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Abstract

A study of elliptic differential equations is carried out, from the point of view

of interconnecting the discrete with the analytical. Approximate maximum prin-

ciples and barrier postulates, acting on functions with hyperfinite domains, are

introduced. The methods are specially adapted for proofs of convergence of dis-

cretizations for linear elliptic PDE’s. The well-known Brouwer degree theory is

extended to hyperfinite dimensional spaces, with the purpose of applying it to

show convergence of discretizations in nonlinear elliptic problems.
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Chapter 1

Introduction

1.1 A Brief Description of this Work

A study of elliptic differential equations is carried out, from the point of view of

interconnecting the discrete with the analytical.

This dissertation is roughly divided into two parts. The first part introduces

approximate maximum principles and barrier postulates, acting on functions with

hyperfinite domains, and includes chapters 2 and 3. The methods are specially

adapted for proofs of convergence of discretizations for linear elliptic PDE’s. The

second part, which includes the remaining three chapters, extends the well-known

Brouwer degree theory to hyperfinite dimensional spaces, with the purpose of ap-

plying it to show convergence of discretizations in nonlinear elliptic problems.

In chapter 2, the five-point Laplacian scheme is used to discretize the Laplace

equation and its Dirichlet problem. An approximate maximum principle for the

five-point Laplacian is proved and used to show that, under a strong barrier con-

dition, the discrete solutions converge to the (unique) solution of the Dirichlet

problem. This is done directly, i.e., existence and uniqueness of a classical solution

of the problem comes also out of this proof. The barrier condition introduced

here is actually a necessary and sufficient condition for the approximation process
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to converge to a classical solution. It is shown that this condition implies the

usual one, as used in Perron‘s method. Finally, convergence of discrete solutions

in domains with nonregular boundary points is discussed.

Chapter 3 defines a large class of “good” approximations for the Dirichlet prob-

lem of a general linear uniformly elliptic operator, on Ω ⊂ Rn bounded and open.

An approximate maximum principle is shown to be a consequence of a discrete one,

and this result is used to show convergence of all “good” discretizations to the so-

lution of the analytical problem, provided one exists and is in C2(Ω,R)∩C(Ω,R).

Convergence rates are derived in the case that the solution of the analytical prob-

lem is in C2(Ω,R).

As an elementary example, consider the Dirichlet problem for the Laplace equa-

tion in the unit square, Ω = (0, 1)2,

∆u(x) = 0 if x ∈ Ω,

u(x) = f(x) if x ∈ ∂Ω,
(1.1)

where f ∈ C(∂Ω,R). If we divide the unit square using equally spaced gridlines,

with the distance from each other equal to h = 1
n
, n ∈ N − {0}, then we obtain

the following discretization of Ω:

Ωh = {0, h, 2h, . . . , (n− 1)h, 1}2

The discrete analogue of the boundary and interior of Ω is given by:

∂Ωh = Ωh ∩ ∂Ω,

Ωh = Ωh − ∂Ωh.

To discretize ∆, just replace the second derivatives with the corresponding central
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Figure 1: Discretization of [0, 1]2.

difference quotients, and get:

∆hUh(x) =
1

h2

(
Uh(x1 + h, x2) + Uh(x1 − h, x2) + Uh(x1, x2 + h)

+ Uh(x1, x2 − h)− 4Uh(x1, x2)
)
.

This leads to the discretized problem:

∆hUh(x) = 0 if x ∈ Ωh,

Uh(x) = f(x) if x ∈ ∂Ωh,
(1.2)

which is actually a family of discretized problems, indexed in h = 1
n
, n ∈ N− {0},

each one leading to a unique solution, Uh
1.

Nonstandard analysis provides a very appropriate framework to deal with con-

vergence of the Uh (as n→∞, or h ↓ 0). By considering Uh, where h is a positive

1Problem (1.2) is a system of linear equations. It follows from the discrete maximum principle
on page 12 that this has a unique solution.
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infinitesimal, we are already looking at problem (1.2) ”in the limit”, i.e., in a sit-

uation where Uh is already infinitely close to the solution, u, of (1.1). Because of

this, results and notions from the analytical (nondiscrete) theory — like barriers or

maximum principles stronger than the usual discrete one — can be reformulated

in the nonstandard setting. For a general reference in nonstandard analysis, see

Stroyan [26] or Albeverio [1].

The maximum principles developed are not enough to obtain results concerning

nonlinear elliptic equations. That leads us to consider degree theory as a possibility

for proving convergence of discretizations.

We begin with the well-known Brouwer degree theory. A construction of this

notion — this time using nonstandard analysis — is provided. It serves as a way

to prepare for the work of next Chapter. This construction has some similarities

with the one in Rabinowitz [23], although it gives a new formula for computing

the degree in the general case.

Hyperfinite dimensional Banach spaces occur in situations where we want to

study the behavior “in the limit” of some class of discrete problems. The functions

Uh solving problem (1.2), for h positive and infinitesimal, are elements of such

a space. By identifying infinitely close elements — with respect to some norm

— we arrive at a nonstandard hull of the hyperfinite dimensional Banach space.

This is somewhat similar to the standard procedure of considering the space of

sequences of functions,
(
U1/n

)
n∈N

, identifying sequences that have the same limit

with respect to some norm. The choice of the norm determines the notion of

convergence being used.

Chapter 5 deals with the construction of a degree notion in nonstandard hulls
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of hyperfinite Banach spaces. To overcome the requirement of compactness for

the map, the degree has values in the nonstandard integers, enabling the count of

more than finitely many solutions.

A very important fact is that a map, ϕ, in the nonstandard hull is an equivalence

class of many “nearby” maps, Φ, in the hyperfinite dimensional space. In our

applications, each Φ represents a family {Fh} of discrete problems indexed by h.

The map ϕ is the nonstandard analogue of the common limit (as h ↓ 0) of all

{Fh} that are near each other, in the sense of the chosen norm. So, our degree

becomes quite an interesting tool, in that it may prove in one step the convergence

of infinitely many “sufficiently close” discretizations.

The framework refered above is tested in the final chapter, where the general

boundary value problem for the scaled Newton’s law of motion, x′′ = f(x′, x, t),

with f continuous, is treated. This is a prototype for the more general Dirichlet

problem for a nonlinear elliptic equation of the form Lu = f(Du, u, t), with L

uniformly elliptic, which we intend to study in the future.

1.2 Some Philosophical Remarks

Modeling a physical system is the art of crafting an idealized structure that repro-

duces, as much as possible, its observable behavior. Invariably, such structures end

up taking the form of a mathematical construct of some kind. If we were to accept

some form of realism, which strives for (and believes in) complete reliability of

models, one would be constrained to use discrete mathematics; for the observable

behavior of a system, achieved with a finite amount of effort, can only be a choice
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between finitely many states.

Despite all this, and since Leibniz and Newton, the physical sciences have shown

a clear preference towards the use of calculus, and more generally analysis. Even

classical mechanics, which was hailed by some as the hallmark of realism, relies

heavily on analysis. With the twentieth century acceptance of nondeterminism

bringing the introduction of state spaces even more complex than Rn, models

deviated even further from realism.

Therefore, the practical philosophy of the physical sciences has been, for quite

some time, that models reproduce observable behavior only in an approximate

way. The notion of approximation includes the idea of potential exactness, that is,

the process of continuous refinement of our observation techniques and theoretical

descriptions must be made sure to give, in the limit, predictions that are indistin-

guishable from observations. This puts two huge questions right at the heart of

the scientific method:

(1) Is the approximation process feasible? That is, can we expect that, as our

finite state space gets more and more detailed, the messy “real” (and discrete)

descriptions converge to some unique and clean analytical description?

(2) Is the approximation process usable? That is, can we expect the approxima-

tion to converge fast enough so that it can lead to good practical applications

in real time?

Interestingly enough, these questions have been around in mathematics (more

specifically, in numerical analysis and approximation theory) for quite some time,

although the philosophical considerations that lead to them seem to be a perfect
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mirror image of the ones we have been discussing. It is the “real” (in the sense

of idealism) objects of analysis who require discretizations to be of any use in the

nonplatonic world. Questions (1) and (2) also occur in mathematics, with the only

change in the position of the quoted word “real”.

It should be stressed that question (1) entails a very important, and often

difficult, subquestion. A great deal of effort must sometimes be put into finding

the type of analytical model that the discrete descriptions converge to, in some

sense. A complete rethinking of the physical model may be involved in this step,

so this easily turns into an interdisciplinary effort. The area of elliptic equations

turned out to be a good test ground, one where this subquestion did not constitute

an early burden for other needed developments.

This work is an attempt to build and apply some general tools (in the area

of elliptic equations), that can be used to interconnect discrete descriptions with

analytical ones.

For a mathematical overview of hyperreall numbers, and philosophical discus-

sion of their significance, see Keisler [14].
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Chapter 2

Dirichlet Problem for the Laplace

Equation in the Plane

This chapter introduces the nonstandard maximum principle in the simple frame-

work of the Laplace equation, and shows its usefulness by building the classical

solution of the Dirichlet problem as a limit of discrete ones. The Dirichlet problem

is:

∆u(x) = 0, x ∈ Ω,

u(x) = f(x), x ∈ ∂Ω,
(2.1)

where Ω ⊂ R2 is open and bounded, and f ∈ C(∂Ω,R). A function satisfying

∆u = 0 on some Ω is called harmonic on that set. The solution of problem (2.1)

describes the distribution of temperature for a steady heat flow on a plate of shape

Ω, when the temperature at the boundary of the plate is constrained to be given by

f . Throughout this chapter, we will always assume that Ω is an open and bounded

subset of R2.

A classical solution of (2.1) is a function u ∈ C2(Ω,R) ∩ C(Ω,R), satisfying

(2.1). While the smoothness requirement on u is needed for the derivatives in

the differential equation to make sense, the continuity of u up to the boundary is

a technical condition, imposed to ensure that the solution is “connected” to the
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boundary values. Nevertheless, in some situations, there are “solutions” which

physically make sense (i.e., come from a limit of appropriate finite difference prob-

lems), but fail to be continuous at some boundary points.

We begin by looking at classical solutions, showing the classical result of ex-

istence and uniqueness of solution under a barrier condition. Unlike in the usual

analytical proof, this is achieved by building it as a limit of appropriate finite

difference solutions. Later, we will study a more general case, where there may

not be any classical solution, but the finite difference approximations still converge

pointwise to a unique function, which satisfies (2.1) and is continuous at points

of ∂Ω meeting the barrier condition. The fact that this “solution” is constructed

as the limit of the finite difference approximations ensures that it represents the

intended physical situation.

2.1 A Finite Difference Scheme

Let h > 0. Let R2
h be a uniform grid of points in R2:

R2
h =

{
(ih, jh) : i, j ∈ Z

}
.

Let xi,j = (ih, jh). The xi,j are sometimes called gridpoints. The set of neighbors

of xi,j is defined as the the set of points of R2
h whose distance from x is exactly h.

Each gridpoint has precisely four neighbors. A function U : R2
h → R is called a

gridfunction. By a finite difference scheme, we mean a family of discrete problems

indexed in h, and usually obtainable from the differential equation by replacing

the derivatives by finite differences. For the Laplacian operator, and using central
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differences:

ux1x1(x1, x2) 7−→
1

h2

(
U(x1 + h, x2)− 2U(x1, x2) + U(x1 − h, x2)

)
,

ux2x2(x1, x2) 7−→
1

h2

(
U(x1, x2 + h)− 2U(x1, x2) + U(x1, x2 − h)

)
.

Therefore, we define:

∆hU(x1, x2) =
1

h2

(
U(x1 + h, x2) + U(x1 − h, x2) + U(x1, x2 + h)

+U(x1, x2 − h)− 4U(x1, x2)
)
.

(2.2)

If u : Ω → R, we define ∆hu in the same way. The domain of ∆hu will be the

largest subset of Ωh where ∆hu(x) is well defined. The discrete counterpart of the

Laplace equation, ∆hU = 0, just says that U(xi,j) equals the average of the values

of U over the four neighbors of xi,j
1.

We now set up a finite difference scheme and show it has a unique solution for

each h ∈ R+. Let:

Ωh = Ω ∩ R2
h,

∂Ωh =
{
xi,j ∈ Ωh : xi+1,j /∈ Ωh ∨ xi−1,j /∈ Ωh ∨ xi,j+1 /∈ Ωh ∨ xi,j−1 /∈ Ωh

}
,

Ωh = Ωh − ∂Ωh.

The discrete analogue of the boundary of Ω, ∂Ωh, is the set of points in Ωh with

less than four neighbors in Ωh.

To define the discrete Dirichlet problem corresponding to (2.1), we need to

construct a function fh : Ωh → R, which prescribes the values of U at the points in

1To give a physical interpretation, consider a plate, Ω, divided into square cells of side h,
and let U give the temperature at each cell. The heat that enters a cell through each one
of its boundary sides is proportional to the difference of temperature between itself and the
corresponding neighboring cell. So the net flow of the heat entering the (i, j)’th cell is ∆hU(xi,j);
therefore ∆hU(xi,j) = 0, ∀xi,j ∈ Ωh, just says that the heat flow on Ωh is steady.
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Figure 2: Ω, Ωh, and ∂Ωh.

∂Ωh, in a way which approximates well enough the boundary condition in (2.1). For

our purpose, which is to show existence and uniqueness of solutions, the following

construction will suffice.

Let (a, b) ∈ ∂Ωh. Let (ã, b̃) ∈ ∂Ω be the intersection of the lines x1 = a and

x2 = b with ∂Ω which is closest to (a, b). There may be more than one such point,

but there can be only one to the North of (a, b). Similarly, there can be only one

in the other three directions. So, if there are more than one, pick one of them

according to a preset ordering 2. Then, set:

fh(a, b) = f(ã, b̃).

2Say: North, East, South and West
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The finite difference problem is:

∆hU(x) = 0, x ∈ Ωh,

U(x) = f(x), x ∈ ∂Ωh.
(2.3)

By construction,
∣∣∣(ã, b̃)− (a, b)

∣∣∣ ≤ h

2.2 Approximate Maximum Principles

Maximum principles will constitute a key tool in this chapter. We begin by the

discrete version. For now, and until we say the contrary, we work only with

standard objects. In the end of this section, we will give a non-standard version

of the maximum principle.

Theorem 2.1 (Discrete maximum principle) Let h > 0. If U : Ωh → R

satisfies

∆hU(x) ≥ 0 ∀x ∈ Ωh,
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then

max
x∈Ωh

U(x) = max
x∈∂Ωh

U(x).

Proof. Let M = maxx∈∂Ωh
U(x). Assume the maximum of U occurs at some

interior point, say (x1, x2) ∈ Ωh. For all elements of Ωh of the form (x1 + nh, x2),

n ∈ N, such that all points of the form (x1 + ih, x2), 0 ≤ i < n, are in Ωh, we show

by induction on n that U(x1 + nh, x2) = M .

For n = 0, the result is given by hypothesis. Now, suppose U(x1+nh, x2) = M .

If (x1 + nh, x2) ∈ ∂Ωh, we are done. If not, that is, if (x1 + nh, x2) ∈ Ωh, then,

using the induction hypothesis:

0 ≤ h2∆hU(x1 + nh, x2)

= U(x1 + (n− 1)h, x2) + U(x1 + (n+ 1)h, x2) + U(x1 + nh, x2 + h)

+U(x1 + nh, x2 − h)− 4U(x1 + nh, x2)

= U(x1 + (n− 1)h, x2) + U(x1 + (n+ 1)h, x2) + U(x1 + nh, x2 + h)

+U(x1 + nh, x2 − h)− 4M

≤ M + U(x1 + (n+ 1)h, x2) +M +M − 4M

= U(x1 + (n+ 1)h, x2)−M.

Therefore, U(x1 + (n+ 1)h, x2) = M .

Now, for the least n ∈ N such that (x1 + nh, x2) ∈ ∂Ωh (which exists because

Ω is bounded), U(x1 + (n+ 1)h, x2) = M . Hence, we have just shown that, if the

maximum of U occurs in Ωh, then it must occur also in ∂Ωh.

Corollary 2.2 (Discrete minimum principle) Let h > 0. If U : Ωh → R



14

satisfies

∆hU(x) ≤ 0 ∀x ∈ Ωh,

then min
x∈Ωh

U(x) = min
x∈∂Ωh

U(x).

