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Kyle Riggs

COMPUTABLE PROPERTIES OF DECOMPOSABLE AND COMPLETELY

DECOMPOSABLE GROUPS

We consider the class of torsion-free abelian groups and show that the class of de-

composable torsion-free abelian groups is Σ1
1-complete. Thus, this property cannot

be characterized by a first-order formula in the language of arithmetic.

We also consider the class of completely decomposable groups in which each el-

ement is divisible by only finitely many distinct primes. We attempt to classify the

isomorphism classes of groups which meet this description and can be constructed

algorithmically. Conventional definitions used in computability theory fail to capture

these structures, so we discuss new approaches to this problem.
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CHAPTER 1

Introduction

Studying computable structures can yield results telling us the difficulty of clas-

sifying some of their most fundamental properties. For example, Downey and Mon-

talbán [4] studied the isomorphism problem for torsion-free abelian groups. They

found that the set of isomorphic pairs of countable torsion-free abelian groups is Σ1
1

-complete. I have proven similar results for the class of countable decomposable

torsion-free abelian groups [7] (namely, that this class of groups is also Σ1
1-complete).

This means that the problem of classifying these groups is as hard as it can possi-

bly be. We will never be able to completely characterize them the way we have the

decomposable torsion groups.

Another question that arises in effective algebra is: what groups can be presented

computably? This question is best answered by looking at a specific class of groups

and identifying which groups in that class have computable copies. Khisamiev [6]

looked at countable reduced torsion groups, which are uniquely determined by their

Ulm sequences. He was able to characterize the Ulm sequences of length < ω2 which

can occur in a computably presented group. Ash, Knight, and Oates [2], working

slightly later, independently duplicated his results. My studies focus on completely

decomposable groups, specifically those in which each element is only divisible by

finitely many distinct primes. This work builds on a result by Downey, Kach, Gon-

charov, Knight, Kudinov, Melnikov, and Turetsky [2] and attempts to expand their

result to a larger class of groups.
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1. Summary

These topics will be discussed as follows. In Chapter 2 we will cover some basic

notions of computability theory and group theory.

In Chapter 3 we will discuss the decomposability problem for torsion-free abelian

groups and show that it is Σ1
1-complete.

In Chapter 4 we will consider groups of the form

HS =
⊕
D∈S

QD

where S is a collection of finite sets of primes and QD is the subgroup of Q generated

by

〈 1

pk
: p ∈ D, k > 0〉

We will discuss necessary criteria for S in order for there to be a computable presen-

tation of HS.

In Chapter 5 we will define limitwise monotonic functions, as well as some invari-

ants on this concept. We will see that these allow us to give a sufficient and necessary

condition for S such that there is a computable presentation of HS.
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CHAPTER 2

Background

A group is computable if its domain can be enumerated effectively and the binary

operation of the group is computable (via the enumeration). Such an enumeration

is called a computable presentation. In other words, a computable group has a com-

putable word problem. In this chapter we will define several properties of groups and

discuss complexity hierarchies, a core concept of computability theory.

1. Algebra Background

Definition 2.1. Let (G,+) be an abelian group with identity 0.

1) G is torsion if every element has finite order.

2) G is torsion-free if every element has infinite order.

3) G is mixed if it contains elements of both finite and infinite order.

We will exclusively discuss torsion-free abelian groups. The term basis will refer

to a maximal linearly independent subset of a group as a Z-module. The rank of a

group is the cardinality of any of its bases. Baer [1] showed that a torsion-free abelian

group has rank 1 if and only if it is isomorphic to a subgroup of Q.

Definition 2.2. Let G be an abelian group

1) Let A and B be subgroups of G. We say that G is the direct sum of A and B

(denoted G = A ⊕ B) if, for every element g ∈ G there are unique elements a ∈ A

and b ∈ B such that g = a+ b. We call the subgroups A,B direct summands. If both

A and B are nontrivial, we say that G is decomposable.

2) Let {Gi}i∈I be a (possibly infinite) set of subgroups of G. We say that G is the

direct sum of the Gi’s if, for every element g ∈ G there are unique elements {gi}i∈I
3



with gi ∈ Gi such that gi = 0 for all but finitely many i, and g =
∑
i

gi. If Gi is a

subgroup of Q for every i, we say that G is completely decomposable.

To study these groups it will be necessary to define the characteristic and type of

an element.

Definition 2.3. Given an abelian group G, an element x ∈ G, and a prime p,

we say that p divides x in G and write “p|x” if there is an element y ∈ G such

that py = x. The height of p at x is given by

hp(x) = sup{k : pk|x}

We call

χG(x) = (h2(x), h3(x), h5(x), ...)

the characteristic of x in G.

Definition 2.4. We define an equivalence relation on characteristics by saying

that χG(x) ∼ χG(y) if

• for all p, hp(x) =∞⇔ hp(y) =∞, and

• hp(x) = hp(y) for all but finitely many p

We call the equivalence classes types. In other words, x and y have the same type iff

there exist integers m and n such that χG(mx) = χG(ny).

The isomorphism class of a rank 1 torsion-free abelian group is determined by the

type of any nonzero element. Thus, the isomorphism class of a completely decompos-

able group is determined by the types of its summands.

Definition 2.5. We can put a partial order on types by declaring for two types α, β

that α � β if, given any element a of type α and any element b of type β,

• for all p, hp(a) =∞⇒ hp(b) =∞ and

• hp(a) ≤ hp(b) for all but finitely many p

4



A nonzero element has strictly maximal type if no nonzero element linearly inde-

pendent from it has a greater or equal type.

Definition 2.6. In an abelian group G, a subgroup H is called pure if for ev-

ery x ∈ H and m ∈ ω, if m divides x in G, m also divides x in H. If S is a set of

elements in G, the pure subgroup generated by S is the smallest pure subgroup of G

containing S.

For example, Z is a pure subgroup of Z ⊕ Z. In fact, in a decomposable group

any summand is a pure subgroup. However, Z is not a pure subgroup of Q (the only

nontrivial pure subgroup of Q is Q itself).

As a final note, there will be many equations where we write a group element g

as a linear combination of other group elements {xl}. Rather than write an equation

mg =
∑
l

mlxl

with integer coefficients, it will often be more convenient to write an equivalent equa-

tion

g =
∑
l

qlxl

with rational coefficients. This can be confusing because for each xl there may not

be an element hl = qlxl in the group we are considering. When it is important it will

be made clear whether each hl exists as well.

2. Computable Functions and Groups

A computable function is a partial function from the set of natural numbers ω to

itself that can be determined by a Turing machine. In any language with countably

many symbols, the“programming” that goes into constructing a Turing machine is

just a finite string of symbols. This means that there are only countably many
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programs, so we can assign each one a natural number in a computable way (that is

based on the programming language). We call this number the index of the function.

We let φe denote the computable function with index e, and We denote its domain.

If We = ω, we say that φe is total. For x ∈ ω, if x ∈ We, we say that φe halts on x

and write φe(x) ↓.

The process of taking two natural numbers e and x and determining if φe halts

on x is not computable. However, if we allow the computation of φe(x) to work for a

finite amount of time (usually counted in “steps”), we can computably say whether

or not φe halts on x after s many steps.

A group is computable if there is a computable program that enumerates the

elements of the groups and determines the group’s binary relation. Like computable

functions, we can assign natural numbers to computable groups as well. A computable

function f from the set of computable functions to the set of computable groups takes

the index of a computable function φe and gives the index of a computable groupGf(e).

The description of f often involves stages where we run the function φe on finitely

many inputs for a finite amount of time. If φe halts on one or more inputs, this will

often have an effect on how we enumerate the group. At later stages, we may increase

the number of inputs on which we are running φe, as well as increase the amount of

time we allow the function to run. If there is a finite description of how this is done

and we only consider computable relations, then the function f is computable.

3. Complexity Hierarchies

The arithmetical hierarchy was developed to describe the complexity of properties

based on their formulas. A computable set (or relation) S ⊂ ω is said to be Σ0
0 (or Π0

0).

A set S1 is Σ0
n+1 if it can be characterized by a formula of the form

x ∈ S1 ⇔ (∃y ∈ ω)R1(x, y)

6



where R1 is a Π0
n relation. Likewise, a set S2 is Π0

n+1 if it can be characterized by a

formula of the form

x ∈ S2 ⇔ (∀y ∈ ω)R2(x, y)

where R2 is a Σ0
n relation.

In other words, n represents how many times the formula alternates quantifiers

over ω (or some other infinite computable set), and a Σ0
n formula starts with an

existential quantifier, while a Π0
n formula starts with a universal quantifier.

For example, given a computable group G, an element g ∈ G, and a fixed prime p,

there is a Π0
2 formula that says whether p infinitely divides g

p |∞ g ⇔ (∀k ∈ ω) (∃h ∈ G) pkh = g

To see another example, let [G]<ω denote the set of all finite sets in G. The

following Π0
2 formula describes the property of being a basis of G. For x̄ ∈ [G]<ω,

BASIS(x̄)⇔ [(∀y ∈ G) (∃q̄ ∈ Q<ω) (|q̄| = |x̄| ∧ y =
∑
i

qixi)

∧(∀q̄ ∈ Q<ω) (|q̄| = |x̄| ∧
∑
i

qixi = 0)⇒ q̄ = 0̄]

A set is ∆0
n if it is both Σ0

n and Π0
n. A ∆0

0 set is clearly computable, but so is any

∆0
1 set S. This is because membership in S can be defined by a Σ0

1 formula or a Π0
1

formula:

x ∈ S ⇔ (∃y ∈ ω)R1(x, y)⇔ (∀z ∈ ω)R2(x, z)

where both R1 and R2 are computable relations. This means for any x ∈ ω, there is

either a y such that R1(x, y) holds or a z such that R2(x, z) does not hold. Because

we know we will find such a y or such a z, we can search through the natural numbers

until we do, and this will tell us whether or not x ∈ S.

We should note that any formula that is a finite boolean combination of Σ0
n and

Π0
n formulas is a ∆0

n+1 formula. To demonstrate why this is true, we observe how we

7



can rewrite a conjunction of a Σ0
n formula and a Π0

n formula.

(∃y)R1(x, y)∧(∀z)R2(x, z)⇔ (∃y)(∀z)[R1(x, y)∧R2(x, z)]⇔ (∀z)(∃y)[R1(x, y)∧R2(x, z)]

Any set that is characterized by a ∆0
n formula for some n is said to be arithmetical.

If we allow quantifiers over functions from ω to ω (or between any two computable

sets), then our formula will be analytic. We say that a formula is Σ1
1 if it is of the

form

(∃f ∈ ωω) R(f)

where is R is any arithmetical formula.

For any complexity class Γ, we say that a set A ∈ Γ is Γ-complete if any other set

B ∈ Γ can be “coded” into A. That is to say, there is a computable function f : ω → ω

such that x ∈ B iff f(x) ∈ A.

An example of a Σ0
1-complete set is the index set of computable functions which

halt on their own index:

K = {e : φe(e) ↓} = {e : e ∈ We}

An example of a Σ1
1-complete set is the index set of computable trees in ω<ω with an

infinite path.

The Borel hierarchy is a complexity class for Polish spaces (like ωω) which de-

fines Σ0
1 sets to be open sets and Π0

1 sets to be closed sets. In this hierarchy, the set

of trees in ω<ω with an infinite path is Σ1
1-complete.

4. Turing Degrees

Definition 2.7. Given a set S ⊂ ω, we say that a Turing machine has oracle S

if it has a priori knowledge as to whether any number n is an element of S. Given

two sets X, Y ⊂ ω, we say that X is Turing reducible to Y (X ≤T Y ) if there is a

Turing machine with oracle Y that can compute membership in X.

8



We say that X is Turing equivalent to Y (X ≡T Y ) if X ≤T Y and Y ≤T X. We

call the equivalence classes of this relation the Turing degrees.

We denote the Turing degree of computable sets by 0, and the Turing degree of

the halting problem 0′. Given any Turing degree dand any set S ∈ d, we use d′ to

denote the Turing degree of the halting problem for a Turing machine with oracle S.

