ)

for various strings σ along with prefix-free sets of strings P0, P1, . . . ⊆ dom ϕ(1, ·) as follows. Let

P0 = {∅}. Fix k > 0 and assume Pk−1 has been defined. For all ρ ∈ Pk−1, δ ∈ (k2 \ {0k})∗, and

ε ∈ k2 \ {0k}, define ϕ(1, ρδε) = ρδ0k, extending this definition to substrings as well, and put

ρδ0k into Pk. Here S∗, for a set of strings S, denotes the set of all possible concatentations of

strings in S including the empty string. Notice that Pk is prefix-free and that for all σ ∈ Pk,

|ϕ−1(σ)| = 2k.

Now fix a random sequence A. It suffices to show that for all k, A ∈ O(Pk). For this it suffices

to show that each O(Pk) is a Σ0
1 class of measure one, since a random sequence is in every Σ0

1 class

of measure one (see [Kur81]). Since each Pk is computable, each O(Pk) is a Σ0
1 class. To show

each of these classes has measure one, we use induction. The measure of O(P0) = O(∅) = N2 is
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Figure 1. The building blocks for stages 1, 2, 3, . . . of the construction along

with the number of preimages they contribute.

one. Assume k > 0 and µ O(Pk−1) = 1. By the definition of Pk, for each ρ ∈ Pk−1 we have that

µ [O(Pk) ∩ O(ρ)] = 2−|ρ|
[
2−k + (2k − 1)2−2k + (2k − 1)22−3k + · · ·

]

= 2−|ρ| 2−k

1 − (2k − 1)2−k

= 2−|ρ|.

Thus, since Pk−1 is prefix-free,

µ O(Pk) =
∑

ρ∈Pk−1

µ [O(Pk) ∩ O(ρ)]

=
∑

ρ∈Pk−1

2−|ρ|

= µ O(Pk−1)

= 1,

as desired. �

But, upon further reflection, perhaps the reversal strategy of Proposition 2.2.2 still holds

hope. In the proof of Proposition 2.2.4, if A = [ϕ, 2]B (the specific ϕ constructed), then A =

[id, 1]B and A = B. If we are going to show maximality of random sequences we need to assume

that A is random and A ≤rK B via a reduction of least norm.

At this point i should mention that, in general, the norm of an rK-reduction does matter.
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2.2.5 Proposition. For each natural number d there are ∆0
2 sequences A and B and a com-

putable function f such that A = [f, e]B , where e = 2dlg(d+1)e, but for all c.p.f. ϕ, A 6= [ϕ, d]B .

Proof. Fix a natural number d, let l = dlg(d + 1)e, let e = 2l, and let ϕ0, ϕ1, . . . be a

computable enumeration of all c.p.f. from N × <N2 to <N2. We construct A and B in stages by

a ∅′-finite extension.

At stage s suppose A and B have been constructed up to length 2sl. Using oracle ∅′, choose

the lexicographic least string τ of length l such that

∀i<d . ϕn(i, Bs0l) 6= Asτ.

Such a τ exists since there are e = 2l ≥ 2lg(d+1) = d+1 strings of length l and only d possibilities

for ϕn(i, Bs0
l) with i < d. Let Bs+1 = Bs0

lτ and As+1 = Asτ0
l. This ends the construction.

By construction, for any c.p.f. ϕn, A 6= [ϕn, d]
B . Moreover, it is easy to see from the diagram

below how to construct a computable function f such that A = [f, e]B .

B : 0 . . . 0 # . . .# 0 . . . 0 ? · · · ? . . .

A : # . . .# 0 . . . 0 ? · · · ? 0 . . . 0 . . .

In the diagram the length of each block is l. �

More hope, if not evidence, for the maximality of random sequences comes from the following

two theorems. The rK-upper cones of random sequences are countable!

2.2.6 Theorem. If A is 2-random, then for any rK-reduction [ϕ, d] there are only finitely

many sequences rK-above A via [ϕ, d]. Moreover for each such sequence B we have that B ≤T A′.

Proof. Let A be 2-random and fix an rK-reduction [ϕ, d]. We show that every sequence

rK-above A is a path through an A′-computable tree with only finitely many paths. The result

then follows.
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Consider the class of extensions of ϕ to total functions

E :={f : d× <N2 → <N2 : ∀i ∀τ . |f(i, τ)| = |τ | ∧

∀i ∀τ ∀s . [ϕs(i, τ)↓→ f(i, τ) = ϕs(i, τ)]}.

Since E is a nonempty computably bounded Π0
1 class (after identifying d × <N2 and <N2 with

N), E has a low member f by the Low Basis Theorem. For each natural number k, let

Sk := {σ ∈ <N2 : |f−1(σ)| ≥ d2k};

Uk := {X ∈ N2 : ∀∞n . |f−1(X �n)| ≥ d2k}

= {X : ∃m ∀n≥m . X �n ∈ Sk}

=
⋃

m

⋂

n≥m

O(Sk ∩ n2).

Observe that, since 〈Sk : k ∈ N〉 is a computable sequence of f -computable sets, 〈Uk : k ∈ N〉 is

a computable sequence of Σf
2 classes.

By a simple counting argument we have that for all k and n, |Sk ∩ n2| ≤ 2n−k, so that

µ O(Sk ∩ n2) ≤ 2−k. (To see that |Sk ∩ n2| ≤ 2n−k, observe that, assuming Sk ∩ n2 is nonempty,

each string in Sk ∩ n2 has a persistent preimage ‘blob’ in n2, so that |Sk ∩ n2| also counts the

total number of these blobs. In terms of a Venn diagram, each blob has area at least d2k, and

at most d blobs can overlap on a given region since f (thought of as a multimap from <N2 to

<N2) maps n2 to n2 at most 1-to-d. Therefore, at most d(2nd−12−k) = 2n−k blobs can occupy
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the total 2n area of space available. So the inequality holds.) Consequently,

µ Uk = µ
⋃

m

⋂

n≥m

O(Sk ∩ n2)

= lim
m→∞

µ
⋂

n≥m

O(Sk ∩ n2) (since the union is nondecreasing)

≤ lim
m

2−k

= 2−k.

Thus 〈Uk : k ∈ N〉 is a Σf
2 test.

Since A is 2-random, A is ∅′-1-random, hence f ′-1-random (since f is low), hence f -2-random.

Thus for some k, A 6∈ Uk, that is ∃∞n . |f−1(A � n)| < d2k. Since f extends ϕ, there exist a

natural number e such that

∃∞n . |ϕ−1(A �n)| < e.

Therefore the A′-computable tree

T :=
⋃

n

ϕ−1(A �n)

={τ : ∀m≤|τ | ∃i<d . ϕ(i, τ �m) = A �n}

has < e paths, and so every path is computable from A′. Since B is one of these paths, the result

holds. �

Actually, using two powerful lemmas, Theorem 2.2.6 can be improved to

2.2.7 Theorem (with Joseph Miller). If A is 1-random, then for any rK-reduction [ϕ, d]

there are only finitely many sequences rK-above A via [ϕ, d]. Moreover for each such sequence B

we have that B′ ≡tt A
′.

2.2.8 Lemma ([Mil]). If A is random, then

∃e ∀σ . KA(σ) = min{K(A � \σ,m\) − \σ,m\ : m ∈ N} + e.
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Here \·, ·\ is any computable bijection from strings and natural numbers to natural numbers.

2.2.9 Lemma ([Nie05]). If there exists a natural number e such that for natural numbers n,

KX(Y �n) ≤ KX(n) + e, then Y ′ ≤tt X
′.

Proof of 2.2.7. Let A be random and fix an rK-reduction [ϕ, d]. We show that every

sequence rK-above A is a path through an A′-computable tree with only finitely many paths.

The first part of the result then follows. The second part will follow from Nies’s Lemma.

Suppose A = [ϕ, d]B . Then B is random, A ≤T B, and A ≤K B, where the last inequality

abbreviates

∃d′ ∀n . K(A �n) < K(B �n) + d′.

(The uniform constant d′ depends in part on d, but not on B, of course.)

Using Lemma 2.2.8, up to a uniform additive constant —call it e— we have that for all n,

KA(B �n) = min{K(A � \B �n,m\) − \B �n,m\ : m ∈ N}

(since A is random)

≤min{K(B � \B �n,m\) − \B �n,m\ : m ∈ N}

(since A ≤K B)

=KB(B � n)

(since B is random)

≤KB(n)

≤KA(n)

(since A ≤T B).

Call this inequality ,.

Now, by relativizing [DHNS03, Theorem 6.6],

∃e′ ∀n . |{σ ∈ n2 : KA(σ) < KA(n) + e}| < e′.
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Thus the A′-computable tree

T := {σ : ∀m≤|σ| . KA(σ �m) < KA(n) + e}

has < e′ paths, and so every path is computable from A′. Since by ,, every sequence rK-above

A via [ϕ, d] is a path through this tree, the first part of the theorem holds. Moreover, by , and

Lemma 2.2.9, B′ ≤tt A
′. Also A ≤T B, so A′ ≤1 B

′, so A′ ≤tt B
′. �

In contrast to the previous two theorems, highly nonrandom sequences have rK-upper cones

of size continuum. Here a sequence A is highly nonrandom if ∀n . C(A � n) < n − f(n) for

some unbounded computable function f : N → N.

2.2.10 Theorem. If A is highly nonrandom, then there are continuum many sequences rK-

above A.

Proof. Suppose A is highly nonrandom via an unbounded computable function f . We

construct an rK-reduction [ϕ, 1] such that |{Y ∈ N2 : A = [ϕ, 1]Y }| = 2ℵ0 . The idea is that, since

f is unbounded, the proportion of strings τ ∈ n2 with C(τ) < n − f(n) shrinks to zero as n

increases, so that we can map a lot of strings σ ∈ n2 to each τ . Since f is computable, we can

carry out this process computably.

First, define the computable function l : N → N recursively by

l(0) := the least x such that
2x−f(x)

2x
≤ 1/2;

l(n+ 1) := the least x such that x > l(n) and
2x−f(x)

2x−l(n)
≤ 1/2.

This is possible since f is computable and unbounded. Second, define the Σ0
1 tree T :=

⋃
n Tl(n),

where

TL = {τ ∈ L2 : ∀m≤N . C(τ �m) < m− f(m)}.

Note that |TL| ≤ 2L−f(L). Now, construct the c.p.f. ϕ :⊆ 1 × N2 → N2 as follows. Enumerate

T . Whenever a new τ appears in Tl(0), choose in some computable way two unused strings of

length l(0) and map them both to τ under ϕ, that is, for each such σ set ϕ(0, σ �m) = τ �m for
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all m ≤ |σ|. Label τ as ‘covered’. Whenever a new τ appears in Tl(n+1), for each preimage ρ of

τ � l(n) (of length l(n)) (which inductively exists), choose in some computable way two unused

strings of length l(n+ 1) extending ρ and map them both to τ under ϕ. After this is done, label

τ as covered. Continue.