Proof. Apply the discrete maximum principle to the function V = −U .

Corollary 2.3 Let h > 0. If U : Ωh → R satisfies

∆hU(x) = 0 ∀x ∈ Ωh,

then max
x∈Ωh

U(x) = max
x∈∂Ωh

U(x), and min
x∈Ωh

U(x) = min
x∈∂Ωh

U(x).

Corollary 2.4 Let h > 0. If U : Ωh → R satisfies

∆hU(x) ≥ 0 ∀x ∈ Ωh,

U(x) ≤ a ∀x ∈ ∂Ωh,

for some a ∈ R, then U(x) ≤ a ∀x ∈ Ωh.

Proof. By the discrete maximum principle, max
x∈Ωh

U(x) = max
x∈∂Ωh

U(x) ≤ a.

The discrete maximum principle can be used in comparison function arguments.

These work as follows. Let U : Ωh → R be a solution of (2.3), and suppose that,

for some wisely chosen V : Ωh → R,

x ∈ Ωh ⇒ ∆h(U(x)− V (x)) = −∆hV (x) ≥ 0,

i.e., ∆hV (x) ≤ 0, and

x ∈ ∂Ωh ⇒ U(x)− V (x) = fh(x)− V (x) ≤ 0,
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i.e, V (x) ≥ fh(x). Then, for all x ∈ Ωh, U(x)− V (x) ≤ 0, so U(x) ≤ V (x).

Many variations of this argument can be used to get bounds for a solution, U ,

of (2.3), without knowing its form, or even if it exists. This is why these sorts of

estimates are called a priori bounds.

We will now apply the discrete maximum principle to show that the discrete

problem (2.3) has a unique solution. First note that (2.3) is no more than a system

of linear equations. In fact, the set of grid functions with domain Ωh, with the

usual (pointwise) sum and scalar product, is a vector space of finite dimension,

and its dimension equals the number of elements of Ωh. So, (2.3) consists exactly

of
∣∣Ωh

∣∣ equations in
∣∣Ωh

∣∣ unknowns.

Example 2.5 Let Ω = (0, 1)2, and h = 1/n (see Fig. 1 on page 3). Then
∣∣Ωh

∣∣ =

(n+ 1)2, |∂Ωh| = 4n, and |Ωh| = (n− 1)2. The dimension of RΩh is (n+ 1)2.

Lemma 2.6 Let h > 0. Let f : ∂Ω → R. Then the problem (2.3) has a unique

solution U : Ωh → R.

Proof. Write Ωh = {xi,j : (i, j) ∈ I}, where I =
{
(i, j) ∈ Z2 : xi,j ∈ Ωh

}
. Well-

order I (e.g., lexicographically), and set vk = u(xi,j), where (i, j) is the k’th element

of I. We know 1 ≤ k ≤
∣∣Ωh

∣∣. Then, equations (2.3) set up a system of linear

equations:

Av = b (2.4)

The vector b comes from the right-hand side of (2.3), so its entries are either 0 or

fh(x), for some x ∈ ∂Ωh. A is a
∣∣Ωh

∣∣ × ∣∣Ωh

∣∣ matrix. To show that (2.4) has a

unique solution, it is enough to show that the linear map,

RΩh 3 v 7−→ Av ∈ RΩh
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is injective.

Suppose Av = 0. From (2.3), this means that fh(x) = 0, for all x ∈ ∂Ωh. By

the discrete maximum principle, v = 0.

We now work in a superstructure 〈V (R), ∗V (R), ∗〉. We will omit the stars on

all standard functions of one or several variables and usual binary relations. Each

finite 3 x ∈ ∗R can be uniquely decomposed as x = r+ ε, where r ∈ R and ε is an

infinitesimal; r is called the standard part of x, and denoted by st x. If x, y ∈ ∗R

are such that x− y is infinitesimal, then we say that x is infinitesimally close to y,

and write x ≈ y. Similarly, if x, y ∈ ∗Rn:

x ≈ y iff |x− y| ≈ 0 iff xi ≈ yi, for each i = 1, . . . , n.

If x ∈ ∗Rn is finite then let:

◦x = ◦(x1, . . . , xn) = ( st x1, . . . , st xn)
4.

For other functions F : A ⊂ ∗Rn → ∗Rm, define also ◦F by:

◦F ( ◦x) = ◦(F (x)) ∀x ∈ A.

For sets A ∈ Rn, let:

◦A =
{
◦x : “x is finite” and x ∈ A

}
.

Each “circle” map as introduced above is sometimes called a standard part map.

Whenever h ≈ 0, the sets Ωh, ∂Ωh, and Ωh will be internal sets; also, fh will

be an internal function. In this chapter, we stick to the convention that objects

3x ∈ ∗Rn is finite iff there exists m ∈ N such that |x| < m.
4Obviously, if x ∈ ∗R (the n = 1 case) then ◦x = st x.
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subscripted by h ≈ 0 will be internal subsets of R2
h or gridfunctions. The capital

letters U , V , . . . will preferably be used to designate internal gridfunctions. Since

we will sometimes need to designate standard elements of some other sets, we will

not omit the stars on sets 5. By transfer, the ∗size of Ωh will be some hyperinteger

N ∈ ∗N. Since Ω is open, whenever h is infinitesimal, N will be infinitely large.

Recall the construction of fh on page 12. By construction,
∣∣∣(ã, b̃)− (a, b)

∣∣∣ ≤ h,

so if h ≈ 0 and f is continuous, then for all x ∈ ∂Ωh,
◦fh(x) = f( ◦x).

By transfer of Lemma (2.6) and the internal definition principle, we obtain:

Lemma 2.7 Let h ≈ 0. Let f : ∂Ω → ∗R. Then the problem (2.3) has a unique

internal solution U : Ωh → R.

We now turn to the approximate version of the maximum principle.

Definition 2.8 The relations <∼ and >∼ are defined in ∗R2 by:

a <∼ b⇔ a < b ∨ a ≈ b,

a >∼ b⇔ b <∼ a.

Theorem 2.9 (Approximate Maximum Principle) Let h > 0, h ≈ 0. Let

U : Ωh → ∗R be internal and a ∈ R. Suppose:

∆hU(x) >∼ 0, ∀x ∈ Ωh;

U(x) <∼ a, ∀x ∈ ∂Ωh.

Then, U(x) <∼ a ∀x ∈ Ωh.

5For example, R+ is the set of standard positive reals, while ∗R+ designates the positive
hyperreals.
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Proof. We use a comparison function argument. Fix some x̄ = (x1, x2) ∈ Ωh.

For each c ∈ R+, define:

V (x) = U(x) + w(x) ∀x ∈ Ωh,

where w(x) = c |x− x̄|2. Let R ∈ R+ be such that BR(x̄) ⊃ Ω. Computing the

laplacian of the (standard) function w yields:

∆w(x1, x2) =

(
∂2

∂x2
1

+
∂2

∂x2
2

)(
c(x1 − x̄1)

2 + c(x2 − x̄2)
2
)

= 4c.

From our hypothesis on U , and the differentiability of w:

∆hV (x) = ∆hU(x) + ∆hw(x) >∼ 0 + 4c > 0.

Hence, ∆hV (x) > 0. On the other hand, if x ∈ ∂Ωh, then:

V (x) = U(x) + c |x− x̄|2 ≤ U(x) + cR2 <∼ a+ cR2 ≤ a+ 2cR2

By the transfer of the discrete maximum principle, V (x) ≤ a+2cR2, for all x ∈ Ωh.

Hence, U(x) ≤ V (x) ≤ a+ 2cR2, for all x ∈ Ωh. Since c was arbitrarily chosen in

R+, we get that U(x) <∼ a, for all x ∈ Ωh.

Corollary 2.10 (Approximate Minimum Principle) Let h ≈ 0. If U : Ωh →

∗R is internal and,

∆hU(x) <∼ 0, ∀x ∈ Ωh,

U(x) >∼ 0, ∀x ∈ ∂Ωh,

then U(x) >∼ 0 ∀x ∈ Ωh.

Proof. Apply the approximate maximum principle to −U .
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Corollary 2.11 Let h ≈ 0. If U : Ωh → ∗R is internal and,

∆hU(x) ≈ 0, ∀x ∈ Ωh,

U(x) ≈ 0, ∀x ∈ ∂Ωh,

then U(x) ≈ 0 ∀x ∈ Ωh.

Proof. By the approximate maximum principle, U(x) <∼ 0 on Ωh. Also, apply-

ing the same result to −U , we get U(x) <∼ 0 on Ωh. Therefore, U(x) ≈ 0, for all

x ∈ Ωh.

Now, we look for a standard version of the approximate maximum principle.

To be able to formulate it, we consider a family of gridfunctions Uh : Ωh → R,

indexed in h ∈ R+.

Theorem 2.12 (Approximate Maximum Principle — Standard Form)

Let {Uh : h ∈ R+} be a family of grid functions Uh : Ωh → R. Then, for all

ε ∈ R+, there exists δ ∈ R+ such that for all 0 < h < δ the following statement

holds. If

min
x∈Ωh

∆hUh(x) > −δ,

then

max
x∈Ωh

Uh(x) < ε+ max
x∈∂Ωh

Uh(x).

Proof.

Fix ε > 0, and consider the set:

D =

{
δ ∈ ∗R+ : ∀h ∈ (0, δ)

(
min
x∈Ωh

∆hUh(x) > −δ
)

⇒ max
x∈Ωh

Uh(x) < ε+ max
x∈∂Ωh

Uh(x)

}
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D is internal and, by the approximate maximum principle, it includes the set of

all positive infinitesimal δ. Therefore, by overspill, it must contain some standard

δ > 0. For that standard δ, the statement of the theorem is satisfied.

This version is actually equivalent to a weak form of Theorem (2.9), where we

start with a one parameter family U = {Uh : h ∈ R+}, and work with the internal

family ∗U , instead of an individual internal gridfunction.

The following well-known result can be obtained as a corollary of the approxi-

mate maximum principle.

Corollary 2.13 (Analytical Maximum Principle) Let Ω ∈ R2 be bounded

and open, and consider u ∈ C2(Ω,R) ∩ C(Ω,R). If a ∈ R, and

∆u(x) ≥ 0, ∀x ∈ Ω,

u(x) ≤ a, ∀x ∈ ∂Ω,

then u(x) ≤ a ∀x ∈ Ω.

Proof.

Let h ≈ 0, and consider Ωh, Ωh, ∂Ωh and ∆h as introduced before. Since u is

C2 in Ω, ∆hu(x) ≈ ∆u(x) ≥ 0 at every x such that dist(x, ∂Ω) 6≈ 0. Consider the

set:

E =
{
δ ∈ ∗R+ : ∀x ∈ Ωh ∀y ∈ ∗∂Ω |x− y| > δ ⇒ ∆hu(x) > −δ

}
.

E is internal and includes all positive δ 6≈ 0. Hence, it must contain some positive

δ ≈ 0. Consider Ω
δ

h = {x ∈ Ωh : ∀y ∈ ∗∂Ω |x − y| ≥ δ}, and let Ωδ
h = {x ∈ Ω

δ

h :
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“x has four neighbours”}, ∂Ωδ
h = Ω

δ

h − Ωδ
h. Then:

∆hu(x) > −δ ≈ 0, ∀x ∈ Ωδ
h,

u(x) ≈ u( ◦x) ≤ a, ∀x ∈ ∂Ωδ
h,

(note that ∗dist(∂Ωδ
h,

∗∂Ω) <∼ δ ≈ 0, so ◦x ∈ ∂Ω, for all x ∈ ∂Ωδ
h). By the

approximate maximum principle, we conclude that u(x) >∼ a, for all x ∈ Ω
δ

h. Since

◦(Ω
δ

h) = Ω, this implies our result.

Corollary 2.14 Let Ω ∈ R2 be bounded and open and f ∈ C(∂Ω,R). Then,

∆u(x) = 0, x ∈ Ω,

u(x) = f(x), x ∈ ∂Ω,

has no more than one solution in C2(Ω,R) ∩ C(Ω,R).

Proof. Let v ∈ C2(Ω,R) ∩ C(Ω,R) be another solution. Then ∆(v − u) = 0 in

Ω and (u− v)(x) = f(x)− f(x) = 0 on ∂Ω. By the analytical maximum principle

(applied to v − u and to u− v) we conclude that u = v in Ω.

2.3 Existence and Uniqueness for the Classical

Dirichlet Problem

We recall our Dirichlet problem (2.1):

∆u(x) = 0, x ∈ Ω,

u(x) = f(x), x ∈ ∂Ω.
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The main idea is to build a solution u ∈ C2(Ω,R) ∩ C(Ω,R) by taking h > 0,

h ≈ 0, and letting

u( ◦x) = st U(x) ∀x ∈ Ωh (i.e. u = ◦U),

where U : Ωh → ∗R is the unique solution of:

∆hU(x) = 0, x ∈ Ωh,

U(x) = fh(x), x ∈ ∂Ωh.

We show that u is a classical (or strong) solution to (2.1) in two steps:

Step 1: Show that U is S-continuous. That is, for all x1, x2 ∈ Ωh such that

x1 ≈ x2, U(x1) ≈ U(x2). From this, it follows that u is well defined and

continuous.

Step 2: Show that u ∈ C2(Ω,R). (In fact, u ∈ C∞(Ω,R)).

To handle step 1, we begin by showing that if S-continuity of U fails, then it

must also fail infinitesimally close to ∂Ωh. This will follow from the transfer of the

following standard result:

Lemma 2.15 Let U : Ωh 7→ R be the solution of (2.3). Then, for any x, y ∈ Ωh,

there exist x̃, ỹ ∈ Ωh, with at least y ∈ ∂Ωh, and such that:

|U(ỹ)− U(x̃)| ≥ |U(y)− U(x)| .

Proof. Without loss of generality, U(x) ≥ U(y). Let d = y − x, that is,

d = (d1, d2) = (y1 − x1, y2 − x2). Let:

Ω
d

h =
{
x ∈ R2

h : x ∈ Ωh ∧ x+ d ∈ Ωh

}
;
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also, define ∂Ωd
h and Ωd

h in the same way as was done for Ωh and ∂Ωh. It is easy

to see that, if x ∈ ∂Ωd
h, then x or x+ d is in ∂Ωh. Now, define W d : Ωd

h 7→ R by:

W d(z) = U(z + d)− U(z)

Since ∆hW
d(z) = ∆hU(z + d) − ∆hU(z) = 0 for all z ∈ Ωd

h, then the (discrete)

maximum principle assures that there is an x̃ ∈ ∂Ωd
h such that:

W d(x̃) = U(x̃+ d)− U(x̃) ≥ U(x+ d)− U(x) = U(y)− U(x)

Setting ỹ = x̃+ d, and since we have assumed that U(y) ≥ U(x), we get:

|U(ỹ)− U(x̃)| ≥ |U(y)− U(x)| .

Since x̃ ∈ ∂Ωh or ỹ ∈ ∂Ωh, the lemma is proved.

By the transfer of Lemma (2.15), we have that if U is not S-continuous, then

the S-continuity condition must fail at some pair of points x1, x2 ∈ Ωh, with at

least x2 ∈ ∂Ωh. Hence, to show that U is S-continuous, it is enough to show that:

∀y ∈ ∂Ωh ∀x ∈ Ωh y ≈ x⇒ U(y) ≈ U(x).

To accomplish this, we introduce a nonstandard concept of barrier:

Definition 2.16 Let y ∈ ∂Ω be standard. An internal and S-continuous function

by : ∗Ωh → ∗R is called a barrier at y, iff, for all positive h ≈ 0:

(b1) Let by,h be the restriction of by to Ωh. Then:

∆hby,h(x) <∼ 0 for all x ∈ Ωh;
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(b2) by(y) ≈ 0;

(b3) by(x) � 0, for all x ∈ ∗Ω, with x 6≈ y.

If there exists a barrier at y ∈ ∂Ω, then y is called strongly regular.

It follows from (b2) that:

by,h(x) ≈ 0 , ∀x ∈ Ωh , x ≈ y.

Also, from (b3), we have:

by,h � 0 , ∀x ∈ Ωh , x 6≈ y.