This degree is called the jump of d, and the jump of d′ itself is called the second jump

of d. Most of the proofs in Chapter 5 involve constructions using an oracle in 0′′.

9



CHAPTER 3

The Decomposability Problem for Torsion-Free Abelian

Groups

Often the best way to study an abelian group is by writing it as a direct sum of

its indecomposable subgroups, so determining whether a group is decomposable is a

problem at the heart of abelian group theory.

It is known that the only indecomposable torsion groups are the cocyclic groups

(cyclic groups of the form Z(pk), and their direct limit Z(p∞)), and that every mixed

group is decomposable. Torsion-free groups of rank 1 are indecomposable, but beyond

this no classification has been found. It had been conjectured by some (Kudinov,

Melnikov) that this is because the class of torsion-free decomposable groups is non-

arithmetical. We will show that this is indeed the case for groups of infinite rank.

This means that there is no characterization for decomposable torsion-free abelian

groups simpler than the one given in Definition 2.2. To understand why this is true,

we must first consider a nontrivial example of an indecomposable group.

1. An Example of an Indecomposable Group

The following example can be found in Fuchs [5]. Let G0 be the free abelian group

generated by two elements, x1 and x2. For every k > 0, we add elements of the form

x1

3k
and

x2

5k

to G0. We also add the element x1+x2
2

to the group. We denote by G the group

generated by all these elements.

10



Note that {x1, x2} is still a basis for this group, and that

χG(x1) = (0,∞, 0, 0, 0, ...) and χG(x2) = (0, 0,∞, 0, 0, ...)

Furthermore, any element of the form q1x1 + q2x2 with both coefficients nonzero has

type (0, 0, 0, ...) because it would only be divisible by finitely many primes, and not

infinitely divisible by any prime. Thus, x1 and x2 both have strictly maximal type.

Proposition 3.1. In a decomposable group G (= A ⊕ B), if x ∈ G decomposes

as x = a+ b and an integer m divides x, then m divides a and b as well.

Proof. Let y ∈ G be such that my = x, and suppose y decomposes y = a1 + b1.

Then we see that

ma1 +mb1 = my = x = a+ b

ma1 ∈ A and mb1 ∈ B, so ma1 = a and mb1 = b. �

Corollary 3.2. In a decomposable group G = A ⊕ B, every element of strictly

maximal type must be contained in a direct summand.

Proof. Suppose that x is an element of strictly maximal type that is not in A

or B. Then we can write x = a+ b with a ∈ A and b ∈ B, and both a and b nonzero.

Because x has strictly maximal type, there are a prime p and an integer k such that pk

divides x, but neither a nor b. However, this contradicts proposition 3.1. �

We claim that G is indecomposable. We assume x1 ∈ A and x2 ∈ B. Now consider

the decomposition of the element

x1 + x2

2
= a+ b

with a ∈ A and b ∈ B. It is clear that 2a = x1 and 2b = x2, but there are no elements

in G which satisfy either of these equations. Thus, the group is indecomposable.

11



The proofs contained in this chapter will mimic this technique of creating ele-

ments of strictly maximal type and then introducing elements which force them to

be contained in the same direct summand. We call these elements links.

Definition 3.3. Let x and y be two elements of strictly maximal type in a

torsion-free abelian group G. If there is a prime p which divides the sum x + y but

neither x nor y, then the element x+y
p

is a link connecting x and y. We say that x

and y are connected by a chain of links if there are elements x1, x2, ..., xn such that

the sequence {x0 = x, x1, x2, ..., xn, xn+1 = y} has the property that for 0 ≤ i ≤ n,

there is a link connecting xi and xi+1.

The following proposition gives us a simple way to construct indecomposable

groups.

Proposition 3.4. If a torsion-free group has a basis of elements of strictly max-

imal type, with each pair of them having a link or a chain of links connecting them,

then it is indecomposable.

Proof. By Corollary 3.2, every element of strictly maximal type must be con-

tained in a direct summand, and any two of these elements with a link between them

must be in the same direct summand. Transitively, this is also true of any two ele-

ments with a chain of links connecting them. Thus, the entire basis is contained in a

single direct summand, so the group is indecomposable. �

2. Groups of Finite Rank

Remark 3.5. Let G be a group of finite rank, and assume G = A⊕B. Then

(1) rank(G) = rank(A) + rank(B)

(2) If {a1, ..., an} is a basis for A and {b1, ..., bm} is a basis for B, then

{a1, ..., an, b1, ..., bm} is a basis for G with the following property:

12



If there exists an element g =
n∑
i=1

qiai +
m∑
j=1

rjbj, then there exist

elements gA, gB such that gA =
n∑
i=1

qiai and gB =
m∑
j=1

rjbj

Conversely, if {a1, ..., an, b1, ...bm} is a basis for G with this property, then the pure

subgroup generated by the ai’s and the pure subgroup generated by the bj’s give a

decomposition of G. Thus, a group of finite rank is decomposable iff it has a basis

with this property.

If we take the conjunction of the Π0
2 formula BASIS given is section 3 with a

formula describing the property in Remark 3.5 we have the following Σ0
3 formula for

decomposable groups of finite rank:

(∃ ā, b̄ ∈ [G]<ω) {BASIS(ā t b̄) ∧ ā 6= ø ∧ b̄ 6= ø ∧ (∀y ∈ G) (∀q̄ ∈ Q<ω)

(∃w ∈ G)[(|q̄| = |ā|+ |b̄| ∧ y =
∑
i

qiai +
∑
j

qjbj)⇒ w =
∑
i

qiai]}

Theorem 3.6. The index set of computable decomposable groups of finite rank is

Σ0
3-complete.

Proof. Recall that Cof = {n : Wn is cofinite} is Σ0
3-complete. In order to prove

our result, we describe a computable function from ω to groups of rank 2 such that

Gn is decomposable iff Wn is cofinite.

Construction: We start with a group G generated by the following elements:

〈g1, g2,
g1 + g2

2
,
g1

3
,
g2

5
,
g1

7
,
g2

11
, ...〉

(g1 and g2 are linearly independent).

13



The element g1 is divisible by all odd-indexed primes, and g2 is divisible by all

even-indexed primes (except p0 = 2), so they have incomparable (indeed, strictly

maximal) types. Thus, like the example above, our initial group G is indecomposable.

The group Gn is generated by adding g2
p2k+1

for every k such that φn(k) ↓.

In order for the group to be computable, we need the relation

d(k, g)⇔ (∃x ∈ Gn) pkx = g

to be Σ0
1 for all k ∈ ω and all g ∈ Gn. In G, this relation was already Σ0

1, so the

only concern would be determining whether p2k+1|g2 for some k. This will be true iff

φn(k) ↓, which is itself a Σ0
1 relation. Thus, the group is computable.

Verification: If Wn is coinfinite, then g1 is still divisible by infinitely many primes

that do not divide g2. Thus, the types remain incomparable, and the group remains

indecomposable.

If Wn is cofinite, then the type of g2 is strictly greater than the type of g1. There

are finitely many primes that divide g1 but not g2. Denote their product by m.

Lemma 3.7. Gn = A⊕ B, where A is the pure subgroup generated by a = g1+mg2
2

and B the pure subgroup generated by g2.

Proof. We observe that g1+g2
2

= a − m−1
2
g2 (Note that m is a product of odd

primes).

Any element of the form g1
p
∈ Gn can be written

g1

p
=

2

p
a− m

p
g2

If p - m, then p | g2, so m
p
g2 ∈ B. Thus, every generating element of the group can

be uniquely decomposed, so the group is decomposable. �

The group Gn is decomposable iff Wn is cofinite, so the theorem is proved. �

14



3. Groups of Infinite Rank

We can adapt the formula used for groups of finite rank to describe decomposable

groups of infinite rank. However, this means the first existential quantifier is searching

over infinite sets instead of finite sets, so the Σ0
3 formula becomes a Σ1

1 formula

(here BASIS is a Π0
2-formula on infinite sets):

(∃ ā, b̄ ∈ [G]≤ω) [BASIS(ā t b̄) ∧ ā 6= ø ∧ b̄ 6= ø ∧ (∀y ∈ G)

(∀q̄ ∈ Q<ω)(∃w ∈ G)(y =
∑
i

qiai +
∑
j

qjbj)⇒ w =
∑
i

qiai)]

Theorem 3.8. 1) The index set of computable decomposable groups of infinite

rank is Σ1
1-complete.

2) The set of decomposable groups of infinite rank is Σ1
1-complete.

Proof. We will construct a function from trees in ω<ω to torsion-free abelian

groups of infinite rank that takes a tree T and gives a group GT that is decomposable

iff T has an infinite path. (Recall that the set of trees in ω<ω which have an infinite

path is Σ1
1-complete.)

Construction of the group G: We start with a countably infinite set of linearly

independent elements: x1, x2, ... and {xσ}σ∈ω<ω (which we denote as the x-elements),

and y1, y2, ... (the y-elements). These elements form a basis for our group. We will

give them all strictly maximal type and introduce links connecting all the x-elements

and separate links connecting all the y-elements.

The initial group G0 is generated by the following elements:

15



• For i, k > 0 and σ ∈ ω<ω,

xi
pk〈0,i〉

,
yi
pk〈1,i〉

, and
xσ
pk〈2,σ〉

• For 0 < i < j,

xi + xj
p〈3,〈i,j〉〉

and
yi + yj
p〈4,〈i,j〉〉

• For every i ≥ 0 and σ, ρ ∈ ω<ω,

xi + xσ
p〈5,〈i,σ〉〉

and
xσ + xρ
p〈6,〈σ,ρ〉〉

• For n > 1,

y1 + y2 + ...+ yn
p〈7,n〉

All the x- and y-elements are elements of strictly maximal type, and due to the

links, all the x-elements must be in the same direct summand of G0 (as do the y-

elements). Thus, G0 can only be decomposed as G0 = A ⊕ B, where A is the pure

subgroup containing all the x-elements, and B is the pure subgroup containing all

the y-elements.

Now we add to G0 links of the form

xi + yi
p〈8,i〉

for i ≥ 0, and denote by G the group generated by these elements. Now every x-

element and every y-element are connected by a chain of links, soG is indecomposable.

Construction of GT : Given a tree T in ω<ω, we will add elements to G to form

a group GT that will be decomposable iff T has an infinite path through it. The

idea is that if there is an infinite path π, then GT = AT ⊕ Bπ, where AT is the pure

subgroup containing the x-elements, and Bπ is the pure subgroup of GT containing

all the elements of the form yi + xπ�i (π � i is the prefix of π of length i). Note that if
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there is more than one infinite path through T , there will be more than one way to

decompose GT .

Enumerate T so that each string in T is enumerated after all of its initial segments.

When we see σ ∈ T with |σ| = n, we do the following: (It’s worth noting that in each

case, the introduction of the first element creates the second element. We list both

simply to remind the reader that the second element also exists)

(1) For i ≤ n, we add to the group the elements

yi + xσ�i
pn〈1,i〉

and
xσ�i
pn〈1,i〉

(2) For i < n, we add to the group the elements

(yi + xσ�i) + (yn + xσ)

p〈4,〈i,n〉〉
and

xσ�i + xσ
p〈4,〈i,n〉〉

(3) We add to the group the elements

yn + xσ
p〈8,n〉

and
xn − xσ
p〈8,n〉

(4) Finally, we add the elements

(y1 + xσ�1) + (y2 + xσ�2) + ...+ (yn + xσ)

p〈7,n〉
and

xσ�1 + xσ�2 + ...+ xσ
p〈7,n〉

Verification: If an infinite path π does exist, we shall see that GT = AT ⊕ Bπ,

where AT is the pure subgroup of GT containing the x-elements, and Bπ is the pure

subgroup of GT containing all elements of the form yi + xπ�i

Each xi and xσ is contained in AT . We have yj = −xπ�j+(yj+xπ�j). Both of these

elements are infinitely divisible by p〈1,j〉 because xπ�j went through step (1) infinitely

often. Thus, yj does not have strictly maximal type in GT .

For 0 < i < j,

yi + yj
p〈4,〈i,j〉〉

=
(yi + xπ�i) + (yj + xπ�j)

p〈4,〈i,j〉〉
− xπ�i + xπ�j

p〈4,〈i,j〉〉
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These elements were created during step (2) of some stage.

