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Abstract

This thesis covers two major topics. First, answering a question in the reverse mathe-

matics of infinitary combinatorics, we show that the Thin Set Theorem for Pairs TS(2),

a very weak version of Ramsey’s theorem, implies the Diagonally non-Computable Set

Principle DNR, an important computability-theoretic principle, over the axiom system

RCA0. Second, we pursue several results concerning the lattice structure of the degrees

of mass problems. Answering questions raised by Terwijn, we give a complete lattice-

theoretic characterization of the intervals of the Muchnik lattice which do not have

antichains of cardinality 2ℵ2 , and establish some further structural results in case the

interval has no uncountable antichains. We also consider other degree structures associ-

ated with mass problems, obtaining some results on the lattice of finite mass problems

as well as exploring some alternative notions of reducibility.
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Chapter 1

Introduction

One conceptualization of computability theory is as the study of the difficulty of infinite

problems. In this understanding, the computable functions are those problems which are

easy; the noncomputability of the halting problem establishes that there is a problem

which is not easy, and the partial order of Turing degrees captures the difficulty classes

of all possible problems. This is a natural (and useful) way of thinking, but it misses

an important subtlety: when we speak of Turing reductions, our domain of discourse

is limited to those problems with a single solution. When a problem is a function

φ : N→ N or a subset A ⊆ N, computing the solution to that problem means producing

exactly that function or that subset. But a real mathematical problem may not have

only one solution: there are infinitely many different bases of a given infinite-dimensional

vector space, and potentially many different prime ideals in a ring. The study of such

problems can proceed in many different directions, all of which rely heavily on, but go

beyond, the foundation of Turing reduction and the Turing degrees. To the extent to

which this thesis has a unifying theme, it is the study of problems with multiple solutions,

first from the perspective of reverse mathematics, and second from the perspective of

mass problems.

The remainder of this chapter consists of background for, and a summary of, the

results in this thesis. Section 1.1 summarizes the concepts and notation needed for
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the remainder of the work. Section 1.2 introduces reverse mathematics and provides

the specific background for Chapter 2, while Section 1.3 summarizes the results of that

chapter. Section 1.4 introduces mass problems and some notation and definitions needed

for Chapters 3 and 4. Section 1.5 provides the basic definitions and notation from lattice

theory needed for Chapters 3 and 4. Sections 1.6 and 1.7 summarize the results for

Chapters 3 and 4, respectively.

1.1 Basic Concepts and Notation

Most of what follows assumes that the reader is familiar with the basics of computability

theory. For the sake of completeness we will provide a summary of the common nota-

tion which is used in this thesis. Any reader for whom this material is not familiar is

encouraged to consult a reference such as the first part of [18].

The symbol N refers to the set of natural numbers, including the number 0, while the

symbol ω refers to the first infinite ordinal, or its order type. Since finite ordinals are

identified with the natural numbers 0, 1, 2, . . . by convention, these two are often used

interchangeably when referring to the natural numbers, but when working in reverse

mathematics we are forced to make the distinction due to the existence of nonstandard

models of first-order arithmetic. In that case N will always refer to the first-order part

of our model, and ω will refer to the true natural numbers (which have order type ω).

Cardinalities always use ℵ-numbers. 2ω is shorthand for the power set of ω, while ωω

refers to the collection of functions from ω to ω.

If A ⊆ ω, then A is the complement of A in ω and |A| is the size of A. If σ is a

string, then |σ| is the length of σ.
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A problem is an element either of 2ω or of ωω; that is, either a subset of the natural

numbers or a function from the natural numbers to itself. Mostly these are interchange-

able; for the purposes of this thesis, we will usually use the definition of a problem as a

function f : ω → ω.

The e-th computable function is φe. We write φe(n) ↓= m if φe converges on input

n and gives output m; we write φe(n) ↑ if the computation does not converge. φe,s(n)

refers to the first s steps of this computation, and has a value only if the computation

converges within those first s steps, otherwise, it diverges.

The e-th oracle Turing machine with oracle f is Φf
e . Since 0 − −1 valued functions

and subsets of ω are interchangeable, we also write ΦA
e when A is a set. The e-th

Turing functional is Φe. If f, g : ω → ω are functions and (for some e) Φf
e (n) ↓= g(n)

for every n, then g is Turing reducible to f and we write g ≤T f . As shorthand for

∀n(Φf
e (n) ↓= g(n)), we will sometimes write Φe(f) = g (commonly Φe(A) = B where

A,B ⊆ ω). As before, we write Φf
e,s(n) for the first s steps of the computation; this also

restricts the use of the oracle f (the largest-index value requested of the oracle during

the computation) to be at most s.

We write We for e-th computably enumerable set, which is the domain of the partial

function φe. Similarly, W f
e is the e-th c.e. set relative to f , and is the domain of Φf

e .

If f ≤T g and g ≤T f , we say that f and g are Turing equivalent and write f ≡T g.

The Turing degrees are the equivalence classes of ≡T . The partial order of Turing

degrees is the quotient of the pre-partial-order ≤T by the equivalence relation ≡T , and

is written D . In a slight abuse of notation, we write ≤T for the partial order relation

on the Turing degrees in D as well as the pre-partial order on functions and sets, and

occasionally mix degrees and functions or sets when this is not ambiguous (e.g., writing
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f ≤T d where f is a function and d is a Turing degree).

If f and g are two functions, the join f ⊕ g is given by (f ⊕ g)(2n) = f(n) and

(f ⊕ g)(2n + 1) = g(n). In the partial order D of Turing degrees, the Turing degree of

f ⊕ g is the least upper bound of the Turing degrees of f and g, so two Turing degrees a

and b always have a join, written a ∨ b, and D is an upper semilattice. A subset of D

which is closed downwards and closed under join is a Turing ideal.

The relative halting set {e | Φf
e (e) ↓} is the Turing jump of f , written f ′. In place of

a function f , we may also write a Turing degree, in which case the halting set is defined

by a representative of the Turing degree and the jump is taken to be the degree of that

halting set. The Turing degree of computable functions is written 0, so the degree of

the Halting problem K is 0′.

A few conventions are as follows. The Greek letters φ and ψ refer to partial com-

putable functions, while Φ and Ψ refer to Turing functionals. Capital Roman letters are

generally sets, though they are sometimes functions, P is often a partial order, and L

and M are lattices. Lowercase letters e, n,m, s, t, etc. are natural numbers, as is capital

N . Depending on context, lowercase letters a, b, c, x, y, z may be natural numbers or

generic elements of sets. The letters f, g, h represent functions. The lowercase Greek

letters σ and τ are strings. Boldface lowercase Roman letters are Turing degrees. Cal-

ligraphic letters like A and X are mass problems, degrees of mass problems, and other

elements of lattices with underlying structure. Inequalities like ≤ without a subscript

refer to the natural numbers or to generic partial orders and lattices; specific orders

(such as the various reducibilities) will have subscripts to avoid confusion.
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1.2 Reverse Mathematics of Infinite Combinatorics

1.2.1 History and Background

Reverse mathematics is a field residing at the intersection between computability theory

and proof theory. The main goal of the program is to take various theorems from

mathematics and determine their strength; the idea behind the name is that it is reversed

mathematics because we begin with theorems and determine which axioms were needed

to prove them. Since, presumably, the theorems of mathematics are all true and thus

all equivalent over the usual strong axiom systems such as ZFC or full second-order

arithmetic, one needs to work over a fairly limited base system of axioms. The usual

set of axioms used is called RCA0, which stands for recursive comprehension axiom.

RCA0 is a subsystem of the full set of axioms for second-order arithmetic. It consists of

the axioms for a discretely ordered semiring, together with the induction schema for Σ0
1

statements (with parameters) and set comprehension schema for ∆0
1 statements (with

parameters). Since in the standard model of arithmetic, ∆0
1-definable subsets of N are

exactly the computable sets, RCA0 is often thought of as stating that “computable sets

exist.”

Starting with RCA0 and working upwards in strength is a linear hierarchy of five

historically important systems often called the “big five.” While we will not be concerned

with the two highest of these, the others will be relevant. Above RCA0 lies WKL0,

which consists of the axioms of RCA0 plus Weak König’s Lemma, which is equivalent

to the statement that every infinite binary tree has an infinite path. Above WKL0 is

ACA0, which stands for arithmetic comprehension axiom and consists of RCA0 plus the

comprehension schema for all arithmetic statements (i.e. Σ0
n statements with parameters
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for all n). More about these systems can be found in Simpson [17], the usual reference

for the project as a whole.

Many classic theorems of mathematics are equivalent, over RCA0, to one of the big

five. For instance, the statement that every countable commutative ring has a prime

ideal is equivalent to WKL0. The statement that every countable commutative ring has

a maximal ideal is equivalent to ACA0, as is the statement that every countable vector

space has a basis. For a long time, it was widely assumed that most theorems of ordinary

mathematics were equivalent to one of the big five.

Then came Ramsey’s Theorem.

Definition 1.1. Let n and k be positive integers. Then Ramsey’s Theorem for n-tuples

and k colors, written RTn
k , is the following statement: For any function f : [N]n →

{c ∈ N | c < k}, there is an infinite set A ⊆ N, called a homogeneous set, such that

|f([A]n)| = 1.

Here the notation [S]n, for a set S, means the set of unordered n-tuples with elements

taken from S, and f([A]n) refers as usual to the image of [A]n under f . In informal terms,

RTn
k says that if the n-tuples of natural numbers are colored with k colors, there is some

infinite subset A ⊆ N such that all n-tuples taken from A have the same color. When

n = k = 2, this is the infinite version of the usual finite Ramsey’s Theorem about

2-coloring the edges of a complete graph.

In some cases Ramsey’s Theorem is simple. The principles RT1
k and RTn

1 are all

provable in RCA0. It is also not too difficult to show that, over RCA0, RTn
2 and RTn

c

are equivalent for n and any c ≥ 2. Moreover, we have the following result due to

Jockusch [13]:
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Theorem 1.2 (Jockusch, 1972). For every n ≥ 3, we have RCA0 ` RTn
2 ↔ ACA0.

The case n = 2, the so-called Ramsey’s Theorem for Pairs, was not so easy to classify.

From the same paper of Jockusch we know some bounds:

Theorem 1.3 (Jockusch, 1972). We have ACA0 ` RT2
2 and WKL0 6` RT2

2.

But nothing more was proved for many years, until a breakthrough result by Seeta-

pun [16]:

Theorem 1.4 (Seetapun, 1995). RCA0 + RT2
2 6` ACA0.

Ramsey’s Theorem for Pairs is not equivalent to one of the big five! Even more, it

does not even lie in the same linear order [14]:

Theorem 1.5 (Liu, 2012). RCA0 + RT2
2 6`WKL0.

The last twenty years have seen a great deal of investigation into Ramsey’s Theorem

for Pairs and many similar theorems and principles of infinitary combinatorics. Some of

these results are outlined further in Chapter 2. One of the weak combinatorial principles

arising from this study is the Thin Set Theorem, in particular the Thin Set Theorem

for Pairs:

Definition 1.6. The Thin Set Theorem for Pairs, TS(2), states that for any function

f : [N]2 → N, there is an infinite set A, called a thin set, such that f([A]2) 6= N.

Informally, TS(2) says that if we color the pairs of natural numbers with infinitely

many colors, we can find some infinite subset on which at least one of those colors is

omitted. This is clearly implied by RT2
2, but it seems much weaker; indeed, while it is

strictly stronger than RCA0, until the results presented in Chapter 2 it was not known
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to imply anything of note. Wang [22] recently showed that Thin Set is weaker than

Ramsey’s Theorem in another sense: In contrast to Theorem 1.2, even arbitrarily high-

dimensional forms of Thin Set do not imply ACA0 over RCA0. Nevertheless, TS(2) does

have some interesting consequences; this is the focus of Chapter 2.

1.2.2 Computability and ω-models

It may seem from the presentation above that reverse mathematics has much more to do

with proof theory than with computability. This impression is somewhat misleading. In

actual practice, a great deal of the work done in reverse mathematics is computability

theory.

We alluded in Section 1.1 to the necessity of distinguishing in reverse mathematics

between ω, the order type of the actual natural numbers (which is often identified with

them), and N, the natural numbers within our model. Let us unpack this a bit more.

Because the language in reverse mathematics is that of second -order arithmetic, any

model of RCA0 can be captured by two pieces of information: the first-order part, which

is the structure of the natural numbers in that model, and the second-order part, which

says which subsets of the natural numbers exist. The first-order part may be standard—

that is, the natural numbers may have order type ω—or it may not. What happens if

the first-order part is standard? In that case, we get something called an ω-model.

Once we have established that we are working in an ω-model, all that remains to

describe a model of RCA0 is to determine which subsets of ω exist in the model. Because

of this, we often identify these models with the set of subsets of ω that are present. It

turns out that the recursive comprehension schema is exactly enough to prove that the
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join of any two sets exists, and that if a set A exists, then so does every set that is

Turing reducible to A. Therefore, the ω-models of RCA0 can be identified with the

Turing ideals.