Proposition 2.17 Let y ∈ ∂Ω. If u ∈ C2(Ω,R) is such that

∆u(x) ≤ 0 ∀x ∈ Ω, (2.5)

u(y) = 0, (2.6)

u(x) > 0 ∀x ∈ Ω , x 6= y, (2.7)

then u is a barrier for y.

Proof.

The barrier condition (b1) follows easily from the continuous differentiability

of u on the compact set Ω, and from equation (2.5). (b2) and (b3) are simple

consequences of (2.6), (2.7) and the continuity of u.

Example 2.18 Let y ∈ ∂Ω satisfy an exterior circle condition. That is, there

exists a ball, Br(ξ)
6, such that Br(ξ) ∩ Ω = {y}. Then u(x) = log |x−ξ|

r
satisfies

6As usual, let Br(ξ) = {x ∈ R : |x− ξ| < r} and Br(ξ) = {x ∈ R : |x− ξ| ≤ r}



25

the hypothesis of proposition (2.17). In Lemma (3.21), we show that the exterior

circle condition implies a stronger barrier condition than Definition (2.16), for a

general uniformly elliptic operator.

Given a barrier by, we can consider the function ◦by ∈ C(Ω,R). This function

has the following properties:

( ◦b2) ◦by(y) = 0

( ◦b3) ◦by(x) > 0, for all x ∈ Ω− {y}

For each δ ∈ R+, it follows, from the compactness of Ω−Bδ(y) that if Ω−Bδ(y) 6= ∅,

then by has a minimum, m, on this set; also, from ( ◦b3), m > 0.

Lemma 2.19 Let f : ∂Ω → R be a standard continuous function. Let h > 0,

h ≈ 0, and U : Ωh 7→ ∗R internal be the unique solution of:

∆hU(x) = 0, x ∈ Ωh,

U(x) = fh(x), x ∈ ∂Ωh.

Then, for all standard y ∈ ∂Ω such that there exists a barrier, by, and for all

x ∈ Ωh such that ◦x = y, we have st U(x) = f(y).

Proof. Let by be a barrier at y, and by,h its restriction to Ωh. Fix ε ∈ R+. From

continuity of f , we can find δ > 0 such that:

∀x ∈ ∂Ω |x− y| < δ ⇒ |f(x)− f(y)| < ε. (2.8)

Let M = maxx∈∂Ω f(x). From our observations about ◦by, we can find some

K ∈ R+ such that if |x − y| ≥ δ, then K ◦by > 2M (just take K = 2M/m).
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Translating this to by,h, we have:

∀x ∈ Ω |x− y| > δ ⇒ Kby,h(x) >∼ 2M. (2.9)

Note that both δ andK depend only on the choice of ε (for fixed Ω and y). Consider

the internal functions, defined on Ωh by:

ω−ε (x) = U(x)− f(y)− ε−Kby,h(x);

ω+
ε (x) = U(x)− f(y) + ε+Kby,h(x).

They satisfy the following.

(i) For all x ∈ Ωh:

∆hω
−
ε (x) = −K∆hby,h(x) >∼ 0;

∆hω
+
ε (x) = K∆hby,h(x) <∼ 0.

(ii) For all x ∈ ∂Ωh

ω−ε (x) = fh(x)− f(y)− ε−Kby,h(x) ≈ f(x)− f(y)− ε−Kby,h(x);

ω+
ε (x) = fh(x)− f(y) + ε+Kby,h(x) ≈ f(x)− f(y) + ε+Kby,h(x).

But (ii) can be simplified in the following way:

Case 1: if |x− y| < δ, and using (2.8):

ω−ε (x) <∼ f(x)− f(y)− ε <∼ 0;

ω+
ε (x) >∼ f(x)− f(y) + ε >∼ 0.

Case 2: if |x− y| ≥ δ, and using (2.9):

ω−ε (x) <∼ f(x)− f(y)− 2M <∼ 0;

ω+
ε (x) >∼ f(x)− f(y) + 2M >∼ 0.
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By the approximate maximum principle:

U(x)− f(y)− ε−Kby,h(x) = ω−ε (x) <∼ 0 <∼ ω+
ε (x) = U(x)− f(y) + ε+Kby,h(x).

Subtracting U(x)− f(y) from all sides of the above inequalities yields:

|U(x)− f(y)| <∼ ε+Kby,h(x).

For ◦x = y, we have from the barrier condition (b2) that by,h(x) ≈ 0. Hence:

|U(x)− f(y)| <∼ ε.

Since ε was an arbitrarily chosen positive real number, we conclude that U(x) ≈

f(y), as wanted.

We can now conclude step 1.

Theorem 2.20 Let h ≈ 0 be positive. Let Ω be bounded open, with all points of ∂Ω

h-regular, and f : ∂Ω 7→ R be a standard continuous function. Let U : Ωh 7→ ∗R

internal be the solution of:

∆hU(x) = 0, x ∈ Ωh,

U(x) = fh(x), x ∈ ∂Ωh.

Then, for all x, x̃ ∈ Ωh such that ◦x = ◦x̃, st U(x) = st U(x̃).

Proof. Follows immediately from Lemma (2.15) and Lemma (2.19).

Theorem (2.20) implies that the (standard) function u : Ω 7→ R defined by

u( ◦x) = st U(x) is well defined and continuous. Thus, step 1 is now completed.

We proceed to step 2.
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Lemma 2.21 Let Ω be bounded open. Let f : ∂Ω 7→ R be a (standard) continuous

function. Let h > 0, h ≈ 0, and U : Ωh 7→ ∗R internal be the solution of:

∆hU(x) = 0, x ∈ Ωh,

U(x) = fh(x), x ∈ ∂Ωh.

If for all x, x̃ ∈ Ωh such that ◦x = ◦x̃ ∈ Ω, st U(x) = st U(x̃), then u = ◦U ∈

C∞(Ω,R) and ∆u(x) = 0 ∀x ∈ Ω.

Proof. Let ξ ∈ Ω, and choose ε > 0 such that Bε(ξ) ⊂ Ω. Then, a solution of

∆ū(x) = 0, x ∈ Bε(ξ),

ū(x) = u(x), x ∈ ∂Bε(ξ),

exists (since u is continuous on ∂Bε(ξ)), is unique and C∞ in Bε(ξ). The solution

is actually given by Poisson’s integral formula.

Consider the internal function V = U−ū. Since u is smooth in Bε(ξ), ∆hu(x) ≈

∆u(x) = 0 at every x ∈ (Bε(ξ))h whose distance to ∂Bε(ξ) is not infinitesimal.

Consider the set:

E =
{
δ ∈ ∗R : 0 < δ < ε ∧ ∀x ∈ (Bδ(ξ))h |∆hu(x)| < ε− δ

}
.

E is internal and contains all δ ∈ ∗(0, ε) such that δ 6≈ ε. By overspill, E contains

some δ ≈ ε. Then, for all x ∈ (Bδ(ξ))h:∣∣∣∆hV (x)
∣∣∣ =

∣∣∣∆hU(x)−∆hū(x)
∣∣∣ =

∣∣∣∆hu(x)
∣∣∣ < ε− δ ≈ 0

In turn, for x ∈ ∂ (Bδ(ξ))h, and since ◦x ∈ ∂Bε(ξ):

V (x) = U(x)− ū(x) ≈ u( ◦x)− ū( ◦x) = 0
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By Corollary (2.11), U(x) ≈ ū(x) for all x ∈ (Bδ(ξ))h. Hence, and taking standard

parts, u ≡ ū on Bε(ξ) = ◦ (Bδ(ξ))h. In particular, u is C∞ at ξ and satisfies

∆u(ξ) = 0. Since ξ was arbitrarily chosen in Ω, we get the desired result.

Theorem 2.22 Let h ≈ 0 be positive, and Ω be bounded open, with all points of ∂Ω

h-regular. Let f : ∂Ω → R be a (standard) continuous function, and U : Ωh → ∗R

(internal) be the solution of:

∆hU(x) = 0, x ∈ Ωh,

U(x) = fh(x), x ∈ ∂Ωh.

Let u = ◦U . Then u ∈ C(Ω,R) ∩ C∞(Ω,R), and u is the unique solution of:

∆u(x) = 0, x ∈ Ω,

u(x) = f(x), x ∈ ∂Ω.

Proof. By Theorem (2.20), u ∈ C(Ω,R). For x ∈ ∂Ωh, U(x) = fh(x). Hence,

for each standard y ∈ ∂Ω,

u(y) = st U(x) = st fh(x) = st f(x̃) = f(x),

for some x ∈ ∂Ωh, x̃ ∈ ∗(∂Ω), with ◦x = ◦x̃ = y. By Lemma (2.21) u ∈ C∞(Ω,R)

and ∆u(x) = 0 for all x ∈ Ω. Uniqueness of solution follows from the analytical

maximum principle.

We now look at a convergence result. For that, we need the strong nonstandard

barrier condition. Our notion of convergence is based on the following norm.
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Definition 2.23 Let Ω be an open and bounded subset of R2. For each h ∈ R+,

the L∞h norm of a function U : Ωh → Rn is given by:

‖ U ‖L∞h = max
x∈Ωh

|U(x)|.

With h ≈ 0, this gives an internal ∗norm, acting on internal gridfunctions

U : Ωh → ∗R. ‖ · ‖L∞h : RΩh → ∗R+.

In the following, whenever needed, assume that any standard U : Ωh → R is

extended as a stepfunction to ∗Ω 7. Also extend internal gridfunctions U : Ωh →

∗R to ∗Ω in a similar way.

Theorem 2.24 Let Ω be bounded open, with all points of ∂Ω strongly regular.

Let f : ∂Ω → R be a (standard) continuous function. For each h ∈ R+, let

Uh : Ωh → R be the solution of

∆hUh(x) = 0, x ∈ Ωh,

Uh(x) = fh(x), x ∈ ∂Ωh.

Let u ∈ C(Ω,R) ∩ C∞(Ω,R), be the solution of

∆u(x) = 0, x ∈ Ω,

u(x) = f(x), x ∈ ∂Ω.

then lim
h↓0

‖Uh − u‖L∞h = 0.

Proof. Let h ≈ 0 be positive. Consider some x ∈ ∗Ωh. Then, using Theorem

(2.22) and the continuity of u:

◦ |Uh(x)− u(x)| = | ◦Uh(x)− ◦(u(x))| = |u( ◦x)− u( ◦x)| = 0.

7The extension to Ω is done by taking U(x1, x2) = U(x̄1, x̄2), where (x̄1, x̄2) is the closest
gridpoint to the left and down of (x1, x2), i.e.: x̄i = max {nh ∈ hZ : nh ≤ xi}, i = 1, 2.
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Hence, for all ε ∈ R+:

‖Uh − u‖L∞h < ε.

This implies that ‖Uh − u‖L∞h ≈ 0. Since h was an arbitrary positive infinitesimal,

we conclude that:

lim
h↓0

‖Uh − u‖L∞h = 0.

These results can easily be extended to the Laplace equation in Rn. A con-

vergence result for the Poisson equation, but with smoothness assumptions on the

boundary of Ω and on the boundary conditions, can be found in Wendland [28].

Krylov [17] contains a generalization of this result to uniformly elliptic operators

and a class of schemes on uniform grids; however, smoothness assumptions on the

boundary are also required. In Chapter 3, we will consider uniformly elliptic op-

erators and their discretizations, but without restricting our attention to uniform

grids, and with only barrier-type conditions on the boundary. Error estimates will

also be derived.

2.4 Nonstandard and Standard Barrier Condi-

tions

The results of the previous section were obtained under the nonstandard barrier

condition given by Definition (2.16). This condition looks quite different from

the standard one. Nevertheless, a weakened version of our barrier condition is
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equivalent to the standard notion. Before we proceed, let us review some standard

results, and the standard barrier condition. Let u ∈ C2(Ω,R) and Bρ(ξ) ⊂ Ω.

A function u ∈ C(Ω,R) is called superharmonic (in Ω), iff, for any Bρ(ξ) ⊂ Ω:

u(ξ) ≥ 1

2πρ

∫
∂Bρ(ξ)

u(x) dsx . (2.10)

Equivalently, u is superharmonic iff for all ξ ∈ Ω and ρ ∈ R+ such that Bρ(ξ) ∈ Ω,

if w satisfies:

∆w(x) = 0 ∀x ∈ Bρ(ξ),

w(x) = u(x) ∀x ∈ ∂Bρ(ξ),

then w(x) ≤ u(x), ∀x ∈ Bρ(ξ). It follows from 2.10 that if Ω is connected, u

is superharmonic in Ω, and u attains an interior minimum, then u is constant

(minimum principle).

Definition 2.25 (Standard Barrier Condition) Let Ω ⊂ R2 be bounded and

open. A point y ∈ ∂Ω satisfies the standard barrier condition (or we call it stan-

dardly regular) iff there exists a superharmonic function by ∈ C(Ω,R) such that:

by(y) = 0 ;

by(x) > 0, ∀x ∈ Ω− {y}.

Given f ∈ C(∂Ω,R), a superharmonic function in Ω, w, such that w(x) ≥ f(x)

for all x ∈ ∂Ω is called a superfunction for f in Ω. From the minimum principle,

if w is a superfunction of f in Ω, then w(x) < min
y∈∂Ω

f(y), for all x ∈ Ω, unless

w is constant on some connected component of Ω. If f is not constant when

restricted to the boundary of any connected component of Ω, then there exists a

superfunction for f in Ω that is not constant on any connected component of Ω.
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By Perron’s method, if

u(x) = inf
{
w(x) : “w is a superfunction for f in Ω”

}
and if y ∈ ∂Ω is standardly regular, then u ∈ C∞(Ω,R) and:

∆u(x) = 0 ∀x ∈ Ω,

f(y) = u(y) = lim
x→y
x∈Ω

u(x).

Define the standard interior of an internal set A ⊂ ∗R2 by:

S−intA =
{
x ∈ A : ∃δ ∈ R+Bδ(x) ⊂ A

}
8.

The interior approximations to S−intA, given for each δ ∈ ∗R+ by

A−δ =
{
x ∈ A : Bδ(x) ⊂ A

}
are actually internal.

Definition 2.26 (Weak Nonstandard Barrier Condition) Let Ω ⊂ R2 be

bounded and open and h be a positive infinitesimal. A point y ∈ ∂Ω is called

h-weakly regular (or is said to satisfy the h-weak nonstandard barrier condition)

iff, there exists an internal S-continuous function βy,h : Ωh → ∗R, and a positive

δ ≈ 0, such that:

∆hβy,h(x) <∼ 0 ∀x ∈ (( ∗Ω)−δ)h,

βy,h(ỹ) ≈ 0, ∀ỹ ∈ Ωh ỹ ≈ y

βy,h(x) � 0, ∀x ∈ Ωh x 6≈ y.

y is called weakly regular (or said to satisfy the weak nonstandard barrier condition)

iff for all positive h ≈ 0, y is h-weakly regular.

8Note that S−intA is not, in general, internal
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Theorem 2.27 Let Ω ⊂ R2 be open and bounded, and y ∈ ∂Ω. Then, the following

are equivalent:

(a) y is standardly regular.

(b) y is weakly regular.

(c) There exists a positive h ≈ 0 such that y is h-weakly regular.

Proof.

(a) ⇒ (b).

Let by be a standard barrier at y, and consider

βy(x) = sup
{
w(x) : “w is a subfunction for by in Ω”

}
. (2.11)

Each superfunction, w, in (2.11) satisfies w(x) > minz∈∂Ω by(z) = 0, for all x ∈ Ω.

Also, for all x ∈ ∂Ω, w(x) ≥ by(x). So, for all δ ∈ R+ sufficiently small so that

Bδ(y) ∩ Ω 6= ∅, minx∈Ω−Bδ(y)w(x) > 0. Hence:

βy(x) > 0 ∀x ∈ Ω−Bδ(y).

Since this is true for all δ ∈ R+, we conclude that:

βy(x) > 0 ∀x ∈ Ω− {y}. (2.12)

By Perron’s method, βy ∈ C2(Ω,R), and:

∆βy(x) = 0 ∀x ∈ Ω, (2.13)

lim
x→y
x∈Ω

βy(x) = f(y). (2.14)
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Consider any positive h ≈ 0. Let βy,h be the restriction of βy to Ωh. From (2.12),

it follows that, for every x ∈ Ωh such that x 6≈ y:

βy,h(x) = βy(x) � 0.