For i > 0,

xi + yi
p〈8,i〉

=
xi − xπ�i
p〈8,i〉

+
yi + xπ�i
p〈8,i〉

These elements were created during step (3) of some stage.

For n > 1,

y1 + y2 + ...+ yn
p〈7,n〉

= −xπ�1 + xπ�2 + ...+ xπ�n
p〈7,n〉

+

(y1 + xπ�1) + (y2 + xπ�2) + ...+ (yn + xπ�n)

p〈7,n〉

These elements were created during step (4) of some stage.

We see that all the generating elements of GT can be uniquely decomposed,

so GT = AT ⊕Bπ.

Now suppose GT is decomposable as GT = A′ ⊕ B′. All the x-elements still have

strictly maximal type, so they must be in the same direct summand (A′).

Each yj can be decomposed yj = aj + bj, where aj ∈ A′ and bj ∈ B′. We know aj

and bj are infinitely divisible by p〈1,j〉 because yj is (see Proposition 3.1). The only

other basis elements that could be infinitely divisible by this prime are the elements

xσ with |σ| = j.

Lemma 3.9. If there is any yj ∈ A′, then GT = A′ (and B′ = 0).

Proof. Suppose yj ∈ A′ (yj = aj), and that another element yi /∈ A′. We

let q = p〈4,〈j,i〉〉 (we can assume that j < i). By the construction of G, q must divide

yi + yj. Thus, q also divides bi + bj (which is just bi). There is some finite sum such

that

k0bi = k1yi +
∑
|σ|=i

kσxσ

with each kσ, k0, k1 ∈ Z. (Recall that the only other basis elements that could be

infinitely divisible by p〈1,i〉 are the elements xσ with |σ| = i.) We can also write
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k0ai = (k0 − k1)yi −
∑
|σ|=i

kσxσ

Note that if k0 6= k1, then yi ∈ A′. Thus, k1 = k0, so

bi = yi +
1

k0

∑
|σ|=i

kσxσ

and this must be divisible by q. However, q does not divide yi, nor any nontrivial linear

combination of yi with x-elements (though q does divide yi + yj). Therefore, yi ∈ A′.

This is true for every yi, so A′ = GT . �

We assume B′ 6= 0, so there is no yj ∈ A′. There is no yj ∈ B′, either. This is

because there are no elements

xj
p<8,j>

,
yj

p<8,j>

So we see that every yj decomposes as yj = aj + bj, with both components being

nonzero.

Now suppose y1, y2 decompose as

y1 =
∑
|σ|=1

kσxσ + b1 and y2 =
∑
|ρ|=2

lρxρ + b2

We shall denote p〈7,2〉 by r. r|(y1 + y2), so it must also divide

a1 + a2 =
∑
|σ|=1

kσxσ +
∑
|ρ|=2

lρxρ

Although r does not divide any xσ, from step (4) of the construction we see that r

divides elements of the form xσ + xσˆm where |σ| = 1 (and σ m̂ ∈ T ). Thus, r also

divides elements of the form

∑
m

lm(xσ + xσˆm) = kxσ +
∑
m

lmxσˆm

where k =
∑
m

lm (and σˆm ∈ T ).
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From this we see that

r| (
∑
|σ|=1

kσxσ +
∑
|ρ|=2

lρxρ) iff kσ ≡
∑
ρ�σ

lρ(mod r)

for each σ with |σ| = 1.

Similarly, p〈7,3〉 | (y1 +y2 +y3), so for each τ ∈ T with |τ | = 3, p〈7,3〉 | (xσ+xρ+xτ ),

where σ ≺ ρ ≺ τ .

By the same reasoning, we see that if y3 =
∑
|τ |=3

mτxτ + b3, then for each σ ∈ T

with |σ| = 1,

kσ ≡
∑
ρ�σ

lρ ≡
∑
τ�σ

mτ (mod p〈7,3〉)

There are infinitely many such equivalences, so we see that

kσ =
∑
ρ�σ

lρ =
∑
τ�σ

mτ = ...

It is also true that for each ρ ∈ T with |ρ| = 2,

lρ ≡
∑
τ�ρ

mτ (mod p〈7,3〉)

Continuing this process, we see that the following also holds:

lρ =
∑
τ�ρ

mτ = ...

Thus, if we choose a σ of length 1 such that kσ 6= 0 (which we are guaranteed by

the fact that y1 /∈ B′), there must be a ρ of length 2 such that σ ≺ ρ and lρ 6= 0, and

a τ of length 3 such that ρ ≺ τ and mτ 6= 0. By repeating this process, we find an

infinite path through T .

Thus, GT is decomposable iff T has an infinite path. �
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If we start with a computable tree T , then by definition the set of strings σ with

σ ∈ T is computable. This means determining whether certain elements are divisible

by certain primes in the computable group GT is itself a computable relation. For

example, if |σ| = n, then relations such as

p〈1,n〉|xσ and p〈8,n〉|(xn + yn)

will be determined computably.

For k ∈ ω, determining if there are at least k strings τ1, τ2, ..., τk ∈ T with σ � τi

is a Σ0
1 relation. Thus, the relation

pk〈1,n〉|xσ

will be Σ0
1, as desired.
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CHAPTER 4

Completely Decomposable Groups

We now turn our attention to the class of completely decomposable groups, specif-

ically the problem of determining which of these groups have computable presenta-

tions. The approach we take is to code sets S ⊆ ω into this class of groups so that no

two sets give isomorphic structures (S1 6= S2 ⇒ GS1 � GS2). If we can determine the

arithmetical complexity of the sets S for which GS has a computable presentation,

then this indicates to us the difficulty of determining the isomorphism class of these

groups.

We do not presume to consider the entire class of completely decomposable groups.

We will only discuss groups in which each nonzero element is divisible by only finitely

many distinct primes. We give an exact classification for these groups, with the loftier

goal of developing ideas that may be applied to a larger class of groups.

1. Background

In [2] Downey, Kach, Goncharov, Knight, Kudinov, Melnikov, and Turetsky con-

sider a specific subclass of completely decomposable groups.

Definition 4.1. Given a prime p, let Qp be the subgroup of Q generated by

〈 1

pk
: k > 0〉

For a set S ⊂ ω, let

GS = ⊕
n∈S

Qpn
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Suppose GS has a computable copy. It is clear that n ∈ S iff there is an element

in GS that is infinitely divisible by pn. This gives us the Σ0
3 formula

n ∈ S ⇔ (∃x ∈ G)(∀k ∈ ω)(∃y ∈ G) pkny = x

Thus, if GS has a computable copy, S must be Σ0
3. In fact, the converse of this

statement holds as well.

Theorem 4.2. (Downey, Kach, Goncharov, Knight, Kudinov, Melnikov, Turet-

sky) GS has a computable presentation iff S is Σ0
3.

We will consider a larger subclass of completely decomposable groups.

Definition 4.3. There is an effective listing of all finite subsets {D0, D1, ...} of

the set of primes P defined by

m =
∑

pn∈Dm

2n

Thus,

D0 = ø

D1 = {2}

D2 = {3}

D3 = {2, 3}

D4 = {5}

...

Definition 4.4. Given a finite set D ⊂ P , let QD be the subgroup of Q generated

by

〈 1

pk
: p ∈ D, k > 0〉

For a set S ⊂ ω, let

HS = ⊕
m∈S

QDm
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The question we seek to answer is: for which sets S is there a computable presen-

tation of HS?

2. Prime Sets

Definition 4.5. In a group of the form HS we refer to an element’s prime set to

denote the set of primes by which it is infinitely divisible.

Definition 4.6. In a completely decomposable group

G = ⊕iGi

if an element y ∈ Gi for some i, we call y a true element. For an arbitrary element x,

we can write

x =
∑
i

gi

with each gi ∈ Gi. We call this expression the true decomposition of x.

Remark 4.7. Suppose yi and yj are true elements in a complete decomposition of

a group G, and the prime set of yi is a subset of the prime set of yj. Then it may be

possible to write a complete decomposition of G in which the element g = yi + yj is

true and yi is not true. Because yi and yi+yj have the same prime set, the summand

containing yi + yj will be isomorphic to the one it replaces.

It is true that there is, up to isomorphism, only one way to write a completely

decomposable group as a direct sum of rank 1 groups. However, unless the prime

sets of true elements form an anti-chain, there is more than one way to choose the

summands. This means that the property of being a true element may depend on

the choice of summands. We will use true elements in some of the proofs that follow.

When we do, we will beforehand fix a complete decomposition of the group under

consideration.
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Remark 4.8. In a completely decomposable groupG, the prime set of any element

is the intersection of the prime sets of the elements in its true decomposition (in any

complete decomposition of G).

Proof. Fix a complete decomposition of G. If the true decomposition of an

element x is given by

x =
∑
i

gi

then a prime p divides x if and only if p divides each gi. �

In GS it is enough to say that n ∈ S iff there is an element in GS that is infinitely

divisible by pn. In HS it is true that if m ∈ S then there is an element in HS with

prime set Dm, but the converse does not hold.

Proposition 4.9. m ∈ S iff there is some x ∈ HS with prime set Dm, such that

there is no finite set of elements {g1, ...gn} with x =
∑
i

gi and the prime set of x is a

proper subset of the prime set of each gi. We call such an element x indecomposable.

Proof. Recall that HS = ⊕
m∈S

QDm . If m ∈ S, then there is an element x ∈ QDm

with prime set Dm. For any finite sum x = Σigi, if we project both sides onto the

summand QDm we get

x̄ =
∑
i

ḡi

The left side is nonzero, so at least one ḡi must be nonzero. Thus, its prime set must

be a subset of Dm.

If m /∈ S, then the only way an element of HS can have prime set Dm is if it is the

sum of elements whose prime sets intersect at Dm. Since none of the true elements

have prime set Dm, they must all be proper supersets of it. �

We can now characterize membership in S with an arithmetical statement, but

what is its complexity? First, let us examine the statement “there is an element in HS
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with prime set Dm.”

(∃x ∈ HS)[(∀p ∈ Dm)(∀k ∈ N)(∃y ∈ HS) pk y = x

∧(∀p /∈ Dm)(∃k ∈ N)(∀z ∈ HS)pkz 6= x]

This is a Σ0
4 formula. However, because each element is only divisible by finitely

many distinct primes, this means we can find an element which is infinitely divisible

by every prime p ∈ Dm and not divisible by all other primes.

(∃x ∈ HS)[(∀p ∈ Dm)(∀k ∈ N)(∃y ∈ HS) pk y = x

∧(∀p /∈ Dm)(∀z ∈ HS)pz 6= x]

This formula is Σ0
3, so it is no harder to determine whether there is an element in HS

with prime set Dm than it is to determine whether there is an element in GS that is

infinitely divisible by pn.

Now let us add to this the clause stating that the element must also be indecom-

posable.

m ∈ S ⇔ (∃x ∈ HS)[(∀p ∈ Dm)(∀k ∈ N)(∃y ∈ HS) pk y = x

∧(∀p /∈ Dm)(∀z ∈ HS)pz 6= x

∧(∀x̄ ∈ H<ω
S ) (

∑
i

xi = x⇒ ∨
i
(∀p /∈ Dm)(∃k ∈ N)(∀z ∈ HS)pk z 6= xi]

This is a Σ0
4 formula. From this we have learned that determining the existence of

an element with a given prime set is Σ0
3, but determining whether that element is

indecomposable is Π0
3. This means that if we are to build HS for an arbitrary Σ0

4 set

S, then a key part of the construction will involve making seemingly indecomposable

elements decomposable.
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3. HS ⊕Hω

If we are to take an element with prime set Dm and make it decomposable, we need

two or more elements whose prime sets intersect at Dm. How can we be guaranteed

to find such elements? One solution is to add extra summands to the group in a

“controlled” way.

We denote by Hω the completely decomposable group in which every summand

has a different prime set, and every finite set of primes is the prime set of some

summand in Hω.

Theorem 4.10. There is a computable copy of HS ⊕Hω iff S is Σ0
4.