Moreover, many of the theorems and principles that we work with in reverse mathe-

matics assert the existence of a set with some properties, given set and number param-

eters. One way to think of this is as a problem with many possible solutions: given a

collection of parameters, any set satisfying the properties in the statement is a solution

to the problem. If we wish to describe the class of ω-models of RCA0 which are models

of some principle, this can often be done by describing how much computational power

is needed to solve any instance of the problem. As an example of this, the ω-models of

ACA0 are exactly those Turing ideals in which the jump of every set exists. Similarly,

since weak König’s Lemma also has computational content, one can use this to deduce

information about ω-models of WKL0; for instance, using the low basis theorem and a

little subtlety, one can show that there is an ω-model of WKL0 consisting only of low

sets and indeed one where every set is bounded by a single low degree (see [17] for a

proof).

The presence of computability theory in the study of ω-models carries over to the

general case. Since all the statements of computability theory can be expressed in second-

order arithmetic, a lot of useful work can be translated over and proved in RCA0, without

the assumption that the first-order part is standard. One has to ensure that one does

not use too much induction or rely on the existence of sets which may not be present in

the underlying model, but much work does transfer over.

In practice, a common approach to showing that some statement of the form RCA0 `

P → Q is to show that if we have an instance of a Q-problem A coming from a set X
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of parameters for Q, we can X-computably extract parameters Y for a P -problem B

such that if we have a solution to B, we can X-computably extract a solution to A.

This provides a proof that ω-models of RCA0 + P are also models of Q. The proof is

then analyzed and re-written to appeal only to the actual axioms of RCA0, if possible,

producing a proof that RCA0 ` P → Q. This is in fact the approach we take in

Chapter 2.

1.3 Main Theorem of Chapter 2

The main result of Chapter 2 is the following theorem:

Theorem 1.7. RCA0 |= TS(2)→ DNR.

Here, DNR is the Diagonally non-Computable Set principle, which states that for

any set A, there exists a function f which is diagonally non-computable relative to A;

that is, for every e, f(e) 6= ΦA
e (e).

1.4 Mass Problems

One perspective on theorems like RT2
2 is that they describe a class of problems : in the case

of RT2
2, the problem of constructing a homogeneous set for a given 2-coloring of [N]2.

Since there may be many solutions to such a problem, with varying computational

content, the Turing degrees do not give us an immediate way of classifying the difficulty

of such problems. One way to approach this task is to abstract away the logical content

of such a problem (e.g., as an instance of Ramsey’s Theorem) and identify a problem

with its set of solutions, developing a theory of what are called mass problems.
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Definition 1.8. A mass problem S is a subset of ωω. The elements of S are the solutions

to S.

How should we compare two mass problems S and T ? One natural idea is to say

that S is harder than T if being able to solve S means that we can solve T ; that is,

if given any solution to S we can find a solution to T . As it turns out there are two

different ways to cash this out:

Definition 1.9. Let S and T be mass problems. We say that T is Medvedev, or strongly,

reducible to S, written T ≤s S, if there is a Turing functional Φ such that, for every

A ∈ S, Φ(A) ∈ T .

Informally speaking, T ≤M S if there is a single algorithm which, given a solution

to S, produces a solution to T .

If we reverse the quantifiers above we come up with another reducibility notion:

Definition 1.10. Let S and T be mass problems. We say that T is Muchnik, or weakly,

reducible to S, written T ≤w S, if for every A ∈ S, there is a Turing functional Φ such

that Φ(A) ∈ T .

Muchnik reducibility is nonuniform; it says that every solution to S has enough com-

putational information to yield a solution to T , but the way to extract that information

may be different each time.

It is clear that Medvedev reducibility implies Muchnik reducibility, but the other

implication does not hold: Medvedev reducibility is, in fact, a stronger notion. It is

straightforward to verify that both of these reducibilities are transitive and reflexive, so

we can define equivalence relations in the natural way.
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Definition 1.11. If S and T are mass problems, we say that S and T are Medvedev

equivalent, written S ≡s T (or Muchnik equivalent, S ≡w T ), if both S ≤s T and

T ≤s S (S ≤w T and T ≤w S, respectively). The equivalence classes of these relations

are the Medvedev degrees and Muchnik degrees, respectively.

The pre-partial orders ≤s and ≤w on mass problems induce natural partial orders,

written the same way, on the Medvedev and Muchnik degrees respectively. Both of these

partial orders have some nice structure:

Theorem 1.12. The partial orders ≤s and ≤w on the Medvedev and Muchnik degrees

form distributive lattices with least element (the equivalence class of the set containing

the zero function) and greatest element (the equivalence class of the empty set).

We write M for the Medvedev lattice and Mw for the Muchnik lattice.

Terwijn has studied the structures of these lattices, in particular, he has shown [20]

that the finite intervals of the Medvedev lattice are exactly the finite Boolean algebras,

and the infinite intervals all have antichains of cardinality 22ℵ0 . Additionally, he has

given [21] a characterization of the finite intervals of the Muchnik lattice, which admit

a lot more variety, and tantalizingly noted that the situation is more complicated for

infinite intervals; in particular, that some countable linear orders (but not others) are

intervals of the Muchnik lattice, and that there are intervals with width ℵ0, intervals

with antichains of size 2ℵ0 but not 22ℵ0 , and intervals (in particular the whole lattice)

with antichains of size 22ℵ0 .

Inspired by these hints, we give in Chapter 3 a lattice-theoretic characterization that

encompasses Terwijn’s characterization of the finite intervals of the Muchnik lattice and

also applies to many infinite intervals. In particular, we characterize all such intervals
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with no antichains of cardinality 2ℵ2 , and explore in greater depth the structure of the

Muchnik lattice. Chapter 4 deals with various suborders of the Muchnik and Medvedev

lattices.

1.5 Some Lattice Theory

Much of the work in Chapter 3 relies on a number of results from lattice theory. This

section contains the essential definitions from lattice theory used in Chapters 3 and 4,

though many of the more advanced definitions are repeated when they become relevant.

Definition 1.13. A lattice L is a partially ordered set with the property that for any

x, y ∈ L, x and y have a least upper bound (join, written x ∨ y) and greatest lower

bound (meet, written x ∧ y) in L.

Lattices include all linear orders, the Muchnik and Medvedev degrees under their

respective partial orders, and the subsets of ω under the subset relation, but not the

Turing degrees, since not every pair of Turing degrees has a meet. The Turing degrees

form an upper semilattice, with joins but not necessarily meets.

Definition 1.14. If P and Q are two partial orders, we say that an injective map

f : P → Q is an embedding (and that P embeds into Q) if f preserves the partial order:

a ≤P b implies that f(a) ≤Q f(b). If P and Q are upper semilattices, then f is an

embedding of upper semilattices if it also preserves joins (f(a ∨P b) = f(a) ∨Q f(b)),

and if P and Q are lattices, then f is a lattice embedding if if preserves both joins and

meets.

Definition 1.15. A lattice L is distributive if, for every x, y, z ∈ L, (x ∨ y) ∧ z =
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(x ∧ z) ∨ (y ∧ z) and (x ∧ y) ∨ z = (x ∨ z) ∧ (y ∨ z). That is, meets and joins distribute

over each other.

The lattices mentioned above are all distributive; an example of a non-distributive

lattice is the lattice of subfields of Q(i,
√

2) ordered under inclusion: for x = Q(i),

y = Q(
√

2), and z = Q(i
√

2), we have (x ∨ y) ∧ z = z while (x ∧ z) ∨ (y ∧ z) = Q, and

(x ∧ y) ∨ z = z but (x ∨ z) ∧ (y ∨ z) = Q(i,
√

2).

Definition 1.16. A lattice L is complete if for every subset S ⊆ L, S has a supremum

in L. The supremum of S is often called the join of S and is written
∨
S.

Note that a complete lattice must have a largest element (the supremum of L) and

a smallest element (the supremum of ∅); this is not true of infinite lattices in general.

Definition 1.17. An interval of a lattice L is the set {x ∈ L | a ≤ x ≤ b} for some (not

necessarily distinct) a ≤ b ∈ L and is often written [a, b].

Many properties of lattices are preserved by taking intervals.

Proposition 1.18. If L is a distributive lattice and M is an interval in L, then M is also

a distributive lattice. The same is true when “distributive” is replaced by “complete.”

Since many elements of a lattice can be obtained as the joins of other elements, we

may ask which elements cannot be thus obtained.

Definition 1.19. An element x of a lattice L is join-irreducible if it is not the least

element of L, and if for any y, z ∈ L, if y ∨ z = x, then y = x or z = x. The notion of

meet-irreducible can be defined in a similar way.
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For finite lattices, we can think of the lattice as being generated (in a sense) by

taking all possible joins of its join-irreducible elements. For infinite lattices, we have

no such luck. However, there is another notion which coincides with join-irreducibility

in the case of finite lattices and is very helpful for understanding some infinite lattices,

including the Muchnik lattice.

Definition 1.20. Let L be a complete lattice. An element x of L is completely join-

prime if, for any subset S ⊆ L, x ≤
∨
S implies that there is some y ∈ S such that

x ≤ y.

We are particularly interested in the partial order formed by the completely join-

prime elements of a lattice.

Definition 1.21. Let L be a complete lattice. The partial order of completely join-prime

elements of L is JP(L).

A few more definitions are needed in order to state the main results of Chapter 3.

Definition 1.22. A complete lattice L is completely distributive if it satisfies, for every

doubly indexed subset {xij}i∈I,j∈J of L:

∧
i∈I

(∨
j∈J

xij

)
=
∨

α:I→J

(∧
i∈I

xiα(i)

)
.

In particular, meets distribute over arbitrary joins and joins distribute over arbitrary

meets.

Definition 1.23. An element k of a complete lattice L is compact if, for every subset

S ⊆ L, k ≤
∨
S implies that there is some finite T ⊆ S such that k ≤

∨
T . A complete

lattice L is algebraic if, for each a ∈ L, a =
∨
{k ∈ L | k compact and k ≤ a}.
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These definitions, and discussion of them, can be found in [7].

Definition 1.24. A lattice is superalgebraic if it is algebraic and completely distributive.

1.6 Results of Chapter 3

The main result of Chapter 3 is a characterization of the intervals of the Muchnik that

have no antichains of cardinality 2ℵ2 .

Theorem 1.25. A lattice L with no antichains of cardinality 2ℵ2 is isomorphic to an

interval of the Muchnik lattice Mw if and only if the following hold:

1. L is superalgebraic,

2. JP(L) is an initial segment of an upper semilattice, and

3. JP(L) has the countable predecessor property.

In addition to this characterization, we also give, via proving a more general result

about superalgebraic lattices, some interesting information about the structure of those

intervals of Mw with no uncountable antichains:

Theorem 1.26. Let L be an interval of the Muchnik lattice Mw with no uncountable

antichain. Then every element of L is the join of finitely many join-irreducible elements

of L.

1.7 Results of Chapter 4

The main results of this section concern the lattice of finite mass problems (mass prob-

lems which are finite as sets) and other sublattices of Mw. We prove that intervals in
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this sublattice are as large as possible.

Theorem 1.27. Let B <w A be Muchnik degrees of finite mass problems. Then there is

a set of cardinality 2ℵ0 of pairwise incomparable Muchnik degrees of finite mass problems

{Xα}α<∈2ω such that B < Xα < A for all α ∈ 2ω.

We show a similar result for countable mass problems, discuss co-countable mass

problems, and explore several alternative reducibilities for mass problems and the struc-

tures they generate.
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Chapter 2

Thin Set for Pairs Implies DNR

2.1 Background and Definitions

The reverse mathematics of combinatorial principles has generated a good amount of

interest in recent years. In particular, a lot of principles have emerged with reverse

mathematical strength between RCA0 (Recursive Comprehension) and ACA0 (Aritheo-

remetic Comprehension) which are not equivalent to either of these axiom sets or to the

other member of the “big five” sitting between them, WKL0 (Weak König’s Lemma).

The picture in reverse mathematics has been greatly expanded by a large web of these

combinatorial results, and it has been an ongoing and interesting project to understand

this web, adding new principles and establishing implications (and non-implications)

among them.

Some illustrations and descriptions of this fascinating area can be found in [11]

and [12]; here, we will be content with a brief outline of some of the more important

results in order to set the context for our results.

We first recall the following useful bit of notation: [X]n refers to the set of all un-

ordered n-tuples whose elements are elements of the setX. Thus, a function f : [X]n → α

should be interpreted as a coloring of the unordered n-tuples from X with colors taken

from the set α.
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• Ramsey’s Theorem (RTn
k). Ramsey’s Theorem is generally divided into a family

of principles, referred to as RTn
k for positive integers n and k, and corresponding to

k-colorings of n-tuples. In particular, RTn
k states that for any function f : [N]n →

{a ∈ N | a < k} there is an infinite homogeneous set A; that is, an infinite set

A ⊆ N such that f restricted to domain [A]n takes only one value. It is easy to see

that RTn
1 and RT1

k are all provable in RCA0; moreover, it is also not too difficult

to show by induction that RTn
k and RTn

c are equivalent for all c, k ≥ 2. Not as

obvious, but also known (due to Jockusch [13]), is the fact that RTn
2 is equivalent

over RCA0 to ACA0 for all n ≥ 3. This leaves RT2
2 as the only remaining case.