Furthermore, from (2.14), and if ỹ ∈ Ωh is such that ỹ ≈ y

βy,h(ỹ) = βy(ỹ) ≈ by(y) = 0.

It remains to show that ∆hβy,h(x) = 0, ∀x ∈
(
( ∗Ω)−δ

)
h
, for some positive δ ≈ 0.

Consider the internal set:

D =
{
δ ∈ ∗R+ : ∀x(( ∗Ω)−δ)h : |∆hβy,h(x)−∆βy(x)| < δ

}
. (2.15)

Since βy is C2 in Ω, the above set contains all positive and noninfinitesimal δ.

Hence, it must contain some infinitesimal. For that δ, and from (2.15):

∆hβy,h(x) ≈ ∆βy(x) = 0, ∀x ∈ (( ∗Ω)−δ)h.

(b) ⇒ (c).

This implication is obvious.

(c) ⇒ (a).

Consider the positive h ≈ 0 such that (c) holds, and pick a weak nonstandard

barrier, βy,h : Ωh → ∗R at y (relative to h). Now, let:

by(
◦x) = st βy,h(x) ∀x ∈ Ωh.

From the S-continuity of βy,h, by is well-defined and continuous; it also satisfies:

by(y) = 0,

by(x) < 0, ∀x ∈ ∂Ω, x 6= y.
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It remains to show that by is superharmonic. Choose any ξ ∈ Ω and ρ ∈ R+ such

that Bρ(ξ) ∈ Ω, and let B = Bρ(ξ). Consider u ∈ C2(B,R), such that ∆u(x) = 0

in B and u = by on ∂B. Then:

∆h

(
βy,h − u

)
(x) ≈ ∆hβy,h(x) <∼ 0 ∀x ∈ Bh,(

βy,h − u
)
(x) >∼ βy,h(x)− βy,h(x) = 0 ∀x ∈ ∂Bh.

From the approximate maximum principle, (βy,h − u)(x) >∼ 0, for all x ∈ Bh. But

then, for all x ∈ Bh:

by(
◦x) = st βy,h(x) ≥ stu(x) = u( ◦x).

This shows that by is superharmonic in Ω.

What damage does the weakening of the nonstandard barrier condition do to

the results of section 2.3? The results from step 1 (Lemma (2.15), Lemma (2.19)

and Theorem (2.20)) of the existence proof require some minor changes.

If, for some positive h ≈ 0, we consider δ as given by the barrier condition,

we can use the maximum principle on (( ∗Ω)−δ)h and ∂(( ∗Ω)−δ)h. Furthermore,

◦(( ∗Ω)−δ)h = Ω and ◦∂(( ∗Ω)−δ)h = ∂Ω. So, in step 1, we only need to replace Ωh

by (( ∗Ω)−δ)h ∪ ∂(( ∗Ω)−δ)h, Ωh by (( ∗Ω)−δ)h and ∂Ωh by ∂(( ∗Ω)−δ)h.

All we need now for the proofs in step 1 to be carried out as before is a con-

struction of fh : ∂(( ∗Ω)−δ)h → ∗R such that:

fh(x) ≈ f( ◦x) ∀x ∈ ∂(( ∗Ω)−δ)h. (2.16)

For that, let:

fh(x) = f(x̃),
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where x̃ ∈ B2δ(x) is constructed as follows. Let r = dist(x, ∗∂Ω) <∼ δ. Then, let

x̃ = x + (r cos θ, r sin θ), where θ is the smallest hyperreal in ∗[0, 2π) such that

x + (r cos θ, r sin θ) ∈ ∗∂Ω. Now, (2.16) follows from the fact that ◦x̃ = ◦x ∈ ∂Ω

and f ∈ C(∂Ω,R). Thus, we get:

Theorem 2.28 Let Ω be bounded open, with all points of ∂Ω satisfying the stan-

dard barrier condition. Let f : ∂Ω → R be a (standard) continuous function, and

consider a positive h ≈ 0. Then there exists a positive δ ≈ 0 such that the following

holds. Suppose U : (( ∗Ω)−δ)h → ∗R is the unique (internal) solution of:

∆hU(x) = 0, x ∈ (( ∗Ω)−δ)h,

U(x) = fh(x), x ∈ ∂(( ∗Ω)−δ)h.

Then, u ∈ C(Ω,R)∩C∞(Ω,R) given by u( ◦x) = st U(x), for all x ∈ ( ∗Ω)−δ)h, is

the unique solution of:

∆u(x) = 0, x ∈ Ω,

u(x) = f(x), x ∈ ∂Ω.

As for convergence, we can say the following:

Theorem 2.29 Let Ω be bounded open, with all points of ∂Ω weakly regular. Let

f : ∂Ω → R be a (standard) continuous function. If, for each h ∈ R+, U :

(Ω−δ)h → R is the solution of

∆hU(x) = 0, x ∈ (Ω−δ)h,

U(x) = fh(x), x ∈ ∂(Ω−δ)h,
(2.17)

(for δ as given by Theorem (2.28)) and u ∈ C(Ω,R)∩C∞(Ω,R), is the solution of

∆u(x) = 0, x ∈ Ω,

u(x) = f(x), x ∈ ∂Ω.
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then, for all compact K ⊂ Ω, lim
h↓0

‖Uh − u‖C(K,R) = 0, that is, Uh converges uni-

formly to u on compact subsets of Ω. Furthermore for each x0 ∈ ∂Ω, there exists

a function δ : (0, h0] ⊂ R+ → R such that lim
h↓0

δ(h) = 0, and

u(x0) = lim
h↓0
x→x0

x∈Ω−δ(h)

Uh(x)

Proof. Since K ⊂ Ω is compact, dist(K, ∂Ω) > 0. Therefore, (( ∗Ω)−δ)h ⊃ ∗K.

Hence, using the same argument as in the proof of Theorem (2.24), we get:

lim
h↓0

‖Uh − u‖L∞h (K,R) = 0.

As for the boundary convergence, for each positive h ≈ 0, there exists a positive

δ ∈ ∗R+ such that Uh satisfying the discrete problem (2.17) exists. By the internal

definition principle and overspill, this statement should hold for h ∈ ∗(0, h0], where

h0 6≈ 0 is positive. Now, let δ(h) be the ∗infimum of the internal set D defined

by equation (2.15) on page 35. Then limh↓0 δ(h) = 0. Also, if x0 ∈ ∂Ω, h1 > 0 is

an infinitesimal, and x1 ∈ ( ∗Ω)−δ(h1), is such that ◦x1 = x0, then Uh1(x1) ≈ u(x0).

Hence:

u(x0) = lim
h↓0
x→x0

x∈Ω−δ(h)

Uh(x).
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2.5 The Dirichlet Problem when the Barrier

Condition Fails

The construction of a solution to the Dirichlet problem (2.1) employing finite

differences, as carried out in the last section, can actually be used in a more

general setting. We begin by showing that, even if there are nonregular boundary

points in ∂Ω, the solution U of (2.3) is always S-continuous in Ωh ∩ S−int ∗Ω.

Lemma 2.30 Let f : ∂Ω → R be a standard continuous function. Let h > 0,

h ≈ 0, and U : Ωh → ∗R internal be the solution of:

∆hU(x) = 0, x ∈ Ωh,

U(x) = fh(x), x ∈ ∂Ωh.
(2.18)

Then, for all x, x̄ ∈ Ωh ∩ S−int ∗Ω such that ◦x = ◦x̄, st U(x) = st U(x̄).

Proof. Let:

M = max
x∈∂Ωh

|fh(x)| = max
x∈Ωh

|U(x)| .9

Fix x, x̄ ∈ Ω ∩ S−int ∗Ω.

We begin by considering the special case x = x̄ + (0, 2δ). Without loss of

generality, we may assume δ > 0. Also, ◦x = ◦x̄, implies that δ ≈ 0. A translation

of the coordinate system does not change the form of equations (2.18) 10, so we

may assume that x̄ = (0,−δ). With this assumption, x = x̄+(0, 2δ) = (0, δ). Note

that ◦x = ◦x̄ = (0, 0), so by our hypothesis, (0, 0) ∈ S−int Ω. Therefore, there

9Equality of the two maxima follows from the discrete maximum principle.
10∆h is translation invariant.
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exists a (standard) d ∈ R+ such that the “discrete square” of side d, ∗[−d, d]2∩Ωh,

is contained in Ωh. Consider the “discrete half-square”:

Qd,h =
{

(x1, x2) ∈ R2
h : −d ≤ x1 ≤ d ∧ 0 ≤ x2 ≤ d

}
.

Define two gridfunctions:

ω±(x1, x2) = U(x1, x2)− U(x1,−x2)±Ψ(x1, x2),

where

Ψ(x1, x2) =
2M

d2

(
x2

1 + x2(2d− x2)
)
.

Note that, if (x1, x2) ∈ Qd,h ⊂ Ωh, then (x1,−x2) ∈ Ωh. So ω± and ∆hω
± are well

defined in Qd,h.

A simple computation yields ∆Ψ = 2M
d2

(2 + 0 − 2) = 0. Hence, since Ψ ∈

C2(Ω,R), ∆hΨ ≈ ∆Ψ = 0, and so:

∆hω
±(x1, x2) = ∆hU(x1, x2)−∆hU(x1,−x2)±∆hΨ(x1, x2) ≈ 0. (2.19)

Now, let (x1, x2) ∈ ∂Qd,h.

Case 1: x2 = 0. Then

Ψ(x1, x2) =
2Mx2

1

d2
,

and so:

ω+(x1, x2) = U(x1, 0)− U(x1, 0) + Ψ(x1, x2) =
2Mx2

1

d2
≥ 0,

ω−(x1, x2) = U(x1, 0)− U(x1, 0)−Ψ(x1, x2) = −2Mx2
1

d2
≤ 0.
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Case 2: x1 = ±d. Then, since 0 ≤ x2 ≤ d:

Ψ(x1, x2) =
2M

d2

(
d2 + x2(2d− x2)

)
≥ 2M

d2
d2 = 2M.

Therefore:

ω+(x1, x2) ≥ −2M + Ψ(x1, x2) ≥ −2M + 2M = 0, (2.20)

ω−(x1, x2) ≤ 2M −Ψ(x1, x2) ≤ 2M − 2M = 0. (2.21)

Case 3: x2 = d. Then:

Ψ(x1, x2) =
2M

d2
(x2

1 + d2) ≥ 2M.

Therefore, equations (2.20) and (2.21) also hold.

So, we can conclude that, whenever (x1, x2) ∈ ∂Qd,h,

ω+(x1, x2) ≥ 0, (2.22)

ω−(x1, x2) ≤ 0. (2.23)

From the approximate maximum principle, and using inequalities (2.19), (2.22)

and (2.23), we get that, for all (x1, x2) ∈ Qd,h:

ω+(x1, x2) ≥ 0 ⇒ U(x1, x2)− U(x1,−x2) ≥ −Ψ(x1, x2);

ω−(x1, x2) ≤ 0 ⇒ U(x1, x2)− U(x1,−x2) ≤ Ψ(x1, x2).

This means that:

|U(x1, x2)− U(x1,−x2)| ≤ |Ψ(x1, x2)| .
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In particular, with x = (0, δ) and x̄ = (0− δ):

|U(x)− U(x̄)| ≤ |Ψ(0, δ)| ≤ 2M

d2
δ(2d− δ) ≤ 4Mδ

d
≈ 0.

This concludes the proof of the special case x = x̄+ (0, 2δ).

The special case x = x̄+ (2δ, 0) follows from the above by switching the coor-

dinate axis. The general case follows from the above two cases and the triangle

inequality.

Lemmas (2.30) and (2.21) imply that the standard function

u( ◦x) =

 st U(x), if ◦x ∈ Ω,

f( ◦x), if ◦x ∈ ∂Ω,

is a well defined, C∞ function on Ω which satisfies the Dirichlet problem (2.1). To

show that it is the pointwise limit of the finite difference solutions (as h ↓ 0), it

is enough to establish that the solution obtained does not depend on the choice

of h ≈ 0, h > 0. For that, we use the following result, proved by Kellogg in [16]

(Chapter 11, Section 20):

Theorem 2.31 (Kellogg) Let Ω ⊂ R2 be bounded open and f : ∂Ω → R contin-

uous. Then ∂Ω contains standardly regular points. Also, there is a unique function

u ∈ C∞(Ω,R) such that ∆u = 0 in Ω and:

lim
x→x0

u(x) = f(x0)

for all standardly regular x0 ∈ ∂Ω.

Now, assume that h1 and h2 are positive infinitesimals, and Uh1 and Uh2 are

the corresponding solutions of the discrete Dirichlet problem (2.3), extended as
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stepfunctions defined on all of ∗Ω. Then, using Theorem (2.31), and by the same

argument as in Theorem (2.24), Uh converges uniformly to u on compact subsets

of Ω. Furthermore, for all standard regular y ∈ ∂Ω,

f(y) = lim
h↓0
x→y

x∈Ω−δ(h)

Uh(x),

where δ is some function such that limh↓0 δ(h) = 0.

We summarize some of our results in the following standard statement:

Theorem 2.32 Let Ω be bounded open. Let f : ∂Ω → R be a continuous function.

For each h ∈ R+, let Uh : Ω → R be the unique solution of the discrete Dirichlet

problem (2.3) (extended to Ω as a stepfunction). Then u : Ω → R given by

u(x) =


lim
h↓0

Uh(x), if x ∈ Ω,

f(x), if x ∈ ∂Ω,

is well defined, u ∈ C∞(Ω,R) and is the unique function which solves the Dirichlet

problem (2.1), and satisfies lim
x→x0

u(x) = f(x0) for all standardly regular x0 ∈ ∂Ω.
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Chapter 3

Discretizations of Elliptic Partial

Differential Equations

In this chapter, we look at elliptic partial differential equations in the same spirit

as our approach to the Laplace equation. Instead of specifying a discretization

scheme, we work with a class of discretizations, defined in a convenient way. This

will enable us to get some general results about convergence of discrete schemes.

This chapter contains some examples which are only intended as illustrations of

the definitions; the particular schemes here presented do not reflect the generality

of our results.

Let D ⊂ Rn be open. An operator, L, defined on Ck(D,R) by

Lu(x) =
k∑

m=0

∑
|α|=m

aα(x)D
α(x), ∀x ∈ D, 1

where α = (α1, . . . , αn) ∈ Nn, |α| = α1 + . . .+ αn and

Dαu =
∂|α|u

∂xα1
1 . . . ∂xαn

n

is called a linear differential operator of order k on D. The functions aα, defined

on (at least) D are called the coefficient functions of L.

1We adhere to the convention that operators have precedence over function evaluation, so
Lu(x) means (Lu)(x).
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Let D ⊂ Rn be open. Ck(D,R) represents the set of functions on Ck(D,R)

all of whose derivatives (of order 0 through k) admit continuous extensions to D.

Throughout this chapter, a domain will be an open and bounded Ω ⊂ Rn.

Definition 3.1 Let D ⊂ Rn be open. Let L be a second order linear differential

operator on D, given by:

Lu(x) =
n∑

i,j=1

ai,j(x)
∂2u

∂xi∂xj
+

n∑
i=1

bi(x)
∂u

∂xi
+ c(x)u(x) ∀x ∈ D, (3.1)

where the coefficient functions, ai,j, bi and c are defined and bounded in D and the

matrix A(x) = (ai,j(x))i,j=1,...,n is symmetric, for all x ∈ D. L is called uniformly

elliptic iff, for all x ∈ D, the eigenvalues λ(x) of A(x) are all bigger than some

µ > 0 (with µ independent of x). This µ is called the ellipticity constant.

3.1 Consistent Schemes for Differential Opera-

tors

We now consider possible discrete versions of uniformly elliptic L, which we will

denote by Lh. The simplest way to obtain these is by replacing the derivatives in

L by finite differences. We get a family of linear difference operators indexed in

h > 0, where h is a measure of the grid spacing.

Example 3.2 Consider D = R2 and L = ∆ (the Laplacian operator). As seen in

the previous chapter, we can define ∆h by the equation:

∆hU(x1, x2) =
1

h2

(
U(x1 + h, x2) + U(x1 − h, x2) + U(x1, x2 + h)

+U(x1, x2 − h)− 4U(x1, x2)
)
.