Sketch: Let S be a Σ0
4 set. There exists a Σ0

2 relation T such that for all m

m ∈ S ⇐⇒ ∃y∀x〈m, y, x〉 ∈ T

and the witnessing y is unique. We use a computable approximation {Ts}s for T

so that for all k, k ∈ T iff k ∈ Ts for all but finitely many s. We assume the 0th

existential witness for membership of any number k in T fails to witness k ∈ T .

For every pair m and y, we create an element gm,y (which will be made infinitely

divisible by p for every p ∈ Dm). If y witnesses that m ∈ S, then gm,y will span the

direct summand in HS that is isomorphic to QDm . Otherwise, we will decompose gm,y

by writing it as the sum of two elements of Hω in different direct summands. Thus,

there will be a (second) direct summand isomorphic to QDm if m ∈ S. If m /∈ S, then

no y will witness its membership, so each gm,y will be decomposed.

In order to decompose gm,y, we introduce two ω-elements am,y,x and bm,y,x for the

least x such that 〈m, y, x〉 /∈ Ts (we will use ω-elements to construct our copy of Hω).

If there is an x such that 〈m, y, x〉 /∈ T , then we will permanently assign

gm,y = am,y,x0 + bm,y,x0
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where x0 is the least such x. If there is a y such that for every x, 〈m, y, x〉 ∈ T , then

every attempt at a decomposition will eventually fail, and we are left with a direct

summand isomorphic to QDm .

For every element gm,y, if the least x such that 〈m, y, x〉 ∈ Ts changes from one

stage to another, we either trash our current ω-elements (if we want them permanently

deleted) or recycle them (if we may want to come back to them later). We recycle ω-

elements am,y,x and bm,y,x by creating a third ω-element wm,y,x and writing the former

two as a linear combination of gm,y and the latter. If we wish to continue working

on am,y,x and bm,y,x at a later stage, we simply trash wm,y,x.

There is an important distinction to be made. Every ω-element will have a finite

set assigned to it (and every finite set will eventually be permanently assigned to

an ω-element, giving us the subgroup Hω. Similarly, each element gω,y will be made

infinitely divisible by p for each p ∈ Dm, but we do not consider Dm to be “assigned”

to gm,y, as it is not an ω-element.

Construction: At stage s, create elements gm,s for every m ≤ s and gs,s′ for s′ < s

(the latter is just to ensure that we have a gm,y for every pair m and y).

For every element gm,y, we find the least x such that 〈m, y, x〉 /∈ T . Because of

our initial assumption, such an x will always exist.

If there exist no ω-elements am,y,x and bm,y,x, we create them and assign to them

the two finite sets of least canonical index, Am,y,x and Bm,y,x, that are unassigned and

such that Am,y,x∩Bm,y,x = Dm (and neither set isDm). If there exist ω-elements am,y,x′

and bm,y,x′ for any x′ > x, we trash them. If there exist unrecycled ω-elements am,y,x′′

and bm,y,x′′ for any x′′ < x, we recycle them. These processes are described below.
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If am,y,x and bm,y,x already exist and are currently being recycled, then we trash

the elements wm,y,x, cm,y,x, and dm,y,x and consider them unrecycled (these are ele-

ments created during the recycling process, as described below).

Recycling : To recycle am,y,x and bm,y,x, we do the following. We wish to keep these

elements divisible by the primes that already divide them, and not introduce any new

infinite divisibilities.

1) We introduce a new ω-element wm,y,x and assign to it the least unassigned

set Cm,y,x (ordered by canonical index) such that Cm,y,x ∩ (Am,y,x ∪ Bm,y,x) = Dm.

2) Let k = sup{z : pz|am,y,x for p ∈ Dm} (this is the number of stages we have

“worked on” am,y,x). We make wm,y,x divisible by pk for every p ∈ Cm,y,x.

3) Let q be the product of all the primes p ∈ (Am,y,x ∪Bm,y,x)−Dm. We find two

integers α, β, such that:

a) pk|α for every p ∈ Am,y,x −Dm,

b) pk|β for every p ∈ Bm,y,x −Dm,

c) p - αβ for every p ∈ Cm,y,x −Dm, and

d) α + β = 1.

4) We then declare

am,y,x = αgm,y + qkwm,y,x

bm,y,x = βgm,y − qkwm,y,x

5) We create “false” ω-elements cm,y,x and dm,y,x which will take the place of am,y,x

and bm,y,x (respectively) in Hω as long as they are being recycled. We do not con-

sider am,y,x and bm,y,x to be ω-elements until they are unrecycled, and we reassign

their assigned sets to the new elements.

Note that we still have the relation am,y,x + bm,y,x = gm,y, and we can trash the

false elements and wm,y,x if we wish to unrecycle am,y,x and bm,y,x. Also, the greatest
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common divisor of αgm,y and qkwm,y,x is the product

∏
p∈Am,y,x

pk

Thus, am,y,x is not divisible by any new primes (the same is true for bm,y,x).

Trashing : To trash am,y,x and bm,y,x, we define k = sup{z : pz|an,y,x for p ∈ Dm}.

Then we find two integers α, β such that:

a) |α|, |β| ≥ s

b) pk|α for every p ∈ Am,y,x −Dm,

c) pk|β for every p ∈ Bm,y,x −Dm,

d) α + β = 1.

We then declare

am,y,x = αgm,y and bm,y,x = βgm,y

To trash cm,y,x and dm,y,x, we remove their labels, declare them both to be new

ω-elements, and assign them new unassigned sets. Their previously assigned sets are

now assigned to am,y,x and bm,y,x (again).

To trash wm,y,x, remove its label and unassign its assigned set. It is no longer

considered an ω-element.

At the end of every stage, we introduce a new ω-element and assign to it the least

unassigned finite prime set (ordered by index). This is to ensure we process all of ω.

Finally, we make each gm,y divisible by another power of p for every p ∈ Dm.

We also make every ω-element divisible by another power of each prime with index

in its assigned set. We also add to the group the sum of any two elements already in

the group (if it doesn’t already exist) and the inverse of every element already in the
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group (if it doesn’t already exist).

Verification: We will see that the group we have constructed is isomorphic to HS.

Lemma 4.11. gm,y is a sum of ω-elements iff ∃x〈m, y, x〉 /∈ T .

Proof. Suppose ∃x〈m, y, x〉 /∈ T . Let x0 be the least such x. Because T is Σ0
2,

there will be a stage s when 〈m, y, x〉 ∈ Tt for every x < x0 and t ≥ s. At this

point, there are two elements am,y,x0 , bm,y,x0 that will never be trashed. They may

be recycled, but each time this happens they will subsequently be unrecycled. This

means that the two sets assigned to these elements will be permanently assigned

to them, and at each stage when they aren’t being recycled (of which there will be

infinitely many), the elements are made divisible by an additional power of the primes

in the sets.

Thus, we can write gm,y as the sum of two ω-elements, am,y,x0 and bm,y,x0 . For

each x < x0, the elements am,y,x and bm,y,x will be have been recycled, so they will be

linear combinations of gm,y and wm,y,x.

If ∀x〈m, y, x〉 ∈ T , then for all x the elements am,y,x and bm,y,x will eventually

be trashed or recycled without being unrecycled. Thus, there are no permanent ω-

elements a and b such that gm,y = a+ b. �

The ω-elements give us the subgroup Hω. The only other elements introduced in

the construction were the gm,y. As we have seen, for every m and y, gm,y is the sum

of ω-elements iff ∃x〈m, y, x〉 /∈ T . By the definition of S we have:

m /∈ S ⇔ ∀y∃x〈m, y, x〉 /∈ T

This means if m /∈ S, then for every y, gm,y is the sum of ω-elements.
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By assumption,

m ∈ S ⇔ there is a unique y such that ∀x〈m, y, x〉 ∈ T

Thus, gm,y is the sum of ω-elements for all but one y. The pure subgroup generated

by these elements (for every m ∈ S) is the subgroup HS.

We have seen that for every y, gm,y is an element of HS or the sum of two unique

ω-elements. Every trashed former ω-element can be uniquely written as the linear

combination of a certain gm,y and other ω-elements. The same is true for any perma-

nently recycled ω-element. Any ω-element that is neither trashed nor permanently

recycled is an element in Hω. These are all the elements introduced in the construc-

tion, so the group we have constructed is indeed isomorphic to HS ⊕Hω. �

The question remains: does every Σ0
4 set S have a computable presentation of HS?

It seems that without knowing how the sets whose indices are in S relate to one

another, we require extra summands to “catch” the elements we wish to make de-

composable. In the next chapter we will see that the extra group Hω (or something

similar to it) is necessary.
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CHAPTER 5

Limitwise Monotonic Functions

In our quest to find the prime sets of indecomposable elements, we may be tem-

porarily fooled by a decomposable element. If we were to discover that an element is

decomposable, then we would know there must be an indecomposable element with a

larger prime set (in fact, there must be at least two). For m,n ∈ ω, if Dm ⊆ Dn then

m ≤ n (though the converse does not hold). Using a 0′′oracle to tell us the prime set

of any given element, we can find a monotonically increasing approximation of the

index of a prime set of an indecomposable element.

Definition 5.1. For a Turing degree d, F : ω → ω is a d-limitwise monotonic

function if there is a d-computable function f : ω × ω → ω such that:

1) F (n) = lims f(n, s) for all n

2) f(n, s) ≤ f(n, s+ 1) for all n, s

If d = 0, we simply call F a limitwise monotonic function.

Proposition 5.2. If S is the range of a d-limitwise monotonic function, then S

is Σd
2 (Σ0

2 relative to d).

Proof. This holds simply because

m ∈ S ⇔ (∃k ∈ ω)(∃t ∈ ω)(∀s > t)f(k, s) = m

and the equation f(k, s) = m is a d-computable statement. �

Proposition 5.3. (Khoussainov, Nies, and Shore, [3]) There is a ∆d
2 set which

is not the range of a d-limitwise monotonic function.

Proof. See [3]. �
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Theorem 5.4. Given a computable presentation of the group HS, there is a 0′′-

limitwise monotonic function whose range is S.

Corollary 5.5. There exists a ∆0
4 set S for which there is no computable pre-

sentation of HS.

Proof of Theorem 5.4. This proof is done using a 0′′oracle. This means that

we assume that we can computably determine any ∆0
3 question. We can use this to

find an element’s prime set. Given an element x, we ask for each prime p

(∃q ∈ P )(∃y ∈ HS)[q > p ∧ qy = x]

until we get a negative answer. This will happen eventually because there are only

finitely many distinct primes that divide x. Once we have established the largest

prime p which divides x, we can ask for each q ≤ p

(∀k ∈ ω)(∃y ∈ HS)qky = x

This process tells us the prime set of x.

We enumerate every element of HS = {g0, g1, ...}. We describe a 0′′-computable

function f(n, s) which is increasing with respect to s. f(n, s) will give the index of

the prime set D of gn. If we find that gn is decomposable, we shift f(n, s) to the

index of the prime set of an element in its decomposition. If that element turns out

to be decomposable, we add new elements to the decomposition of gn and shift our

focus once again.

At the beginning of stage s, we set f(k, s) = 0 for all k > s.

For all elements gn with n ≤ s, we determine the prime set of gn. If gn is not

decomposed already, we check if gn can be written as a sum of elements gm1 , gm2 , ..., gml

with each mi ≤ s where each element in the sum has a prime set properly containing

the prime set of gn. If not, we set f(n, s) to be the index of the prime set of gn.
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If we do find such a sum, then gn is decomposable. For any subsequent stage t,

we set f(n, t) to be the minimum of the indices of the prime sets of the elements in

the decomposition. If we later find that we an element in the decomposition of gn

is decomposable, we remove this element from the decomposition of gn and add the

elements in its decomposition. (Note that this will not cause f to decrease because

it will be assigned to the minimal index of prime sets in the decomposition, and each

element that was just added has index greater than the one that was replaced.)

We will see that lims f(n, s) must exist. Fix a complete decomposition of HS.

For any n, let gn = Σjyj be its true decomposition. Then at any stage s, f(n, s)

is bounded by the minimum index of the prime sets of the yj’s because in any de-

composition gn = Σigi, every yj (or a rational multiple thereof) must be in the

true decomposition of some gi. Because f(n, s) is monotonically increasing, there is

some F (n) = lims f(n, s).