• Ramsey’s Theorem for pairs (RT2
2). Ramsey’s Theorem for pairs lies strictly

between RCA0 and ACA0 (the fact that it lies strictly below ACA0 is due to

Seetapun [16]). It is known that RT2
2 neither implies nor is implied by WKL0 (the

latter following from a result of Jockusch [13] and the former due to Liu [14]),

and it is RT2
2 and principles weaker than it which make up much of the web of

principles alluded to above.

• Stable Ramsey’s Theorem for pairs (SRT2
2). Stable Ramsey’s Theorem states

that if f : [N]2 → {0, 1} is a function with the property that, for every n, there is

some M such that for all m ≥M , f({n,m}) = f({n,M}) (this is sometimes stated

as “for all n, limm f({n,m}) exists”), then there is an infinite homogeneous set A.

The idea is that the coloring stabilizes; in the language of graphs, every vertex is

connected either to cofinitely many other vertices by a color-0 edge, or cofinitely

many other vertices by a color-1 edge. For a while it was an open question whether

SRT2
2 was strictly weaker than RT2

2 or whether they were equivalent; this has been
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resolved by Chong, Slaman, and Yang [5] in favor of the former.

• Cohesive Principle (COH). COH states that for any infinite sequence of sets

(Ri)i∈N, there is an infinite set A such that for each i, either A ⊆∗ Ri or A ⊆∗ Ri.

(Here, ⊆∗ means that all but finitely many elements of the left hand side are

contained in the right hand side.) As originally proved by Cholak, Jockusch, and

Slaman [4], RT2
2 is equivalent over RCA0 to the conjunction of SRT2

2 and COH.

• Chain-Antichain, Ascending or Descending Sequence, and friends (CAC,

ADS, etc.). Chain-Antichain (CAC) states that every infinite partial order has

an infinite subset that is either a chain or an antichain. Ascending or Descend-

ing Sequence (ADS) states that every infinite linear order has either an infinite

ascending sequence or an infinite descending sequence. These principles were ex-

plored by Hirschfeldt and Shore in [11], who showed that they lie strictly below

SRT2
2. These principles themselves, like RT2

2, split into stable and cohesive ver-

sions: SCAC, CCAC (which is equivalent to ADS), SADS, and CADS. All of these

splittings are strict.

• Diagonally Non-Computable Set Principle (DNR). A computability princi-

ple more measure-theoretic than combinatorial in flavor, DNR states that for every

set A, there is a set which is diagonally non-computable relative to A. DNR has

proved to be important in that some, but not all, of the various combinatorial

principles of interest imply it. For instance, SRT2
2 is known to imply DNR (proved

by Hirschfeldt et al. [10]), but Hirschfeldt and Shore proved [11] that CAC does

not imply DNR, immediately giving the result that CAC does not imply SRT2
2.

Other, similar results have also been achieved.
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• Free Set and Thin Set Theorems (FS(n) and TS(n)). The Free Set and Thin

Set Theorems represent another kind of weakening of Ramsey’s Theorem, dealing

with colorings with infinitely many colors. The principle FS(n) states that for any

function f : [ω]n → ω, there is an infinite free set A, such that f(X) ∈ X ∪ (ω \A)

for every n-tuple X of elements from A. The principle TS(n) states that for every

such function, there is an infinite thin set A, with the property that f restricted

to [A]n omits some color; that is, f([A]n) ( ω. For every n, RTn
2 implies FS(n),

which implies TS(n). (These facts, and others, are proved by Cholak, Giusto,

Hirst, and Jockusch in [3] where they establish a number of results about Free

Set and Thin Set.) These theorems are much weaker than Ramsey’s theorem;

while RT3
2 implies ACA0 already, Wang has recently shown ([22]) that even the

conjunction of FS(n) (and TS(n)) over all n is not enough to imply ACA0.

The focus of this chapter is on the Thin Set Theorem for Pairs, or TS(2). This

principle should be regarded as a substantial weakening of RT2
2. TS(2) has something

of a reputation for being almost uselessly weak; while it lies strictly above RCA0, it

was known to imply almost nothing of note. The goal of this paper is to vindicate this

little flower of the reverse math jungle and show that it is not, in fact, uselessly weak

but represents a notably different direction of weakening of RT2
2 than the collection of

principles living below CAC. Our goal is to prove the following theorem:

Theorem 2.1 (Main Theorem). RCA0 ` TS(2)→ DNR.

We will approach the proof of Theorem 2.1 by first proving that it holds in ω-models

of RCA0 using techniques from computability theory, and then to show how to modify

the proof to hold in the general setting. The interested reader may wish to compare
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this proof to the simpler proof that SRT2
2 implies DNR in [10] from which it takes its

inspiration.

2.2 ω-models of TS(2) are models of DNR

Our proof that ω-models of TS(2) are models of DNR begins with two lemmas.

Lemma 2.2. There are sets {Ai}i∈ω, uniformly ≤T 0′, a partition of ω, and a computable

function f , such that for every e, if We ⊆ Ai, then |We| < f(e, i). In fact we may take

f(e, i) = (k + 1)(k + 2), where k = max(e, i).

Proof. Let R(e, i) be the requirement “if We ⊆ Ai, then |We| < f(e, i).”

We will prove this by 0′-computable construction in stages.

Begin with all Ai empty. For each n ≥ 0, at stage n, we have already decided in

previous stages y ∈ Ai (for any i) for at most n(n+ 1) numbers (by induction), and will

decide y ∈ Ai for at most 2n+2 new numbers y in stage n, giving at most (n+1)(n+2)

numbers in some Ai (call these numbers used) by the end. We do this in three steps.

First, for each 0 ≤ e < n, we ensure that R(e, n) is satisfied. Check using 0′ if We

has at least (n + 1)(n + 2) elements. We are done with those We which do not; they

are small and R(e, n) is already satisfied. For those which do, take one element from

each which has not been used. Since only n(n + 1) numbers have been used, each such

We will contain such an element (in fact, n such elements, so we can choose them all

distinct if we like). Put all these elements into An, satisfying R(e, n) by negating the

hypothesis. This uses at most n new numbers.

Next, we ensure that R(n, i) is satisfied for each 0 ≤ i ≤ n. Check if Wn has at least

(n+1)(n+2) elements; if not, R(n, i) is already satisfied for every i. If so, since we have
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used at most n(n + 1) + n numbers so far, Wn contains at least n + 1 elements which

have not been used, say {xi}0≤i≤n. Put xi ∈ Ai for each 0 ≤ i ≤ n, satisfying R(n, i) for

each 0 ≤ i ≤ n. This uses at most n+ 1 new numbers.

Finally, if n is not yet in some Ai, put n ∈ A0.

Thus at the end of stage n, we have ensured that R(e, i) is satisfied for each 0 ≤

e, i ≤ n, have used at most n(n + 1) + n + (n + 1) + 1 = (n + 1)(n + 2) numbers total,

and ensured that all numbers up to n have been used.

The collection {Ai}i∈ω constructed in the end are uniformly 0′ computable, since it

takes only to stage n to find out for which Ai we have n ∈ Ai, and there is a unique

such Ai, so this is a partition of ω. Finally, all the requirements R(e, i) are satisfied

(each by stage max(e, i)).

Observe that the proof, and thus the result, relativizes to WX
e and {Ai}i∈ω uniformly

≤t X ′.

Lemma 2.3. Let Turing Ideal I model TS(2). Then for all {Ai}i∈ω uniformly ≤T C ′,

where C ∈ I, there is an infinite B ∈ I and an n so that B ⊆ Ān.

Proof. By the limit lemma, there is a function f : ω2 → ω, f ≤T C, such that Ai =

{x ∈ ω : lim
m→∞

f(x,m) = i}. Taking f : [ω]2 → ω by ignoring (x,m) with x ≥ m does

not change these limits.

Then by TS(2), since f ≤T C ∈ I,

∃n∃B ∈ I
[
f([B]2) ⊆ ω \ {n}

]
.

So ∀x ∈ B ( lim
m→∞

f(x,m) 6= n), and hence B ⊆ An.

Theorem 2.4. Every ω-model of TS(2) is a model of DNR.
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Proof. Let I be a Turing ideal that is an ω-model of TS(2). We’ll show that I contains a

diagonally non-computable function, but everything relativizes naturally to find a DNR

relative to any X ∈ I.

Let {Ai}i∈ω be as in Lemma 2.2. By Lemma 2.3, there is an infinite B ∈ I and an

n ∈ ω such that B ⊆ An. Then for all e, if We ⊆ B then |We| < (k + 1)(k + 2), where

k = max(e, n). Call this quantity fn(e).

Let g be such that Wg(e) is the set consisting of the first fn(e) many elements of

B. (g is not computable, but is computable in B.) For any e, if We = Wg(e), then

We ⊆ B ⊆ An, and so |We| < fn(e) by construction of An. But |Wg(e)| = fn(e), a

contradiction. So ∀e(We 6= Wg(e)).

We can now finish with a standard argument giving a diagonally non-computable

function from a fixed-point free function. Let f be computable such that Wf(e) = WΦe(e)

if Φe(e) ↓, and Wf(e) = ∅ otherwise, and consider h = g ◦ f . Now if Φe(e) ↓, then

Wh(e) = Wg(f(e)) 6= Wf(e) = WΦe(e), so it follows that h(e) 6= Φe(e). As h is total (since

both f and g are), this means that h is a diagonally non-computable function. But

h ≤T B ∈ I, so h is the function in I that we wanted.

2.3 TS(2) Implies DNR

In order to check that RCA0 ` TS(2) → DNR, it suffices to show that the above proof

can be carried out in RCA0. To do this we need to, first, eliminate all references to

jumps (we can only talk about functions that exist in the model) and then check that

the proof only requires Σ0
1-induction.

So, for instance, Lemma 2.2 becomes, recalling that there is an enumeration within a
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model M of all the M-ce sets We (where indices range over the first-order part of M):

Lemma 2.5. There is a function A(x,m) and a function f(e, i) such that

• limmA(x,m) exists for each x,

• For each e, if ∀x ∈ We(limmA(x,m) 6= i), then |We| < f(e, i).

Similarly, Lemma 2.3 becomes:

Lemma 2.6. For every function A(x,m) such that limmA(x,m) exists for each x, there

is an infinite B and an n such that ∀x ∈ B[limmA(x,m) 6= n].

The proof of Lemma 2.6 is exactly the same as that of Lemma 2.3, except it is even

easier: there is no need to apply the limit lemma, because we are using the limit notion

in the first place as we don’t have access to the jump. (Also, all instances of ω are

replaced by N, referring instead to the first-order part of M.)

The proof of Lemma 2.5 is somewhat more subtle, since we don’t have access to any

oracle with which to determine the size of We.

Proof. Let R(i, e) be the requirement that if ∀x ∈ We(limmA(x,m) 6= i), then |We| <

f(e, i). Let 〈e, i〉 be the pairing function that orders (e1, i1) < (e2, i2) if max e1, i1 <

max e2, i2 or these are equal and i1e1 precedes i2e2 in lexicographic order. At stage 0,

we define A(x, 0) = 0. At stage m > 0, we do the following:

First, run stages 0 ≤ n < m from the proof of Lemma 2.2 as substages of stage m,

except that, first, every time we need information about We or its size, we use instead

the corresponding information about We,m (which we can know), and second, whenever

we would put x ∈ Ai, instead define A(x,m) = i. Also, omit the last step of each
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substage n (where we would put A(n,m) = 0 if it is not yet defined); it will not be

necessary. Observe that for each 〈e, i〉 ≤ 〈m,m〉, this attempts to satisfy R(e, i) (based

on the assumption that We = We,m) in order. Say that the requirement R(e, i) assigns x

at stage m.

Then, write A(x,m) = 0 for all x for which A(x,m) is not yet defined.

There is a subtle problem here, in that in the original proof of Lemma 2.2, we on

several occasions made an arbitrary choice from elements of We. If we happened to make

different choices at different stages m in the above construction, we could possibly ruin

the existence of limmA(x,m). On the other hand, we can’t mandate that we always

make the same choices, because if we chose an element from We1 , say, to put into Ai1

(i.e., A(x,m0) = i1, using x to satisfy R(e1, i1)), then discovered at a later stage m0

that We2 was large enough that it had to have an intersection with Ai2 , we might need

to put A(x,m1) = i2. To solve this, we keep track of which requirement R(e, i) assigns

x at stage m, and only allow this to change to a higher priority requirement. Since we

deal with requirements within each stage in their priority order, making this restriction

does not hamper us at all.

We have to verify that, first, the construction can be carried out in RCA0, and second,

RCA0 can verify that limmA(x,m) exists for all x and satisfies the stated requirements.

It is clear that each of the things we wish to do can be carried out in RCA0 provided

that we can show in RCA0 that, as in the proof of Lemma 2.2, when we begin substage n

of stage m we have defined A(x,m) for at most n(n+ 1) many elements x. This can be

shown by ∆0
1 induction (on n), so holds in RCA0.