.
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Note that ∆h can be applied to any function u : R2 → R. In fact, {∆h}h∈R+ is

a one-parameter family of operators, all defined in RR2
. From its definition, it

follows that these operators are linear, i.e.:

∆h(αu+ βv) = α∆hu+ β∆hv ∀α, β ∈ R ∀u, v ∈ RR2

.

Also, if u ∈ C2(R2,R), from Taylor’s formula it follows that, for all x0:

lim
h↓0,x→x0

∆hu(x) = ∆u(x0).

We have worked with ∆h defined in an appropriate set of functions, namely RR2
h∩Ω,

where Ω ⊂ R2 is open and bounded. We have seen that ∆h defined in RR2
h∩Ω satisfies

a maximum principle.

Because of the three referred properties, {∆h} turned out to be a “good” choice.

The second property is what we call consistency (with ∆, in this case). We will

now formalize what it means to be a consistent scheme to a general linear partial

differential operator. The discussion of maximum principles will be carried out in

the next section.

We begin by looking at the special case of a linear differential operator (of any

order) on D = Rn. This is easier to deal with, since it avoids the problem of

discretizing the boundary of D.

A discretization of Rn is a set, Rn
h, such that for every bounded B ⊂ Rn,

|Rn
h ∩B| <∞. An example of this is a uniform grid:

Rn
h = a+ hZn = {a+ hα : α ∈ Zn} ,

where a ∈ Rn. Other examples of possible Rn
h include:
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1. Other grids (nonuniform):{
(nh, 2mh) : n,m ∈ Z

}
,{

(nh,mh2) : n,m ∈ Z
}
,{

(nh,m2h) : n,m ∈ Z
}
.

2. A polar discretization, given by:{
(nh cos(mh), nh sin(mh)) : n,m ∈ Z, 0 ≤ m < 2π/h

}
.

Suppose Lh : RRn
h 7→ RRn

h is a linear operator, defined for each h ∈ R+. For the

family {Lh}h∈R+ to be a good approximation to L we need that, as h approaches

0, Rn
h approaches Rn and Lhu approaches Lu. The appropriate definition is easy

to formulate using nonstandard analysis. In this, and other similar definitions

of this chapter, we consider ∗U , where U = {Lh}. ∗U is an internal family of

linear maps, indexed in ∗R+; each Lh ∈ ∗U is a ∗linear map acting on a hyper-

finite dimensional vector space of internal gridfunctions U : Rn
h → R, with Rn

h a

∗discretization of ∗Rn. Roughly speaking, we will be stating that, whenever h > 0

and h ≈ 0, the discretized operator and the domain of its gridfunctions resembles

the corresponding analytical objects.

Definition 3.3 Let L be a linear differential operator of order k, defined on Rn,

and let {Rn
h} be a family of discretizations of Rn. The one parameter family

{Lh}h∈R+ of linear operators Lh : RRn
h 7→ RRn

h is said to be consistent with L

iff for all positive h ≈ 0:

(a) ◦Rn
h = Rn;
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(b) Lhu(x) ≈ Lu(x), ∀u ∈ Ck(Rn,R), ∀xfinite ∈ Rn
h.

The condition above seems very strong but, in fact, the usual finite differ-

ence operators satisfy it. We now introduce the finite difference notation we will

be using, and then show some general criteria for consistency of finite difference

operators.

Definition 3.4 Consider the discretization Rn
h = a+ hZn, for some a ∈ Rn. For

each h ∈ R+, let U : Rn
h 7→ R.

(a) The shift operators, σ±i,h are given by:

σ+
i,hU(x) = U(x1, . . . , xi + h, . . . , xn),

σ−i,hU(x) = U(x1, . . . , xi − h, . . . , xn),

for all x = (x1, . . . , xn) ∈ Rn.

(b) The forward, backward and central difference operators are given by:

δ+
i,h =

1

h

(
σ+
i − I

)
;

δ−i,h =
1

h

(
I − σ−i

)
;

δi,h =
1

2h

(
σ+
i − σ−i

)
.

(c) The second central difference operator is given by:

δ2
i,h = δ−i δ

+
i =

1

h

(
σ+
i − 2I + σ−i

)
.

When working with uniform grids, we will omit the subscript h when referring to

individual shift and difference operators that occur anywhere in Lh. The following

result establishes criteria of consistency of finite difference operators.
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Proposition 3.5

(a) {idh} (the identity operator in RRn
h) is consistent with id.

(b) {δ+
i,h}, {δ

−
i,h} and {δi,h} are all consistent with ∂

∂xi
.

(c) {δ2
i,h} is consistent with ∂2

∂x2
i
.

(d) Let L1 and L2 be two linear differential operators of order l1 and l2, respec-

tively. If the order of L1 + L2, l, equals max{l1, l2}, and both {L1,h} and

{L2,h} are consistent with, respectively, L1 and L2, then {L1,h + L2,h} is

consistent with L1 + L2.

(e) Let c ∈ C(Rn,R), and {Lh} be consistent with L. Then {cLh} is consistent

with cL 2.

Proof.

(a) The proof is obvious.

(b) Consider a standard u ∈ C1(Rn,R). Now take a positive h ≈ 0 and xfinite ∈

Rn
h. By the transfer of the intermediate value theorem we have that, for some

c ∈ ∗R, with xi < ci < xi + h:

δ+
i u(x) =

1

h

(
u(x1, . . . , xi + h, . . . , xn)− u(x1, . . . , xn)

)
=

1

h

∂u

∂xi
(x1, . . . , ci, . . . , xn)h

=
∂u

∂xi
(x1, . . . , ci, . . . , xn)

2The sum of operators and product of operator by a function are defined in the usual way, i.e,
pointwise.
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Since h ≈ 0, we have that c ≈ x. Hence, and since ∂u
∂xi

is continuous:

δ+
i u(x) =

∂u

∂xi
(x1, . . . , ci, . . . , xn) ≈

∂u

∂xi
( ◦x) ≈ ∂u

∂xi
(x)

The proof is similar for δ−i and δi.

(c) Let u ∈ C2(Rn,R). Consider a positive h ≈ 0 and xfinite ∈ Rn
h. By the

transfer of Taylor’s theorem, we have that:

δ2
i u(x) =

1

h2

(
σ+
i u(x) + σ−i u(x)− 2u(x)

)
=

1

h2

(
u(x) +

∂u

∂xi
(x)h+

1

2

∂2u

∂x2
i

(c)h2

+u(x) +
∂u

∂xi
(x)(−h) +

1

2

∂2u

∂x2
i

(d)(−h)2 − 2u(x)

)
=

1

2

∂2u

∂x2
i

(c) +
1

2

∂2u

∂x2
i

(d),

where c = (x1, . . . , ci, . . . , xn), xi < ci < xi + h, and d = (x1, . . . , di, . . . , xn),

xi − h < di < xi. But h ≈ 0, and so ◦c = ◦x and ◦d = ◦x. Therefore, by

continuity of ∂2u
∂x2

i
:

δ2
i u(x) ≈

1

2

∂2u

∂x2
i

( ◦x) +
1

2

∂2u

∂x2
i

( ◦x) ≈ ∂2u

∂x2
i

(x).

(d) Let u ∈ C l(Rn,R) ⊂ C l1(Rn,R) ∪ C l2(Rn,R). This inclusion follows from

l = max{l1, l2}). Take a positive h ≈ 0. Then, for all finite x ∈ Rn
h:

(L1,h + L2,h)u(x) = L1,hu(x) + L2,hu(x) ≈ L1u(x) + L2u(x).

(e) Let u ∈ C l(Rn,R). Fix a positive h ≈ 0. Then, taking a finite x ∈ Rn
h, and

using continuity of c and consistency of {Lh} with L:

(cLh)u(x) = c(x)Lhu(x) ≈ c(x)Lu(x) = (cL)u(x).
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Example 3.6 Let:

L = a1
∂2

∂x2
1

+ a2
∂2

∂x2
2

+ b1
∂

∂x1

+ b2
∂

∂x2

+ c,

where a1, a2, b1, b2, c ∈ C(R2,R). For all h > 0, let:

Lh = a1δ
2
1 + a2δ

2
2 + b1δ1 + b2δ2 + c.

Then {Lh} is consistent with L. This follows from proposition (3.5) and the trivial

fact that {idh} (the identity operator in RR2
h) is consistent with id (the identity on

R2).

The case of a linear differential operator of order k on an arbitrary open set

D ∈ Rn is more complicated, since it involves dealing with the boundary of D. We

start by discretizing D by some Dh ⊂ D, such that Dh∩B is finite, for all bounded

B. We use the overbar since Dh is a discrete analogue of the topological closure of

D. We then consider a Dh ⊂ Dh, appropriately chosen so that Lh : RDh → RDh is

well defined. The reason for this is better understood by an example.

Example 3.7 Given some domain D ⊂ Rn, use the uniform grid to define:

Dh = hZn ∩ D.

This is the discrete analogue of the topological closure of D. The analogue of the

open set, D, is introduced as follows. All we need of these “open” sets is that

Lhu(x) can be evaluated, for any x on them. Note that, to compute Lhu(x), we

need the values of u at some neighbors of x on the lattice hZn. The actual pattern

of lattice neighbors of some x ∈ hZn depends on Lh. For example, take the discrete
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Laplacian, ∆h, computed with the gridpoints hZ2:

∆h = δ2
1 + δ2

2 =
1

h2

(
σ+

1 + σ−1 + σ+
2 + σ−2 − 4I

)
.

The pattern of neighbors for ∆h is independent of x, and is depicted in Fig. (4).

rr r

r

r

(x1, x2)(x1 − h, x2) (x1 + h, x2)

(x1, x2 − h)

(x1, x2 + h)

Figure 4: Pattern of neighbors for ∆h.

For finite difference operators, which can always be defined in terms of (finitely

many) shift operators, this pattern is completely determined by the shift operators

occurring in Lh
3. So, for finite difference operators, we can get Lh : RDh → RDh

well defined by constructing Dh ⊂ Dh in any way that makes Dh contain all the

lattice neighbors, relative to Lh, of the points of Dh. For example, for ∆h, we may

take:

Dh =
{
(x1, x2) ∈ Dh : (x1 + h, x2) ∈ Dh ∧ (x1 − h, x2) ∈ Dh

∧(x1, x2 + h) ∈ Dh ∧ (x1, x2 − h) ∈ Dh ∧ dist ((x1, x2), ∂D) ≥ h
}
.

3This is a simple example. Other discretizations of L may lead to neighbor patterns that vary
with x.
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We add the condition dist (x, ∂D) ≥ h) to ensure that small holes in D will carry

over to Dh. This way, ◦(Dh −Dh) ⊃ ∂D, for h ≈ 0.

We have seen that a well-defined element of a scheme, Lh : RDh → RDh , must

include in its definition the domain, Dh, of the gridfunctions it acts upon, and

the domain, Dh, of the gridfunctions in its range. So, for us, a scheme will be

a one-parameter family, {Lh}, where Lh implicitly includes Dh and Dh. For any

Lh : RDh → RDh , we let ∂Dh = Dh − Dh. As the notation suggests, this is the

discrete analogue of ∂D that is uniquely determined by each Lh.

Definition 3.8 Let L be a linear differential operator of order k on a domain

D ⊂ Rn. A discrete scheme for L is a one parameter family {Lh : h ∈ R+}, where

each Lh : RDh → RDh is a well defined linear operator. The scheme is called

consistent (with L) iff:

(a) ◦Dh = D;

(b) ◦∂Dh = ∂D;

(c) Lhu(x) ≈ Lu(x), ∀u ∈ Ck(D,R), ∀xfinite ∈ Dh.

Proposition 3.9 Let L be a linear differential operator of order k defined on

an open D, and let {Lh : h ∈ R+} be a consistent discrete scheme for L, with

Lh : RDh → RDh. Let E ⊂ D be also open and Eh ⊂ Eh ⊂ D be such that ◦Eh = E

and ◦∂Eh = ∂E and the operators L̃h : REh → REh given by

L̃hU(x) = LhU(x) ∀U ∈ REh ∀x ∈ Eh

are well defined. Then,
{
L̃h : h ∈ R+

}
is a consistent discrete scheme for L on E.
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Proof. Follows directly from definition (3.8).

3.2 The Maximum Principle Condition and its

Approximate Versions

Consistency is not, in general, enough to show convergence of discrete schemes.

For elliptic operators, a convenient condition is a maximum principle.

Definition 3.10 Let L be a linear differential operator of order k on some domain

Ω ⊂ Rn. Let {Lh : RΩh → RΩh}h∈R+ be a discrete scheme for L. {Lh} is said to

have a maximum principle (MP) iff, for all Γ ⊂ Ωh, for all h ∈ R+ sufficiently

small, for all U : Ωh → R, and all a ∈ R, if

(a) LhU(x) ≥ 0 ∀x ∈ Γ,

(b) U(x) ≤ a ∀x ∈ Ωh − Γ,

then U(x) ≤ a ∀x ∈ Ωh.

We now specialize our discussion to second order uniformly elliptic operators.

Here is an important example of a scheme with a maximum principle.

Example 3.11 (A Discretization for Diagonal Uniformly Elliptic Opera-

tors) Let L be given by:

Lu(x) =
n∑
i=1

ai(x)
∂2u

∂x2
i

(x) +
n∑
i=1

bi(x)
∂u

∂xi
(x) + c(x)u(x) ∀x ∈ Rn, (3.2)
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where all coefficient functions are defined and continuous in Rn. Assume that L

is uniformly elliptic with constant µ ∈ R+, i.e., for all i = 1, . . . , n and x ∈ Rn,

ai(x) > µ. Suppose also that c(x) ≤ 0, for all x ∈ Rn.

Now, consider Rn
h = hZn, and let:

Lhu(x) =
n∑
i=1

ai(x)δ
2
i (x) +

n∑
i=1

bi(x)δi(x) + c(x)u(x) ∀x ∈ Rn
h.

From Proposition (3.5), {Lh} is consistent with L. Furthermore, Lh can be written

as:

Lh =
n∑
i=1

(
aiδ

2
i + biδi

)
+ c

=
n∑
i=1

(
a1

h2

(
σ+
i + σ−i − 2I

)
+
bi
2h

(
σ+
i + σ−i

))
+ c

=
1

h2

n∑
i=1

((
ai +

h

2
bi

)
σ+
i +

(
ai −

h

2
bi

)
σ−i − 2aiI

)
+ c.

(3.3)

Say Ω is a domain. Let Ωh = hZn ∩ Ω. If {ei : i = 1, . . . , n} is the canonical base

of Rn, let:

Ωh =
{
x ∈ Ωh : x+ he1 ∈ Ωh ∧ x− he1 ∈ Ωh ∧ . . . ∧

x+ hen ∈ Ωh ∧ x− hen ∈ Ωh ∧ dist (x, ∂Ω) ≥ h
}
.

Then, by Proposition (3.9), {Lh : RΩh → RΩh} is a consistent discrete scheme for

L on Ω.

Now we show that {Lh} has MP. Fix Γ ⊂ Ωh. Let

K = max
{
|bi(x)| : i = 1, . . . , n ; x ∈ Ω

}
,

and choose η ∈ R+ sufficiently small so that µ − η
2
K ≥ 0. This ensures that, for

all i = 1, . . . , n:

ai(x)±
h

2
bi(x) ≥ 0 ∀h ∈ (0, η) ∀x ∈ Ω. (3.4)
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Consequently, all coefficients of the shift operators in equation (3.3) are strictly

positive functions, for h ∈ (0, η). Let U : Ωh → R be such that LhU(x) ≥ 0, for all

x ∈ Γ. If the maximum of U in Ωh does not occur in Γ, we are done. If not, let

M be the maximum of U in Ωh, and y ∈ Γ satisfy u(y) = M . Then:

LhU(y) =
1

h2

n∑
i=1

((
ai(y) + h

2
bi(y)

)
U(y + hei) +

(
ai(y)− h

2
bi(y)

)
U(y − hei)

−2ai(y)U(y)

)
+ c(y)U(y) ≥ 0.