This means that there is an element in the decomposition of gn whose prime

set has index F (n), and this element is never found to be decomposable (because

whenever we add new elements to the decomposition, their prime sets must have a

greater index than the element they replaced, so there can only be finitely many with

index = F (n) ). Thus, it is an indecomposable element, so F (n) ∈ S. Because we

iterate every element of HS, we will find every n ∈ S. �

Corollary 5.5 tells us that the arithmetical hierarchy does an insufficient job of

characterizing the sets we seek. This prompts us to ask: does the converse of Theorem

5.4 hold? Does every set S which is the range of a 0′′-limitwise monotonic function

have a computable presentation of HS? The answer is quite clearly no. To see why

this is the case, we must add to the language of the group structure. Because the

construction above was done with a 0′′oracle, we must answer any ∆0
3 questions as if

they were computable.
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Definition 5.6. An expanded group (G,+, π) is a group (G,+) with additional

unary relations {Rm}m which state that an element has a prime set of index m and

for every n an n-ary relation Λn which consists of all linearly independent n-tuples

in G. In any computable presentation of G, these relations are computable (as well

as +).

For any g ∈ G, Rm(x) will hold for exactly one m, so we will represent these

relations as a function π : G → ω which gives the index of the prime set of an

element. We can also combine the relations Λn into Λ ⊂ G[<ω], a relation on finite

subsets of G.

The first step in building a computable presentation of HS for an S which is the

range of a 0′′-limitwise monotonic function is to build a computable presentation of

an expanded HS for any S which is the range of a limitwise monotonic function.

Let F (∗) = lims f(∗, s) be a limitwise monotonic function. Let us suppose that

f(0, 0) = 1, which is the index of the prime set {2}. We have little choice but to

create an element and declare it to be infinitely divisible by 2. Suppose further that

f(0, 1) = 2, the index of the prime set {3}, and that no other index f(k, s) for s > 0

gives us a prime set containing 2. Then there should be no nonzero element infinitely

divisible by 2 in the final group we have constructed, but there is nowhere for us to

“hide” this element we have created.

From this, we see that a problem could occur whenever Df(k,s) * Df(k,s+1). The

natural solution to this is to consider the prime sets themselves, rather than their

indices. A new definition may be necessary.

1. Limitwise Set-Monotonic Functions

In order to avoid the problems described at the end of the previous section, we

must force the limitwise monotonic functions to grow only along subsets. This makes
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the idea of referring to the index of the prime set unnecessary, so we will deal directly

with the prime sets themselves.

Definition 5.7. For a Turing degree d, F : ω → P (ω) is a d-limitwise set-

monotonic function if there is a d-computable function f : ω × ω → P (ω) such

that:

1) F (n) = lims f(n, s) for all n

2) f(n, s) ⊆ f(n, s+ 1) for all n, s

We also need to alter how we define the group we wish to construct.

Definition 5.8. Let T be a collection of distinct finite sets of primes. For D ∈ T ,

let QD be the subgroup of Q generated by 〈 1
pk

: p ∈ D, k > 0〉. Let

HT = ⊕
D∈T

QD

Using a limitwise set-monotonic function fixes the issue mentioned above, but a

new problem arises. Suppose we try to construct such a function using a construction

similar to the one given in the proof of Theorem 5.4. Suppose further that in our

construction we come across an element gn with the following true decomposition.

gn
2

= y1
2,5

+ y2
2,7

The primes listed below an element denote its prime set. gn is decomposable,

and we will eventually discover this as we enumerate the elements of the group.

However, we cannot be guaranteed to find the decomposition shown above. Suppose

that y3
2,3,5

, y4
2,3,7

are also true elements, and let

z1
2,5

= y1
2,5

+ y3
2,3,5

z2
2,7

= y2
2,7

+ y4
2,3,7
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z3
2,3

= y3
2,3,5

+ y4
2,3,7

Suppose that in our construction z1, z2, z3 are all enumerated before y1 and y2.

Then we will see gn decompose as

gn
2

= z1
2,5

+ z2
2,7
− z3

2,3

We can assume that we shift our focus from gn to z3 (if for no other reason than that

it has the prime set of least index). An important point in the proof of Theorem 5.4

was the fact that the limitwise monotonic function would also be bounded above by

some element in the true decomposition of gn. However, the nonlinear nature of the

subset relation means that in a case such as this, we may lose that bound. Therefore,

it is possible that lims f(n, s) may be infinite.

Theorem 5.9. There is a group HT with a computable presentation such that T

is not the range of a 0′′-limitwise set-monotonic function.

Proof. We will show that there is an expanded group HT with a computable

presentation such that T is not the range of a limitwise set-monotonic function.

Let {φe}e be an effective listing of the computable functions with domain ω × ω.

Construction: For every e there will be an element xe ∈ HT which witnesses

that φe is not a limitwise monotonic function with range T . Each xe will have prime

set {p2e}, and if for some n, s we see that φe(n, s) = {p2e}, we make xe decomposable.

We call n a witness for e. If at any future stage t, φe(ne, t) gives the prime set of an

indecomposable element, we will make that element decomposable as well.

Stage s: We create an element xs that is linearly independent from all other

elements xe′ and give it prime set {ps}. For every e ≤ s which does not already

have a witness, we determine if there is an ne ≤ s such that φe(ne, s) = {p2e}. If

we find such an ne, we declare it to be a witness for e. We then create three new
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elements: ae, be, ce, and declare

xe
p2e

= ae
p2e,p1

+ be
p2e,p3

+ ce
p2e,p5

The three new elements form a linearly independent set, and their prime sets are

denoted in the above equation.

If at a future stage t we see that φe(ne, t) * φe(ne, t + 1), then we disregard φe

henceforth because it does not give a limitwise monotonic function.

If at a future stage t we see that φe(ne, t) gives the prime set for ae, be, or ce, then

we make this element decomposable as well. For example, if φe(ne, t) = {p2e, p1},

then we create four new elements αe, βe, γe, δe which are linearly independent from

one another, and declare

ae
p2e,p1

= γe
p2e,p1,p3

+ δe
p2e,p1,p5

be
p2e,p3

= αe
p2e,p3

− γe
p2e,p1,p3

ce
p2e,p5

= βe
p2e,p5

− δe
p2e,p1,p5

Then

xe
p2e

= ae
p2e,p1

+ be
p2e,p3

+ ce
p2e,p5

= αe
p2e,p3

+ βe
p2e,p5

We see that φe(ne, t) is the prime set of ae, which is now decomposable. We will

have no reason to make αe or βe decomposable, so they will be true elements in HT ,

and the true decomposition of xe is fixed. If φe(ne, t
′) gives the prime set of γe or δe

at a future stage t′, we will treat that element as we did xe, using three new elements

and three different odd-indexed primes.

It will be important to note that every element we introduce to the group this

way has a distinct prime set. This is because every element we introduce is infinitely

divisible by precisely one even-indexed prime. This also means we do not have to

worry about interference by another witness ne′ because φe′(ne′ , s) must contain p2e′ .
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At the end of every stage, we make each element divisible by another power of

every prime in its prime set. We also add to the group the sum of any two elements

already in the group (if it doesn’t already exist) and the inverse of every element

already in the group (if it doesn’t already exist). This concludes the construction.

Verification: For each e, one of four things can happen.

1) We never find a witness ne such that φe(ne, s) = {p2e} for some s.

2) We find an ne, and for some s, φe(ne, s) * φe(ne, s+ 1)

3) φe(ne, s) ⊆ φe(ne, s+ 1) for every s, and Φe(ne) = lims φe(ne, s) converges

4) φe(ne, s) ⊆ φe(ne, s+ 1) for every s, and Φe(ne) = lims φe(ne, s) diverges

Case 1): Φe is not onto T .

Case 2): φe does not give us a limitwise monotonic function.

Case 3): Whenever φe(ne, s) changes, we take steps to make sure it does not give

the prime set of an indecomposable element. Thus, Φe(ne) /∈ T .

Case 4): Φe is not total.

It also must be stated that even if Φe(ne) diverges, every element introduced to

the group along the way is a finite linear combination of true elements, and these true

elements have distinct finite prime sets. Thus, the final group is isomorphic to HT

for some T . �

2. Partial Limitwise Set-Monotonic Functions

It is clear that if we wish to proceed with limitwise set-monotonic functions, we

need to allow our function to diverge. This will indicate that the element we were

considering has decomposed, and new elements must be introduced to the group. We

may have an infinite chain of elements with increasing prime sets, but this way we

avoid making a single element divisible by infinitely many distinct primes.
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Definition 5.10. For a Turing degree d, F : ω ⇀ P (ω) is a partial limitwise set-

monotonic d-function if there is a partial d-computable function f : ω × ω ⇀ P (ω)

such that:

1) F (n) = lims f(n, s) for all n

2) f(n, s) ⊆ f(n, s+ 1) for all n, s such that f(n, s+ 1) ↓

3) For all n, s, if f(n, s) ↑, then f(n, s+ 1) ↑

Suppose we have f(n, s) give us the prime set of some element g at stage s. If we

see g decompose at this stage, we can have f(n, s) ↑ and have another index n′ > n

pick up where we left off. Any index k such that f(k, s) ↓ for all s will eventually give

us the prime set of an indecomposable element. This process means that the partial

limitwise set-monotonic function alone will not be sufficient information to construct

the group. We will also need some way of coding this transition from n to n′.

Definition 5.11. If F (∗) = lims f(∗, s) is a partial d-limitwise set-monotonic

function, than a decomposing function for F consists of two parts:

1) A computable function Φ with domain ω × ω that will output the current ex-

pression for an element as a linear combination of elements which are indecomposable

at a given stage, as well as the prime sets of all elements involved. For example, the

output of Φ(n, s) will be

gn
Qn

=
∑
l

ql xl
Pl,s

Here Qn is the prime set of gn, Pl,s is the prime set of xl at stage s, and the coefficients

on the right side are rationals.

2) A computable function I with domain ω × ω which will detail how we rewrite

existing elements as linear combinations of new elements at each stage. For example,

I(k, s) will be of the form

xk
Pk,s−1

→
∑
l

ql xl
Pl,s

A decomposing function has the following properties:
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1) For any n, Φ(n, s) will converge as s → ∞, and for any linear combination of

elements ∑
l

mlxl

with each ml ∈ Z such that f(l, s) ↓ for each l and every s, there is some n such

that Φ(n, s) converges to that sum.

2) For any n and any s > 0, Φ(n, s) can be derived by taking Φ(n, s − 1) and

replacing each element xk with the sum given by I(k, s).

3) For any k and any s > 0, if I(k, s) states that

xk →
∑
l

qlxl

then f(k, s − 1) =
⋂
{l:ql 6=0} f(l, s). If we replace each element xl in the sum above

with the sum given by I(l, s+ 1)

xl →
∑
j

rjxj

and rewrite the expression as

∑
l

ql(
∑
j

rjxj) =
∑
i

ηixi

then f(k, s − 1) =
⋂
{i:ηi 6=0} f(i, s + 1). We can repeat this process any number of

times, and the intersection of the prime sets of any elements with nonzero coefficients

will still be f(k, s− 1).

4) There are only finitely many stages s such that I(k, s) indicates that xk has

moved.

5) For any k and any s > 0, f(k, s− 1) ↓ and f(k, s) ↑ iff I(k, s) says

xk →
∑
l

qlxl
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with qk = 0. Furthermore, the label xk will never appear in an expression from this

stage forward and f(k, t) ↑ for all t > s.

6) For any s > 0, any k, if f(k, s) 6= f(k, s− 1), then I(k, s) states that

xk →
∑
l

qlxl

with qk 6= 0 and ql 6= 0 for at least one l 6= k. Also, the sum xk −
∑
l 6=k

qlxl cannot be a

scalar multiple of any expression Φ(n, s) with n < s.

7) For any n and any s > n,

⋂
{l: ql 6=0 in Φ(n,s−1)}

f(l, s− 1) =
⋂

{l: ql 6=0 in Φ(n,s)}

f(l, s)

8) For any s, the sums listed in I(k, s) for all k form a linearly independent set.