Next, we verify that limmA(x,m) exists for each x. Suppose there is a stage m0 at

which A(x,m) 6= 0 (if not, the limit exists and is 0). Then x is assigned by some R(e, i)
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at some stage m0. Since A(x,m1) can only be defined differently if x is assigned by a

higher-priority requirement at stage m1 than at stage m0, it follows that there are at

most 〈e, i〉+ 1 many m such that A(x,m) 6= A(x,m+ 1). Hence limmA(x,m) exists.

Finally, we need to check that each R(e, i) is satisfied. It follows by induction that

for each (e, i), there are at most 〈e, i〉 many numbers x such that A(x,m) is ever assigned

by any requirement R(e′, i′) with 〈e′, i′〉 < 〈e, i〉. This is by Π0
1 induction (which holds in

RCA0), via a formula stating that for all finite sequences of length 〈e, i〉+1 and all m, it

is not the case that each element of the sequence has been assigned by some R(e′, i′) with

〈e′, i′〉 < 〈e, i〉 by stage m. So there is some stage m(e, i) after which no new elements are

ever assigned by requirements R(e′, i′) with 〈e′, i′〉 < 〈e, i〉. So if |We| ≥ (k + 1)(k + 2),

where n = max(e, i), then picking a stage m ≥ m(e, i) such that |We,m| ≥ (k+ 1)(k+ 2),

we know that A(x,m) = i for some x ∈ We,m, and furthermore, x can never be assigned

by some R(e′, i′) with 〈e′, i′〉 < 〈e, i〉. (It can’t have been before, since if it were, it could

never have been assigned by R(e, i) as which requirement assigns an element can change

only to requirements of higher priority. And since it has never been, it can’t in the future

by our definition of m(e, i).) Hence, since x is never assigned later by a requirement with

higher priority, it will always be assigned by R(e, i). Thus A(x,m′) = i for all m′ ≥ m;

that is, limm(x,m) = i.

Since our two lemmas are both provable in RCA0 + TS(2), it remains to check the

construction of the function in the proof of Theorem 2.4. Everything in the construction

goes through in RCA0 (pretty much verbatim, in fact), so this completes the proof of

Theorem 2.1.
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2.4 Remarks

It is worth noting that we don’t require even the full strength of TS(2) for this proof.

Even a “stable” version of TS(2) suffices, where we assume (naturally enough) that for

each x, limy c({x, y}) exists (where c is the coloring). This does not seem terribly inter-

esting, however, if for no other reason than that the corresponding “cohesive” version of

TS(2) is, of course, false.

The fact that TS(2) implies DNR, but other weakenings of RT2
2, such as CAC,

do not, suggests that DNR may prove to be a very useful tool for classifying various

combinatorial principles. It has already been used to great effect to show several non-

implications among combinatorial principles, and the current result suggests that such

use may be fruitfully expanded. It may be that DNR is a much more interesting point

of comparison for the reverse mathematics of combinatorial principles than something

like WKL0.
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Chapter 3

Intervals of the Muchnik Lattice

In a recent paper, Terwijn [21] gave a characterization of the finite intervals of the

Muchnik lattice Mw. Contrasting with his results on the Medvedev lattice in [20],

where the finite intervals are exactly the boolean algebras and all infinite intervals have

antichains of cardinality 22ℵ0 , there is quite a lot of variety in the lattices that can appear

as intervals of Mw. Our goal in this chapter is to give a characterization of as large a

class of these lattices as possible. We give a characterization of those intervals of Mw

which have no antichains of cardinality 2ℵ2 .

An overview of mass problems and Muchnik reducibility can be found in Rogers

[15], while Grätzer [8] and Davey and Priestley [7] contain background in lattice theory.

However, all of the definitions and results necessary for this chapter can be found either

in Sections 1.4 and 1.5 or below.

3.1 Ways to Think About Muchnik Degrees

It is the goal of this chapter to describe, as much as possible, the intervals of the lattice

of Muchnik degrees. To do this, we will first need to develop an easier way of working

with Muchnik degrees. In particular, we would like to have something of a canonical

representative for each Muchnik degree, and an easy way of delving into their internal
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structures and comparing them. Most of this simplifying work is folklore, but it is worth

making it explicit, because by the end our way of looking at Muchnik degrees will be

much different than the standard definition.

Lemma 3.1. The Muchnik degree of a mass problem depends only on the Turing degrees

of its members. As a consequence, Muchnik reducibility has the same property.

Proof. Suppose that the members of the mass problems S and T yield the same sets of

Turing degrees. Then, take any A ∈ T . There is some B ∈ S such that B ≡T A. In

particular, B ≤T A. Thus, S ≤w T . By the same argument, T ≤w S. Hence S and T

have the same Muchnik degree.

In light of Lemma 3.1, we can stop thinking about Muchnik degrees as collections of

mass problems, and instead as collections of sets of Turing degrees. It is worth noting

that this does not work in the case of Medvedev reducibility. Now, we would like to pick

a canonical member of a Muchnik degree.

Lemma 3.2. If S is a collection of Turing degrees, then it is Muchnik equivalent to

ucl(S), where ucl() denotes the upward closure in the set of Turing degrees; that is,

ucl(S) is the set of all Turing degrees in upper cones of elements of S.

Proof. It is certain that ucl(S) ≤w S, since every element of S is also an element of

ucl(S), and computes itself. On the other hand, every a ∈ ucl(S) is in the upper cone

of some b ∈ S, and we have b ≤T a. Hence S ≤w ucl(S) also.

So we can restrict our attention to upward closed sets of Turing degrees. Does this

give us our canonical representative? It turns out that it does.
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Lemma 3.3. Let S and T be different upward closed sets of Turing degrees. Then they

are not Muchnik equivalent.

Proof. Since S and T are different, it follows that one of them (say S) contains a Turing

degree a that is not in the other. Moreover, since T is upward closed, a cannot be in the

upper cone of any Turing degree in T (otherwise T would also contain a). Hence there

is no b ∈ T such that b ≤T a, and hence T 6≤w S. Thus they are not equivalent.

Since we now have a canonical representative for the Muchnik degrees, we would like

to be able to give a nice characterization of the ordering in terms of those canonical

representatives. We can.

Lemma 3.4. The ordering on the Muchnik degrees is given by reverse inclusion of their

representatives. That is, if S and T are upward closed sets of Turing degrees, then

S ≤w T if and only if T ⊆ S.

Proof. First, suppose that T 6⊆ S. Then we can repeat the proof of Lemma 3.3 to find

that S 6≤w T . Conversely, suppose that T ⊆ S. Then for any a ∈ T , we also have

a ∈ S, and of course a ≤T a. Hence S ≤w T .

Now we have, for each Muchnik degree, a canonical representative which is an upward

closed set of Turing degrees, and the Muchnik ordering is given by reverse inclusion on

those representatives. However, these are not the representatives we are actually going

to use. Mostly, they are not really that convenient: upward closed sets of Turing degrees

are enormous and unwieldy, and navigating the fact that the ordering is reverse inclusion

is at best annoying and at worst a continual source of confusion. Luckily, we have an easy

remedy. We can take complements. The complements of upward closed sets of Turing
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degrees are downward closed sets of Turing degrees, and the corresponding ordering is

by inclusion rather than reverse inclusion. Thus, we have the following:

Lemma 3.5. The Muchnik degrees are in one to one correspondence with the downward

closed subsets of the Turing degrees, and the ordering on Muchnik degrees corresponds to

the subset ordering on these sets. Meet and join in the lattice of Muchnik degrees then

correspond to intersection and union of these subsets.

We will take the liberty, from here on, of treating these corresponding downward

closed sets of Turing degrees as identical to the Muchnik degrees they represent, since

the lattice structure they form is identical to the Muchnik lattice we are concerned with.

This has the potential for some confusion, but in the author’s opinion it makes the proofs

themselves much more intuitive and simpler to present and is well worth it.

3.2 Some Lattice Theory

We also need a number of ideas from lattice theory.

Definition 3.6. A lattice L is complete if, for every subset S ⊆ L, S has a supremum

in L.

If L is a complete lattice, the supremum of a subset S ⊆ L in L is sometimes called

the join of S and will be written
∨
L S (or

∨
S if the lattice L is clear). In a complete

lattice, every subset S also has an infimum (or meet): the supremum of the set of lower

bounds of S. Every finite lattice is necessarily complete, and every complete lattice has

both a least and greatest element.
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Definition 3.7. An interval of a lattice L is the set {x ∈ L | a ≤ x ≤ b} for some (not

necessarily distinct) a ≤ b ∈ L and is often written [a, b].

Proposition 3.8. If L is a complete lattice and M is an interval of L, then M is also

a complete lattice.

Proof. Let S ⊆M and let A and B be the least and greatest elements of M , respectively.

If S is empty, then
∨
M S is A, so suppose that S is nonempty. Then S ⊆ L; certainly∨

L S ≤ B, since B ∈ L and B is an upper bound for all the elements of S. Further, for

X ∈ S, we have A ≤ X ≤
∨
L S ≤ B, so it follows that

∨
L S ∈M . Since every element

of M is also in L,
∨
L S must be the supremum of S in M as well.

For a general partial order, we have the notion of a convex subset.

Definition 3.9. Let P be a partial order. A subset S ⊆ P is convex if for every x, y ∈ S

and a ∈ P , x ≤ a ≤ y implies that a ∈ S.

Observe that, unlike intervals of lattices, convex subsets of partial orders need not

have endpoints.

Filling a similar role to the join-irreducible elements in Terwijn’s characterization

in [21] of the finite intervals of Mw, we have the completely join-prime elements and the

suborder they form.

Definition 3.10. Let L be a complete lattice. An element X is called completely join-

prime if for any S ⊆ L, X ≤
∨
S implies that there is some Y ∈ S such that X ≤ Y .

Definition 3.11. Let L be a complete lattice. The partial order of completely join-prime

elements of L is JP(L).
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The completely join-prime elements of the Muchnik lattice are particularly nice:

Lemma 3.12. The completely join-prime elements of Mw are the downward closures of

single Turing degrees. Therefore, JP(Mw) ∼= D .

Proof. First we show that the downward closure A of a Turing degree a is completely

join-prime. Let S ⊆Mw and suppose that A ≤
∨
S. Then a ∈ X for some X ∈ S, and

hence A ≤ X . This shows that A is completely join-prime.

Second, suppose that A ∈Mw is completely join-prime. Let S = {dcl(x) | x ∈ A}.

Then A ≤
∨
S, so it follows that A ≤ dcl(a) for some a ∈ A. Since dcl(a) ≤ A for any

a ∈ A, it follows that A must be the downward closure of the single Turing degree a.

We also have a way of extracting a lattice from a partial order.

Definition 3.13. Let P be a partial order. Then O(P ) is the lattice of downward closed

subsets of P , ordered by inclusion.

Terwijn [21] calls this H(P ), but we will follow Davey and Priestley [7] in calling it

O(P ). In light of Definition 3.13, we can restate Lemma 3.5 as Mw
∼= O(D).

Terwijn’s characterization of the finite intervals in Mw rests on the duality between

a finite distributive lattice L and the partially ordered set J (L) of its join-irreducible

elements, with L ∼= O(J (L)). This duality does not hold for all infinite distributive

lattices, but for a particular class of lattices, which happens to include the intervals

of Mw, we can replace J (L) with JP(L) and still get this duality.

Definition 3.14. A complete lattice L is completely distributive if it satisfies, for every

doubly indexed subset {xij}i∈I,j∈J of L:∧
i∈I

(∨
j∈J

xij

)
=
∨

α:I→J

(∧
i∈I

xiα(i)

)
.
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In particular, meets distribute over arbitrary joins and joins distribute over arbitrary

meets.

Definition 3.15. An element k of a complete lattice L is compact if, for every subset

S ⊆ L, k ≤
∨
S implies that there is some finite T ⊆ S such that k ≤

∨
T . A complete

lattice L is algebraic if, for each a ∈ L, a =
∨
{k ∈ L | k compact and k ≤ a}.

These definitions, and discussion of them, can be found in [7].

Definition 3.16. A lattice is superalgebraic if it is algebraic and completely distributive.

As it turns out, there are several equivalent conditions for a lattice being superalge-

braic, and it is these equivalent conditions which we are interested in.

Theorem 3.17 ([7], 10.29 and [6], 2.5). Let L be a lattice. Then the following are

equivalent:

• L is superalgebraic.

• L ∼= O(P ) for some partially ordered set P .

• Every element of L is the join of a set of completely join-prime elements of L.

• (Duality) L ∼= O(JP(L)) via the isomorphism a 7→ {x ∈ JP(L) | x ≤ a}.

Corollary 3.18. Mw is a superalgebraic lattice.

Proof. By Lemma 3.5 we know that Mw
∼= O(D).

Just as distributivity and completeness are preserved by taking intervals, so too is

the property of being superalgebraic.
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Lemma 3.19. Every interval of a superalgebraic lattice is itself a superalgebraic lattice.