Observe that this definition of ϕ is consistent, that is, we never have ϕ(0, σ1) = τ and

ϕ(0, σ2) = τ with σ1 and σ2 incomparable. This is because for all L, TL ⊇ TL+1 �L. Also, observe

that at each stage of the construction we do, in fact, have enough strings at our disposal, that

is, for each τ ∈ Tl(n+1) with τ � l(n) covered we can map two length l(n + 1) strings to τ under

ϕ, because

# extensions of τ � l(n) in Tl(n+1)

# extensions of some preimage of τ � l(n)

≤
|Tl(n+1)|

# extensions of some preimage of τ � l(n)

≤ 2l(n+1)−f(l(n+1))

2l(n+1)−l(n)

≤ 1/2 by definition of l.

Lastly, observe that for each A with ∀n . C(A � n) < n−f(n) (each path in [T ]) we built a perfect

preimage tree TA such that for all Y ∈ [TA], A = [ϕ, 1]Y . Since TA is perfect, |[TA]| = 2ℵ0 . �

The name ‘highly nonrandom’ really is appropriate here.

2.2.11 Proposition. The highly nonrandom sequences form a proper subclass of the nonran-

dom sequences.

Proof. First, if A ∈ N2 is highly nonrandom, then A is nonrandom. To see this (through

the contrapositive), fix any unbounded computable function f and consider the Σ0
1 sets

Sn := {σ : ∀m≤n . C(σ �m) < m− f(m)}, (n ∈ N).

As mentioned in the proof of Theorem 2.2.10, for each n, |Sn| ≤ 2n−f(n), so that µO(Sn) ≤ 2−f(n).

Since f is unbounded and computable, 〈O(Sn) : n ∈ N〉 can be refined to a Σ0
1-test. Thus if A
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is random, A 6∈ O(Sn) for some n, so that A is not highly nonrandom via f . Since f was an

arbitrary unbounded computable function, the result holds.

To show proper containment, we build, via a finite extension argument, a nonrandom se-

quence A that is not highly nonrandom. Suppose A � l has been constructed already and consider

the next unbounded computable function in our (noncomputable) list of all such functions. We

extend A � l in such a way that it cannot be highly nonrandom via f . This is pretty easy, because

there are 2n−l possible length n extensions of A � l, but only ≤ 2n−f(n) of them can have com-

plexity < n− f(n). So for n large enough f(n) > l since f is unbounded, so that some extension

of A � l will not have low complexity. Let A � n be such an extension. Then extend A � n again

by adding on 2n zeros. This ends the construction.

Clearly A is not highly nonrandom. Also, A has at least twice as many zeros as ones in the

limit, so it is nonrandom; random sequences must satisfy the Weak Law of Large Numbers (see

[Cal94]). �

The sizes of rK-upper cones of nonrandom sequences are still unknown. (Always the contin-

uum? Or are some countable?)

But what of Questions ➁ and ➂? Despite the hard work and partial results of this section,

i can find no proof or disproof of the maximality of random sequences. Question ➃ stands in a

similar state. While minimal sequences always have random sequences rK-above them (Theorem

2.1.7), the general case of arbitrary sequences is still open.
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CHAPTER 3

Real closed fields

In this chapter we depart from Questions ➀–➃ and explore instead rK-reducibility in the

context of computable analysis. We group reals into relative randomness classes and study these

classes in relation to well-known computational classes of reals. This chapter also appears as

[Rai05].

Before beginning, let us set some relevant notation and conventions. For x ∈ R and n ∈ N,

x �n denotes the truncation of the binary expansion of x (both the integer and fractional part)

up to and including the first n bits past the binary point. Again 〈 〉 delimits ordered tuples and

sequences, and for each s ∈ N+, let \ \ : Ns → N be a lexicographically increasing computable

bijection (coding function).

Let us also recall the following standard computational classes of reals. A real number x

is computable iff there exists a computable sequence of rationals 〈qs : s ∈ N〉 converging

effectively to x, that is, there is a computable function e : N → N such that for all n ∈ N

s ≥ e(n) → |qs − x| ≤ 2−n.

Equivalently, x is computable iff the binary sequence of the binary expansion of the fractional

part of x is a computable function. A real number x is computably enumerable (c.e.) iff

there is a computable nondecreasing sequence of rationals converging to x. A real number x is a

difference of c.e. reals (d.c.e.) iff there exist c.e. reals y, z such that x = y−z. A real number x

is computably approximable (c.a.) iff there is a computable sequence of rationals converging

to x (with no further restrictions on the sequence). Let Rc denote the class of computable reals,

Rc.e. the class of c.e. reals, Rd.c.e. the class of d.c.e. reals, and Rc.a. the class of c.a. reals. These

classes are properly nested: Rc ⊂ Rc.e. ⊂ Rd.c.e. ⊂ Rc.a. (see [ASWZ00] for instance).
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3.1. Real Closed Fields

Since we will be dealing with real numbers, let us rephrase rK-reducibility in terms of them.

For x, y ∈ R, x ≤rK y iff

∃c.p.f. ϕ :⊆ Q × N → Q ∃d ∀n ∃i<d . ϕ(y �n, i)↓= x �n.

In this case we write x = [ϕ, d]y . Now, given y ∈ R, let

Ry = {x ∈ R : x ≤rK y},

the class of reals less random than y.

Perhaps surprisingly, each Ry has tame algebraic and analytic structure: each is a real closed

field. This generalizes the well-known fact (see [PER89] for instance) that Rc, the class of

computable reals, forms a real closed field in the following sense. x ∈ R is computable iff x ≤T ∅

(identifying x with the binary sequence of the binary expansion of its fractional part) iff x ≤rK 0

(remember that rK-reducibility is a refinement of T-reducibility). Thus Rc = R0, that is, the

class of computable reals is the randomness class R0 (or Ra, for any computable real a). Notice

also that R0 ⊆ Ry for all y.

For the rest of this section, fix a randomness class Ry. As a first step to showing Ry is a

real closed field, we introduce a large class of functions under which Ry is closed, the weakly

computable locally Lipschitz functions.

3.1.1 Definition. Let s ∈ N+, E ⊆ Rs be open, and f : E → R.

• f is locally Lipschitz iff for each x ∈ E there is an open set E0 ⊆ E containing x on

which f is Lipschitz, that is

∃M ∈R+ ∀~x, ~y∈E0 . |f(~x) − f(~y)| ≤M |~x− ~y|,

where | | is the Euclidean norm.
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• f is weakly computable iff f � E ∩ Qs uniformly outputs computable reals in the

following sense:

∃c.p.f. f̂ :⊆ Qs × N → Q ∀~q ∀n . ~q ∈ E ∩ Qs → f̂(~q, n)↓= f(~q) �n

• f is weakly computable locally Lipschitz (w.c.l.L.) iff f is weakly computable

and locally Lipschitz.

3.1.2 Remark. It is easy to see that weakly computable Lipschitz functions are computable,

and computable functions are weakly computable. For a definition of ‘computable’ in this sense

see [PER89] again. Also, as a fact from elementary real analysis, locally Lipschitz functions

on compact domains are Lipschitz. Thus w.c.l.L. functions on compact domains are computable

functions. We could use the stronger notion of ‘computable function’ instead of ‘weakly com-

putable function’ throughout, but weak computability suffices, and its criterion is slightly easier

to check.

The following two lemmas and short comment thereafter explain why w.c.l.L. functions

interact so well with rK-reducibility.

3.1.3 Lemma. If f : E ⊆ Rs → R is locally Lipschitz, then for all ~x ∈ E

∃C ∀n>C . |f(~x) − f(~x �n)| < 2C−n,

where ~x �n = 〈x0 �n, . . . , xs−1 �n〉.

Proof. Suppose f : E ⊆ Rs → R is locally Lipschitz and ~x ∈ E. Then there is an open

E0 ⊆ E containing ~x such that f is Lipschitz on E0. Thus

∃M ∈Q+ ∀~y∈E0 . |f(~x) − f(~y)| ≤M |~x− ~y|

⇒ ∃M ∈Q+ ∀∞n . |f(~x) − f(~x �n)| ≤M
√
s2−n

(since ∀∞n . ~x �n ∈ E0 and ∀∞n . |~x− ~x �n| ≤
√
s2−2n =

√
s2−n)

⇒ ∃C ∀n>C . |f(~x) − f(~x �n)| < 2C−n.

�
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3.1.4 Lemma. Let x, y ∈ R and C,n ∈ N with n > C. If |x − y| < 2C−n, then there exist

j < 2 and ρ ∈ C+12 such that [y + (−1)j0.0n−C−1 ̂ρ] �n = x �n.

Proof. An easy exercise in binary addition. �

Using Lemma 3.1.3 and Lemma 3.1.4 we can now show that Ry is closed under w.c.l.L.

functions. The basic idea is this. Suppose ~x ∈ (Ry)
s and f is a weakly computable locally

Lipschitz function. Since f is locally Lipschitz, the first n bits of f(~x), which we want via an

rK-computation from y, are just the first n bits of [f(~x �n)+ fuzz], which we can get via an rK-

computation from y since the fuzz is of bounded variability. The hypothesis of weak computability

on f ensures that the partial function we build witnessing rK-reducibility is computable.

3.1.5 Lemma. Let s ∈ N+. If ~x ∈ (Ry)
s, f : E ⊆ Rs → R is w.c.l.L, and ~x ∈ E, then

f(~x) ∈ Ry.

Proof. For notational niceness let us prove the special case s = 2. The general proof is no

more difficult. Suppose ~x = 〈x0, x1〉 ∈ (Ry)
2, say x0 = [ϕ0, d0]

y and x1 = [ϕ1, d1]
y. Since f is

locally Lipschitz, there exists, by Lemma 3.1.3, C ∈ N such that for all n > C,

|f(~x) − f(~x �n)| < 2C−n.

So by Lemma 3.1.4, ∀n>C ∃j<2 ∃ρ∈C+12

[
f(~x �n) + (−1)j0.0n−C−1 ̂ρ

]
�n = f(~x) �n.

Now, list C+12 as ρ0, . . . , ρ2C+1−1, and let θ :⊆ Q × N → Q be defined by

θ(τ, \i0, i1, j, k\) =
[
f(ϕ0(τ, i0), ϕ1(τ, i1)) + (−1)j0.0|τ |−C−1 ̂ρk

]
� |τ |
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if i0 < d0, i1 < d1, j < 2, k < 2C+1, |τ | > C and undefined otherwise. θ is a c.p.f. since f is

weakly computable, and for all n > C there is \i0, i1, j, k\ < \d0, d1, 2, 2
C+1\ such that

θ(y �n, \i0, i1, j, k\) = [f(~x �n) + correct fuzz] �n

(since ~x ≤rK y)

= f(~x) �n

So f(~x) ≤rK y via a slightly altered constant that only depends on d0, d1, and C and a slightly

altered c.p.f. θ′ that deal with the (finitely many) exceptional n ≤ C. �

Of course, this result is vacuous unless w.c.l.L. functions actually exist. They certainly do. To

see this, let us dig up a helpful fact from real analysis: if f is differentiable on E (with E open),

then f is locally Lipschitz on E. Since +, −, ·, /, and √ are differentiable and certainly weakly

computable, they are examples of w.c.l.L. functions (restricting domains where necessary). Key

examples, in fact, because with these and just a little more real analysis we can reach our goal.