9) For any k, there is a prime p such that for any n, s, if qk 6= 0 is the coefficient

of xk in Φ(n, s), then the denominator of qk is not divisible by any prime q > p. Also,

for any j, t, if rk 6= 0 is the coefficient of xk in I(j, t), then the denominator of rk is

not divisible by any prime q > p.

10) For any k and any prime p, either p ∈ f(k, s) for some s or there is some K ∈ ω

such that for any n, s, if qk 6= 0 is the coefficient of xk in Φ(n, s) or I(n, s, ), then the

denominator of qk is not divisible by pK .

11) For any k, there is a pair (n, s) such that Φ(n, s) states

gn = xk

12) For any s and any n,m, if Φ(n, s) = Φ(m, s), then n = m.

We will use the decomposing function to build a computable copy of the expanded

group HT . The function Φ serves two purposes: first, it allows us to ensure that the

basis we will build is indeed a basis. Secondly, it guarantees that the prime set of each
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element in the group does not change throughout the construction. The function I

tells us how to move the labels.

Theorem 5.12. If there is a computable copy of HT , there is an injective partial

0′′-limitwise set-monotonic function F whose range is T , and F has a decomposing

function computable in 0′′.

Proof. Because we are using a 0′′oracle, we can determine whether a finite set

of elements is linearly independent as well as the prime set of any given element.

We want to find a basis {xk}k∈ω for the group such that the prime sets of the

basis elements are in one-to-one correspondence with the sets in T . We will create

labels {xk}k∈ω which will approximate this basis. The labels will be initially assigned

to an element, but can move from one element to another in order to give us a better

approximation. Each label will only move finitely many times. The elements that

have labels assigned to them permanently will constitute the basis we seek. We will

delete a label xk at stage s if f(k, s) ↑ and create a new label (so that the span

of the basis does not shrink). Any time a label moves, this will be reflected in the

decomposing function.

We will enumerate the nonzero elements of the group {g0, g1, g2, ...}. At stage s,

we want to ensure that every gt with t ≤ s can be written as a sum of basis elements,

each of which has a prime set containing the prime set of gt. We do this by asking

at stage s if gs is linearly independent from the basis so far. If so, we make it a new

basis element. If not, we determine its prime set D and how it can be expressed as a

sum of basis elements

gs
D

=
∑
k

qkxk
Pk,s

If for each k with qk 6= 0, D ⊆ Pk,s, we do nothing. If Pk,s ( D for some k, we

remove one of these elements from the basis and replace it with gs. It is also possible

that neither of these cases hold, and there exists some basis element whose prime set
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is incomparable with D. This means that we will have to search through sums of

elements to find a way to satisfy our goal, but eventually a solution will be found.

Definition 5.13. At every stage of the construction, each element gn with n ≤ s

will be a linear combination of elements with labels, and its prime set should be the

intersection of the prime sets of these labeled elements. If this is not the case and

there is a labeled element of least prime set, that element is decomposable. If there

are two or more labeled elements of least prime set, we say that we have found a

hidden divisibilty.

Example 5.14. To illustrate this phenomenon, suppose that T is the set of all

initial segments of the primes:

T = {{2}, {2, 3}, {2, 3, 5}, ...}

and that y0, y1, y2, ... is a basis of true elements in HT where each yj has prime

set {p0 = 2, p1, ..., pj}. Then there is an alternate basis g0, g1, g2, ... of HT where

g0 = y0

g1 = y0 + y1

g2 = y0 + y1 + y2

...

Every element in this basis has prime set {2}, but our goal is to construct a basis

of HT where the prime sets of the basis elements are in one-to-one correspondence

with the sets in T .

We can fix this by replacing g1 in the basis with g1− g0 = y1. The set {g0, y1} has

the same span as {g0, g1}, but does a better job of representing the sets in T . During

the construction, we will continuously look for linear combinations of basis elements
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that have more infinite divisibilities than the elements in the sum. This will uncover

these hidden divisibilities and make sure we get the one-to-one correspondence with T .

We would also like to make the true decomposition of every gs as short as possible

to ensure that every element in the group is a finite sum of basis elements. If we see

a sum of the form

gs = xi + xj + xk + xl

where the prime set of xj is properly contained in the prime sets of xk and xl, we can

shorten this expression for gs by moving the label xj to the element xj + xk + xl. If

we do, the sum is now

gs = xi + xj

and the prime set of xj remains the same. We don’t want to move the label if doing

so would “injure” some gt with t < s by making its expression longer.

If at stage s of the construction we determine that a basis element xk is decom-

posable, we will have to remove it from the basis and set f(k, s) ↑. We will also add

elements to the basis until the decomposed element is in the span of the basis again.

When we want to remove an element from the basis, we will have to add new

elements to the basis so that its span does not shrink. The decomposing function will

track how this happens. This will allow us to reconstruct the group from the partial

limitwise set-monotonic function.

Construction: We computably enumerate the nonzero elements of the group

g0, g1, g2, ... . We will construct a basis for the group and give every basis element a

label xk. If xk and xl are basis elements and k < l, then xk has higher priority than

xl. We denote the prime set of xk at stage s by Pk,s.

Stage 0: We add g0 to the basis and give it the label x0. We determine the prime

set D of g0 and set f(0, 0) = D.
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Stage s > 0: We check to see if gs is linearly independent from the basis elements.

If it is, we create a new label and apply it to gs. If not, we determine the expression

for gs as a linear combination of basis elements.

gs
D

=
∑
k

qkxk
Pk,s

If D ⊆ ∩{k:qk 6=0}Pk,s, then we do nothing, and this stage is finished. If not, we do the

following.

If there is an element xk such that Pk,s ( D and Pk,s ( Pj,s for every other xj

with qj 6= 0, we know that element is decomposable. We remove it from the basis and

permanently delete its label (never to be used again). We then add gs to the basis

and give it a new label.

If there are two or more xk’s such that Pk,s ( D and Pk,s ⊆ Pj,s for every other

xj with qj 6= 0, we may have found a hidden divisibility. We find the xk in the sum

of lowest priority with this property and move its label to gs.

It is possible that there is no xk with minimal prime set which is also a proper

subset of D. In this case, we consider the elements in the sum whose prime sets

do not contain D. We search through sums of group elements to see if any of them

are decomposable, and for any of these elements with the same prime set, we search

through linear combinations of them for hidden divisibilities. We want to find new

elements for some of the labels that allow us to write each old basis element in the

sum as a sum of new basis elements whose prime sets contain its own, such that when

we combine the old basis elements to sum to gs, we see that gs is a sum of new basis

elements, each of which having a prime set containing D.

The process for doing this is as follows. We will simultaneously perform two types

of searches.

1) If there are two or more basis elements {xk1 , xk2 , ...xkn} in the sum for gs with

the same prime set, we search through all linear combinations
∑
i

qixki for a hidden
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divisibility. If we find one, we reassign the lowest priority label with qi 6= 0 to this

sum. This will change the expression for gs as a sum of basis elements.

2) We also search through all sums of all group elements for evidence that one of

the basis elements in the sum of gs is decomposable. If we find a decomposition

xk =
∑
j

gj

then for each gj we ask if it is linearly independent from the other basis elements

(including any temporary labels, but excluding xk or any other element we now know

to be decomposable). If it is not, we find how to write it as a linear combination of

these basis elements. If it is linearly independent, we give it a temporary label that

is different from all other labels.

After doing this for each gj, we check the expression for gs with the new temporary

labels instead of the labels attached to decomposable elements. If the expression does

not meet the requirement for this stage, we remove the temporary labels and resume

our search. If the expression does meet the requirement, we are done. We move the

label from each decomposable element to one in its decomposition with a temporary

label. After doing this, if there are any elements with temporary labels but not

permanent labels, we give these elements brand new labels.

Here are some examples to illustrate this process. We take y0, y1, ... to be true

elements in a fixed decomposition of HT .

Example 5.15. At stage 0, we apply the label x0 to the element

g0
2

= y0
2

At stage 1, we apply the label x1 to the element

g1
2

= y0
2

+ y1
2,3
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At stage 2, we apply the label x2 to the element

g2
5

= y2
5

At stage 3, we apply the label x3 to the element

g3
5

= y2
5

+ y3
3,5

At stage 4, we discover that the element

g4
3

= y1
2,3

+ y3
3,5

can be written as

g4
3

= x1
2
− x0

2
+ x3

5
− x2

5
.

We search and discover that there are two hidden divisibilities:

x1
2
− x0

2
= y1

2,3

and

x3
5
− x2

5
= y3

3,5

so we move the label x1 to the element y1 and the label x3 to the element y3. Now

we have

g4
3

= x1
2,3

+ x3
3,5

and we have met the requirement for g4 at this stage.

Example 5.16. At stage 0, we apply the label x0 to the element

g0
2

= y0
2,3

+ y1
2,5
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At stage 1, we apply the label x1 to the element

g1
3

= y0
2,3

+ y2
3,5

At stage 2, we discover the element

g2
5

= y1
2,5
− y2

3,5
= x0

2
− x1

3

There is no hidden divisibility here, but we can search and discover that both x0 and

x1 are decomposable. In fact, we will come across equations of the form

x0 = y0 +
∑
i

gi

and

x1 = y0 +
∑
j

gj

where each gi is infinitely divisible by 2 and 5, and gj is infinitely divisible by 3 and 5.

Since we have found x0 and x1 to be decomposable, we give y0 a temporary label,

as well as the other elements in the equations. We find that when we combine these

sums as described by the expression x0 − x1, the y0’s cancel, leaving us with only

basis elements whose prime sets contain 5.

This means we delete the labels x0 and x1 and give each element with a temporary

label a brand new label.

Example 5.17. At stage 0, we apply the label x0 to the element

g0
2

= y0
2

+ y1
2,5,7,11

At stage 1, we apply the label x1 to the element

g1
3,5

= y2
3,5
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At stage 2, we apply the label x2 to the element

g2
5,7

= y1
2,5,7,11

+ y3
3,5,7

At stage 3, we apply the label x3 to the element

g3
3,5

= y2
3,5
− y3

3,5,7

At stage 4, we discover the element

g4
2

= y0
2

= x0
2

+ x1
3,5
− x2

5,7
− x3

3,5

g4 and x0 have the same prime set, but none of the other basis elements have 2

in their prime sets. x2 is decomposable, and this is clear from the expression above

because no other element has a prime set which is a subset of {5, 7}. x1 and x3 are

indecomposable, so we will not be able to find a decomposition of either element.

Because they have the same prime set, we search their span for a hidden divisibility.

We eventually discover that y3 = x1−x3 has prime set {3, 5, 7}, so we move the label

x3 to the element y3.

We will eventually discover a decomposition for x2 of the form

y3 +
∑
i

gi

where each gi is infinitely divisible by 2, 5, and 7. y3 already has a label x3, so we

give each gi a temporary label.

We can now write

g2
5,7

= x3
3,5,7

+
∑
i

gi

2,5,7,...

g3
3,5

= x1
3,5
− x3

3,5,7

g4
2

= x0
2

+
∑
i

gi

2,5,7,...
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Note that if we find the decomposition of x2 before the hidden divisibility among

x1 and x3, we will be unable to satisfy our requirement for g4 and keep searching.

Once we find the hidden divisibility we can check the decomposition again and see

that our goal is met.

We resume the construction. The next step is to minimize the length of the

expression for every gt with t ≤ s. Starting with g0, we check its current expression

g0 =
∑
k

qkxk

to see if there are two basis elements in the sum, xi, xj with i < j such that Pi,s ( Pj,s.

If there are, we take the xi of lowest priority with this property, and we move the

label xi to the element

qixi +
∑

{j: i<j and Pi,s(Pj,s}

qjxj

We have replaced all these terms in the expression with the term xi, and we say that

xi has absorbed the xj’s. We check the prime set of this new basis element. If it is

strictly larger than Pi,s (the prime set of the former basis element), then the previous

element was decomposable. In this case, we delete the label xi and replace it with a

new label xi′ .

We repeat this until no more such pairs remain in the expression. We then repeat

this process for g1, g2, ...gs, with the added condition that we do not choose an xi

which is currently in the expression for a higher priority element gt.