Hence, and since U(y) = M :(
a1(y) + h

2
b1(y)

)
U(y + he1) ≥ M

n∑
i=1

2ai(y)−
(
a1(y)− h

2
b1(y)

)
U(y − h1)

−
n∑
i=2

((
ai(y) + h

2
bi(y)

)
U(y + hei) +

(
ai(y)− h

2
bi(y)

)
U(y − hei)

)
− h2c(y)M

Using inequalities (3.4), and the fact that U(y ± hei) ≤M :(
a1(y) + h

2
b1(y)

)
U(y + he1) ≥ M

n∑
i=1

2ai(y)−
(
a1(y)− h

2
b1(y)

)
M

−
n∑
i=2

((
ai(y) + h

2
bi(y)

)
M +

(
ai(y)− h

2
bi(y)

)
M

)
− h2c(y)M

Canceling some terms yields:(
a1(y) + h

2
b1(y)

)
U(y + he1) ≥ M

n∑
i=1

2ai(y)−
(
a1(y)− h

2
b1(y)

)
M

−
n∑
i=2

2Mai(y)− h2c(y)M

= M
(
2a1(y)− a1(y) + h

2
b1(y)− h2c(y)

)
= M

(
a1(y) + h

2
b1(y)− h2c(y)

)
Therefore, again from (3.4), and since c(y) ≤ 0:

U(y + he1) ≥M

(
1− h2c(y)

a1(y) + h
2
b1(y)

)
≥M
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Since M is the maximum of U on Ωh, we conclude that U(y±he1) = M . Repeating

this argument k times, we get that U (y ± khe1) = M . But, since Ω is bounded,

Γ ⊂ Ωh ⊂ Ωh ⊂ Ω is finite, so for some k, y ± khe1 ∈ ∂Ωh ⊆ Ωh − Γ. This shows

the maximum will also occur at Ωh − Γ. Hence, {Lh} has MP.

Theorem 3.12 (Approximate Maximum Principle) Let L be a uniformly el-

liptic operator on a domain Ω ⊂ Rn, with ellipticity constant µ ∈ R+. Suppose

{Lh : RΩh → RΩh}h∈R+ is a consistent discrete scheme for L that has MP. Now,

let h ∈ ∗R+, h ≈ 0, and Γ ⊂ Ωh internal. Let a ∈ R and p ∈ R+. If U : Ωh → ∗R

is an internal function such that

∀x ∈ Γ ∃ε ≈ 0 LhU(x) ≥ εhp, (3.5)

∀x ∈ Ωh − Γ ∃δ ≈ 0 U(x) ≤ a+ δhp, (3.6)

then for all x ∈ Ωh, there exists η ≈ 0, such that U(x) ≤ a+ ηhp.

Proof. First we construct a standard function, w ∈ C2(Rn,R), as follows. Since

Ω is bounded, we can choose an x̂ ∈ Rn such that for some r ∈ R+ we have, for

all x ∈ Ωh:

|xi − x̂i| > r (i = 1, . . . , n).

Also, there is an R ∈ R such that Ω ⊂ BR(x̂). Then, for all x ∈ Ωh:

r < |xi − x̂i| < R (i = 1, . . . , n). (3.7)

Define w by

w(x) =
n∑
i=1

(xi − x̂i)
2m+2 ,
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where m ∈ N is a parameter to be fixed later. We have:

∂w

∂xi
= (2m+ 2) (xi − x̂i)

2m+1 ,

∂2w

∂x2
i

= δi,j (2m+ 2)(2m+ 1) (xi − x̂i)
2m .

Therefore:

Lw(x) = (2m+ 2)(2m+ 1)
n∑
i=1

ai,i(x) (xi − x̂i)
2m

+ (2m+ 2)
n∑
i=1

bi(x) (xi − x̂i)
2m+1 + c(x) (xi − x̂i)

2m+2 .

Using consistency of {Lh} with L (and since w ∈ C2(Rn,R)) we have, for all

x ∈ Ωh:

Lhw(x) ≈ (2m+ 2)(2m+ 1)
n∑
i=1

ai,i(x) (xi − x̂i)
2m

+ (2m+ 2)
n∑
i=1

bi(x) (xi − x̂i)
2m+1 + c(x) (xi − x̂i)

2m+2

=
n∑
i=1

(
(2m+ 2)(2m+ 1)ai,i(x) + (2m+ 2)bi(x) (xi − x̂i)

+ c(x) (xi − x̂i)
2
)

(xi − x̂i)
2m .

Consider the standard positive reals M = max{|bi(x)| : x ∈ Ω, i = 1, . . . , n} and

K = max{−c(x) : x ∈ Ω}. Using inequalities (3.7), and by transfer:

Lhw(x) >∼
n∑
i=1

(
(2m+ 2)(2m+ 1)ai,i(x)− (2m+ 2)MR−KR2

)
r2m

=

(
(2m+ 2)(2m+ 1)

n∑
i=1

ai,i(x)− n(2m+ 2)MR− nKR2

)
r2m

=
(
(2m+ 2)(2m+ 1) trA(x)− n(2m+ 2)MR− nKR2

)
r2m.
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By the condition of uniform ellipticity, the eigenvalues of A(x) are strictly bigger

than µ ∈ R+, so:

Lhw(x) >
(
(2m+ 2)(2m+ 1)nµ− n(2m+ 2)MR− nKR2

)
r2m

= n r2m
(
(2m+ 2)(2m+ 1)µ− (2m+ 2)MR−KR2

)
.

Recall that m ∈ N is, up to this point, a free parameter. We now fix it so that:

(2m+ 2)(2m+ 1)µ− (2m+ 2)MR−KR2 > 0.

We can always find such standard m, since µ,M ,K and R are all standard and µ is

positive. Note that m depends only on Ω and the coefficient functions of L. With

this choice of m, we get:

Lhw(x) � 0 ∀x ∈ Ωh. (3.8)

On the other hand, since Ωh − Γ ⊂ Ω ⊂ BR(x̂), we have that for each x ∈ Ωh − Γ:

w(x) < R2m+2 (3.9)

We conclude that, for a fixed L, we can find w ∈ C2(Rn,R) satisfying (3.8), and

(3.9) with R ∈ R+.

Let c ∈ R+, and consider Vc : Ωh → ∗R given by:

Vc(x) = U(x) + chpw(x), ∀x ∈ Ωh.

Then, from our hypothesis about U :

(a) For all x ∈ Γ, and using (3.5) and (3.8):

LhVc(x) = LhU(x) + chpLhw(x) ≥ hp(ε+ cLhw(x)) > 0.
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(b) For all x ∈ Ωh − Γ, and using (3.6) and (3.9):

Vc(x) = U(x) + chpw(x) < a+
(
δhp + chpR2m+2

)
= a+

(
δ + cR2m+2

)
hp.

By the transfer of the maximum principle, Vc(x) ≤ a + (δ + cR2m+2)hp for all

x ∈ Ωh. Therefore, and since w(x) ≥ 0 in Ωh:

U(x) = Vc(x)− chpw(x) ≤ V (x) ≤ a+
(
δ + cR2m+2

)
hp

But c ∈ R+ was arbitrary. Hence, the (internal) set of all b ∈ ∗R+ such that, for

all x ∈ Ωh, V (x) ≤ a+ bhp contains all noninfinitesimal positive reals. Therefore,

it must contain some η ≈ 0. We conclude that:

U(x) ≤ a+ ηhp ∀x ∈ Ωh.

Corollary 3.13 (Approximate Minimum Principle) Let L be a uniformly el-

liptic operator on a domain Ω ⊂ Rn, with ellipticity constant µ ∈ R+. Suppose

{Lh : RΩh → RΩh}h∈R+ is a consistent discrete scheme for L that has MP. Let

a ∈ R and p ∈ R+. Now, let h ∈ ∗R+, h ≈ 0, and Γ ⊂ Ωh be internal. If

U : Ωh → ∗R is an internal function such that:

∀x ∈ Γ ∃ε ≈ 0 LhU(x) ≤ εhp;

∀x ∈ Ωh − Γ ∃δ ≈ 0 U(x) ≥ a+ δhp.

Then for all x ∈ Ωh, there exists η ≈ 0, such that U(x) ≥ a+ ηhp.

Proof. Apply the approximate maximum principle to −U .



61

Corollary 3.14 Let L be a uniformly elliptic operator on a domain Ω ⊂ Rn,

with ellipticity constant µ ∈ R+. Suppose {Lh : RΩh → RΩh}h∈R+ is a consistent

discrete scheme for L that has MP. Let a ∈ R and p ∈ N. Now, let h ∈ ∗R+,

h ≈ 0, and let Γ ⊂ Ωh be internal. If U : Ωh → ∗R is an internal function such

that:

∀x ∈ Γ ∃ε ≈ 0 LhU(x) = εhp;

∀x ∈ Ωh − Γ ∃δ ≈ 0 U(x) = a+ δhk.

Then for all x ∈ Ωh, there exists η ≈ 0, such that U(x) = a+ ηhp.

Proof. Follows from the approximate maximum principle and from corollary

(3.13).

By making k = 0 in the above results, we get:

Corollary 3.15 Let L be a uniformly elliptic operator on a domain Ω ⊂ Rn,

with ellipticity constant µ ∈ R+. Suppose {Lh : RΩh → RΩh}h∈R+ is a consistent

discrete scheme for L that has MP. Let a ∈ R. Now, let h ∈ ∗R+, h ≈ 0, and let

Γ ⊂ Ωh be internal. If U : Ωh → ∗R is an internal function such that:

LhU(x) >∼ 0 [resp <∼ ,≈] ∀x ∈ Γ;

U(x) <∼ a [resp >∼ ,≈] ∀x ∈ Ωh − Γ.

Then U(x) <∼ a [resp >∼ ,≈], ∀x ∈ Ωh.
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3.3 The Discrete Dirichlet Problem

Let L be a uniformly elliptic operator on a domain Ω ⊂ Rn. Let f ∈ C(Ω,R) and

g ∈ C(∂Ω,R). Then, {
Lu(x) = f(x), if x ∈ Ω,

u(x) = g(x), if x ∈ ∂Ω,
(3.10)

is called an analytical Dirichlet problem on Ω. We will be using the triple 〈L, f, g〉

to refer to (3.10).

Here is the discrete counterpart of (3.10):

Definition 3.16 Let 〈L, f, g〉 be a Dirichlet problem on a domain Ω ⊂ Rn. Then,

the one parameter family {〈Lh, gh, fh〉 : h ∈ R+}, with Lh : RΩh → RΩh is called a

discrete Dirichlet scheme (for 〈L, f, g〉 on Ω) iff {Lh} is a discrete scheme for L,

fh ∈ RΩh, and gh ∈ R∂Ωh. The scheme is consistent if:

(a) {Lh} is consistent with L;

(b) fh(x) ≈ f(x), ∀h ≈ 0, ∀x ∈ Ωh;

(c) gh(x) ≈ g( ◦x), ∀h ≈ 0, ∀x ∈ ∂Ωh.

The scheme has MP if {Lh} has MP.

Given a consistent discrete scheme, {〈Lh, gh, fh〉}, we can form a one parameter

family of discrete problems:{
LhU(x) = fh(x), if x ∈ Ωh,

U(x) = gh(x), if x ∈ ∂Ωh.
(3.11)

Note that Ωh is finite (for h standard), so (3.11) is a system of algebraic equations,

with |Ωh| unknowns. The linearity of Lh implies that these are systems of linear
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equations. For specific Lh (and Ωh,Ωh), fh and gh can then be constructed. This

is usually not hard, as the following example shows.

Example 3.17 Consider the diagonal uniformly elliptic operator, given by (3.2)

and Lh given by (3.3). Assume all coefficient functions of L and f are defined and

continuous on Ω and g is continuous on ∂Ω. All points x ∈ ∂Ωh satisfy:

Bh(x) ∩ ∂Ω 6= ∅

So we may take

gh(x) = g(b) for some b ∈ Bh(x) ∩ ∂Ω.

A construction for giving the point b can be done in a similar way as was done,

in the previous chapter, for the Laplacian. Then, for any h ≈ 0, gh(x) = g(b) ≈

g( ◦x). As for fh, just take fh(x) = f(x), ∀x ∈ Ωh.

As the following proposition shows, the discrete Dirichlet problem is much

easier to solve than the analytical one.

Proposition 3.18 Let {〈Lh, gh, fh〉 : h ∈ R+}, with Lh : RΩh → RΩh, be a consis-

tent Dirichlet scheme which has MP. Then the problem:{
LhU(x) = fh(x), if x ∈ Ωh,

U(x) = gh(x), if x ∈ ∂Ωh,
(3.12)

has a unique solution U ∈ RΩh.

Proof. The set of functions U : Ωh → R, with the usual sum of functions and

product by a scalar, is a finite dimensional vector space of dimension |Ωh|, which
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is isomorphic to the space R|Ωh|. So we can interpret U as a vector in RΩh . Since

Lh is linear, equations (3.12) set up a system of linear equations

AU = b, (3.13)

where A is an |Ωh|× |Ωh| matrix and b ∈ R|Ωh|. Consider the linear map, M , given

by:

R|Ωh| 3 v 7→ Av ∈ R|Ωh|.

We show that M is one to one. Suppose Av = 0. From (3.12), this means that

fh(x) = 0, for all x ∈ Ωh and gh(x) = 0, for all x ∈ ∂Ωh By MP, v = 0. Since our

linear space is finite dimensional, M is also onto. So we can conclude that (3.12)

has a unique solution.

3.4 Convergence of the Solutions of the Discrete

Dirichlet Problem

Assume there exists a solution u ∈ C2(Ω,R) ∩ C(Ω,R) of the analytical Dirichlet

problem (3.10). Our objective is to show that the solutions of a family of discrete

Dirichlet problems satisfying Definition (3.16) converge, as h ↓ 0, to u. Our notion

of convergence is based on the L∞h -norm, which is defined as follows.

Definition 3.19 Let Ω be a domain, and Ωh ∈ Ω be a discretization for Ω, for

some h ∈ R+. The L∞h norm of a function U : Ωh → Rn is given by:

‖ U ‖L∞h = max
x∈Ωh

|U(x)|.
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With h ≈ 0, this gives an internal ∗norm, acting on internal gridfunctions U : Ωh →

∗R. If Uh is the unique solution of the discrete problem (3.12) corresponding to

h > 0, and u is the solution of the analytical problem (3.11), we seek to show

lim
h↓0

‖ Uh − u ‖L∞h = 0 4,

by showing the equivalent statement

‖ Uh − u ‖L∞h ≈ 0 ∀h > 0, h ≈ 0.

So we fix h > 0, h ≈ 0 and consider the unique internal function solving the

discrete Dirichlet problem, (3.12), Uh. First we show that Uh is S-continuous at

points infinitesimally close to ∂Ωh. Secondly, we use the approximate maximum

principle to compare Uh with u. 5.

As in Chapter 2, we introduce a discrete concept of barrier. Since we are now

studying an inhomogeneous equation (Lu = f 6≡ 0) we need a condition (b1),

which is stronger than the one used in Chapter 2.

Definition 3.20 Let {Lh}, with Lh : RΩh → RΩh, be a discrete scheme consistent

with the uniformly elliptic operator L on the domain Ω. Let y ∈ ∂Ω. An internal

S-continuous function by : ∗Ω → ∗R, is called a barrier at y iff, for all h ≈ 0:

(b1) Lhby(x) <∼ − 1, ∀x ∈ Ωh;

(b2) by(x) ≈ 0, ∀x ∈ Ωh, x ≈ y;

(b3) by(x) � 0, ∀x ∈ Ωh, x 6≈ y.

4The norm ‖ Uh − u ‖L∞h
, means ‖ Uh − u|Ωh

‖L∞h
.

5Whenever h is being fixed in a whole proof, we will drop the subscript h on Uh
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A point y ∈ ∂Ω is called strongly regular if for every scheme {Lh} consistent with

L, there exists a barrier by.

Lemma 3.21 Let L be a uniformly elliptic operator on a domain Ω ∈ Rn, with

c ≤ 0. If y ∈ ∂Ω satisfies an exterior sphere condition, then y is strongly regular.

Proof. Let {Lh}, with Lh : RΩh → RΩh , be a discrete scheme consistent with

L. Let y ∈ ∂Ω satisfy a exterior sphere condition, i.e., for some x̂ 6∈ Ω:

BR(x̂) ∩ Ω = {y}, with R = |y − x̂|.