3.1.6 Theorem. 〈Ry,+, ·, <〉 is a countable real closed field.

Proof. First we show that Ry forms a countable ordered field. Ry is nonempty since it

contains the computable reals. It is countable since rK-reducibility implies Turing reducibility

and the Turing cone below a function is countable. Ry is certainly ordered by <, since it is a set

of real numbers. Also, given a, b ∈ Ry, a− b and a/b (for b 6= 0) are both in Ry by Lemma 3.1.5,

since, as mentioned previously, subtraction and division are w.c.l.L. functions.

Lastly, we show that the field is real closed, that is, every positive real number in Ry has a

square root in Ry, and every odd degree polynomial with coefficients in Ry has a root in Ry.

A positive real less random then y has a square root less random than y by Lemma 3.1.5

since
√

(away from 0) is w.c.l.L.

Odd-degree polynomial roots present a little more difficulty. Let f(x) = c0+c1x+· · ·+cmxm ∈

Ry[x] be of odd degree. Then f has a root r ∈ R and there exists an open interval with rational

endpoints (a, b) on which f changes sign and has no other roots. We show r ∈ Ry.
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First off, we may assume without loss of generality that r is a root of multiplicity 1. To see

this, note that if r has multiplicity k > 1, then k must be odd, because f(x) = (x− r)kg(x) for

some polynomial g(x) which does not change sign on (a, b). (If g(x) changed sign on (a, b), then,

by the Intermediate Value Theorem, g and hence f would have a root different from r on (a, b),

a contradiction). Thus f (k−1), the (k − 1)st derivative of f , is an odd-degree polynomial with

coefficients in Ry having r as a root of multiplicity 1, and so we can work with f (k−1) instead

of f .

Now, to do the heavy lifting we bring in some more real analysis. Let O ⊆ Rm+1 be an

open ball containing ~c = 〈c0, . . . , cm〉 and let F : (a, b) × O → R be the polynomial defined by

F (x,~v) = w0+w1x+ · · ·+wmxm. Then F is continuously differentiable on (a, b)×O, F (r,~c) = 0,

and ∂F/∂x(r,~c) = f ′(r) 6= 0 (since r has multiplicity 1). Thus, by the Implicit Function Theorem

and its proof (see [Rud76] by Rudin for instance), there are open balls U and V such that

(i) r ∈ U ⊆ (a, b), ~c ∈ V ⊆ O (and U has rational endpoints)

(ii) for all ~v ∈ V , F (x,~v) is 1-1 on U

(iii) there is a unique continuously differentiable G : V → U such that

∀~v∈V . F (G(~v), ~v) = 0.

With this we show that G is w.c.l.L. and conclude that r = G(~c) ∈ Ry (by Lemma 3.1.5

since ~c ∈ (Ry)
m+1). Since G is differentiable (by iii), G is locally Lipschitz. So we just need to

show that G is weakly computable. For any ~q ∈ V ∩ Qm+1, F (x, ~q) is 1-1 on U (by ii) and has

exactly one root in U (by iii). So, by applying the standard binary search algorithm on U ⊆ (a, b)

(which is independent of ~q; see [PER89] by Pour-El and Richards), F (x, ~q) has a computable

real root. (Note that for any rational d, F (d, ~q) is rational, hence it can be decided whether

F (d, ~q) = 0, F (d, ~q) < 0, or F (d, ~q) > 0.) Since G(~q) is that real (by iii), it follows that G is

weakly computable. �
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3.2. The Reals Less Random Than Ω

We now narrow our view and look more closely at one particular randomness class, the

class of reals less random than the halting probability Ω. In [DHL04] Downey, Hirschfeldt, and

LaForte showed that, in analogy to every c.e. set being T-reducible to the halting set, every c.e.

real is rK-reducible to Ω; in symbols, Rc.e. ⊆ RΩ. In fact, even more is true.

3.2.1 Proposition. Rd.c.e. ⊆ RΩ ⊆ Rc.a..

Proof. Since Rc.e. ⊆ RΩ and RΩ is closed under subtraction (by Lemma 3.1.5), Rd.c.e. ⊆ RΩ.

Also, if x ∈ RΩ, then x ≤rK Ω, implying that x ≤T Ω ≡T K. Therefore the fractional part of x

is the characteristic function of a ∆0
2 set, so that x ∈ Rc.a.. Thus RΩ ⊆ Rc.a.. �

The last implication in the proof above follows from a result essentially due to Ho [Ho99]:

3.2.2 Lemma. x ∈ Rc.a. iff x is ∅′-computable (there is a ∅′-computable sequence of rationals

converging effectively to x) iff the fractional part of x is the characteristic function of a ∆0
2 set.

Moreover, using the same technique from the previous section, we get the following two

theorems.

3.2.3 Theorem. 〈Rd.c.e.,+, ·, <〉 is a countable real closed field.

3.2.4 Theorem. 〈Rc.a.,+, ·, <〉 is a countable real closed field.

Rd.c.e. and Rc.a. are clearly countable since there are only countably many computable se-

quences of rationals. They are also real closed fields via the same proof used in Theorem 3.1.6,

because they are closed under w.c.l.L. functions. This closure follows from the lemmas below.

3.2.5 Lemma ([ASWZ00]). x ∈ Rd.c.e. iff there is a computable sequence of rationals 〈qi :

i ∈ N〉 converging to x such that
∑

i∈N
|qi+1 − qi| <∞.
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Recall that a sequence of reals 〈xi : i ∈ N〉 is computable iff there is a double computable

sequence of rationals 〈qij〉i,j∈N and a computable function e : N2 → N such that for all i, n

j ≥ e(i, n) → |qij − xi| ≤ 2−n.

3.2.6 Lemma ([ASWZ00]). If a computable sequence of reals 〈xi : i ∈ N〉 converges to x

such that
∑

i∈N
|xi+1 − xi| <∞, then x ∈ Rd.c.e..

3.2.7 Lemma. Let s ∈ N+. If ~x ∈ (Rd.c.e.)
s, f : E ⊆ Rs → R is w.c.l.L, and ~x ∈ E, then

f(~x) ∈ Rd.c.e..

Proof. Let ~x and f be as above. By Lemma 3.2.5 there is a computable sequence of vectors

〈~qi : i ∈ N〉 from Qs that converges to ~x such that
∑

i∈N
|~qi+1 − ~qi| < ∞. Since f is locally

Lipschitz, there is an open neighborhood E0 of ~x on which f is Lipschitz, that is

∃M ∈R+ ∀~u,~v∈E0 . |f(~u) − f(~v)| ≤M |~u− ~v| (?).

Without loss of generality, assume that 〈~qi : i ∈ N〉 ⊆ E0. Since f is weakly computable,

∀i ∀n . |f̂(~qi, n) − f(~qi)| ≤ 2−n, so that 〈f(~qi)〉i∈N is a computable sequence of reals. Also,

limi→∞ f(~qi) = f(limi→∞ ~qi) = f(~x) (since locally Lipschitz functions are continuous). Lastly,

by (?),

∑
|f(~qi+1) − f(~qi)| ≤M

∑
|~qi+1 − ~qi| <∞.

So f(~x) ∈ Rd.c.e. by Lemma 3.2.6. �

That Rd.c.e. forms a real closed field was also proved nearly simultaneously and independently

by Ng [Ng].

3.2.8 Lemma ([ZW01]). If a computable sequence of reals 〈xi : i ∈ N〉 converges to x, then

x ∈ Rc.a..

3.2.9 Lemma. Let s ∈ N+. If ~x ∈ (Rc.a.)
s, f : E ⊆ Rs → R is w.c.l.L, and ~x ∈ E, then

f(~x) ∈ Rc.a..
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Proof. This follows from a simplified version of the proof of Lemma 3.2.7 and from Lemma

3.2.8. Of course, this also follows by relativizing the argument for the real closure of Rc using

Lemma 3.2.2, but the first approach illustrates the power of w.c.l.L. functions. �

3.3. Proper Containment

So Rd.c.e. ⊆ RΩ ⊆ Rc.a., and all three classes form countable real closed fields. Is RΩ equal

to either Rd.c.e. or Rc.a.? Notice that both can not be true since Rd.c.e. ⊂ Rc.a.. An affirmative

answer would yield intriguing alternate characterizations of both classes involved. However, this

is not the case.

3.3.1 Theorem. Rd.c.e. 6= RΩ.

3.3.2 Theorem. RΩ 6= Rc.a..

Proof of 3.3.1. We need to construct α ∈ N2 such that α ≤rK Ω and 0.α is not a d.c.e.

real. Instead of making α ≤rK Ω directly, we construct a c.e. real 0.β such that α ≤rK β; here we

use the fact that all c.e. reals are rK-reducible to Ω. The construction is a ∅′-priority argument,

where we meet, for all c.p.f. x :⊆ N → Q (possible computable sequences of rationals), the

following requirements.

Requirements.

Rx : (
∑

s∈N

|xs − xs+1| ≤ 1 → 0.α 6= lim
s→∞

xs) ∧ ∃θ . α = [θ, 2]β .

These requirements are sufficient since, by a slight modification of Lemma 3.2.5, every d.c.e.

real x has a computable sequence of rationals 〈xs : s ∈ N〉 converging to it such that
∑

s∈N
|xs−

xs+1| ≤ 1.

Plan for Rx. To ensure 0.α 6= lims→∞ xs, we flip a big bit of α exponentially often so that

0.α becomes a super jumping bean. Eventually xs will tire and fail to keep up, for xs, being

restricted by the condition
∑

s∈N
|xs−xs+1| ≤ 1, can make at most 2k jumps of distance at least

2−k (for any k).
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More formally, a worker for this requirement proceeds as follows.

(1) Pick a big number (‘bigbit’) n. In particular, n should be bigger than nr +
∑

i≤n 22ni ,

where n0, . . . , nr are all the bigbits mentioned so far in the construction. Extend α and

β (which were formerly of length nr) to length n by padding them with zeros. We call

(nr, n] ‘n’s gap’. Also,

θ(β � (n + 1), 0) := α �n 〈̂0〉

θ(β � (n + 1), 1) := α �n 〈̂1〉

θ(β �w, 0) := α �w for all w ∈ (nr, n).

(2) Wait for

t∑

s=0

|xs − xs+1| ≤ 1 and |0.α− x| < ε := 2−n−3,

(with the convention that all the terms of the sum must be defined) where t is the

current stage of the construction. While waiting, each time α � (n + 1) changes below

nr (because of higher priority workers), add 2−n−1 to 0.β, that is, increment n’s gap in

β by the minimum amount for each change, and redefine θ for bits [nr, n + 1) just as

in (1). Notice that changes in α � (n + 1) above nr require no redefining of θ, because

the 〈0〉 and 〈1〉 cover these.

(3) α(n) := 1 − α(n).

(4) Go back to (2).

Outcomes for Rx. As we show in the verification, there is only one final outcome, namely

waiting at (2) forever; there is no infinite cycling through the plan’s loop. In this case, 0.α 6=

lims→∞ xs.

Construction. We do a simple (relatively speaking) tree construction (see [Lem] for instance).

The requirements are ordered effectively with order type ω, and requirement R is assigned to a

worker sitting on level/node R of a unary branching tree (which grows down, say).
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no redefining θ needed
when bit n changes

θ

α

β

n’s gap in β (very long)

increment n’s gap in β and

these bits changes
and redefine θ when one of

nn0 nr

Figure 1. How bits change.