Proof. Let L be a superalgebraic lattice and M be an interval of L, and let the least

element of M be A. If X ∨ A is an element of M and X is completely join-prime in L,

then either X ∨A is completely join-prime in M or X ∨A = A. For suppose that S ⊆M

and X ∨A ≤
∨
S. If S is empty, then X ∨A = A; otherwise,

∨
S is the same in both M

and L. In that case, certainly S ⊆ L, so by the fact that X is completely join-prime

in L, we see that for some Y ∈ S, X ≤ Y , and hence X ∨A ≤ Y ∨A = Y , with the last

equality because A ≤ Y . This implies that X ∨A is completely join-prime in M .

Now let X be any element of M . If X is the least element of M , it is the supremum

of the empty set and we are done. Otherwise, let A be the least element of M . Since L

is superalgebraic, there is some set S of completely join-prime elements of L such that

X =
∨
S; the set is nonempty since X is not the least element of M and thus not the least

element of L; indeed, S must contain some element Y 6≤ A. For every element Y ∈ S,

observe thatA ≤ Y∨A ≤ X∨A = X , so that Y∨A ∈M . Letting SA = {Y∨A | Y ∈ S},

we see by the preceding paragraph that every element of SA is either the least element A

of M or a completely join-prime element of M , and that there is at least one of the

latter. Letting T = SA \ A, we have that
∨
T =

∨
SA = A ∨ (

∨
S) = A ∨ X = X , so

that X is the join of a set of completely join-prime elements of M . It follows that M is

superalgebraic.

Taking intervals also has a nice relationship with the duality condition.

Lemma 3.20. Let L and M be superalgebraic lattices. Then M is isomorphic to an

interval of L if and only if JP(M) is isomorphic to a convex subset of JP(L).
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Proof. First let M be an interval of L, and let A and B be the least and greatest elements

of M , respectively. Let R be the set of completely join-prime elements X ∈ L such that

X 6≤ A and X ≤ B. R is clearly a convex subset of JP(L). By the proof of Lemma 3.19

we know that for such X , X ∨ A is completely join-prime in M . Conversely, if Y is

completely join-prime in M , then there is (by complete distributivity) a least X ∈ L

such that X ∨A = Y . This X is completely join-prime in L. For if not, take a set S ⊆ L

with X ≤
∨
S and X 6≤ Z for any Z ∈ S. Then S ′ = {(Z ∧ B) ∨ A | Z ∈ S} is a

subset of M with the same property for Y , contradicting that Y is completely join-prime

in M . It follows that X ∈ R. Finally, if X1 and X2 are two elements of R (without

loss of generality, X2 6≤ X1), then X1 ∨ A = X2 ∨ A implies that X2 ≤ X1 ∨ A and thus

that X2 is not join-prime, a contradiction. Hence we have an isomorphism between R

and JP(M).

Second, suppose that JP(M) is isomorphic to a convex subset of JP(L). We will show

that every such convex subset is of the form above: it is the set of elements X ∈ JP(L)

such that X 6≤ A and X ≤ B for some A ≤ B. To see this, let R be a convex subset

of JP(L). Let RL be the set of elements of JP(L) contained in the downward closure

of R but not contained in R. Let A =
∨
RL and B =

∨
R. Certainly we have X ≤ B

for every X ∈ R. Additionally, if X ∈ R, then X 6≤ A, since X 6≤ Y for any Y ∈ RL.

(Y is in the downward closure of R, and if some element of R were below Y , then by

convexity of R, Y would be in R.) On the other hand, if X ∈ JP(L) and X ≤ B =
∨
R,

then X lies below some element of R (and thus it lies in the downward closure of R)

because X is completely join-prime, and if X 6≤ A, then it does not lie in RL. So any

X ∈ JP(L) with X 6≤ A and X ≤ B must be in R. Now we observe that the first

direction shows that when R is of this form, it is isomorphic to JP(T ) for the interval
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T in L with least element A and greatest element B. By the duality condition for

superalgebraic lattices and the fact that T is superalgebraic (by Lemma 3.19), we have

T ∼= O(JP(T )) ∼= O(JP(M)) ∼= M ; that is, M is isomorphic to an interval of L.

3.3 The Main Theorem

We are now ready to state our characterization of intervals in the Muchnik lattice.

Theorem 3.21 (Main Theorem). A lattice L with no antichains of cardinality 2ℵ2 is

isomorphic to an interval of the Muchnik lattice Mw if and only if the following hold:

1. L is superalgebraic,

2. JP(L) is an initial segment of an upper semilattice, and

3. JP(L) has the countable predecessor property.

Proof that the conditions are necessary. Let L be an interval of the Muchnik lattic Mw.

By Corollary 3.18, Mw is superalgebraic. By Lemma 3.19, L is also superalgebraic.

By Lemma 3.12, JP(Mw) ∼= D . By Lemma 3.20, it follows that JP(L) is isomorphic

to a convex subset of the Turing degrees D . Because D is an upper semilattice, every

convex subset D is an initial segment of an upper semilattice, and because D has the

countable predecessor property, so does every convex subset of D . Hence JP(L) has

these properties as well.

The proof that these conditions are sufficient is a little more involved.

Proof that the conditions are sufficient. Let L be a superalgebraic lattice such that JP(L)

is the initial segment of an upper semilattice and has the countable predecessor property.
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First, we need a minor set-theoretic lemma.

Lemma 3.22. For any infinite cardinal κ, the powerset P(κ) has an antichain of car-

dinality 2κ.

Proof. For any subset X ⊆ κ, define AX ⊂ κ + κ (where the summation is ordinal

arithmetic) by α ∈ AX if and only if α ∈ X, and κ + α ∈ AX if and only if α 6∈ X,

where α ranges over ordinals less than κ. Then if X 6= Y , AX and AY are incomparable.

It follows that P(κ + κ) has an antichain of cardinality 2κ. But taking a bijection

f : κ+κ→ κ (which exists because κ is infinite) we get that P(κ) ∼= P(κ+κ), so that

P(κ) must have an antichain of cardinality 2κ.

We can use this to put an upper bound on the size of antichains in JP(L).

Lemma 3.23. JP(L) has no antichains of cardinality ℵ2.

Proof. Suppose that {An}n∈ω2 was an antichain in JP(L). Let {Sα}α<2ℵ2 ⊂ P(ω2) be

an antichain (under ⊆) of subsets of ω2; such an antichain exists by Lemma 3.22. Define

Xα = sup{An}n∈Sα . We will show that {Xα}α<2ℵ2 is an antichain in L.

Let α 6= β. Suppose for contradiction that Xα ≤ Xβ (the other ordering works the

same way). Then there is some p ∈ Sα \Sβ, and Ap ≤ Xα ≤ Xβ. Since Ap is completely

join-prime, there is some q ∈ Sβ such that Ap ≤ Aq. But p 6= q, since p 6∈ Sβ, and thus

this is a contradiction, since the An were incomparable. Thus {Xα}α<2ℵ2 is an antichain

in L.

But L has no antichains of cardinality 2ℵ2 , so this is a contradiction. Hence JP(L)

has no antichains of cardinality ℵ2.
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Lemma 3.24. Suppose that P is a partial order with no antichains of cardinality ℵ2

and the countable predecessor property. Then P has cardinality at most ℵ1.

Proof. We will show that P is the union of a chain of length at most ω1 of subsets of P

which have cardinality at most ℵ1. Define subsets Pα of P in the following way:

P0: Let X0 be any maximal antichain in P . By hypothesis, it has at most ℵ1 elements.

Below each element of X there are at most countably many elements of P . Hence the

downward closure of X0 in P is a union of at most ℵ1 sets, each with cardinality at

most ℵ0, hence it has cardinality at most ℵ1. Let P0 be the downward closure of X.

Successor stages α + 1: If P = Pα stop, as P thus has cardinality at most ℵ1.

Otherwise, take a maximal antichain Xα+1 in P \ Pα. It is an antichain in P so it is of

cardinality at most ℵ1; also, it is nonempty. By the countable predecessor property, the

downward closure of Xα+1 in P has cardinality at most ℵ1. Let Pα+1 be the union of Pα

and the downward closure of Xα+1; it has cardinality at most ℵ1.

Countable limit stages α: Define Pα =
⋃
β<α Pβ. It is a countable union of sets of

cardinality at most ℵ1, so it has cardinality at most ℵ1.

It remains to prove that P =
⋃
α<ω1

Pα. Suppose not. Then there is some x ∈ P

such that x 6∈
⋃
α<ω1

Pα. At every successor stage α+ 1, x 6∈ Pα+1, so it follows that x is

not in Pα, nor is it below any element of Xα+1. By maximality of Xα+1, it follows that x

must be above some element of Xα+1. It follows that, for each countable α, some element

of Xα+1 is a predecessor of x. But these are all distinct, and there are uncountably

many countable ordinals α, so it follows that x has uncountably many predecessors,

contradicting the fact that P has the countable predecessor property. Hence there is no

such x and P =
⋃
α<ω1

Pα.
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This expresses P as a union of a collection of size ℵ1 of sets with cardinality at

most ℵ1, so it follows that P is of cardinality at most ℵ1.

Together, these give us an important fact about JP(L).

Lemma 3.25. JP(L) has cardinality at most ℵ1.

Proof. Lemma 3.24 applies to JP(L) by Lemma 3.23.

We can now use a powerful result of Abraham and Shore [1] to map JP(L) to a nice

part of D .

Proposition 3.26. Let P0 be the result of adding a smallest element 0 to JP(L). Then

P0 is isomorphic to an initial segment of the upper semilattice D of Turing degrees.

Proof. By assumption, JP(L), and thus P0, has the countable predecessor property and

is an initial segment of an upper semilattice. By Lemma 3.25, P0 has cardinality at

most ℵ1, and by construction, P0 has a least element. Abraham and Shore proved [1,

Theorem 3.12] that every such partial order is isomorphic to an initial segment of D .

It follows by removing the least element of P0 that JP(L) is isomorphic to a convex

subset of D . By Lemma 3.12, we have that JP(L) is isomorphic to a convex subset

of JP(Mw), and thus by Lemma 3.20, it follows that L is isomorphic to an interval

of Mw.

As corollaries to Theorem 3.21 we can get interesting characterizations in several

special cases:
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Corollary 3.27 (Terwijn [21], 3.14). A finite distributive lattice L is isomorphic to an

interval of Mw if and only if the join-irreducible elements J (L) of L form an initial

segment of an upper semilattice.

Proof. Such a lattice is automatically superalgebraic, and for finite lattices the join-

irreducible elements are necessarily completely join-prime, so JP(L) = J (L). Fi-

nally, JP(L) is finite and therefore necessarily has the countable predecessor prop-

erty.

The reader will observe that Terwijn also uses the condition of not being “double-

diamond-like”—that is, not having a pair of elements of J (L) with two minimal mutual

upper bounds—as an equivalent of forming an initial segment of an upper semilattice.

In the finite case, these coincide just as the notions of join-irreducible and completely

join-prime do. As soon as one steps into the infinite case, both of these simplifications

break down. For instance, the linear order ω+1 occurs as an interval of Mw; its greatest

element is join-irreducible but not completely join-prime. Similarly, one has a partial

order P with two minimal elements and an infinite descending chain of mutual upper

bounds for these two elements; the lattice L with JP(L) = P is not double-diamond-like,

but neither is P an initial segment of an upper semilattice, and so this L does not occur

as an interval of Mw.

Corollary 3.28. A linear order L is isomorphic to an interval of Mw if and only if

it is complete and the set of successors is dense in L and has the countable predecessor

property.

Proof. The successor elements in a linear order are exactly the completely join-prime
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elements. The set of successors being dense in L is exactly the third condition in The-

orem 3.17, so this just says that L is superalgebraic. JP(L), the set of successors, is a

linear order and thus automatically an initial segment of an upper semilattice; its having

the countable predecessor property is just the last condition in Theorem 3.21.

Corollary 3.29. A countable lattice L is isomorphic to an interval of Mw if and only

if it is superalgebraic and JP(L) is an initial segment of an upper semilattice.

Proof. JP(L) is countable and thus automatically has the countable predecessor prop-

erty.

As a corollary to the proof of Theorem 3.21, we also obtain a nice result about initial

segments of Mw.

Corollary 3.30. A lattice L satisfying the conditions in Theorem 3.21 is isomorphic to

a closed initial segment of Mw if and only if the reduced lattice L− obtained by removing

the least element of L is either empty or has a least element.

Proof. The case when L− is empty corresponds to the interval [∅, ∅] in Mw. Otherwise,

the condition that L− has a least element is necessary, since, because D has a least

element 0, every initial segment of Mw has both a least element (∅) and a second-least

element ({0}). On the other hand, it is sufficient, because applying the proof of the main

theorem to L− we see that L− is in fact isomorphic to an interval of the form [{0},B]

for some Muchnik degree B, and hence L is isomorphic to the initial segment [∅,B].
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3.4 Join-Irreducibles and Intervals with no Uncount-

able Antichains

The reader will observe that the partial order JP(L) of completely join-prime elements

plays in our characterization and proof roughly the role that the partial order J (L)

of join-irreducible elements played in Terwijn’s original paper. Indeed, as we observed

in Corollary 3.27, these notions coincide in the finite case, but not more generally.