Now, define w : Ω → R by

w(x) = R−m − r−m,

where

r = |x− x̂| =

(
n∑
i=1

(xi − x̂i)
2

)1/2

,

and m is a positive integer to be fixed later. Note that the exterior sphere condition

implies that R−m > r−m, as long as x 6= y. Hence:

w(x) > 0 if x ∈ Ω− {y},

w(x) = 0 if x = y.

Now, let by be the restriction of w to Ωh. Since w is a continuous standard function,

conditions (b2) and (b3) follow easily. To verify condition (b1), we begin by

calculating the partial derivatives of w. Then we use consistency to get an estimate

for Lhby(x).

The first partial derivatives are:

∂r

∂xi
=

1

2

(
n∑
i=1

(xi − x̂i)
2

)−1/2

2(xi − x̂i) = (xi − x̂i)r
−1;
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∂w

∂xi
= mrm−1(xi − x̂i)r

−1 = m(xi − x̂i)r
−(m+2).

As for the second partial derivatives, we have:

∂2w

∂xi∂xj
= mr−(m+2)δi,j −m(xi − x̂i)(m+ 2)r−(m+3)(xj − x̂j)r

−1

= mr−(m+2)δi,j −m(m+ 2)(xi − x̂i)(xj − x̂j)r
−(m+4).

Therefore:

Lw(x) = mr−(m+2)

n∑
i=1

ai,i(x)− m(m+ 2)r−(m+4)

n∑
i,j=1

(xi − x̂i)(xj − x̂j)ai,j(x)

+mr−(m+2)

n∑
i=1

(xi − x̂i)bi(x) + c(x)(R−m − r−m).

Note that w ∈ C2(Ω,R). Hence, using consistency of {Lh} with L, we have, for

all h ≈ 0 and x ∈ Ωh:

Lhw(x) ≈ mr−(m+2)

n∑
i=1

ai,i(x)− m(m+ 2)r−(m+4)

n∑
i,j=1

(xi − x̂i)(xj − x̂j)ai,j(x)

+mr−(m+2)

n∑
i=1

(xi − x̂i)bi(x) + c(x)(R−m − r−m).

Since c(x)(R−m − r−m) ≤ 0, we have:

Lhw(x) <∼ mr−(m+2)

(
−(m+ 2)r−2

n∑
i,j=1

(xi − x̂i)(xj − x̂j)ai,j(x)

+
n∑
i=1

ai,i(x) +
n∑
i=1

(xi − x̂i)bi(x)

)
.

Since L is uniformly elliptic,

n∑
i,j=1

(xi − x̂i)(xj − x̂j)ai,j(x) ≤ µ
∑
i=1

n(xi − x̂i)
2 = µr2,

where µ ∈ R+ is the ellipticity constant of L. Hence:

Lhw(x) <∼ mr−(m+2)

(
−(m+ 2)r−2µr2 +

n∑
i=1

(
ai,i(x) + (xi − x̂i)bi(x)

))
.
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Consider the standard nonnegative real:

M = max

{∣∣∣∣∣
n∑
i=1

(
ai,i(x) + (xi − x̂i)bi(x)

)∣∣∣∣∣ : x ∈ Ω

}
.

This M exists finite since the coefficient functions of L are bounded. Hence:

Lhw(x) <∼ mr−(m+2)
(
− (m+ 2)µ+M

)
.

Let r0 ∈ R+ be such that Br0(x̂) ⊃ Ωh. We fix m ∈ N so that:

mr
−(m+2)
0

(
M − (m+ 2)µ

)
≤ −1.

This m depends only on Ω and the coefficient functions on L. For this choice of

m, by satisfies:

Lhby(x) <∼ − 1 ∀x ∈ Ωh.

This shows (b1).

Given y ∈ ∂Ω, and a barrier by at y, we can consider the function ◦by. It

satisfies:

( ◦b2) ◦by(y) = 0;

( ◦b3) ◦by(x) > 0, ∀x ∈ Ω− {y}.

Let δ ∈ R+. It follows from compactness of Ω − Bδ(y) that ◦by has a minimum,

which by (b3) must be positive.

Lemma 3.22 Let L be a uniformly elliptic operator on a domain Ω ∈ Rn, with

c ≤ 0. Let f : Ω → R be bounded, and g ∈ C(∂Ω,R). Let {Lh, fh, gh}, with
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Lh : RΩh → RΩh, be a discrete scheme with MP, consistent with the Dirichlet

problem: {
Lu(x) = f(x), if x ∈ Ω,

u(x) = g(x), if x ∈ ∂Ω.

Let h ≈ 0, and let U : Ωh → R be the unique solution of the discrete Dirichlet

problem: {
LhU(x) = fh(x), if x ∈ Ωh,

U(x) = gh(x), if x ∈ ∂Ωh.

Then, for all y ∈ ∂Ω strongly regular, if Ωh 3 x ≈ y, then U(x) ≈ f(y).

Proof. Let by be a barrier at y. Fix ε ∈ R+. From continuity of g, we can find

a δ ∈ R+ such that, for all x, y ∈ ∂Ω:

|x− y| < δ ⇒ |g(x)− g(y)| < ε. (3.14)

Define the standard real:

M = max {|g(x)| : x ∈ ∂Ω} . (3.15)

From our observations about ◦by, we can find K ∈ R+ such that, if x, y ∈ Ω,

|x − y| ≥ δ, then K ◦by(x) > 2M (just take K = 2M/A, where A = min{ ◦by(x) :

x ∈ ∂Ω−Bδ(y)} > 0). Translating this to by, we have, for all x, y ∈ Ωh ⊂ ∗Ω:

|x− y| ≥ δ ⇒ Kby(x) >∼ 2M (3.16)

Note that both δ and K depend only on ε.

Let

C = max

{
sup
x∈Ω

|f(x)|, K
}
, (3.17)

and consider the internal functions ω±ε : Ωh → ∗R given by:

ω−ε (x) = U(x)− ε− Cby(x),
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ω+
ε (x) = U(x) + ε+ Cby(x).

If ε̂ denotes the constant function ε̂(x) = ε, then by consistency:

Lhε̂(x) ≈ Lε̂(x) = c(x)ε ≤ 0. (3.18)

So, we have:

(a) For all x ∈ Ωh, and using consistency, property (b1) of the barrier by, and

equations (3.18) and (3.17):

Lhω
−
ε (x) ≈ fh(x)− c(x)ε− CLhby(x) >∼ f(x) + C ≥ 0;

Lhω
+
ε (x) ≈ fh(x) + c(x)ε+ CLhby(x) <∼ f(x)− C ≤ 0.

(b) For all x ∈ ∂Ωh, and using consistency and equation (3.17):

ω−ε (x) = gh(x)− ε− Cby(x)

<∼ g( ◦x)− ε−Kby(x);

ω+
ε (x) = gh(x) + ε+ Cby(x)

>∼ g( ◦x) + ε+Kby(x).

If | ◦x− y| < δ, then from property (b3) of the barrier by, and (3.14):

ω−ε (x) <∼ g( ◦x)− ε <∼ g(y);

ω+
ε (x) >∼ g( ◦x) + ε >∼ g(y);

If | ◦x− y| ≥ δ, then from (3.16) and (3.15):

ω−ε (x) <∼ g( ◦x)−Kby(x) <∼ g( ◦x)− 2M <∼ g(y);

ω+
ε (x) >∼ g( ◦x) +Kby(x) >∼ g( ◦x) + 2M >∼ g(y).
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From (a) and (b) above, the functions ω±ε are in the conditions of Corollary

(3.15). Thus:

U(x)− ε− Cby(x) = ω−ε (x) <∼ f(y) <∼ ω+
ε = U(x) + ε+ Cby(x)

Subtracting U(x) on both sides of these two inequalities yields:

|U(x)− f(y)| <∼ ε+ Cby(x)

For x ≈ y, property (b2) of the barrier by asserts that by(x) ≈ 0. Hence,

|U(x)− f(y)| ≤ ε. Since ε was arbitrarily chosen in R+, we conclude that U(x) ≈

f(y).

Theorem 3.23 Let L be a uniformly elliptic operator with c ≤ 0, on a domain

Ω ∈ Rn, all of whose boundary points are strongly regular. Let f : Ω → R be

bounded, and g ∈ C(∂Ω,R). Assume that the analytical Dirichlet problem,{
Lu(x) = f(x), if x ∈ Ω,

u(x) = g(x), if x ∈ ∂Ω,

has a solution, u ∈ C2(Ω,R)∩C(Ω,R). Let {Lh, fh, gh}, with Lh : RΩh → RΩh, be

a discrete scheme with MP, consistent with the above analytical Dirichlet problem.

For each h ∈ R+, let Uh : Ωh → R be the unique solution of the discrete Dirichlet

problem: {
LhU(x) = fh(x), if x ∈ Ωh,

U(x) = gh(x), if x ∈ ∂Ωh.

Then, for all positive h ≈ 0, ‖ Uh− u ‖L∞h ≈ 0. Equivalently, lim
h↓0

‖ Uh− u ‖L∞h = 0.
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Proof. Fix h ≈ 0. For each ε ∈ ∗R+, let:

Γε =
{
x ∈ Ωh : dist (x, ∂Ωh) > ε

}
.

Consider the internal set:

D =
{
ε ∈ R+ : ∀x ∈ Γε |Lhu(x)− Lu(x)| < ε

}
.

Note that, for any ε > 0 and noninfinitesimal, u ∈ C2( ◦Γε,R). Hence, by con-

sistency of Lh with L, the set D contains all noninfinitesimal ε > 0. Since D is

internal, it follows that D contains some ε ≈ 0. Therefore, for this ε, and for all

x ∈ Γε:

|Lhu(x)− Lu(x)| < ε⇒ Lhu(x) ≈ Lu(x).

Hence:

Lh(Uh − u)(x) = LhUh(x)− Lhu(x) ≈ fh(x)− Lu(x) = fh(x)− f(x) ≈ 0.

On the other hand, for all x ∈ Ωh−Γε, dist (x, ∂Ω) <∼ ε ≈ 0. Hence, using Lemma

(3.22) and the continuity of u at ∂Ω:

Uh(x)− u(x) ≈ g( ◦x)− u(x) ≈ g( ◦x)− g( ◦x) = 0.

By Corollary (3.15):

Uh(x)− u(x) ≈ 0, ∀x ∈ Ωh. (3.19)

Since Ωh is hyperfinite, the ∗ max of |Uh(x)− u(x)| on Ωh exists, and by equation

(3.19), it must be infinitesimal. Hence:

‖ Uh − u ‖L∞h ≈ 0.
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Under suitable conditions on its data, it can be shown that the problem (3.10)

has a unique solution. We quote the following result from the Schauder theory of

linear elliptic equations (of second order).

Theorem 3.24 Let L be uniformly elliptic in a domain Ω, with c ≤ 0 and let

f and the coefficients of L be bounded functions in C2,α(Ω), and g ∈ C(∂Ω,R).

Suppose that Ω satisfies an exterior sphere condition at every y ∈ ∂Ω. Then, the

Dirichlet problem, {
Lu(x) = f(x), if x ∈ Ω,

u(x) = g(x), if x ∈ ∂Ω,

has a unique solution u ∈ C(Ω,R) ∩ C2,α(Ω,R) 6.

The following is a corollary of Theorems (3.23) and (3.24).

Corollary 3.25 Let L be uniformly elliptic in a domain Ω, with c ≤ 0 and let f

and the coefficients of L be bounded functions in C2,α(Ω), and g ∈ C(∂Ω,R). Sup-

pose that Ω satisfies an exterior sphere condition at every y ∈ ∂Ω. Let {Lh, fh, gh},

with Lh : RΩh → RΩh, be a discrete scheme with MP, consistent with the Dirichlet

problem 〈L, f, g〉 on Ω. For each h ∈ R+, let Uh : Ωh → R be the unique solution

of the discrete Dirichlet problem:{
LhU(x) = fh(x), if x ∈ Ωh,

U(x) = gh(x), if x ∈ ∂Ωh.

Then, for all infinitesimal h, ‖ Uh − u ‖L∞h ≈ 0, where u is the unique solution of

the analytical Dirichlet problem. Equivalently, lim
h↓0

‖ Uh − u ‖L∞h = 0.

6For a proof of this, see for example [9].
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3.5 Accuracy of the Solutions of the Discrete

Dirichlet Problem

The results of the last section are conceptually useful to justify the use of a (an-

alytical) elliptic Dirichlet problem to model the limit, as h ↓ 0, of a large class of

discrete problems. But, for numerical applications, the point of view is entirely

the opposite: one starts with the analytical problem, and then studies suitable dis-

crete problems, for the purpose of calculation. It is no surprise that for numerical

applications, convergence proofs are not very useful without error estimates.

The hypothesis on the Dirichlet problem from last section were too general to

be able to get useful error estimates. The fact that we consider analytical problems

where the solution may be no better than continuous at the boundary of Ω imply

that LhUh may be a very bad approximation of Lu near the boundary. So, L∞h

estimates may be very poor. The main result of this section handles this problem

by putting some extra constraints on the analytical problem.

Before we proceed, lets introduce the “small oh” notation. Let A ∈ ∗R and

ϕ : A→ ∗R be both internal. Let p ∈ R+ ∪ {0}. Then

ϕ(h) = o(hp)

means that, for all h ≈ 0, there exists ε ≈ 0 such that ϕ(h) = εhp. Additionally

ϕ(h) = ψ(h) + o(hp)

means that ϕ(h)−ψ(h) = o(hp). It is clear that, if c, d ∈ ∗R are finite, ϕ(h) = o(hp)

and ψ(h) = o(hq), then:

cϕ(h) + dψ(h) = o(hmin{p,q}).
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With this notation, Corollary (3.15) can be written as

Corollary 3.26 Let L be a uniformly elliptic operator on a domain Ω ⊂ Rn,

with ellipticity constant µ ∈ R+. Suppose {Lh : RΩh → RΩh}h∈R+ is a consistent

discrete scheme for L that has MP. Now, let h ∈ ∗R+, h ≈ 0. If U : Ωh → ∗R is

an internal function such that, for some a ∈ R and some k ∈ N:

∀x ∈ Ωh LhU(x) = o(hk);

∀x ∈ ∂Ωh U(x) = a+ o(hk).

Then for all x ∈ Ωh, U(x) = a+ o(hk).

First we define accuracy of a discrete scheme for a Dirichlet problem.

Definition 3.27 Let L be a linear differential operator of order k on a domain

Ω ⊂ Rn. Let 〈L, f, g〉 be a Dirichlet problem on a domain Ω ⊂ Rn. Then, the

discrete Dirichlet scheme {〈Lh, gh, fh〉 : h ∈ R+}, with Lh : RΩh → RΩh is called

accurate of order p ∈ R+ (with respect to 〈L, f, g〉) on Ω iff it is consistent with

〈L, f, g〉 on Ω, and

(a) ∀x ∈ ∂Ωh ∃y ∈ ∗∂Ω
|x− y|
hp

≈ 0;

(b) Lhu(x) = Lu(x) + o(hp), ∀h ≈ 0, ∀u ∈ Ck(D,R), ∀xfinite ∈ Dh ;

(c) fh(x) = f(x) + o(hp), ∀h ≈ 0, ∀x ∈ Ωh;

(d) gh(x)) = g(x) + o(hp), ∀h ≈ 0, ∀x ∈ ∂Ωh;
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Theorem 3.28 Let L be a uniformly elliptic operator on a domain Ω ∈ Rn all

whose boundary points are strongly regular, and with c ≤ 0. Let f : Ω → R be

bounded, and g ∈ C(∂Ω,R). Assume the analytical Dirichlet problem,{
Lu(x) = f(x), if x ∈ Ω,

u(x) = g(x), if x ∈ ∂Ω,

has a unique solution, u ∈ C2(Ω,R). Let {Lh, fh, gh}, with Lh : RΩh → RΩh, be

a discrete scheme with MP, consistent with the above analytical Dirichlet problem

and accurate of order p ∈ R+. For each h ∈ R+, let Uh : Ωh → R be the unique

solution of the discrete Dirichlet problem:{
LhU(x) = fh(x), if x ∈ Ωh,

U(x) = gh(x), if x ∈ ∂Ωh.

Then, ‖ Uh − u ‖L∞h = o(hp).