At each stage t ∈ N+ of the construction, workers s < t act in order down the tree carrying

out their plans from where they last left off at the previous stage up until time t, with the

last/new worker at level t − 1 beginning at step (1). Here time is measured by the number of

stages in the simulation of the Turing machines involved. At each stage each worker has only

one current outcome, namely waiting at step (2) (steps (3) and (4) do not count as using up

time).

In this construction the workers do not really interfere with each other; there is no firing

or rehiring of workers depending on different current outcomes. When higher priority workers

(closer to the top/root of the tree) change α or β, lower priority workers (farther from the

top/root of the tree) deal with the behavior easily by incrementing their gaps in β according to

step (2).

Verification. Each worker on the final (only) path satisfies its Rx requirement.

To see this, fix a worker with plan Rx and bigbit n. When the worker goes from (2) to (3), bit

n of α flips so that (the current approximation of) 0.α changes/jumps by 2−n−1. For the worker

to reach (3) again (the current approximation of) x must jump by more than 2−n−2 = 2−n−1−2ε

to get back inside 0.α’s ε-ball. Actually, xmight not jump by that much, because once x is outside

of 0.α’s ε-ball, 0.α might move toward x due to α’s other bigbit flips. However, considering these

flips, we get that x jumps by more than 2−n−3 (bigbit flips by bits smaller than n, move 0.α

tremendously so that x will certainly have to jump by more than 2−n−2; bigbit flips by bits

bigger than n move 0.α by less than 2−n−3 (a bound obtained from a simple geometric series
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calculation; remember that bigbits are chosen extremely far apart from each other) so that x

jumps by more than 2−n−3 = 2−n−2 − 2−n−3).

Now, to maintain the condition
∑ |xs − xs+1| ≤ 1, x can jump by ≥ 2−n−3 only ≤ 2n+3

times. Thus after 2n+3 passes from step (2) to (3) in the plan’s loop, the worker must wait forever

at (2).

Also, α = [θ, 2]β by construction.

Lastly, 0.β is a well-defined c.e. real. Each ni flips ≤ 2ni+3 times and each flip increments

n’s gap in β by 2−n, but the gap is at least
∑

i≤n 22ni long and is therefore big enough to absorb

these additions without spilling carry bits into other gaps. �

Proof of 3.3.2. We construct α ∈ N2 as the characteristic function of a ∆0
2 set such that

α 6≤rK Ω via simple diagonalization. By Lemma 3.2.2, 0.α will be a c.a. real.

Let # be a computable bijection from the set of all triples 〈ϕ, i, c〉, where ϕ is a c.p.f.

from <N2 × N to <N2 and i < c are natural numbers. Also, let l be the function defined by

l(ϕ, c) = max{#(ϕ, i, c) : i < c} + 1.

Now, using oracle ∅′ we define α as follows. If ϕ(Ω � l(ϕ, c), i)↓ and is of length l(ϕ, c), then

let

α(#(ϕ, i, c)) = 1 − ϕ(Ω � l(ϕ, c), i)(#(ϕ, i, c)).

Otherwise, let α(#(ϕ, i, c)) = 0.

For all pairs 〈ϕ, c〉, α 6= [ϕ, c]Ω, because for all i < c, α � l(ϕ, c) 6= ϕ(Ω � l(ϕ, c), i), as witnessed

by bit #(ϕ, i, c). Thus α 6≤rK Ω. �

Let us end with one last question. We now know that Rd.c.e. ⊂ RΩ ⊂ Rc.a.. Is Rd.c.e. or Rc.a.

a randomness class? That is, does Rd.c.e. or Rc.a. equal Ry for any real number y?

By the proper inclusion of Theorem 3.3.1 and the technique in the proof of Theorem 3.3.2,

it follows that, here again, the answer is negative.

3.3.3 Theorem. For all y ∈ R, Rd.c.e. 6= Ry.
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3.3.4 Theorem. For all y ∈ R, Rc.a. 6= Ry.

Proof of 3.3.3. Assume (toward a contradiction) that for some y ∈ R, Rd.c.e. = Ry. Since

Ω ∈ Rd.c.e. = Ry ⊆ RΩ, Ω ≤rK y ≤rK Ω, so that y ≡rK Ω. Thus Rd.c.e. = Ry = RΩ, a

contradiction. �

Proof of 3.3.4. Assume (toward a contradiction) that for some y ∈ R, Rc.a. = Ry. Thus

every c.a. real is ≤rK y. But carrying out the same construction as in the proof of Theorem 3.3.2

with y in place of Ω —note that in the proof no special properties of Ω, besides it being ≤T ∅′,

were used— yields a c.a. real 6≤rK y, a contradiction. �

3.4. Alternative Proofs

When i submitted this chapter’s work for publication the anonymous referee suggested some

interesting alternative proofs of the results of section 3.3. Based directly on prefix-free conditional

complexity, they offer a different and valuable perspective.

Alternative proof of Theorem 3.3.1. Let Ωshift be the shift of powers-of-two-position

bits of Ω (as a binary sequence), that is, for n ∈ N

Ωshift(n) :=





Ω(2n) if n = 2m for some m ∈ N

Ω(n) otherwise.

Notice that Ωshift ∈ RΩ since at each length n, a program using Ω � n needs to guess only

one bit to compute Ωshift �n. However, Ωshift 6∈ Rd.c.e., so that Rd.c.e. 6= RΩ.

To see this, assume (toward a contradiction) that Ωshift ∈ Rd.c.e.. From this assumption we

will build a computable set C and a c.p.f. ϕ such that for all m ∈ C

ϕ(Ω �m) = Ω(m).

This contradicts the fact that Ω is random (in the sense of c.e. martingales).

Since Ωshift ∈ Rd.c.e., there is a computable sequence of rationals 〈Ωshift
s : s ∈ N〉 converging

to Ωshift such that J :=
∑

s∈N
|Ωshift
s −Ωshift

s+1 | <∞. Let 〈Ωs : s ∈ N〉 be an nondecreasing sequence
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of rationals converging to Ω and for each t ∈ N, let Jt =
∑t−1

s=0 |Ωshift
s −Ωshift

s+1 | with J0 = 0. Notice

that 〈Jt : t ∈ N〉 is a computable sequence of rationals converging nondecreasingly to J . Now,

define two sequences of natural numbers 〈sn : n ∈ N〉 and 〈tn : n ∈ N〉 as follows.

sn := the least s such that Ωs � 2n+1 = Ω � 2n+1 and

Ωshift
s � I = Ωshift � I, where I = [0, 2n+1) \ {2n};

tn := the least t such that Jt � (2n + 2) = J � (2n + 2).

Lastly, let A = {n ∈ N : sn ≤ tn} and B = {n ∈ N : n ≥ 1 ∧ sn > tn}.

Notice that if sn ≤ tn, then Ω � 2n+1 can be computed from J � (2n+2), for given J � (2n+2)

we can compute the least t (= tn) such that Jt � (2n + 2) = J � (2n + 2). Then, since sn ≤ tn,

Ωt � 2n+1 = Ω � 2n+1. Thus, there is a constant c0 such that for all n ∈ A K(Ω � 2n+1|J �

(2n + 2)) ≤ c0, implying that there are constants c1, c2, c3 such that for all n ∈ A

K(Ω � 2n+1) ≤ K(J � (2n + 2)) + c1

≤ 2n + 2 + 2 lg(2n + 2) + c2

≤ 2n + 2n+ c3.

Since Ω is random, this can happen for only finitely many n. So A is finite. Thus B is cofinite,

hence computable.

Let C be the computable set {2n+1 : n ∈ B} and let ϕ be the c.p.f. defined by

ϕ(σ) := Ωshift
s (2n)

if s is the least number such that Ωs � 2n+1 = σ and Ωshift
s � I = σshift � I (where the shift

operation and I are as above), and let ϕ be undefined if there is no such s. Then for 2n+1 ∈ C

ϕ(Ω � 2n+1) = Ωshift
s (2n) = Ωshift

sn
(2n).

by definition of ϕ and sn.



38

If Ωshift
sn

(2n) 6= Ωshift(2n), then there is an m > sn such that Ωshift
m � 2n+1 = Ωshift � 2n+1. Since

Ωshift
sn

� 2n+1 and Ωshift
m � 2n+1 = Ωshift � 2n+1 differ only on bit 2n and n ≥ 1, we have

Jm − Jsn ≥ |Ωshift
m − Ωshift

sn
| > 2−2n−2

so that Jm � (2n+2) 6= Jsn � (2n+2). This is a contradiction, since Jsn � (2n+2) = Jm � (2n+2) =

J � (2n + 2) since tn < sn for n ∈ B.

Thus for 2n+1 ∈ C, ϕ(Ω � 2n+1) = Ωshift
sn

(2n) = Ωshift(2n) = Ω(2n+1), that is, for all m ∈ C

ϕ(Ω �m) = Ω(m),

a contradiction. �

Alternative proof of Theorem 3.3.2. Let Ωeven and Ωodd be the the even-position bits

of and the odd-position bits of Ω (as a binary sequence), respectively, that is, for n ∈ N

Ωeven(n) := Ω(2n) and

Ωodd(n) := Ω(2n + 1).

Notice that Ωeven,Ωodd ∈ Rc.a. since Ω ∈ Rc.a.. However, both Ωeven and Ωodd can not be in

RΩ, so that RΩ 6= Rc.a..

To see this, assume (toward a contradiction) that Ωeven,Ωodd ∈ RΩ. Then, there are constants

c0 and c1 such that for all n, K(Ωeven � n|Ω � n) ≤ c0 and K(Ωodd � n|Ω � n) ≤ c1. Thus there

is a c2 such that for all n, K(Ω � 2n|Ω � n) ≤ c2 (by combining the two underlying algorithms),

implying that there are c3, c4 such that for all n

K(Ω � 2n) ≤ K(Ω �n) + c3 ≤ n+ 2 lg n+ c4.

This is a contradiction, since Ω is random. �
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Alternative proof of Theorem 3.3.4. Actually, we show that for all y ∈ R, Rc.a. 6⊆ Ry.

Assume (toward a contradiction) that for some y ∈ R, Rc.a. ⊆ Ry. Then Ωeven,Ωodd ∈ Rc.a. ⊆ Ry.

However, this implies (just like in the previous proof) that up to a uniform additive constant

K(Ω � 2n) ≤ K(y �n) ≤ n+ 2 lg n,

a contradiction. �

3.5. A Remark on the K-trivial Reals

The methods of the previous sections can also be used to show that the class of K-trivial

reals RKt = {x ∈ R : ∃d ∀n . K(x �n) < K(n) + d}, a class of considerable recent interest, forms

a real closed field. Again, it suffices to show closure under w.c.l.L. functions.

3.5.1 Lemma. Let s ∈ N+. If ~x ∈ (RKt)
s, f : E ⊆ Rs → R is w.c.l.L, and ~x ∈ E, then

f(~x) ∈ RKt.

Proof. Let ~x and f be as above. By Lemma 3.1.5, f(~x) ≤rK ~x, so that up to a uniform

additive constant,

K(f(x) �n) ≤ K(x �n) ≤ K(n).