Nevertheless, the join-irreducible elements of Mw and its intervals do hold some interest.

Definition 3.31. Given a partial order P , an ideal of P is a nonempty downward closed

subset S ⊆ P such that for every x, y ∈ S, there is some z ∈ S such that x, y ≤ z. A

principal ideal is the downward closure of a single element of P .

We have already observed (Lemma 3.12) that the completely join-prime elements

of Mw are exactly the principal ideals of D ; that is, the principal Turing ideals. Since

principal ideals and ideals coincide the the finite case, this may suggest that the join-

irreducible elements are the ideals of D . This, and something more general, is true.

Theorem 3.32. Let L be a superalgebraic lattice and identify L with O(JP(L)) via the

canonical isomorphism (from Theorem 3.17). Then the join-irreducible elements of L

are exactly the ideals of JP(L) and the completely join-prime elements of L are exactly

the principal ideals of JP(L).

Proof. Suppose that A ⊆ JP(L) is an ideal, and suppose for a contradiction that A =

B ∪ C for some incomparable B, C ∈ O(JP(L)). Then there is some x ∈ B and y ∈ C

such that x 6∈ C and y 6∈ B. But since A is an ideal, there is some z ∈ A such that

x, y ≤ z; this z must be in either B or C, which (since B and C are downward closed),
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implies that both x and y are in one of them. This is a contradiction, so A must be

join-irreducible.

Conversely, suppose that A ⊆ JP(L) is join-irreducible. Let x, y ∈ A, supposing for

contradiction that there is no z ∈ A such that x, y ≤ z, and define B = {z ∈ A | y 6≤ z}

and C = {z ∈ A | x 6≤ z}. Then B and C are downward closed, y 6∈ B and x 6∈ C, and

B ∪ C = A since x and y have no mutual upper bound in A. This contradicts A being

join-irreducible, so in fact A must be an ideal.

Now consider the principal ideals. Let A ⊆ JP(L) be a principal ideal. Then

A = dcl(x) for some x ∈ JP(L); hence A ⊆ B ∈ O(JP(L)) if and only if x ∈ B. Let

S ⊆ O(JP(L)) and suppose that A ≤
⋃
S; then x ∈

⋃
S and hence there is some B ∈ S

such that x ∈ B, whence A ⊆ B. This shows that A is completely join-prime.

Finally, suppose that A ⊆ JP(L) is completely join-prime. Writing A ⊆
⋃
x∈A dcl(x)

yields that A ⊆ dcl(x) for some x ∈ A since A is completely join-prime, and of course

dcl(x) ⊆ A. Hence A is a principal ideal.

As a corollary we have a characterization of the join-irreducible elements of Mw.

Corollary 3.33. The join-irreducible elements of Mw are exactly the ideals of D .

If we restrict our attention to lattices with no uncountable antichains, it turns out

that everything can be expressed nicely in terms of join-irreducibles.

Theorem 3.34. Let L be a superalgebraic lattice with no uncountable antichains. Then

every element of L is the join of finitely many join-irreducible elements of L.

Observe that if we remove “finitely many” this is true of all superalgebraic lattices

by the third condition in Theorem 3.17. On the other hand, with the “finitely many”
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condition, it is not: consider, for instance, L = O(P ) where P consists of uncountably

many incomparable elements.

Proof. Continue to identify L with O(JP(L)). Let X ∈ L be arbitrary. Because the

interval M = [∅,X ] is again superalgebraic by Lemma 3.19, every ideal of JP(L) con-

tained in M is again an ideal of JP(M), and every ideal of JP(M) is an ideal of JP(L),

it suffices to consider the largest element X ∈ L.

Since the union of a chain of ideals is again an ideal, it follows that every ideal

of JP(L) is contained in a maximal ideal. Since X is the union of (principal) ideals, it is

therefore the union of maximal ideals. Our goal will be to get a handle on the maximal

ideals of L and show that they are finite in number.

Lemma 3.35. There are at most countably many maximal ideals of JP(L).

Proof. Any pair of maximal ideals is necessarily incomparable, so the collection of all

maximal ideals is an antichain of L. By assumption L has no uncountable antichains,

so JP(L) has at most countably many maximal ideals.

Lemma 3.36. Let A and {Bn}n≤N be distinct maximal ideals of JP(L) for some N ∈ ω.

Then A 6⊆
⋃
n≤N Bn.

Proof. For every n ≤ N , A 6⊆ Bn, and so there is some xn ∈ A such that xn 6∈ Bn. Since

A is an ideal, there is some z ∈ A such that xn ≤ z for each n ≤ N ; this z can therefore

not be contained in any Bn, and hence A 6⊆
⋃
n≤N Bn.

Next, we make a somewhat topological definition, broadly inspired by an analogy

between maximal ideals and paths in an infinite binary tree.
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Definition 3.37. A maximal ideal A of a partial order P is a limit ideal if it is contained

in the union of all other maximal ideals of P . Otherwise, A is said to be isolated.

Equivalently, A is isolated if and only if there is some x ∈ A such that x 6∈ B for any

other maximal ideal B of P .

Lemma 3.38. If A ⊆
⋃
n∈ω Bn is a limit ideal (the union is necessarily countable by

Lemma 3.35), then A ⊆
⋃
n≥N Bn for any N ∈ ω.

Proof. Let N ∈ ω be arbitrary. By Lemma 3.36, there is some x ∈ A which is not

contained in any Bn for n < N . Let y ∈ A be arbitrary; then because A is an ideal

there is some zy ∈ A such that x, y ≤ zy. Since x ≤ zy, zy 6∈ Bn for n < N ; since zy ∈ A,

zy ∈ Bn for some n, so this must occur for some n ≥ N . Since Bn is downward closed,

y ∈ Bn for some n ≥ N , and as this held for every y ∈ A, A ⊆
⋃
n≥N Bn.

We are now ready to prove that JP(L) has finitely many maximal ideals. A priori,

there are three possible cases:

1. There are finitely many maximal ideals.

2. There are infinitely many isolated ideals.

3. There are finitely many isolated ideals and infinitely many limit ideals.

Our goal is to show that only the first case can hold, so we will prove that each of

the other cases is impossible by showing that each leads to a contradiction.

Lemma 3.39. If there are infinitely many isolated ideals, then there is an uncountable

antichain in L, a contradiction. So the second case is impossible.
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Proof. Each isolated ideal An contains an element xn not in any other isolated ideal;

thus, any union of isolated ideals contains that element xn if and only if An is present

in the union. Let infinitely many isolated ideals be given by {An}n∈ω; it follows that⋃
n∈S An and

⋃
n∈T An are incomparable in L if and only if the subsets S and T of ω are

⊆-incomparable. Since 2ω under ⊆ has an uncountable antichain (by Lemma 3.22), it

follows that there are uncountably many pairwise incomparable unions of isolated ideals,

and hence L has an uncountable antichain, contradicting our hypothesis about L.

Lemma 3.40. If there are finitely many isolated ideals and infinitely many limit ideals,

then there are uncountably many limit ideals, contradicting Lemma 3.35. So the third

case is impossible.

Proof. Since there are only finitely many isolated ideals, by Lemma 3.38 every limit ideal

is contained in the union of other limit ideals. Let {An}n∈ω be all of the (countably many)

limit ideals, with Ai 6= Aj for i 6= j. We will construct a limit ideal not on the list by a

diagonalization argument, giving a contradiction.

We construct B =
⋃
n∈ω Bn, with the Bn constructed as follows. Let b0 ∈ A0 and b0 is

not contained in any of the finitely many isolated ideals (we can do this by Lemma 3.36),

and let B0 = dcl(b0). We will then construct by induction Bn for n ≥ 0, satisfying the

following conditions:

1. Bn is a principal ideal.

2. Bn ⊆ Af(n) for some f(n).

3. Bn ⊇ Bn−1 if n > 0.

4. Bn 6⊆ An−1 if n > 0.
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Certainly B0 satisfies these conditions with f(0) = 0. Now, given Bn satisfying these

conditions, we construct Bn+1. Let bn be the largest element of Bn. Choose m > n

such that bn ∈ Am; such an m exists by Lemma 3.38 applied to Af(n). Since m > n,

Am 6= An, so there is some a ∈ Am such that a 6∈ An. Since Am is an ideal, there is some

bn+1 ∈ Am such that a, bn ≤ bn+1. Define Bn+1 = dcl(bn+1). Then Bn+1 is a principal

ideal, Bn+1 ⊆ Af(n+1) where f(n + 1) = m, bn ∈ Bn+1 so that Bn ⊆ Bn+1, and finally,

Bn+1 6⊆ An, since it contains a 6∈ An. Thus by induction we can construct a sequence

of Bn satisfying all four conditions.

Finally, define B =
⋃
n∈ω Bn. Since B is the union of a chain of ideals, it is an ideal.

By the fourth condition, B 6⊆ An. Let B∗ be any maximal ideal containing B (this may

or may not be B itself). Since B 6⊆ An for any n, B∗ 6= An for any n. On the other

hand, B∗ is not isolated, since it contains b0 which is not an element of any isolated

ideal. It must therefore be a new limit ideal which was not on our list, a contradiction.

So there are uncountably many limit ideals, which itself contradicts Lemma 3.35.

It therefore follows that there are only finitely many maximal ideals. Since X is the

union (join) of all the maximal ideals, X is therefore the join of finitely many ideals,

which by Theorem 3.32 is the join of finitely many join-irreducibles in L.

This applies when X is the largest element of L, but as we observed at the beginning,

by passing to the interval [∅,X ] we can obtain the result for an interval in which X is

the largest element and then pull back to the original lattice.

As a corollary we get the following result about intervals in the Muchnik lattice.

Corollary 3.41. Let L be an interval of the Muchnik lattice Mw with no uncountable

antichain. Then every element of L is the join of finitely many join-irreducible elements
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of L.

3.5 Intervals with Large Antichains

The characterization of Theorem 3.21 is not quite a complete characterization of the

intervals of Mw. There is one pesky condition: that L not have any antichains of

size 2ℵ2 . What about lattices L with larger antichains?

It is certainly possible for L to have antichains larger than that. For example, by

taking a set X of infinite size κ (κ ≤ 2ℵ0) of minimal Turing degrees, the interval

L = [∅,X ] in Mw has, by Lemma 3.22, an antichain of size 2κ. What prevents our using

the techniques in this paper to characterize all these intervals of Mw is exactly the fact

that it is unknown which posets of size greater than ℵ1 can be initial segments of the

Turing degrees.

Indeed, Groszek and Slaman [9] show that it is consistent with ZFC that 2ℵ0 > ℵ2

and that there is a locally finite upper semilattice P of cardinality ℵ2 which cannot be

embedded into D . In that case, the lattice O(P ) would satisfy all the conditions of

Theorem 3.21, except for having an antichain of cardinality 2ℵ2 , but it would not be

isomorphic to an interval of Mw despite having cardinality smaller than that of Mw.

This means that Theorem 3.21 is best possible in the sense that the same characterization

does not necessarily apply when we relax the constraint on antichain cardinality.

On the other hand, we can ask how incomplete our characterization is, in the sense

of asking which intervals in Mw it does not catch. This also depends on our model

of set theory. For example, if 22ℵ0 < 2ℵ2 (which in particular holds under GCH), our

characterization is complete. On the other hand, under Martin’s Axiom + (2ℵ0 > ℵ2),
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we have 2ℵ2 = 2ℵ0 , so our characterization fails to tell us about any of the intervals

in Mw with antichains the size of the continuum, which presumably would be nice to

know about. We can get around a few (but not all) of these issues if we are willing to

restrict the class of lattices L under consideration by the properties of JP(L), rather than

just by the size of their antichain, thus incorporating some parts of the characterization

into the choice of domain. Our definition of JP(L) was only for lattices in which every

subset of L had a supremum in L, but if we let JP(L) be empty for other lattices, the

following is true:

Theorem 3.42. Let L be a complete lattice such that JP(L) has no antichains of car-

dinality greater than ℵ1. Then L is isomorphic to an interval of Mw if and only if L

is superalgebraic and JP(L) is an initial segment of an upper semilattice and has the

countable predecessor property.

Proof. Exactly the same as the proof of Theorem 3.21, except that Lemma 3.23 is a

hypothesis rather than a lemma.

Depending on set theory, this version of the theorem may include more intervals

of Mw than the other. Whether that makes it better is largely a matter of aesthetics.

The author feels that restricting the domain based on the cardinality of antichains in the

lattice L itself is more natural than doing so based on JP(L), and the characterizations

are identical in a wide range of cases including under GCH and under the Proper Forcing

Axiom.
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Chapter 4

Small Mass Problems and

Alternative Reducibilities

In addition to the full structures, it is worth studying smaller suborders of the Medvedev

and Muchnik lattices. In his PhD thesis, Binns [2] looked at the structures of the

Medvedev and Muchnik lattices of Π0
1 classes of 2ω (called PM and Pw respectively),

determining a great deal about the which lattices embed into these structures.