Example 5.18. At stage 0, we apply the label x0 to the element

g0
2

= y0
2

At stage 1, we apply the label x1 to the element

g1
2

= y0
2

+ y1
2,3,5

+ y2
2,3,7
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At stage 2, we apply the label x2 to the element

g2
2,3,5

= y1
2,3,5

At stage 3, we discover the element

g3
2,3

= y1
2,3,5

+ y2
2,3,7

= x1
2
− x0

2

so we reassign the label x1 to g3.

We now write g1
2

= x0
2

+ x1
2,3

. We could shorten this expression by moving the

label x0 to g1, but that would lengthen the expression for g0. Thus, the label remains

where it is.

Suppose at a later stage we find that x1 is decomposable as

x1
2,3

= z1
2,3,5

+ z2
2,3,7

where

z1
2,3,5

= y1
2,3,5

+ y3
2,3,5,7,11

+ y4
2,3,5,7,13

and

z2
2,3,7

= y2
2,3,7
− y3

2,3,5,7,11
− y4

2,3,5,7,13

We delete the label x1 and assign the labels x3 and x4 to z1 and z2 (respectively). We

now write g1 = x0 + x3 + x4. Again, we cannot shorten this without injuring g0.

At a later stage s, we apply the label x5 to the element

gs
2,3,5,7,11

= y3
2,3,5,7,11

At a later stage, we find the hidden divisibility

gs
2,3,5,7

= y3
2,3,5,7,11

+ y4
2,3,5,7,13

= x3
2,3,5
− x2

2,3,5
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We reassign x3 to gs. We now write

g1
2

= x0
2

+ x2
2,3,5

+ x3
2,3,5,7

+ x4
2,3,7

This means we can shorten the expression for g1 by moving the label x2 to the

element x2 + x3 (we can also say that x2 absorbed x3). Now we write

g1
2

= x0
2

+ x2
2,3,5

+ x4
2,3,7

Now we determine the values of f(l, s). If there is an element labeled xl, set f(l, s)

to be its prime set. If there was an element xl that decomposed at a previous stage,

we have f(l, s) diverge. Otherwise, we set f(l, s) = ø.

At the end of the stage, for each n ≤ s we set Φ(n, s) be the current expression

for gn, including the prime sets of all the elements involved. If a brand new label xk

has been assigned at this stage to an element gn with n > s, we set Φ(n, s) to state

that

gn = xk

We set I to show how each previous basis element is written as the sum of new

basis elements as described in Definition 5.11. If a label xk doesn’t move (or was

deleted at a previous stage), then I(k, s) simply says

xk → xk

If xl is a label that was created at this stage or has yet to be created, I(l, s) is

undefined.

Verification: We need to show that the basis we have constructed is indeed a basis

for HT , and that the prime sets of the basis elements are in one-to-one correspondence

with the sets in T . We fix a complete decomposition of HT .
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Definition 5.19. During any stage of the construction, we say that a label xk is

active if it has not been deleted. We say xk is permanent if it is active at cofinitely

many stages. We say a label xk has settled if one of the following two things have

happened:

1) xk has been (permanently) deleted

2) xk is active and assigned to an element from which it will never be removed

Definition 5.20. In any complete decomposition of HT , an indecomposable ele-

ment yj has an element in its true decomposition whose prime set is a proper subset

of the prime set of every other element in the true decomposition of yj. We call the

summand containing this element the least summand of yj.

The first thing we need to show is that every label eventually settles. For that,

we need the following lemma.

Lemma 5.21. If two indecomposable basis elements have the same least summand

in a decomposition, then one of their labels will be removed eventually.

Proof. Assume xj and xk (with j < k) are indecomposable and share a least

summand in a decomposition. We write

xj = qiyi +
∑
l

qlyl and xk = riyi +
∑
l

rlyl

with the prime set of yi properly contained in the prime set of each yl. Denote

Λ = {yl 6= yi| ql 6= 0 or rl 6= 0}.

We note that {yi} ∪ Λ is a linearly independent set, while {xj, xk} ∪ Λ is not.

Let yλ be the last yl ∈ Λ to be enumerated. Suppose the labels xj and xk have

not moved by the stage when we meet the requirement for yλ. Because xj, xk, and

every other yl ∈ Λ are already in the span of the basis, yλ must also be in the span.
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In fact, from the above expressions for xj and xk, we get an expression of the form

yλ = rixj − qixk + ( )

where the last part of the sum is comprised of basis elements whose prime sets all

properly contain the prime set of yi (which is also the prime set of xj and xk).

Thus, we have discovered a hidden divisibility, and the label xk is moved to yλ. �

Corollary 5.22. F is injective.

Lemma 5.23. If an indecomposable basis element xk is moved via a hidden divisi-

bility, there must be an indecomposable basis element with higher priority in the sum

whose true decomposition contains an element in the least summand of xk.

Proof. This means that

g =
∑
l

qlxl

with qk 6= 0 and the prime set of g properly containing the prime set of xk.

If we project both sides of this equation onto the least summand of xk, we get

0 =
∑
l

qlx̄l

where x̄l is the projection of xl. Because the prime set of g is larger than the prime

set of xk, its projection is 0. However, x̄k is nonzero, so there must be at least one

other x̄l 6= 0. If l > k or if Pl,s ( Pk,s, then xl would be moved (or deleted) instead

of xk. Thus, xl is an indecomposable element of higher priority, and it shares the

same least summand as xk. �

For the next proof, it will be key to note that, though there are 3 different mecha-

nisms in the construction that can remove a label from an element (decomposability,

hidden divisibility, and absorption), only hidden divisibility increases the prime set
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associated with the label. If the prime set grows via absorption, then the original

element was decomposable, so we delete the label.

Lemma 5.24. Each label can only be moved finitely many times via hidden divis-

ibility.

Proof. We prove this by induction. x0 can never be moved by hidden divisibility

because there is no higher priority basis element to move it.

Assume we have reached a stage s where each xj with j < k will no longer be

moved by hidden divisibility. This means that f(j, t) = f(j, s) for every stage t > s

where the label xj still exists. If xj moves xk via hidden divisibility at stage t, then

after xk has moved it is clear that f(j, t) ( f(k, t). Thus, f(j, t′) 6= f(k, t′) for all

subsequent stages t′. This means that xj can never move xk again.

Therefore, for each j < k, xj can only move xk at most once after stage s. �

Lemma 5.25. The expression for every group element converges.

Proof. We prove this by induction as well. If g0 is indecomposable, then its

expression will be

g0 = x0

at every stage.

If g0 is decomposable, then let

g0 =
∑
j

yj

be the true decomposition of g0. Once we have reached a stage s where every yj in

the true decomposition of g0 has been enumerated, then each yj is written as the sum

of basis elements whose prime sets contain its own:

yj =
∑
k

qkxk
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Let Qj be the prime set of yj. Because yj is indecomposable, there must be at least

one xk assigned to an indecomposable element with Pk,s = Qj. At this point, the

only basis elements in the expression of g0 are those with prime set Qj for some j,

and possibly some higher priority basis elements. This is because any lower priority

basis elements with larger prime sets would be absorbed.

At this point, there are only two ways new elements may be introduced into

the expression for g0: a basis element may decompose or a label may be moved via

hidden divisibility. If a decomposition occurs, then a basis element is replaced with

basis elements of greater prime sets and its label is deleted. This can only be happen

finitely many times before every new element is absorbed into some yj.

We know that a basis element xk can only be moved finitely many times via hidden

divisibility. Though new basis elements xl may be introduced to the expression for g0

in this manner, this can only happen if l < k. Thus, only finitely many new elements

may be introduced to the expression for g0.

Now assume that the expression for every gt with t < s has converged. For each

t < s, each basis element in the expression for gt has settled. We would like to use a

proof similar to the one for g0, but we cannot allow basis elements in the expression

for any gt with t < s to absorb lower priority basis elements.

Again, the only ways new elements can be introduced into the expression for gs

are if a basis element decomposes or a label is moved via hidden divisibility. It is

possible that this process may introduce a basis element that is in the expression for

some gt with t < s. However, it is key to note that a decomposing basis element

introduces one or more basis elements with larger prime sets, and that moving a label

via hidden divisibility may introduce a higher priority basis element with the same

prime set, but it also increases the prime set of the element associated with the label

that was moved. Because the basis elements in the expression for each gt with t < s
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have settled, their prime sets are fixed from this point on. Thus, after a certain point

none of these elements will be introduced into the expression for gs.

Once we have reached this stage, we can rewrite the expression for gs as

gs =
∑
i∈I

qixi +
∑
j∈J

qjxj

where I is the set of indices of basis elements in the expression of gs that are also in

the expression for some gt with t < s, and J is the set of indices of basis elements in

the expression of gs that are not in the expression for any gt with t < s. We can use

the same proof above with the element

g′s =
∑
j∈J

qjxj

in the place of g0. We know that no basis elements in the expression for any gt with

t < s will appear at future stages, so there is nothing to stop basis elements in the

expression for gs from absorbing lower priority basis elements. If this elements is 0,

then gs is in the span of basis elements with permanent labels, and its expression

cannot change from this point on. �

Lemma 5.26. If the label xk is permanent, then there is an element that has xk

in its expression at cofinitely many stages.

Proof. We can assume we have reached a stage where every label xj for j < k

has settled, and that xk will never again be moved by hidden divisibility. This means

that any of these labels which are still active are assigned to indecomposable elements,

no two of which share a least summand. Let gs be the element assigned the label xk

at this stage.

At future stages, the label xk can only move by absorbing lower priority basis

elements with larger prime sets, so as long as xk is active, the expression for gs will
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be

gs = qkxk +
∑
l

qlxl

where each xl has a strictly larger prime set than that of xk.

There are 3 ways in which xk can be removed from the expression for gs:

1) The label xk is deleted.

2) The element xk is “absorbed” by a higher priority basis element

3) The element xk moves a lower priority basis element via a hidden divisibility

(as in the expression for g4 in Example 5.15).

2) is impossible because all the higher priority basis elements have settled. 3) is

impossible for the element gs because that would require another basis element in

the expression with the same prime set as xk. Thus, as long as xk remains active, it

cannot be removed from the expression for gs. �

Thus, there is an element gt which is the highest priority element with xk in its

expression at cofinitely many stages.

Lemma 5.27. Every label eventually settles.

Proof. This follows from Lemmas 5.24, 5.25, and 5.26. For any k, xk can only

be moved finitely many times via hidden divisibility. Also, there must be a highest

priority element gs that has xk in its expression at cofinitely many stages. The

expression for gs must converge, so xk can only absorb finitely many elements. Thus,

the label xk moves finitely many times. �

Lemma 5.28. A permanent label cannot settle on a decomposable element.

Proof. Suppose the label xk is assigned to a decomposable element and we are

at a stage in the construction where xk can be written

xk =
∑
j

yj
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where the prime set of each yj is larger than that of xk and each yj has been enumer-

ated by the construction. Then each yj is written as the linear combination of basis

elements whose prime sets contain its own, yet at least one of them must have xk in

its expression for the above sum to be true. From this contradiction we see that the

label xk must be moved. �

Lemma 5.29. F is surjective onto T .

Proof. To see that the range of F is contained in T , we note that a permanent

label must settle on an indecomposable element, whose prime set must be in T .

To see that F is surjective, let Q ∈ T be a set of primes. Then there is an

indecomposable element yj ∈ HT with prime set Q. Once we have reached a stage

in the construction where yj has been enumerated, there must be an indecomposable

basis element which shares a least summand with yj. The only way such a label can

move is via hidden divisibility by a indecomposable basis element of higher priority

with the same least summand. Thus, there must be a basis element whose prime

set is Q at cofinitely many stages, so the limit of the function f at that index will

be Q. �

Now it remains to be shown that our decomposing function has all the properties

listed in Definition 5.11.

Lemma 5.30. Properties 1) - 12) given in Definition 5.11 hold.

Proof. 1) This is true by Lemma 5.25.

2) This is obvious.

3) If xk →
∑
l

qlxl in our construction, then any prime that infinitely divides each

xl also infinitely divides the previous xk, so f(k, s− 1) ⊇
⋂
{l:ql 6=0} f(l, s).