So f(~x) ∈ RKt. �

Moreover, since there are only countably many K-trivial reals (an unpublished result of

Zambella; see [DHNS03]) we have

3.5.2 Theorem. 〈RKt,+, ·, <〉 is a countable real closed field.
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CHAPTER 4

Odds and Ends

4.1. Other Strong Reducibilities

While rK-reducibility is a strong reducibility, that is, a refinement of Turing reducibility,

it is incomparable with the standard strong reducibilities: 1-reducibility, m-reducibility, tt-

reducibility, wtt-reducibility (in decreasing order of strength).

4.1.1 Proposition. 1-reducibility does not imply rK-reducibility, and rK-reducibility does not

imply wtt-reducibility.

Proof. For the first non-implication fix a random sequence R. Then R ≤1 R⊕R (and this

is true for any sequence), but since R⊕R is not random, R 6≤rK R⊕R.

For the second non-implication we build ∆0
2 sequences A and B and a computable function f

such that A = [f, 2]B , but for all wtt-reductions Φ, A 6= ΦB. To this end, let 〈Φ0, ϕ1〉, 〈Φ0, ϕ2〉, . . .

be a computable enumeration of all pairs of c.p.f. (wtt-reductions with their uses). We build A

and B by a ∅′-finite extension argument.

Fix a noncomputable sequence U . At stage s+ 1, suppose A and B have been defined up to

some length l ≤ s. Take the sth pair 〈Φ, ϕ〉 and, using ∅′, choose x ≥ l least such that

ΦBs0ϕ(x)
(l) 6= [As ̂U(x)](l) = U(x).

Such an x exists, for otherwise ∀x≥ l . ΦBs0ϕ(x)
(l) = U(x), so that U is computable using 〈Φ, ϕ〉

and the current finite string Bs, a contradiction. Let m = max{1, ϕ(x)}(= 1 if ϕ(x)↑ ) and let

Bs+1 = Bs0
m1 ̂U(x) and As+1 = As ̂U(x) ̂0m1. End of construction.



41

From the diagram below it is easy to see how to define a computable function f such that

A = [f, 2]B .

U(x1) U(x2)

B : 0 . . . 0 1 # 0 . . . 0 1 ? . . .

A : # 0 . . . . 0 ? 0 . . . . 0 . . .

In the diagram x1, x2, . . . are x’s from the construction, and the blocks of zeros are of length

max{1, ϕ(x1)},max{1, ϕ(x2)}, . . ..

Also, by construction A 6≤wtt B, for assume (toward a contradiction) that A = ΦB with use

ϕ. Then 〈Φ, ϕ〉 is the sth pair in our enumeration for some s, and for l, x associated to s, we

have that

ΦB�ϕ(l)(l) =ΦB�ϕ(x)(l)

(since x ≥ l and use functions are increasing)

=ΦB�[ϕ(x)+l](l)

=ΦB�l ̂0ϕ(x)
(l)

6=[A � l ̂U(x)](l)

(by construction)

=A(l)

(by construction),

a contradiction. �

4.2. n-randomness

rK-reducibility preserves not only 1-randomness but randomness of all levels. The following

theorem is mostly a rephrasing in the language of rK-reducibility of several results of Miller and

Yu from [MY].

4.2.1 Theorem. For A,B,C ∈ N2,
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(1) if A⊕ C is random and A ≤rK B, then B ⊕ C is random;

(2) if A is n-random and A ≤rK B, then B is n-random;

(3) if A is random, B is n-random, and A ≤rK B, then A is n-random;

(4) if A⊕B is random, then A and B have no rK-upper bound;

(5) if A⊕B is random, then A, B, and A⊕B are pairwise rK-incomparable.

Proof. (1) Suppose A⊕ C is random and A ≤rK B. Since A ≤rK B, A⊕ C ≤rK B ⊕ C, so

that (up to a uniform additive constant) for all n

K(B ⊕ C �n) ≥ K(A⊕ C �n) ≥ n,

since A⊕ C is random. Thus B ⊕C is random.

(2) For this we need to recall several important theorems: Kučera’s ([Kuč85]), which says

that every Turing degree ≥T ∅′ contains a random sequence; Kautz’s ([Kau91]), which says that

a sequence is C(k)-n-random iff it is C-(n + k)-random; van Lambalgen’s ([vL90]), which says

that C ⊕D is n-random iff C is n-random and D is C-n-random.

Suppose A is n-random and A ≤rK B. In case n = 1, the result holds since ≤rK preserves

randomness. In case n > 1, choose a random sequence C Turing equivalent to ∅(n−1) (by Kučera’s

Theorem). Since A is n-random, A is C-random (by Kautz’s Theorem), so A⊕C is random (by

van Lambalgen’s Theorem), so B ⊕C is random (by (1) since A ≤rK B), so B is C-random (by

van Lambalgen’s Theorem), so B is n-random (by Kautz’s Theorem).

(3) Suppose A is random, B is n-random, and A ≤rK B. In case n = 1, the result is true by

hypothesis. In case n > 1, choose a random sequence C Turing equivalent to ∅(n−1) (by Kučera’s

Theorem). Since B is n-random, B is C-random (by Kautz’s Theorem), so B⊕C is random (by

van Lambalgen’s Theorem), so C is B-random (by van Lambalgen’s Theorem), so C is A-random

(since A ≤rK B and so A ≤T B), so A is C-random (by van Lambalgen’s Theorem), so A is

n-random (by Kautz’s Theorem).
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(4) Suppose A⊕B is random. Assume (towards a contradiction) that A,B ≤rK C for some

sequence C. Since A ⊕ B is random and A ≤rK C, C ⊕ B is random (by (1)). Since C ⊕ B is

random and B ≤rK C, C ⊕ C is random (by (1)). This, of course, is a contradiction.

(5) Suppose A⊕B is random. Then A and B are rK-incomparable by (4). Assume (towards

a contradiction) that A ≤rK A ⊕ B. Since A ⊕ B is random and A ≤rK A ⊕ B, A ⊕ B ⊕ B is

random (by (1)), a contradiction. Assume (towards a contradiction) that A ⊕ B ≤rK A. Since

A⊕B is random, B is A-random (by van Lambalgen’s Theorem), so B 6≤T A. But A⊕B ≤rK A,

so B ≤T A⊕B ≤T A, a contradiction. Thus A and A⊕B are rK-incomparable. By symmetry,

B and A⊕B are also rK-incomparable. �

4.3. Weaker Notions of Randomness

If we restrict ourselves to weaker notions of absolute randomness, we can answer Question ➁

in the affirmative.

4.3.1 Definition. A sequence R is computably random if there is no computable martin-

gale that wins on R, that is, if there is no function f : <N2 → Q+ with f(σ0) + f(σ1) = 2f(σ)

(for all σ) such that lim supn f(R � n) = ∞. A sequence R is Schnorr random if there is

no computable martingale f : <N2 → Q+ and no increasing unbounded computable function

w : N → N such that ∃∞n . f(R �n) ≥ w(n).

Random strictly implies (no reverse implication) computably random (see [Sch71b]) strictly

implies Schnorr random (see [Wan96]).

4.3.2 Proposition. There are computably random (hence Schnorr random) sequences R and

S such that R <rK S.

Proof. By [NST05, Theorem 4.2], there is a left-c.e. sequence R (that is, 0.R is a c.e.

real) that is computably random (but not random!) and not Turing equivalent to ∅′ ≡T Ω. Since

R is left-c.e., R ≤rK Ω, and since R and Ω have different Turing degree, R 6≡rK Ω. Since Ω is
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random, it is also computably random. Also, since computably random implies Schnorr random,

the second part of out theorem also holds. �

The previous proposition is not very exciting, however, because rK-reducibility preserves

neither computable randomness nor Schnorr randomness.

4.3.3 Proposition. There are sequences R and A such that R ≤rK A, R is computably random

(hence Schnorr random), and A is not Schnorr random (hence not computably random).

Proof. Let R be a computably random (hence Schnorr random) sequence and S an infinite

computable set such that for all s ∈ S, R(s) can be computed from R � s. Such a sequence and

set are constructed in [MM04, Theorem 4.1] and [NST05, Theorem 4.2] for instance. Let A

be the sequence that equals R off S and the zero sequence on S. Then R ≤rK A via a norm-1

reduction, since on bits s of S, R(s) can be computed from R � s. In fact, R ≡rK A. Also,

since A contains an infinite computable sequence of zeros, A is not Schnorr random (hence not

computably random). �

4.4. The D.C.E. Reals

As we saw in Theorem 4.2.1 there is no least upper bound on the rK-degrees (because there

is no upper bound). But, as Downey, Hirschfeldt, and LaForte showed in [DHL04], there is

one on the rK-degrees of the c.e. reals. (In fact, the rK-degree of the c.e. reals form an upper

semi-lattice with least upper bound induced by addition.) Does a least upper bound exist if we

widen the degree structure to the next natural class, the rK-degrees of the d.c.e. reals? The

answer is no.

4.4.1 Definition. The mind change functions for a sequence of binary strings 〈σs : s ∈ N〉

are defined by

m(σ, n, s, t) := |{u ∈ [s, t) : σu(n) 6= σu+1(n)}|

m(σ, n) := m(σ, n, 0,∞),
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where n, s, t ∈ N and with the convention that before comparing entries of strings of different

lengths, we pad the shorter one with enough zeros to bring it up to the length of the longer one.

We will need an easy corollary of Lemma 3.2.5.

4.4.2 Lemma. Let x ∈ R. If there is a computable sequence of strings 〈αs : s ∈ N〉 converging

to x̃ such that
∑

n∈N
2−nm(α, n) <∞, then x ∈ Rd.c.e..

Proof. Fix x ∈ R, and suppose there is a computable sequence of strings 〈αs : s ∈ N〉

converging to x̃ such that
∑

n∈N
2−nm(α, n) <∞. Since lims→∞ σ.αs = x, where σ is the binary

string such that σ.x̃ = x, and for all s ∈ N

|σ.αs − σ.αs+1| ≤ 2−n+1,

where n is the first bit on which αs and αs+1 disagree, it follows that

∑

s∈N

|σ.αs − σ.αs+1| ≤
∑

n∈N

2−n+1m(α, n) <∞.

Thus, by Lemma 3.2.5, x is a d.c.e. real. �

4.4.3 Theorem. There is no least upper bound on the rK-degrees of Rd.c.e..

Proof. We construct d.c.e. reals x0 and x1 and, for each d.c.e. real y, a d.c.e. real z such

that

x0, x1 ≤rK y → (x0, x1 ≤rK z ∧ y 6≤rK z).

(Actually, x1 and z will be c.e. reals.) To do this, we meet, for all triples of a d.c.e. real, c.p.f.

(lower-case Greek letters) and natural (upper-case Roman letters) 〈y, ν, J〉, the following

Requirements.

Ry,ν,J : x0, x1 = [ν, J ]y → ∃z, θ [x0, x1 = [θ, 2]z] .
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For each Ry,ν,J we also meet the following list of subrequirements ranging over pairs of a c.p.f.

and natural number 〈ξ,K〉.

Sy,ν,J,ξ,K : x0, x1 = [ν, J ]y → (x0, x1 = [θ, 2]z ∧ y 6= [ξ,K]z).