This chapter is an exploration of some other sublattices of the Muchnik and Medvedev

lattices. Sections 4.1 and 4.2 deal with the sublattice of finite mass problems, while

subsequent sections explore other sublattices and some alternative reducibilities for mass

problems.

4.1 Finite Mass Problems

There is a natural way of identifying elements of ωω with certain mass problems, and

thus Turing degrees with certain Medvedev and Muchnik degrees: for X ∈ ωω, let

i(X) = {X} ⊆ ωω. This identification is well-behaved: in particular, the embedding

that it induces of the Turing degrees into the Medvedev and Muchnik lattices is in fact

an embedding of upper semilattices. (There is another natural embedding of the Turing
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degrees into the Muchnik lattice: in the language of Chapter 3 where Muchnik degrees

are identified with downward closed sets of Turing degrees, for a Turing degree a we

have f(a) = dcl(a). This, however, is only an embedding of partial orders, not of upper

semilattices.) We may wish to consider extending these embedded copies of D into

lattices by closing under meets and joins. This turns out to yield the notion of finite

mass problems.

Definition 4.1. A finite mass problem is a mass problem A ⊆ ωω with finite cardinality.

For finite mass problems, the notions of Medvedev and Muchnik reducibility coincide.

Proposition 4.2. If A and B are finite mass problems, then A ≤s B if and only if

A ≤w B.

Proof. Certainly Medvedev reducibility implies Muchnik reducibility, since that is true

in the general case. So suppose that A ≤w B. Then, for every X ∈ A, there is some Φ

and some Y ∈ A such that Φ(X) = Y . Since B is finite, say of cardinality n, we can

label the elements of B as X1 through Xn, the functionals as Φ1 through Φn, and the

(not necessarily distinct) elements of A which are the images of X1 through Xn as Y1

through Yn; thus, Φi(Xi) = Yi for each 1 ≤ i ≤ n. Now we create a new functional Ψ:

first, Ψ reads enough of its oracle to distinguish between all of the X’s (if its oracle is

none of them, it does not matter what Ψ does). Then, having determined that its oracle

is Xi (under the hypothesis that the oracle is one of the X’s), it runs Φi. We therefore

have that Ψ(Xi) = Φi(Xi) = Yi ∈ A, which means that A ≤s B.

In light of this, we will write A ≤f B in case A and B are finite mass problems and

one (and therefore both) of the above reducibilities holds. We also write F for the set of
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all finite mass problems, and F for the partial order F/ ≡f of f -degrees of finite mass

problems. If A is a finite mass problem, we write [A] for its f -degree.

It turns out that meets and joins exist in F are are well-behaved.

Lemma 4.3. Let A and B be finite mass problems. Then [A]∧ [B] = [A∪B]. Moreover,

this meet coincides with the meet of A and B in the Medvedev and Muchnik lattices.

Proof. Certainly the identity functional shows that A∪B ≤s A,B and hence A∪B ≤w

A,B. On the other hand, suppose that C ≤s A,B (where C is any mass problem, not just

a finite one). Then there are Φ1 and Φ2 such that, for every X ∈ A and every Y ∈ B,

Φ1(X) ∈ C and Φ2(Y ) ∈ C. Since A and B are finite, we can computably determine,

when our oracle is in A∪B, whether it is in A or not. Let Ψ be the functional that first

determines, assuming its oracle is in A ∪ B, whether it is in A, and then executes Φ1 if

so and Φ2 if not. Then, for every X ∈ A ∪ B, Ψ(X) ∈ C. It follows that C ≤s A ∪ B.

The analogous fact for Muchnik reducibility follows from the fact that meets in the full

Muchnik lattice are given by unions.

Lemma 4.4. Let A and B be finite mass problems. Then [A] ∨ [B] = [{X ⊕ Y | X ∈

A, Y ∈ B}]. Moreover, this join conincides with the join of A and B in the Medvedev

and Muchnik lattices.

Proof. Once again, it is not hard to see that A,B ≤s {X ⊕ Y | X ∈ A, Y ∈ B}, and

thus similarly for Muchnik reducibility: just use the identity functional for the even-

(for A) or odd- (for B) indexed entries of the oracle. On the other hand, suppose that

A,B ≤s C (again, C is any mass problem). Then there are Turing functionals Φ and Ψ

such that, for each X ∈ C, Φ(X) ∈ A and Ψ(X) ∈ B. Then the functional Φ⊕Ψ given by

(Φ⊕Ψ)(X) = Φ(X)⊕Ψ(X) has, for each X ∈ C, (Φ⊕Ψ)(X) ∈ {X⊕Y |X ∈ A, Y ∈ B}.
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Hence {X ⊕ Y | X ∈ A, Y ∈ B} ≤s C. The analogous result for Muchnik reducibility

follows in the same way.

From these two lemmas we can conclude that

Proposition 4.5. The partial order F of finite mass problems is a lattice.

Proof. By Lemmas 4.3 and 4.4 both meets and joins exist in F .

Additionally, F has a smallest element (the degree of the zero function) and largest

element (the degree of the empty set) coinciding with the smallest and largest elements

of Mw and M .

As mentioned above, the upper semilattice of Turing degrees D embeds into the

Muchnik and Medvedev lattices Mw and M as an upper semilattice in the natural way.

Moreover, it is also known [19] that the Muchnik lattice embeds into the Medvedev

degrees, but only as an upper semilattice and not as a lattice. On the other hand, F is

well-behaved with respect to these embeddings:

Theorem 4.6. As an upper semilattice, D embeds into F , and F embeds as a lattice

into both Mw and M .

Proof. The map i given by i(X) = {X} described above induces an embedding of D as

an upper semilattice into Mw (and into M ); since its image consists only of finite mass

problems, this gives an embedding D ↪→ F of upper semilattices. Since the f -degrees of

finite mass problems correspond uniquely to degrees in Mw and M by Proposition 4.2,

and by Lemmas 4.3 and 4.4, the joins and meets in F coincide with the joins and

meets of the corresponding degrees in Mw and M , these correspondences yield lattice

embeddings F ↪→Mw and F ↪→M .
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Lastly, we observe that, as remarked at the beginning of the section, F is the closure

of D , in either Mw or M , under iterated meets and joins. Indeed, since D embeds

into F , a lattice, and the meets and joins of F correspond to meets and joins in Mw

and M , F must contain this closure. On the other hand, every element of F is the

f -degree of a finite set of Turing degrees, which is the meet of those Turing degrees

in F . Hence F is indeed the closure we want.

4.2 The Intervals of F

Now that we have some preliminary information about the lattice F , a natural question

is to determine some properties of its intervals. We know that Mw admits all manner of

finite and countable intervals (as does M , though there are fewer); on the other hand,

Binns [2] showed that PM is dense on every (nontrivial) interval and that in Pw every

nonzero element has infinitely many predecessors. The main result of this section is the

following theorem:

Theorem 4.7. Let B <f A be f -degrees. Then there is a set of cardinality 2ℵ0 of

incomparable f -degrees {Xα}α<∈2ω such that B < Xα < A for all α ∈ 2ω.

In order to prove this, we will need the following result. Rather than using elements

of ωω, for simplicity we will use the equivalent formulation of problems as elements of 2ω.

Theorem 4.8. Suppose that n ∈ ω and that A1, A2, . . . , An, B ∈ 2ω satisfy Ak 6≤T B for

all 1 ≤ k ≤ n. Then there are {Xα}α∈2ω with Xα ∈ 2ω such that

1. For all 1 ≤ k ≤ n and all α ∈ 2ω, Ak 6≤T B ⊕Xα.

2. For all α ∈ 2ω, B <T B ⊕Xα.
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3. For all α, β ∈ 2ω, if α 6= β then B ⊕Xα 6≤T B ⊕Xβ.

Proof. For each σ ∈ 2<ω, we will construct Xσ ∈ 2<ω inductively and in stages, satisfying

the requirements

1. If σ ≺ τ , then Xσ ≺ Xτ .

2. P (k, σ, e): For any Y ∈ 2ω with Xσ ≺ Y , we have Φe(B ⊕ Y ) 6= Ak.

3. R(σ, τ, e): For any Y, Z ∈ 2ω with Xσ ≺ Y and Xτ ≺ Z, we have Φe(B ⊕ Y ) 6=

B ⊕ Z.

where there is a requirement P (k, σ, e) for each 1 ≤ k ≤ n, each σ ∈ 2<ω, and each

0 < e ≤ |σ|, and there is a requirement R(σ, τ, e) for each σ, τ ∈ 2<ω such that |σ| = |τ |

and each 0 < e ≤ |σ|.

We begin with Xε = ε as the base. Suppose that at the beginning of stage m ≥ 1

we have constructed all Xσ for |σ| < m, and all requirements involving such Xσ are

satisfied.

First, let Xσ0,0 = Xσ0 and Xσ1,0 = Xσ1 for each σ of length m− 1.

Next, we will ensure that the requirements P (k, σ0,m) (and P (k, σ1,m)) are satisfied

at substage k for each 1 ≤ k ≤ n. At the beginning of substage k we have definedXσ0,k−1.

Claim 4.9. One of the following holds:

1. There is some Y � Xσ0,k−1 and r ∈ ω such that ΦB⊕Y
m ↓6= Ak(r).

2. There is some r ∈ ω such that for every Y � Xσ0,k−1, ΦB⊕Y
m (r) ↑.

Proof. Suppose for contradiction that both cases fail. In that case, we can compute

Ak(r) from B: search all finite Y � Xσ0,k−1 in order of increasing length (and up
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to computation length of the length of Y ) until ΦB⊕Y
m (r) ↓. This eventually happens

for some Y because the second case fails. Because the first case fails, it follows that

ΦB⊕Y
m (r) ↓= Ak(r). Since this procedure is computable in B (and the finitely much

information in Xσ0,k−1, which does not matter), it follows that Ak ≤T B, contradicting

the hypothesis of the theorem.

In first case, let Y � Xσ0,k−1 satisfying ΦB⊕Y
m (r) ↓6= Ak(r) for some r ∈ ω, and then

define Xσ0,k to be the longer of Xσ0,k−1 and the initial segment of Y with length equal

to the use of ΦB⊕Y
m (r). In the second case, let Xσ0,k = Xσ0,k−1. We will ensure that

Xσ0 � Xσ0,k, so it follows that P (k, σ0,m) will be satisfied.

Having gone through all substages 1 ≤ k ≤ n for each string σ of length m − 1, we

will ensure that the requirements R(σa, τb, e) are satisfied for each σ, τ of length m− 1,

each a, b ∈ {0, 1}, and every e ≤ m.

For each ordered triple (σa, τb, e) we have a separate substage s, for s beginning with

n+ 1. The following is what we do at each substage s.

If ρc is neither the string σa or τb associated with substage s, then let Xρc,s = Xρc,s−1.

Otherwise, let r > |Xτb,s−1|. If there is no Y � Xσa,s−1 such that ΦB⊕Y
e (2r + 1) ↓,

then R(σa, τb, e) is guaranteed to be satisfied (since we will ensure that Xσa � Xσa,s−1

and Xτb � Xτb,s−1). If there is such a Y , then take Xσa,s � Xσa,s−1 finite such that

Φ
B⊕Xσa,s
e (2r+ 1) ↓ and choose Xτb,s � Xτb,s−1 so that Xτb,s(r) 6= Φ

B⊕Xσa,s
e (2r+ 1). This

will ensure that R(σa, τb, e) is satisfied.

Finally, at the end of the last substage, s, we set Xσa = Xσa,s for each σ of length

m − 1 and each a ∈ {0, 1}. We observe that all requirements P and R are satisfied,

and that Xσ ≺ Xσa (and hence by induction the first, unnamed, requirement is also
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satisfied).

This is the end of the construction.

It remains to find the required Xα ∈ 2ω for each α ∈ 2ω. This we do in the natural

way: Since Xσ ≺ Xτ whenever σ ≺ τ , for each α ∈ 2ω it makes sense to define Xα =⋃
σ≺αXσ.

Then, by requirements P (k, σ, e) for σ ≺ α, we have, for all e, Φe(B ⊕ Xα) 6= Ak,

and so Ak 6≤T B ⊕ Xα, satisfying the first condition of the theorem. By requirements

R(σ, τ, e) for σ ≺ α and τ ≺ β, we have, for all e, Φe(B ⊕ Xα) 6= B ⊕ Xβ, and so

B ⊕ Xβ 6≤T B ⊕ Xα. This satisfies the third condition of the theorem. Finally, since

B ≤T B ⊕ Xα, it follows that B ⊕ Xβ 6≤T B, and hence B <T B ⊕ Xβ, satisfying the

second condition of the theorem.

It remains to prove Theorem 4.7.

Proof of Theorem 4.7. Let A = {A1, . . . , An} and B be finite mass problems with f -

degrees A and B respectively. Since B <f A, it follows that there is some B ∈ B such

that for all 1 ≤ k ≤ n, Ak 6≤T B. Let {Xα}α∈2ω , Xα ∈ 2ω be the sets guaranteed

to exist by Theorem 4.8. Consider Xα := A ∪ {B ⊕ Xα} for each α ∈ 2ω. Because

Ak 6≤T B⊕Xα for all 1 ≤ k ≤ n, it follows that A 6≤f Xα and hence Xα <f A. Similarly,

because B <T B ⊕ Xα, it follows that Xα 6≤f B and hence B <f Xα. Finally, because

B ⊕Xα 6≤T B ⊕Xβ for α 6= β (and because Ak 6≤T B ⊕Xβ) it follows that Xα 6≤T Xβ

for α 6= β, and hence that the Xα are all incomparable.