Also, each former basis element is rewritten as the sum of new basis elements with

greater or equal current prime sets, so we have that f(k, s− 1) ⊆
⋂
{l:ql 6=0} f(l, s).
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The rest of property 3) merely states that no matter how the former basis element

is written as a linear combination of basis elements at future stages, its prime set will

remain constant.

4) Every label eventually settles.

5) If qk = 0, this means that xk decomposed, and the label was deleted. We

created a new label to take its place. For every label that we delete, we must create

at least one new label.

6) The only way that the prime set of a basis element can change is if the label

moves (and the label is not deleted). We know that the new basis element cannot be

any element gn with n < s because those elements were already written as a linear

combination of basis elements with equal or larger prime sets.

7) The prime set of gn is given by the intersection of the prime sets of the basis

elements in its expression, and this should be constant at all stages.

8) This is simply because the basis elements at stage s−1 are linearly independent.

When we rewrite them as linear combinations of new basis elements, they are still

linearly independent. Any label that is deleted at stage s is rewritten as a linear

combination of basis elements, at least one of which must have a new label. If xl is a

newly created label at stage s, then I(l, s) is undefined, so this is not an issue.

9) Each element is only divisible by finitely many distinct primes. This property

holds if we have constructed a true basis because then the existence of an element

g =
∑
l

qlxl

implies the existence of each element qlxl. A basis element xk may not be a true

element in any decomposition of HT . However, if we fix a true basis y0, y1, y2, ...

of HT , then there are only finitely many elements yj which, when written as a sum of

our basis elements, contain xk in their expressions (because each such yj must have

a prime set contained in that of xk). Thus, there is a prime p such that no prime
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greater than p divides any yj that has xk in its expression. If we write an element as

a linear combination of the true elements and then rewrite these elements using our

basis, we see that this property holds.

10) If xk is not a permanent label, then there are only finitely many expres-

sions Φ(n, s) containing xk. If xk is a permanent label, then any prime p not in its

prime set only divides it finitely many times. Again, this property holds if we have

constructed a true basis, so it holds for our basis by the same argument stated in the

proof of Property 9).

11) If a new label xk is created at stage s, there is some n such that gn = xk, and

this is reflected in Φ(n, s).

12) At stage s, Φ(n, s) describes how the element gn is written as a linear combi-

nation of basis elements, so this must be unique for each element.

�

This completes the proof for Theorem 5.12 �

3. Constructing HT

Theorem 5.31. If T is the range of an injective partial limitwise set-monotonic

function with a computable decomposing function, then there is a computable copy of

the expanded group HT

Proof. We will construct the group using the decomposition function, using the

limitwise set-monotonic function F (∗) = lims f(∗, s) to tell us what the prime sets of

elements should be.

Construction:

Stage 0: We create an element and label it x0. We declare that its prime set

is f(0, 0).
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Stage s > 0: If I(k, s) states that

xk →
∑
l

qlxl

with qk = 0, then for every new label in the expression we create a new element and

give it that label. We then declare that the above equation holds, and delete the

label xk.

If qk 6= 0 then we check to see if there already exists an element g such that

qkg = xk −
∑
l 6=k

qlxl

if so, we move the label xk to this element. If not, we create such a g, declare the

above equation holds, and move the label xk to it.

After doing this for every k, we declare that the prime set of each xk is f(k, s).

Then for every k and every prime in f(k, s) we add another element to make it

divisible by a higher power of that prime.

We declare all labeled elements to be linearly independent from one another, and

linear independence of other elements can be determined by their expression as linear

combinations of labeled elements.

For each n, if Φ(n, s) states that

gn =
∑
l

qlxl

then for each l we create an element qlxl, if it does not already exist.

For any pair of elements x, y in the group, if x+ y is not in the group, but there

is a scalar multiple of x + y already in the group, then we add x + y to the group.

We then add the inverse of every element to the group, if it does not already exist.

Verification: We denote the finished group by G.
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Lemma 5.32. Every label settles.

Proof. This is clear by property 5) �

Lemma 5.33. Linear independence is a computable relation of G.

Proof. At every stage the elements with active labels form a linearly independent

set. The linear independence of all other group elements derives from their expression

as a linear combination of these elements. Property 8) guarantees that the basis

elements at stage s− 1 are still linearly independent at stage s. �

Lemma 5.34. Every element in G can be uniquely written as a finite linear com-

bination of elements with permanent labels.

Proof. We know this because of properties 1) and 2), and the previous lemma.

By induction, it is clear that every element introduced in the group is a linear com-

bination of elements to which the labels were originally applied. Lemma 11) means

that Φ gives us the expression for each of these elements at every subsequent stage of

the construction, and these expressions all converge. Thus, the expression for every

element introduced into the group converges. Uniqueness comes from the fact that

at any stage of the construction, the active labeled elements are linearly indepen-

dent. �

Lemma 5.35. The prime sets of the elements with permanent labels are precisely

the sets in T (with no repetitions).

Proof. F is an injective limitwise set-monotonic function with range T . Thus, if

xk is a permanent label, then there was no s such that I(k, s) showed xk decomposing.

Property 5) tells us that f(k, s) ↓ for all s.

The prime set of xk at stage s is always equal to f(k, s), so the prime set of xk

is F (k) at cofinitely many stages. Property 9) guarantees that xk is only divisible
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by finitely many primes. Property 10) guarantees that no prime outside of F (k)

infinitely divides xk. Thus, the prime set of xk in the final group is F (k).

The function F is injective, so no prime sets are repeated. �

Lemma 5.36. G is completely decomposable.

Proof. G is generated by elements with newly created labels, and elements given

by Φ(n, s) by some n, s or I(j, t) for some j, t. The basis we have constructed is a true

basis because for every linear combination
∑
l

qlxl ∈ G, there is an element qlxl ∈ G

for each l. �

Lemma 5.37. In G, infinite divisibility is a computable relation.

Proof. Property 3) guarantees that each former basis element still has a constant

prime set throughout the construction. Property 6) guarantees that if for any index

k and stage s, f(k, s) 6= f(k, s + 1), then the label xk moves at stage s. This means

that as long as a label remains stationary, the prime set of its labeled element will

not change. Property 7) guarantees that each element represented by Φ(n, s), once

introduced to the group, has a constant prime set. �

This ends the proof of Theorem 5.31. �

4. Conclusion

In the proof of Theorem 5.12 we have taken an arbitrary computable presentation

of the group HT and constructed a ∆0
4 basis of indecomposable elements whose prime

sets are precisely the sets in T (without repetition). If we wish to build HT , the

decomposing function allows us to build this basis, while the partial limitwise set-

monotonic function gives us the sets in T .

We can also use the same construction but remove the process of absorbing lower

priority basis elements to shorten expressions. If we do, we can build a Π0
3 linearly

independent set of indecomposable elements whose prime sets are precisely the sets
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in T (without repetition), but this set need not be a basis for HT . Using this method,

it may be possible to prove something similar to Theorem 5.31, but with an alternate

definition for the decomposing function.

It should be possible to extend Theorem 5.31 to groups HT where T is a collection

of (not necessarily distinct) finite sets of primes, and the number of basis elements

with prime set D corresponds to the multiplicity of D in T . We should also be able to

allow for infinite sets of primes by approximating the prime set of each element up to

ps at stage s. If we intend to gain a better understanding of completely decomposable

groups in general, then working to expand Theorem 5.31 will be a worthwhile task.

We may also be able use the fact that T is a collection of distinct finite sets of

primes to find a more concise version of Theorem 5.12. Because we can precisely

determine the prime set of any element, any time we have two labeled elements with

the same prime set, we know at least one of them must be decomposable or they have

the same least summand. In the latter case, there is a linear combination of the two

elements which has a larger prime set or is the sum of larger prime sets (and hence,

decomposable). This may allow the basis we find to be Π0
3 instead of merely ∆0

4.

I attempted to replace the equations coded in the decomposing function with a

description of the linear dependence relation (as it pertains to formerly and currently

labeled elements at a given stage). At stage s, rather than code the equation

xk →
∑
l

qlxl

into I(k, s), we could declare these elements linearly dependent:

Λ(xk,s−1, xl1,s, xl2,s, ...xlm,s)
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This would be a simpler description of the group, but, when reconstructing the ex-

panded group we would be tasked with choosing coefficients for these linear combi-

nations that would make the linear dependence relation Λ consistent. The following

example indicates that this is likely impossible in some cases.

Example 5.38. Suppose we are attempting to build the decomposing function

using only the linear dependence relation Λ (we will ignore prime sets in this example,

as they are irrelevant). Assume the first four elements g0, g1, g2, g3 are a linearly

independent set, so that they are initially given the labels x0, x1, x2, x3, respectively

(at stages 0,1,2,3, respectively). As in the construction for the proof of Theorem

5.12, we want to track how these elements are to be written as linear combinations of

labeled elements at future stages. The difference here is that we will only be listing

the elements used in the equations, not the equations themselves. To properly define

Λ, it will be necessary to note the location of a label xk at a stage t, and we denote

this element xk,t. Thus, x0,0 = g0, x1,1 = g1, x2,2 = g2, and x3,3 = g3.

Suppose by stage s we have the following expressions for g0, g1, g2, g3:

g0 = x4 + x5 + 2x6 + x7

g1 = x4 + 2x5 + 3x6 + 3x7

g2 = 3x4 + 5x5 + x6 + 2x7

g3 = 3x4 + 2x5 + 2x6 − x7

Then we have Λ(xn,n, x4,s, x5,s, x6,s, x7,s) for n = 0, 1, 2, 3. In fact, any 5-element

subset of {x0,0, x1,1, x2,2, x3,3, x4,s, x5,s, x6,s, x7,s} is linearly dependent, but no 4-element

subset is. This means that if we were given this information and attempting to build a

computable copy of the expanded group, we could choose any coefficients we wanted

for the above equations, as long as no set of 4 of the listed elements are linearly

dependent.
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Now suppose that at stage s+ 1 of the construction of the decomposing function,

we see that x7 is actually decomposable:

x7 = x4 + x8

(where x8 is a new label in the construction). This means that the new expressions

for g0, g1, g2, g3 are

g0 = x4 + x5 + 2x6 + (x4 + x8) = 2x4 + x5 + 2x6 + x8

g1 = x4 + 2x5 + 3x6 + 3(x4 + x8) = 4x4 + 2x5 + 3x6 + 3x8

g2 = 3x4 + 5x5 + x6 + 2(x4 + x8) = 5x4 + 5x5 + x6 + 2x8

g3 = 3x4 + 2x5 + 2x6 − (x4 + x8) = 2x4 + 2x5 + 2x6 − x8

The only differences between the new expressions and the old expressions are the

coefficients of x4 and the substitution of x8 for x7. However, the new coefficients

allow us to write

2g0 − g1 = x6 − x8

2g2 − 5g3 = −8x6 + 9x8

Now we must declare Λ(x4,s, x4,s+1),Λ(x5,s, x5,s+1),Λ(x6,s, x6,s+1), which merely

indicate that the labels x4, x5, and x6 did not move. We must also declare

Λ(x7,s, x4,s+1, x8,s+1)

Λ(x0,0, x1,1, x6,s+1, x8,s+1)

Λ(x2,2, x3,3, x6,s+1, x8,s+1)
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If we are given this information to build a computable copy of the group, then we

get to create a new element with the label x8 and choose rationals q4, q8 so that

x7 = q4x4 + q8x8

However, the fact that {g0, g1, x6, x8} form a linearly dependent set means that q4 can

only have one possible value in order to satisfy this requirement, which is dependent

entirely on the expressions for g0 and g1 at stage s. The fact that {g2, g3, x6, x8}

are linearly dependent puts a similar requirement on the value of q4. There is no

way to guarantee that these requirements do not conflict with one another with the

information we had at stage s.

If we want to build a computable copy of the expanded group HT so that the linear

dependencies at any given stage are consistent with the linear dependencies at the

same stage of the construction of the decomposing function, then the decomposing

function must give the exact equations used in moving labels. One idea to remedy

this is to forgo this consistency via a finite injury construction, but it is not at all

clear that this is possible.
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