We use subrequirements here to emphasize that z must be built to thwart all possible rK-

reductions to y, that is, all ξ and K.

Plan for Sy,ν,J,ξ,K. The basic idea is to pick a big number n and if it looks like y = [ξ,K]z

up to n, which is bad, then we force y �n to change to something completely new while keeping

z � n fixed. Repeating this more than K times will meet the requirement. Of course, since y � n

is not under our control, we force its changes indirectly by changing x0 and x1 past bit n. If

x0, x1 = [ν, J ]y is to happen, then y must respond. Lastly, by waiting long enough between

changes in x0 and x1, we make x0, x1 = [θ, 2]z.

More precisely, a worker for this requirement follows the algorithm below. The algorithm

uses the sequence Pairs(b), defined as follows. For each b ∈ N, let Pairs(b) be any sequence of

all pairs of binary strings 〈σ, τ〉 of length b (that is, σ, τ ∈ b2) ordered lexicographically on the

first coordinate. Note that Pairs(0) is the one-element sequence consisting of just 〈∅, ∅〉.

Outcomes for Sy,ν,J,ξ,K. As we show in the verification, there are only two possible final

outcomes, either of which will meet the requirements.

w1: Wait at line 6 forever. In this case, x0 6= [ν, J ]y or x1 6= [ν, J ]y, and requirement Ry,ν,J

is met.

w2: Wait at line 9 forever. In this case, y 6= [ξ,K]z and x0, x1 = [θ, 2]z , and subrequirement

Sy,ν,J,ξ,K is met.

Construction. Do the standard tree construction (see [Lem]).

Verification. Each worker on the final path satisfies its Sy,ν,J,ξ,K requirement.

To see this, fix a worker for a requirement Sy,ν,J,ξ,K. At the start, the worker picks a bigbit

n bigger than c+ 4c
∑c

i=1

⌈
lg i

(J
2

)⌉
, where c = n0 · · ·nr(K + 1) and n0, . . . , nr are all the bigbits

mentioned in the construction so far. If w1 is the final outcome for the worker, then clearly
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1: Pick a big number n, called a ‘bigbit’, bigger than c + 4c
∑c

i=1

⌈
lg i

(
J
2

)⌉
, where c =

n0 · · ·nr(K + 1) and n0, . . . , nr are all the bigbits mentioned in the construction so far.

Extend z, x0, and x1 by zeros to length n and let b = 0.

2: for i = 1 to N do

3: Extend z, x0, and x1 by b more zeros and define θ for bits w ∈ [|x0| − b, |x0|) as follows.

θ(z �w, 0) := x0 �w;

θ(z �w, 1) := x1 �w.

4: while Pairs(b) 6= ∅ do

5: Remove the next (first) pair from Pairs(b) and set the last b bits of 〈x0, x1〉 equal to

it.

6: Wait for

∃j0<J ν(y � (n+ b), j0)↓= x0 � |x0| and

∃j1<J ν(y � (n+ b), j1)↓= x1 � |x0|.

7: Break if y � n changes to something completely new (never seen in the for-loop until

now).

8: By now y �n has changed to something new, and the tail b-block of x0, x1 will never be

changed again. So update θ by setting z � [|x0| − b, |x0|) = 1b and redefining θ for bits

w ∈ [|x0| − b, |x0|) as in line 3.

9: Wait for

∃j<K ξ(z �n, j)↓= y �n.

10: b :=
⌈
lg i

(J
2

)⌉
+ |x0| − n.

x0 6= [ν, J ]y or x1 6= [ν, J ]y, so that requirement Ry,ν,J is met. So assume that w1 is not the final

outcome. In this case, we show that w2 is the final outcome.
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First, every time the while-loop completely finishes, y � n changes to something completely

new (never seen in the for-loop until now). This is because, with every pass through the while-

loop x0, x1 = [ν, J ]y up to |x0| (remember that w1 is not the final outcome) and we have

seen (inductively) i different y � n since the for-loop began, so that ν with y � |x0| and J can

handle at most i
(J
2

)
2|x0|−n = i

(J
2

)
2|old x0|+b−n different pairs of strings without changing y � n

to something new. But, exhausting Pairs(b) to complete the while-loop produces 22b different

pairs of incarnations of 〈x0 � |x0|, x1 � |x0|〉 and

22b > i

(
J

2

)
2|old x0|+b−n since

2b > i

(
J

2

)
2|old x0|−n since

b > lg i

(
J

2

)
+ |old x0| − n (by design).

Second, (inductively) x0 � n and x1 � n eventually settle, so that z � n eventually settles.

Thus, beyond some i, in each full pass through the for-loop y � n changes to something new (as

argued in the previous paragraph), z � n does not change, and ∃j <K ξ(z � n, j) ↓= y � n. So,

by pass i+K + 1 at the latest, ξ will have run out of j’s and the worker will wait at line 9 and

remain waiting forever. So w2 is the final outcome.

Now, if w2 is the final outcome, then clearly y 6= [ξ,K]z. Also x0, x1 = [θ, 2]z by the time

all subrequirements of Ry,ν,J have been met. To see this, note that x0 and x1 change in blocks,

and θ becomes defined for those blocks only twice: once when the blocks are all zeros (line 3),

and once again after the blocks have settled (line 8; time is on our side). To make the second

definition, z is changed to all ones in its corresponding block. So x0, x1 = [θ, 2]z.

Lastly, we show that x0 and x1 and all the z’s are d.c.e. reals. It is clear that x0 and all the

z’s are c.e. reals since both were constructed via increasing (in value) approximations; ordering

Pairs(b) lexicographically on the first coordinate took care of that for x0. Also, x1 is a d.c.e.

real by Lemma 4.4.2 since a bit w of x1 flips no more than 2w/2 times. To see this, let n be the

biggest bigbit less than or equal to w and w = n+m. If w changes at all, then it must be in a
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flipping region of x1. From a slightly tedious calculation assuming the worst case scenario that

bigbits n0, . . . , nr, n were chosen in connection with the same Ry,ν,J requirement, it follows that

this region spans no more than L := c
∑c

i=1

⌈
lg i

(J
2

)⌉
bits, where c = n0 · · ·nr(K + 1) and K

comes from the plan for Sy,ν,J,ξ,K in which n was chosen. So, m ≤ L, and, by construction (see

the while-loop), the number of times bit w flips is at most

2L2m+1 < 2w/2 since

L+m+ 1 < w/2 since

2L+ 2m+ 2 < m+ n since

4L < n (by design).

This ends the proof.

Almost. Let us not forget the tedious calculation mentioned above. Fix a point in the con-

struction, suppose that n0 < · · · < nr are all the bigbits mentioned so far, and assume the worst

case scenario that each bigbit nj (j < r) was chosen in connection with requirement Sµ,I,ν,J,ξj,Kj
.

In the construction, directly after each nj a block of bits in x1 are created, the bits of which flip

in a lexicographic pattern. Call these ‘nj-blocks’ and the total space they (the finitely many)

span, ‘nj ’s flip region’. We show by induction that, with nj > cj + 4cj
∑cj

i=1

⌈
lg i

(J
2

)⌉
, where

cj = n0 · · ·nj−1(Kj + 1), the number of nj-blocks is less than cj and nj ’s flip region is shorter

than cj
∑cj

i=1

⌈
lg i

(J
2

)⌉
.

First suppose n0 > c0 + 4c0
∑c0

i=1

⌈
lg i

(J
2

)⌉
, where c0 = K0 + 1. Since n0 is the first bigbit,

x0 and x1 do not change below n0, so that at most K0 + 1 < n0 n0-blocks are needed to meet



50

requirement Sµ,I,ν,J,ξ0,K0. Thus n0’s flip region is no longer than

b1 + · · · + bK0+1 ≤ (K0 + 1)bK0+1

= (K0 + 1)

K0+1∑

i=1

⌈
lg i

(
J

2

)⌉

= c0

c0∑

i=1

⌈
lg i

(
J

2

)⌉

bits, where b1, . . . , bK0+1 are the different values variable b assumes in the for-loop of the plan

for requirement Sµ,I,ν,J,ξ0,K0.

Now suppose nj > cj +4cj
∑cj

i=1

⌈
lg i

(J
2

)⌉
, where cj = n0 · · ·nj−1(Kj +1), and the induction

hypothesis holds. In the worst case, higher priority arguments keep changing x0 and x1 below

nj , so that each time an n0-block up to nj−1-block is built, Kj + 1 nj-blocks are built. By the

induction hypothesis, at most n0 n0-blocks, n1 n1-blocks, n2 n2-blocks, etc. are built. So, in the

worst case, n0 · · ·nj−1(Kj + 1) = cj < nj nj-blocks are built, and nj’s flip region is no longer

than cj
∑cj

i=1

⌈
lg i

(
J
2

)⌉
bits, as desired. �

4.5. Enumerating Σ0
1 Classes

My first computability theory project, given to me by Reed Solomon, was in the study of

numberings. A numbering of a family of sets S is a surjective map ν : N → S, and a numbering

is Σ0
n if the relation ‘x ∈ ν(e)’ is Σ0

n.
1 Reed suggested i try to construct an injective Σ0

1 numbering

of the family of all Σ0
1 classes, more precisely, an injective Σ0

1 numbering of a family S of Σ0
1 sets

such that 〈O(W ) : W ∈ S〉 includes all Σ0
1 classes without repetition.

Now, Friedberg’s Theorem (below) says there is an injective Σ0
1 numbering of the familiy of

all Σ0
1 sets, and Σ0

1 classes are generated by Σ0
1 sets. Moreover, the question of containment of two

Σ0
1 classes given their generating sets is of the same complexity as the question of containment for

Σ0
1 sets, namely Π0

2. So the task seems possible. Indeed it is. The proof is modeled on a modern

1The Russian school calls these ‘computable’ numberings
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proof of Friedberg’s Theorem in [GLS02] (which is based on the presentation in [Odi89]), which

i include here for comparison.

4.5.1 Theorem ([Fri58]). There is an injective Σ0
1 numbering of the family of all Σ0

1 sets.

Proof. Let 〈αn : n ∈ N〉 be a Σ0
1 numbering of the family S of all Σ0

1 sets. Without loss

of generality, assume α0 = N. We construct an injective Σ0
1 numbering 〈βn : n ∈ N〉 of S and

a ∅′-c.p.f. f approximated by a sequence 〈fs : s ∈ N〉 of c.p.f. in the sense that f(n) ↓= m if

∀∞s . fs(n)↓= m, and f(n)↑ otherwise, that meet the following

Requirements.

(1) If αn = αn′ for some n′ < n then f(n)↑ .

(2) If αn 6= αn′ for all n′ < n then either f(n)↓ and αn = βf(n), or f(n)↑ and αn = βm =

[0, x] for some x and some m /∈ ran(f).

(3) For any m /∈ ran(f) there is an x such that βm = [0, x].

(4) For any set [0, x] there is a unique m with βm = [0, x].

Construction. Let θ(n, s) be the formula

∃n′<n . αn′,s �� fs(n) = αn,s �� fs(n),

that is, the formula that says ‘at stage s, n appears not to be the least index for αn’. Let ψ(n, s)

be the formula

∃s′<s ∃m∈ran(fs′)\ran(fs) . βm,s �� fs(n) = βfs(n),s �� fs(n),

that is, the formula that says ‘at stage s, βm appears to occur twice in the β-sequence of sets’.