If we let Xα = [Xα] be the f -degrees of these finite mass problems, we get a

cardinality-2ℵ0 antichain of degrees in the interval [B,A] as required.

Because the cardinality of F is itself 2ℵ0 , this means that every interval of F has
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an antichain that is as large as possible. This is in stark contrast to its superstructures

Mw and M and to its substructure D .

Because Theorem 4.7 applies to any interval, we have an immediate corollary.

Corollary 4.10. The lattice F is dense.

4.3 Countable and Cocountable Mass Problems

Having studied finite mass problems, it is natural to define countable mass problems in

the same way:

Definition 4.11. A countable mass problem is an at most countable subset of ωω.

In contrast to the finite case, Muchnik and Medvedev reducibility do not coincide for

countable mass problems. We will focus on the countable mass problems under Muchnik

reducibility.

It is clear that the Muchnik degrees of countable mass problems form a lattice,

where meets and joins correspond to meets and joins in the Muchnik lattice, for the

same reasons that the degrees of finite mass problems do. What can we say about the

intervals in this lattice? It turns out that a direct analogue of Theorem 4.7 is true.

Theorem 4.12. Suppose that A1, A2, . . . , B ∈ 2ω (with countably many Ak, possibly not

all different) satisfy Ak 6≤T B for all k ≥ 1. Then there are {Xα}α∈2ω with Xα ∈ 2ω

such that

1. For all k ≥ 1 and all α ∈ 2ω, Ak 6≤T B ⊕Xα.

2. For all α ∈ 2ω, B <T B ⊕Xα.
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3. For all α, β ∈ 2ω, if α 6= β then B ⊕Xα 6≤T B ⊕Xβ.

Proof. The same as the proof of Theorem 4.8, with the change that in the first set of

substages of stage m, instead of satisfying all requirements P (k, σ,m) with 1 ≤ k ≤ n,

we instead satisfy (in the same way) all requirements P (k, σ, e) with k, e ≤ m. This

ensures that by the end of the construction we will have satisfied all such requirements,

and the conclusion will hold as before.

Theorem 4.13. Let B <w A be Muchnik degrees of countable mass problems. Then

there is an set of cardinality 2ℵ0 of incomparable Muchnik degrees of countable mass

problems {Xα}α<∈2ω such that B < Xα < A for all α ∈ 2ω.

This implies that, in the sublattice of countable mass problems, every interval has

an antichain of cardinality 2ℵ0 ; this is, once again, the size of the entire sublattice.

Having considered finite and countable mass problems, it is natural to ask about

cofinite and cocountable mass problems. Alas, cofinite mass problems are exceedingly

boring: there are infinitely many computable functions, so every cofinite set of functions

contains a computable function and thus has both Muchnik and Medvedev degree 0.

The cocountable case is a different story, however.

Definition 4.14. A cocountable mass problem is a cocountable subset of ωω.

We will restrict our attention to the Muchnik degrees of cocountable mass problems

(as in the countable case, Muchnik and Medvedev reducibility very much do not coin-

cide). Recalling from Chapter 3 our correspondence between Muchnik degrees and down-

ward closed subsets of Turing degrees, we observe that any cocountable mass problem

must correspond to an at most countable downward closed subset of D , and conversely,
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since there are only countably many functions of each degree, any at most countable

downward closed subset of D corresponds to the Muchnik degree of some cocountable

mass problem; namely, the problem consisting of all functions not of one of those count-

ably many degrees.

From this it follows that the Muchnik degrees of cocountable mass problems are

closed downward in M , and since the union and intersection of at most countable

sets are at most countable, it immediately follows that suborder of Muchnik degrees

of cocountable mass problems, which we will call Mccw, has meets and joins coinciding

with meets and joins in Mw, and indeed form a lattice initial segment of Mw. On

the other hand, Mccw is itself uncountable, having cardinality 2ℵ0 (for instance, {0,m}

corresponds to a cocountable mass problem for each minimal Turing degree m), and

does not have a largest element.

Because Mccw is an initial segment of Mw, we can use the results of Chapter 3 to

obtain a characterization of the intervals of Mccw. In particular, if L is such an interval,

its largest element corresponds to a countable downward closed set of Turing degrees,

so JP(L) is in fact countable. It follows by the proof of Theorem 3.21 that

Theorem 4.15. A lattice L is isomorphic to an interval in Mccw if and only if L is

superalgebraic and JP(L) is a countable initial segment of an upper semilattice.
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4.4 Some Alternative Reducibilities for Mass Prob-

lems

An informal way of expressing both Muchnik and Medvedev reducibilities is the follow-

ing: a mass problem A is reducible to another mass problem B if any element of A

can compute some element of B. This is the natural way to think if we are thinking

about mass problems in terms of the task of finding one element: that is, if “solving” A

corresponds to finding some element of A, then A is easier than B just in case finding

any element of B allows us to find some element of B. It is reasonable to consider a

different possible interpretation. Suppose that we think of a mass problem in terms of

the task of finding all elements. Then we would like to say that A is easier than B just

in case knowing every element of B allows us to find every element of B.

Just as there are two ways (Medvedev and Muchnik reducibility) to formalize our

original intuition, there are several ways to approach this dual kind of reducibility. In

the remainder of this chapter we introduce several such reducibilities and make a small

study of some of their properties.

Definition 4.16. Let A and B be mass problems. Then A is dual-weak reducible to B,

written A ≤dw B, if for every X ∈ A, there is Y ∈ B and a Turing functional Φ such

that Φ(Y ) = X. Dual-weak reducibility is transitive, and the dual-weak degrees are

defined in the natural way, forming the partially ordered set Ddw.

In fact, Ddw is isomorphic to a structure we know and love.

Theorem 4.17. Ddw
∼= Mw.

Proof. Suppose that A and B are mass problems. First observe that if A ⊆ B, then
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A ≤dw B. Hence, A ≡dw dcl(A), where dcl(A) is the set of all functions Turing com-

putable from some element ofA. It follows thatA ≤dw B if and only if dcl(A) ≤dw dcl(B).

Additionally, dcl(A) ≤dw dcl(B) implies that dcl(A) ⊆ dcl(B), as otherwise A would

contain a set not computable from any element of B. Moreover, the downward clo-

sure dcl(A) of a mass problem A depends only on the Turing degrees represented in A,

and corresponds to the downward closure in D of the Turing degrees represented in A.

Hence the map from A to the set of Turing degrees dcl(A) is an isomorphism from Ddw

to O(D), which from Lemma 3.5 we know is isomorphic to Mw.

Despite the fact that this structure is isomorphic to the Muchnik lattice, the iso-

morphism is not given by the identity map on mass problems, and thus certain natural

substructures are not the same. For instance, the suborder of finite mass problems under

dual-weak reducibility does not form a lattice. If one takes two Turing degrees such that

the intersection of their downward cones is an infinite ascending chain of order type ω,

any mutual lower bound corresponding to a finite mass problem is the downard clo-

sure of some single Turing degree, and is bounded above by another such mutual lower

bound. On the other hand, the suborder of finite mass problems is an upper semilattice,

since the join of the degrees of two finite mass problems corresponds to the union of two

downward closures of finite sets, which is a downward closure of a finite set and thus the

degree of a finite mass problem.

Passing to the countable case, however, one does obtain a lattice, and one we already

know: since the Turing degrees have the countable predecessor property, the dual-weak

degrees of countable mass problems correspond to the at most countable downward

closed sets of Turing degrees. The suborder of these degrees is thus isomorphic (by the
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same isomorphism giving Ddw
∼= Mw) to the lattice Mccw described in Section 4.3.

Another natural idea is to require that the reductions be uniform. Unfortunately,

this leads to some odd results.

Definition 4.18. Version 1: Let A and B be mass problems. Then A is dual-strong

reducible to B, written A ≤ds B, if there is a Turing functional Φ such that, for every

X ∈ A, there is Y ∈ B such that Φ(Y ) = X. Dual-strong reducibility is transitive, and

the dual-strong degrees are defined in the natural way, forming the partially ordered

set Dds.

This leads to some very strange consequences. For instance, the set containing the

all-0 and all-1 functions is not equivalent to the set containing just the all-0 function,

which clashes with what we are trying to capture.

For finite mass problems, this reducibility is different than dual-weak reducibility,

but it can still be characterized. If A and B are finite mass problems, then A ≤ds B if

and only if, for every Turing degree d, the number of elements of B in the upper cone

of d is at least the number of elements of A in the upper cone of d.

Unfortunately even this characterization does not work in general. It would be

interesting to know whether Dds has nice properties—for instance, whether it is a lattice

or even an upper semilattice—but it is unclear whether the structure is worth further

attention given that it does not seem to correctly capture a reasonable intuitive notion.

We might try allowing an integer parameter. This fixes the strange problem men-

tioned above.

Definition 4.19. Let A and B be mass problems. Then A is parametrized-dual-strong

reducible to B, written A ≤pds B, if there is a Turing functional Φ such that, for every
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X ∈ A, there is Y ∈ B and n ∈ ω such that Φ(n̂Y ) = X.

The astute reader will notice that this gives too much away. By taking Φ to be a uni-

versal Turing functional, it follows that parametrized-dual-strong reducibility is exactly

the same as dual-weak reducibility! Perhaps there is no good analogue of Medvedev

reducibility in this case.

These are not the only ways of trying to formalize our intuitive notion. If we want

to capture the idea of “all the information in B is enough to find all the information

in A,” it may seem odd to require that each element of A be computable from a single

element of B. Should we not be able to use several elements of B at once? This leads to

the following definition:

Definition 4.20. Let A and B be mass problems. Then A is n-dual-weak reducible

to B, written A ≤ndw B, if for every X ∈ A, there is an integer n, Y1, . . . , Yn ∈ B, and

a Turing functional Φ such that Φ(Y1 ⊕ Y2 ⊕ · · · ⊕ Yn) = X. N-dual-weak reducibility

is transitive, and the n-dual-weak degrees are defined in the natural way, forming the

partially ordered set Dndw.

It turns out that we have already met this structure as well:

Theorem 4.21. The partial order Dndw of n-dual-weak degrees is isomorphic to the

partial order of Turing ideals under ⊆ and thus is isomorphic to the suborder of join-

irreducible elements of Mw.

Proof. For a mass problem A, let T (A) be the Turing ideal generated by the degrees of

elements of A. Suppose that A ≤ndw B, and consider a ∈ T (A). There are X1, . . . , Xm ∈

A such that a ≤T d(X1) ∨ · · · ∨ d(Xn), where d(X) is the Turing degree of X. Since
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A ≤ndw B, there are, for each 1 ≤ k ≤ m, Yk1, . . . , Ykn ∈ B such that Xk ≤T Yk1 ⊕ · · · ⊕

Ykn, and thus X1 ⊕ · · ·Xn ≤T Y11 ⊕ · · ·Ymn. Thus a ≤T d(Y11 ⊕ · · ·Ymn) ∈ T (B), and

hence a ∈ B as well. It follows that T (A) ⊆ T (B).

Conversely, suppose that T (A) ⊆ T (B). Let X ∈ A; then d(X) ∈ T (A) so that

d(X) ∈ T (B), and hence d(X) ≤T d(Y1)∨· · ·∨d(Yn) for some integer n and Y1, . . . , Yn ∈

B. Hence there is some Φ such that Φ(Y1 ⊕ · · · ⊕ Yn) = X. It follows that A ≤ndw B.

Thus, A ≤ndw B if and only if T (A) ≤ T (B), showing that Dndw is isomorphic to

the partial order of Turing ideals under ⊆. By Corollary 3.33, this is isomorphic to the

suborder of join-irreducible elements of Mw.

One immediate consequence of this is that Dndw is a lattice. The join of two Turing

ideals is the Turing ideal they generate together, and their meet is their intersection.

(Note that the join-irreducible elements of Mw are not embedded as a sublattice in Mw

despite forming a lattice because their joins do not coincide with joins in Mw.) Addition-

ally, the suborder of Dndw of degrees of finite mass problems is particularly nice. Because

every finitely generated Turing ideal is in fact principal, this suborder is isomorphic to

the upper semilattice D of Turing degrees.

Last, one may naturally ask whether there is a notion of n-dual-strong reduction

as well. Unfortunately, the problems that surface in the attempt to define dual-strong

reduction come up here as well. Omitting the parameter n causes the same troubles

as before, with the set containing the all-0 function and the all-1 function not being

equivalent to the set containing the all-0 function. On the other hand, giving it explicitly

leads to the n-dual-strong reduction being equivalent to n-dual-weak reduction.

Whether these or other reducibilities will prove fruitful in the long run is an open
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question, but the fact that Dndw is isomorphic to the lattice of Turing ideals gives another

good reason to study the properties of that lattice.
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