The construction runs as described in the pseudocode below.

Verification. We check that the requirements are met.

(1) Fix n ∈ N and suppose αn = αn′ for some n′ < n. Then θ(n, s) will hold for infinitely

many s and so ∃∞s . fs+1(n)↑ in view of line 8. Thus f(n)↑ .
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1: f0(0) := 0

2: f(0) := f0(0)

3: β0 := α0

4: for s := 0 to N do

5: for n := 1 to s do

6: if fs(n)↓ then

7: if θ(n, s) or ψ(n, s) then

8: fs+1(n) :=↑ (let fs+1(n) remain undefined)

9: βfs(n),s+1 := [0, x] for some x ∈ N larger than any number mentioned so far

10: βfs(n) := βfs(n),s+1

11: else

12: fs+1(n) := fs(n)

13: else

14: fs+1(n) := least m /∈ {ran(fs′) : s′ ≤ s} ∪ {fs+1(n
′) : n′ < n}

15: if fs+1(n)↓ then

16: βfs+1(n),s+1 := αn,s+1

(2) Fix n ∈ N and suppose αn 6= αn′ for all n′ < n. If f(n) ↓ , then αn = βf(n) in view of

lines 12 and 16. If f(n)↑ , then line 8 is reached for infinitely many s, and, by hypothesis, this

must be because ψ(n, s) holds for infinitely many s. There are two cases.

case 1: ψ(n, s) holds for infinitely many s with the same m.

Then αn = βm = [0, x] for some x and some m /∈ ran(f) in view of lines 10 and 16.

case 2: ψ(n, s) holds for infinitely many s with different m’s.

Then ∃∞s ∃∞x . αn,s = βf(n),s = [0, x], so that αn = N. Thus, n = 0 by hypothesis. Then

ψ(n, s) = ψ(0, s) can’t hold for infinitely many s since the inner for loop starts with n = 1, a

contradiction.

(3) Follows from lines 8, 10, and 14.
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(4) Fix x ∈ N. Choose the least n for which αn = [0, x]. By lines 7-10 and 14 there is at most

one m such that βm = [0, x]. By (2), either f(n)↓ and βf(n) = αn, or f(n)↑ and βm = αn, as

desired. �

We now modify this proof slightly for the case of Σ0
1 classes.

4.5.2 Definition. Let

Fx = {0, 10, 110, . . . , 1x0} (x ∈ N);

FN =
⋃

x∈N

Fx.

Also, for ease of reading, let O(W ) ��n stand for O(W ) ∩ n2.

4.5.3 Theorem. There is an injective Σ0
1 numbering of a family S of Σ0

1 sets such that

〈O(W ) : W ∈ S〉 includes all Σ0
1 classes without repetition.

Proof. Let 〈αn : n ∈ N〉 be a Σ0
1 numbering of the family of all Σ0

1 sets. Without loss of

generality, assume α0 = FN. We construct a Σ0
1 numbering 〈βn : n ∈ N〉 of a family of Σ0

1 sets

and a ∅′-c.p.f. f approximated by a sequence 〈fs : s ∈ N〉 of c.p.f. in the sense that f(n) ↓= m

if ∀∞s . fs(n) ↓= m, and f(n) ↑ otherwise, that meet the following

Requirements.

(1) If O(αn) = O(αn′) for some n′ < n then f(n) ↑.

(2) If O(αn) 6= O(αn′) for all n′ < n then either f(n) ↓ and αn = βf(n), or f(n) ↑ and

αn = βm = Fx for some x and some m /∈ ran(f).

(3) For any m /∈ ran(f) there is an x such that βm = Fx.

(4) For any set Fx there is a unique m with βm = Fx.

Construction. Let θ(n, s) be the formula

∃n′<n . O(αn′,s) �� fs(n) = O(αn,s) �� fs(n),
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that is, the formula that says ‘at stage s, n appears not to be the least index for O(αn)’. Let

ψ(n, s) be the formula

∃s′<s ∃m∈ran(fs′)\ran(fs) . O(βm,s) �� fs(n) = O(βfs(n),s) �� fs(n),

that is, the formula that says ‘at stage s, O(βm) appears to occur twice in the O(β)-sequence of

classes’.

The construction runs as described in the pseudocode below.

1: f0(0) := 0

2: f(0) := f0(0)

3: β0 := α0

4: for s := 0 to N do

5: for n := 1 to s do

6: if fs(n)↓ then

7: if θ(n, s) or ψ(n, s) then

8: fs+1(n) := ↑ (let fs+1(n) remain undefined)

9: βfs(n),s+1 := Fx for some x ∈ N larger than any number mentioned so far

10: βfs(n) := βfs(n),s+1

11: else

12: fs+1(n) := fs(n)

13: else

14: fs+1(n) := least m 6∈ {ran(fs′) : s′ ≤ s} ∪ {fs+1(n
′) : n′ < n}

15: if fs+1(n)↓ then

16: βfs+1(n),s+1 := αn,s+1

Verification. We check that the requirements are met.

(1) Fix n ∈ N and suppose O(αn) = O(αn′) for some n′ < n. Then θ(n, s) will hold for

infinitely many s and so ∃∞s . fs+1(n) ↑ in view of line 8. Thus f(n) ↑.
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(2) Fix n ∈ N and suppose O(αn) 6= O(αn′) for all n′ < n. If f(n) ↓, then αn = βf(n) in view

of lines 12 and 16. If f(n) ↑, then line 8 is reached for infinitely many s, and, by hypothesis, this

must be because ψ(n, s) holds for infinitely many s. There are two cases.

case 1: ψ(n, s) holds for infinitely many s with the same m.

Then αn = βm = Fx for some x and some m /∈ ran(f) in view of lines 10 and 16.

case 2: ψ(n, s) holds for infinitely many s with different m’s.

Then ∃∞s ∃∞x . αn,s = βf(n),s = Fx, so that αn = FN. Thus, n = 0 by hypothesis. Then

ψ(n, s) = ψ(0, s) can’t hold for infinitely many s since the inner for loop starts with n = 1, a

contradiction.

(3) Follows from lines 8, 10, and 14.

(4) Fix x ∈ N. Choose the least n for which αn = Fx. By lines 7-10 and 14 there is at most

one m such that βm = Fx. By (2), either f(n) ↓ and βf(n) = αn, or f(n) ↑ and βm = αn, as

desired. �

4.5.4 Remark. The proof of Theorem 4.5.3 can be modified slightly to produce a repetition-

free effective enumeration of the family of all c.e. reals. For this we use the fact that any c.e.

real in the interval (0, 1] can be written as 2−W :=
∑{2−|σ| : σ ∈ W} for some prefix-free Σ0

1

set of strings W (see [CHKW01]). So for the modification, we simply let 〈αn : n ∈ N〉 be a

Σ0
1 numbering of the family of all prefix-free Σ0

1 sets (of strings) and construct a Σ0
1 numbering

〈βn : n ∈ N〉 of a family of prefix-free Σ0
1 sets such that 〈2−βn : n ∈ N〉 includes all c.e. reals

in the interval (0, 1] without repetition by using 2−W ’s instead of O(W )’s. We then take this

numbering and adjust it by rationals to get a numbering of the family of all c.e. reals without

repetition.
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APPENDIX A

A Brief Review of Absolute Randomness

While this dissertation focuses on relative algorithmic randomness, absolute algorithmic

randomness is mentioned throughout. Also relative randomness is based on absolute randomness.

So let us review the latter, more primitive concept. Again, see [DH] for full details and a brief

history.

Any reasonable notion of randomness for sequences makes sense only with respect to a given

probability measure on N2. For example, in a probability space where zero and one are assigned

probabilities p = q = 1/2 (a fair coin), we would not consider a sequence with twice as many

zeroes as ones random, whereas it could be were we working in a space where p = 2/3 and

q = 1/3 (a biased coin). Herein we deal exclusively with the fair coin probability space explained

in more detail below.

The three most popular definitions of absolute algorithmic randomness, which turn out to

be equivalent in our probability space, come from three different intuitions, namely, a sequence

should be called random if

• it is patternless, irregular, or incompressible;

• it is unexceptional, ordinary, or typical ;

• its successive digits are unpredictable.

A.1. Random Means Incompressible

The idea here is that the initial segments of a random sequence should have no shorter

descriptions than themselves. But what is a description? Here we bring in algorithms and com-

putability theory. Descriptions will be inputs of Turing machines and incompressiblity will be

formalized in terms of descriptional complexity.
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Descriptional complexity comes in two flavors, plain and prefix-free, both of which are useful.

Let s : N �� <N2 be the computable bijection given by

s(n) = n+ 1 written in binary without the leading 1,

that is, s numbers <N2 length-lexicographically. Note that |s(n)| = blg(n + 1)c. For ease of

reading and when the context is clear, i will often just write n for s(n).

Let 〈ϕe : e ∈ N〉 be a computable enumeration of all (oracle) binary c.p.f. and 〈ψe : e ∈ N〉 a

computable enumeration of all (oracle) binary p.c.p.f. Here an oracle binary p.c.p.f. is a oracle

binary c.p.f. that has prefix-free first-coordinate domain no matter what oracle is used. Let ϕ̂

be the universal c.p.f. defined by

ϕ̂(σ, τ) =





ϕe(ρ, τ) if σ = eρ for some e and ρ

↑ else,

and let ψ̂ be the universal binary p.c.p.f. defined analogously. Remember that e here means

s(e) which means 0|s(e)|1s(e). Of course, we could use unary c.p.f. and p.c.p.f. instead by just

adding one more layer of coding: ϕ̂(τ eρ) = ϕe(τρ). Now the descriptional complexity functions
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are defined as follows.

Cϕ(σ|τ) :=





min{|ρ| : ϕ(ρ, τ)↓ } if such a ρ exists

↑ else

(for each c.p.f. ϕ);

the conditional complexity function with respect to ϕ;

C(σ|τ) := Cbϕ(σ|τ)

the conditional complexity function;

C(σ) := C(σ|∅)

the complexity function;

Kψ(σ|τ) := Cψ(σ|τ)

(for each p.c.p.f. ψ);

the conditional prefix-free complexity function with respect to ψ;

K(σ|τ) := K bψ
(σ|τ)

the conditional prefix-free complexity function;

K(σ) := K(σ|∅)

the prefix-free complexity function.

Note the optimality of C and K (up to an additive constant): for each e, σ, and τ

C(σ|τ) ≤ Cϕe(σ|τ) + 2|e| + 1;

K(σ|τ) ≤ Kψe(σ|τ) + 2|e| + 1.
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With these complexity functions we can now define a sequence R to be incompressible iff

for every c.p.f. ϕ, ∃d ∀n . Cϕ(R � n) ≥ n − d, that is, by the universality and optimality of

C, iff ∃d ∀n . C(R � n) ≥ n − d. Unfortunately, this definition is vacuous, as no sequence has

this property (see the section on C-oscillations in [DH]). We fix this defect by using prefix-free

complexity instead. A sequence R is incompressible iff for every p.c.p.f. ψ

∃d ∀n . Kψ(R �n) ≥ n− d,

that is, by the universality and optimality of K, iff

∃d ∀n . K(R �n) ≥ n− d,

For any oracle A we can relativize this definition by saying that a sequence R is

A-incompressible if

∃d ∀n . KA(R � n) ≥ n− d,

where KA uses ψ̂A.

A.1.1 Theorem ([Cha76]). The binary sequence of the binary expansion of the real

Ω :=
∑

{2−|σ| : ψ̂(σ, ∅)↓ }

is incompressible.

Finally, i should mention an invaluable tool for dealing with prefix-free complexity (even

though it is not used explicitly in this dissertation): the Kraft-Chaitin Theorem.

A.1.2 Theorem ([Cha75]). Let W ⊆ <N2 × N be a c.e. set. If
∑{2−l : 〈σ, l〉 ∈ W} < ∞,

then

∃d ∀〈σ, l〉∈W . K(σ) < l + d.
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A.2. Random Means Typical

The idea here is that a random sequence should have no exceptional properties. But what is

an exceptional property? Again, we bring in algorithms and computability theory. An exceptional

property will be a class of algorithmic measure zero and we will formalize typicality in terms of

algorithmic measure theory.

We work in the fair-coin probability space, which can be described as follows (see [Kec95,

pages 103–107] for more details). Start with Cantor space, the topological space 〈N2,T 〉, where

T is the topology generated by the basis

O(ρ) = {X ∈ N2 : X ⊃ ρ}, (ρ ∈ <N2).

Letting µ O(ρ) = 2−|ρ| uniquely defines a probability measure µ on B, the family of Borel

sets of Cantor space (the σ-algebra generated by T ), that is, µ : B → [0, 1], µ N2 = 1, and

µ
⋃
n Bn =

∑
n µ Bn for every disjoint countable family {Bn} ⊆ B. Let NULL denote the family

of subsets of Borel sets of measure zero. Letting µ (B ∪ N ) = µ B, for B ∈ B and N ∈ NULL,

uniquely defines a probability measure µ on the family of measurable sets of Cantor space (the

σ-algebra generated by B ∪ NULL, which is easily seen to consist of the sets of the form B ∪ N

with B ∈ B and N ∈ NULL) called the uniform probability measure on N2. This measure is

regular, that is, for any measurable set X of Cantor space

µX = sup{µC : C ⊆ X ∧ C is closed}

= inf{µO : O ⊇ X ∧ O is open}.

Now for the algorithmic measure theory. We deal with arithmetical classes, that is, members

of the arithmetical Borel hierarchy, possibly relative to some oracle. An open set generated by a

Σ0
1 set of strings W , that is, a class of the form

O(W ) =
⋃

σ∈W

O(σ),
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is called a Σ0
1

class. A Π0
1

class is the complement of a Σ0
1 class. In general, a Π0

n class is

the complement of a Σ0
n class, a Σ0

n+1 class is a class of the form
⋃
iPi, where 〈Pi : i ∈ N〉

is a computable sequence of Π0
n classes, and a Π0

n+1 class is a class of the form
⋂
i Si, where

〈Si : i ∈ N〉 is a computable sequence of Σ0
n classes. A computable sequence of Σ0

n/Π
0
n classes

〈Qi : i ∈ N〉 is a sequence for which there is a computable function f such that f(i) is an index

for Qi. For each n we assume there is a canonical assignment of indices to Σ0
n classes (Π0

n classes,

respectively) with the property that given an index for a Σ0
n+1 class (Π0

n+1 class) R, we have a

uniformly computable way to obtain an index for the sequence 〈Qi : i ∈ N〉 of Π0
n classes (Σ0

n

classes) such that R =
⋃
iQi (R =

⋂
iQi). A Σ0

0 or Π0
0 class is one of the form O(F ) for some

finite set of strings F . A class is called arithmetical if it is Σ0
n for some n.

Arithmetical classes can also be defined in terms of quantifier complexity (see [Rog67,

Chapter 15] for more details). A relation R ⊆ (N2)k × Nl is computable if

∃Φ ∀X1, . . . ,Xk ∀y1, . . . , yl .

R(X1, . . . ,Xk, y1, . . . , yl) → ΦX1⊕···⊕Xk(y1, . . . , yl) = 1 ∧

¬R(X1, . . . ,Xk, y1, . . . , yl) → ΦX1⊕···⊕Xk(y1, . . . , yl) = 0.

A Σ0
n class is then a class of the form

{X ∈ N2 : ∃y1 ∀y2 . . . Qyl. R(X, y1, . . . , yl)},

for some computable relation R and where Q is ∀ if l is even and ∃ otherwise. Again, a Π0
n

class is the complement of Σ0
n class, that is, a class of the form

{X ∈ N2 : ∀y1 ∀y2 . . . Qyl. R(X, y1, . . . , yl)},

for some computable relation R and where Q is ∃ if l is even and ∀ otherwise.

The definitions of arithmetical classes can all be relativized. For example, a ΣA
1 class is one

of the form O(W ) for a ΣA
1 set W . Note also that a Σ∅(n−1)

1 class is an open Σ0
n class, and a

Π∅(n−1)

1 class is a closed Π0
n class. However —and here we need to be careful when dealing with
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classes— a Σ0
n class is not necessarily a Σ0

1 class relative to ∅(n−1). For example, the class of

sequences with cofinitely many zeros is a Σ0
2 class that can not be expressed as O(W ) for some

Σ0
2 set W since the former class is not open. Fortunately, this does not present a problem for

our notion of randomness (see Theorem A.2.2 below).1

For an oracle A, a ΣA
n test is a computable sequence of ΣA

n classes 〈Si : i ∈ N〉 with

µSi ≤ 2−i. Think of
⋂
i Si as a class of algorithmic measure zero. A sequence R is A-n-typical

(n ≥ 1) iff for every ΣA
n test 〈Si : i ∈ N〉

R 6∈
⋂

i

Si.

In this case we say R ‘passes the test 〈Si : i ∈ N〉’. A generalized ΣA
n test is a computable

sequence of ΣA
n classes 〈Si : i ∈ N〉 with

∑
i µSi <∞. A sequence R is generalized A-n-typical

(n ≥ 1) iff for every generalized ΣA
n test 〈Si : i ∈ N〉

∀∞i . R 6∈ Si.

If A ≡T ∅, we simply say R is n-typical or R is generalized n-typical.

A.2.1 Theorem ([Sol75]). A sequence is A-n-typical iff it is generalized A-n-typical.

A.2.2 Theorem ([Kau91]). A sequence R is A(k)-n-typical iff it is A-(n+ k)-typical.

A.2.3 Theorem ([ML66]). For any oracle A and any n ≥ 1 there exists a universal ΣA
n

test, that is, a ΣA
n test 〈Ui : i ∈ N〉 such that for any sequence R, R is A-n typical iff it passes

〈Ui : i ∈ N〉 only.

A.2.4 Theorem ([Sch71a]). For any oracle A and any n ≥ 1, a sequence is A-n-typical iff

it is A-n-incompressible.

1Much of the last three paragraphs are quoted from [Kau91].
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A.3. Random Means Unpredictable

The idea here is that a random sequence should permit no betting strategy to make un-

boundedly much money wagering on its successive bits. But what is a betting strategy? Again,

we bring in algorithms and computability theory. A betting strategy will be an algorithm and

unpredictability will be formalized in terms of algorithmic martingales.

A supermartingale is a function f : <N2 → R≥0 such that for all strings σ

f(σ0) + f(σ1) ≤ 2f(σ).

Think of a supermartingale as the capital of a gambler/betting strategy that plays the following

game. At the start, a sequence is chosen by the house and kept hidden. The house then reveals

the bits of the sequence, one bit per round. At the beginning of a round the gambler bets some

of her money on the next bit of the sequence coming up zero and some, but no more than the

rest of her money, on the next bit coming up one. The next bit is revealed, and if it is a zero, the

gambler wins her zero wager and loses her one wager and vice versa. The gambler can then tip

the house or give to the poor before the next round begins. f(σ) is the gambler’s money after

having bet on all the initial segments of sigma, and the inequality on f arises from tipping. (A

capital function with equality, that is no tipping, is called a martingale.)

A Σ0
1

function is a function f : <N2 → R computably approximable from below, that is,

one for which there exists a computable function f̂ : N × <N2 → Q such that for all σ

f(σ) = sup
i
f̂(i, σ).

Similarly, a Π0
1

function is a function g : <N2 → R computably approximable from above, that

is, one for which there exists a computable function ĝ : N × <N2 → Q such that for all σ

g(σ) = inf
i
ĝ(i, σ).
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In general, a Σ0
n function is a function f : <N2 → R for which there exists a computable function

f̂ : Nn × <N2 → Q such that for all σ

f(σ) = sup
i1

inf
i2

sup
i3

· · ·Qin f̂(i, σ),

where Qin is supin if n is odd and infin if n is even; Π0
n functions are defined similarly, but

starting with an infimum. A Σ0
0 function is a Π0

0 function is a computable function. A function

is called arithmetical if it is Σ0
n for some n.

The definitions for arithmetical functions can all be relativized. For example, a ΣA
1 function

is one that is approximable from below by an A-computable function.

A.3.1 Theorem ([ZW01]). A function f : <N2 → R is ΣA⊕∅(k)

n (ΠA⊕(k)

n , respectively) iff it

is ΣA
n+k (ΠA

n+k).

For an oracle A, a sequence R is A-n-unpredictable (n ≥ 1) iff for every ΣA
n supermartin-

gale f : <N2 → R≥0

∃q ∀n . f(R �n) < q,

that is, every ΣA
n supermartingale fails to win on R. IfA ≡T ∅, we simply say R is n-unpredictable.

A.3.2 Theorem ([Sch71a]). For any oracle A and any n ≥ 1 there exists a universal ΣA
n

supermartingale, that is, a ΣA
n martingale u : <N2 → R≥0 such that for any sequence R, R is

A-n-unpredictable iff u fails to win on R.

A.3.3 Theorem ([Sch71a]). For any oracle A and any n ≥ 1, a sequence is A-n-unpredictable

iff it is A-n-typical.
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APPENDIX B

Notation Used

Symbol Meaning

C descriptional complexity

K prefix-free descriptional complexity

N {0, 1, 2, . . .}
n2 the set of binary strings of length n

<N2 the set of binary strings

N2 the set of infinite binary sequences

σ ⊆ τ σ is a substring of τ

σ ⊂ τ σ is a proper substring of τ

στ or σ ̂τ the concatenation of σ and τ

σn the string σσ · · · σ (n times)

σ 0|σ|1σ

〈 〉 delimits ordered tuples and sequences

X �n the string 〈X(0),X(1), . . . ,X(n − 1)〉

O(W )
⋃{X ∈ N2 : X ⊃ σ ∧ σ ∈W}

O(σ) O({σ})

µ the uniform probability measure on N2

x �n the truncation of the binary expansion of x

(both the integer and fractional part)

up to and including the first n bits

past the binary point
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Symbol Meaning

\ \ : Ns → N a lexicographically increasing

computable bijection

Rc the class of computable reals

Rc.e. the class of computably enumerable reals

Rd.c.e. the class of differences of computably

enumerable reals

Rc.a. the class of computably approximable reals

RKt the class of K-trivial reals
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