Proof. Let h ≈ 0. If x ∈ Ωh, then since u ∈ C2(Ω,R), and using consistency:

Lh(Uh − u)(x) = LhUh(x)− Lhu(x)

= fh(x)− Lu(x) + o(hp)

= fh(x)− f(x) + o(hp)

= o(hp).

On the other hand, if x ∈ ∂Ωh, pick y ∈ ∗∂Ω such that |x−y|
hp ≈ 0. Then, since by

our hypothesis, u must be Lipshitz continuous:

(Uh − u)(x) = gh(x)− u(x)

= gh(x)− g(y) + u(y)− u(x)

= gh(x)− g(y) + o(hp) = o(hp).
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By corollary (3.26):

Uh(x)− u(x) = o(hp) ∀x ∈ Ωh

Hence, ‖ Uh − u ‖L∞h = o(hp).

Usually, the easier way to satisfy condition (a) of Definition (3.27) is to have

a scheme where ∂Ωh ⊂ ∂Ω. These schemes are not restricted to special domains

(e.g., rectangular or spherical regions). By defining Lh by a different formula for

points near the boundary, general domains can be discretized in this fashion. For

an example of this type of schemes, see Wendland [28]
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Chapter 4

Brouwer Degree

Let Ω ⊂ Rn be open and bounded, ϕ ∈ C(Ω,Rn), and b ∈ Rn − ∂Ω. A function,

d(ϕ,Ω, b), called the (Brouwer) degree of ϕ with respect to Ω and b, can be defined

in such a way that it gives an algebraic count of the number of solutions of the

equation

ϕ(x) = b,

on Ω. This will not be the usual count: some solutions add +1 to d, while others

add −1.

As it turns out, the algebraic count has much nicer properties then the usual

count. For example, the degree stays constant under some very large deformations

of ϕ, making it possible to use it for existence proofs where the original problem

is deformed into a much nicer one.

The construction of the Brouwer degree provided here has some similarities

with the one in Rabinowitz [23]. The main differences in our construction are the

derivation of a lemma showing that the gradient of the integral representation of

the degree vanishes, and the extension of the degree from C2 maps to continuous

maps by the use of ∗C2 liftings. The later leads to a new formula for the Brouwer

degree in the general case.

Throughout this chapter, Ω will denote a bounded and open subset of Rn.
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4.1 The Definition of Brouwer Degree

We begin by defining the degree in the following special setting, called the nice

case. Suppose

ϕ ∈ C2(Ω,Rn) ∩ C(Ω,Rn), (4.1)

where Ω ⊂ Rn is open and bounded, and

b ∈ Rn −
(
ϕ(∂Ω) ∪ ϕ(S)

)
. (4.2)

S, named the singular set, is given by:

S =
{
x ∈ Ω : Jϕ(x) = 0

}
.

Here, Jϕ(x) = detϕ′(x), where ϕ′(x) denotes the Jacobian matrix of ϕ at x ∈ Ω.

Under the conditions of the nice case

∀x ∈ ϕ−1(b) Jϕ(x) 6= 0,

so by the inverse function theorem, ϕ is a diffeomorphism from each neighborhood

of x ∈ ϕ−1(b) to a neighborhood of ϕ(x) = b. It follows that:

(a) all solutions of ϕ(x) = b in Ω actually lie in Ω;

(b) all solutions of ϕ(x) = b are isolated;

(c) if Ω is compact, then ϕ−1(b) is finite.

The proof of (c) goes as follows. Since ϕ−1(b) ⊂ Ω is closed, it is compact. As-

suming ϕ−1(b) is infinite, we can find an open neighborhood of each x ∈ ϕ−1(b),

Ux, such that ϕ|Ux is 1−1. From {Ux : x ∈ ϕ−1(b)}, extract a finite subcovering of
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ϕ−1(b), {Ux1 , . . . , Uxn}. Then, one of the Uxi
must have more than one x ∈ ϕ−1(b);

but this contradicts the fact that ϕ is 1− 1 on the Uxi
.

Let sgn : R− {0} → R be given by

sgn t =
t

|t|
=

{
1 if t > 0,

−1 if t < 0.

Definition 4.1 Under the conditions of the nice case, the Brouwer degree of ϕ

with respect to Ω and b is given by:

d(ϕ,Ω, b) =
∑

ξ∈ϕ−1(b)

sgn Jϕ(ξ).

Example 4.2 Let R > 1 and ϕ : [−R,R] → R given by ϕ(x) = x(x− 1)(x+ 1).

Computing the degree of ϕ(x) = x(x− 1)(x+ 1).

Then:

d
(
ϕ, (−R,R), b

)
=

{
0 if b 6∈ ϕ([−R,R]),

1 if b ∈ ϕ((−R,R)) and b 6∈ ϕ(S).

Note that for all b 6∈ ϕ(S), b ∈ ϕ([−R,R]) stays constant for b on connected

components of R− ∂Ω.

Recall that we want to define the degree:

(a) relative to all b 6∈ ϕ(∂Ω) (this means being also able to define the degree

relative to values of b in the image of the singular set);

(b) relative to all ϕ ∈ C(Ω,Rn).

An approximation argument is used to extend Definition 4.1. The first step is

to derive an integral representation of the degree. Given b ∈ Rn, ε > 0, let
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jb,ε ∈ C1(Rn,R) be such that:

supp jb,ε ⊂ Bε(b); (4.3)∫
Rn

jb,ε(x) dx = 1. (4.4)

For all ϕ ∈ C1(Ω,R), and all b ∈ Rn, we can define:

Iε(ϕ,Ω, b) =

∫
Ω

jb,ε(ϕ(x))Jϕ(x) dx.

This integral is a weighted average, with weight function jb,ε(ϕ(·)), of the values

of Jϕ(x) on some small neighborhoods of the points ξ such that ϕ(ξ) = b.

Proposition 4.3 (E. Heinz) For all b ∈ Rn−
(
ϕ(∂Ω)∪ϕ(S)

)
, there exists ε > 0

such that for all ε ∈ (0, ε)

Iε(ϕ,Ω, b) = d(ϕ,Ω, b).

Proof.

Case 1: b 6∈ ϕ(Ω).

Take ε = dist (b, ϕ(S)). Now let ε ∈ (0, ε) and assume there exists x ∈ Ω such

that jb,ε(ϕ(x)) 6= 0. Then ϕ(x) ∈ Bε(b), so ε > dist (b, ϕ(S)) = ε, which leads to a

contradiction. Hence supp jb,ε(ϕ(·)) = ∅ and consequently:

Iε(ϕ,Ω, b) = 0 =

∫
Ω

jb,ε(ϕ(x))Jϕ(x) dx.

Case 2: b ∈ ϕ(Ω)− ϕ(S).

Say ϕ−1(b) = {ξ1, . . . , ξk}. From our hypothesis about b, Jϕ(ξi) 6= 0 for all

i ∈ {1, . . . , k}. Using the inverse function theorem, there exist (standard) open
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neighborhoods Ui 3 ξi of each ξi and Vi of b such that ϕ|Ui
: Ui → Vi is 1− 1 and

onto (for all i ∈ {1, . . . , k}).

Choose now any ε > 0, ε ≈ 0. Since the Vi’s are (standard) open neighborhoods

of b, Bε(b) ⊂ Vi, for all i ∈ {1, . . . , k}. Let

Ni,ε = ϕ−1(Bε(b)),

and

ϕi = ϕ|Ni,ε
: Ni,ε → Bε(b).

By construction, ϕi is onto. Also, ϕi is 1 − 1 since it is a restriction of ϕ|Ui
.

Furthermore:

(i) Each Ni,ε has infinitesimal diameter, for otherwise, the equation ϕ(x) = b

would have infinitely many solutions. Hence, each Ni,ε is an infinitesimal

neighborhood of ξi, and so Ni,ε ∩Nj,ε = ∅, for all i 6= j.

(ii) From (i) and continuity of ϕ, Jϕ(x) 6= 0 for all x ∈ Ni,ε and all i ∈ {1, . . . , k}

Since the set

E =
{
ε ∈ ∗R : ε > 0 ∧ ∀i, j ∈ {1, . . . , k} i 6= j ⇒ Ni,ε ∩Nj,ε = ∅

∧ ∀i ∈ {1, . . . , k} ∀x ∈ Ni,ε Jϕ(x) 6= 0
}

is internal and contains all positive infinitesimals, it must contain a standard ε > 0.

Note that this implies that any ε ∈ (0, ε] will also belong to E, since:

Ni,ε = ϕ−1(Bε(b)) ⊂ ϕ−1(Bε(b)) = Ni,ε.
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Hence, for any standard ε ∈ (0, ε]:

Iε =

∫
{x∈Ω:ϕ∈Bε(b)}

jb,ε(ϕ(x)) Jϕ(x) dx

=

∫
∪k

i=1Ni,ε

jb,ε(ϕ(x)) Jϕ(x) dx

=
k∑
i=1

∫
Ni,ε

jb,ε(ϕ(x)) Jϕ(x) dx.

We now make the change of variables y = ϕ(y), and get:

Iε =
k∑
i=1

∫
Bε

sgn Jϕ(ϕ
−1(y))jb,ε(y) dy.

Since sgn Jϕ(x) stays constant in each Ni,ε,

Iε =
k∑
i=1

sgn Jϕ(ξi)

∫
Bε

jb,ε(y) dy = d(ϕ,Ω, b).

We now consider a family {j0,ε} satisfying (4.3) and (4.4). For simplicity of

notation, we drop the 0 subscript and denote j0,ε by jε. It turns out that for each

β ∈ Rn and ε > 0, the function jβ,ε ∈ C1(Rn,R) given by

jβ,ε(y) = jε(y − β) ∀y ∈ Rn,

satisfies conditions (4.3) and (4.4) with β = b. This observation will be useful to

show the following result.

Lemma 4.4 Let ϕ ∈ C2(Ω,Rn) and ε > 0. Then, for all b ∈ Rn such that

Bε(b) ⊂ ϕ(Ω), Iε(ϕ,Ω, ·) is differentiable at b, and its gradient is identically 0.

Proof.
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Fix ϕ,Ω, ε as above. For every b such that Bε(b) ⊂ Ω:

Iε(ϕ,Ω, b) =

∫
Ω

jε(ϕ(x)− b)Jϕ(x) dx.

Let δ±j,h denote the usual forward and backward finite difference operators, i.e.:

(δ+
j,hf)(b) =

1

h

(
f(b+ hej)− f(b)

)
;

(δ−j,hf)(b) =
1

h

(
f(b)− f(b− hej)

)
.

Take h > 0, h ≈ 0. We have:

(δj,hIε)(ϕ,Ω, b) =

∫
Ω

1

h

(
jε(ϕ(x)− b− hej)− jε(ϕ(x)− b)

)
Jϕ(x) dx

=

∫
Ω

−
(
δ−j,hjε

)
(ϕ(x)− b)Jϕ(x) dx.

Consider the function (for fixed ϕ,Ω, and ε):

Kj(b) =

∫
Ω

− ∂jε
∂yj

(ϕ(x)− b)Jϕ(x) dx.

Note that supp jε ⊂ Bε(0), so supp
(
δ−j,h jε(ϕ(·)− b)

)
⊂ ϕ−1Bε(b). Consequently,

supp ∂jε
∂yj

(ϕ(·) − b) ⊂ ϕ−1(Bε(b)). Then, since jε ∈ C1(Rn,R), for every standard

r > 0:

∣∣δ+
j,hIε(ϕ,Ω, b)−Kj(b)

∣∣ ≤
∫

Ω

∣∣∣∣−(δ−j,hjε)(ϕ(x)− b) +
∂jε
∂yj

(ϕ(x)− b)

∣∣∣∣ |Jϕ(x)| dx
≤ r

∫
ϕ−1(Bε(b))

|Jϕ(x)| dx ≤ rM.

(whereM is standard and does not depend on h). Hence |δj,hIε(ϕ,Ω, b)−Kj(b)| ≈ 0

for every h ≈ 0. Therefore, ∂
∂yj
Iε(ϕ,Ω, y)|y=b exists and equals Kj(b). To finish the

proof, it is enough to show that Kj(b) = 0, j ∈ {1, 2, . . . , n}.
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We first work the case n = 1. This is necessary, since our general proof only

works for n ≥ 2. We have:

d

dy
Iε(ϕ,Ω, y)

∣∣∣∣
y=b

= −
∫

Ω

djε
dy

(ϕ(x)− b)ϕ′(x) dx

= −
∫

Ω

d

dx

(
jε(ϕ(x)− b)

)
dx

Since Bε(b) ⊂ ϕ(Ω) and |ϕ(x) − b| = |ϕ(x) − ϕ(ξi)| < ε for each x ∈ N ε
i (i =

1, . . . , k), supp jε(ϕ(·)− b) ⊂⊂ Ω. Therefore if we extend jε(ϕ(·)− b) trivially to

all x ∈ R, this extension remains C1. Hence for a sufficiently large R:

d

dy
Iε(ϕ,Ω, y)

∣∣∣∣
y=b

= −
∫ R

−R

d

dx

(
jε(ϕ(x)− b)

)
dx = 0.

For n ≥ 2, the argument is similar, although it becomes more technical. The idea

now is to show that for some uj ∈ C1(Rn,Rn) with compact support contained in

Ω,

d

dyj
Iε(ϕ,Ω, y)

∣∣∣∣
y=b

= Kj =

∫
Ω

div uj(x) dx

=

∫
BR(0)

div uj(x) dx =

∫
∂BR(0)

uj(x) · ν dS = 0

(where R is sufficiently large so that BR(0) ⊃ ϕ(Ω)). The construction of the

uj’s can be done as follows. Let Aji(x) be the cofactor matrix of ϕ′(x), i.e.,

Aji(x) = (−1)i+jMji(x), where Mji(x) is the minor of ϕ′(x) corresponding to

the entry
∂ϕj

∂xi
(x). Then let uj(x) = (uj1, . . . , u

j
n) : Ω → Rn be given by:

uji (x) = −jε(ϕ(x)− b)Aji(x).

Since ϕ ∈ C2(Ω,Rn) and jε ∈ C1(Rn,R), we conclude that uj ∈ C1(Ω,Rn). In

fact, since

supp uj ⊂ supp (jε(ϕ(·)− b)) ⊂ ϕ−1(Bε(b)) ⊂⊂ Ω,
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the trivial extension of uj to Rn remains C1. So we assume uj extended in this

fashion.

Furthermore:

div uj(x) = −
n∑
i=1

∂

∂xi
jε(ϕ(x)− b))Aji(x)

= −
n∑

i,k=1

∂jε
∂yk

(ϕ(x)− b)
∂ϕk
∂xi

Aij(x)︸ ︷︷ ︸
s1(x)

−
n∑
i=1

jε(ϕ(x)− b))
∂

∂xi
Aji(x)︸ ︷︷ ︸

s2(x)

.

The first term in the previous expression, s1(x), can be written as:

s1(x) = −
n∑
k=1

∂jε
∂yk

(ϕ(x)− b)
n∑
i=1

∂ϕk
∂xi

Aji(x).

For k = j, the second sum is just equal to det ϕ′(x) = Jϕ(x). For k 6= j, it becomes

the determinant of a matrix with two identical rows, so it equals 0. Hence:

s1(x) = − ∂jε
∂yj

(ϕ(x)− b)Jϕ(x).

This is precisely the integrand in Kj(b). So to finish the proof, it remains to show

that the term

s2(x) =
n∑
i=1

jε(ϕ(x)− b))
∂

∂xi
Aji(x) = jε(ϕ(x)− b)

n∑
i=1

∂

∂xi
Aji(x)

vanishes identically. This is achieved using the next lemma.

Lemma 4.5 Let ψ ∈ C2(O,Rp) with O ⊂ Rp+1 open. Say x = (x1, . . . , xp+1) ∈

Rp+1. Let Di = det (ψx1 , . . . , ψ̂xi
, . . . , ψxp)

1 Then:

p+1∑
i=1

(−1)i
∂Di

∂xi
= 0.

1(ψx1 , . . . , ψ̂xi , . . . , ψxp) is a list of the columns of the matrix, with ψ̂xi omitted
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Assuming for now the lemma, we see that the sum in s2(x) is of the form of

the lemma, if we take p+ 1 = n, and Di(x) = Mji(x), ψ = ϕ. If this is the case,

n∑
i=1

∂

∂xi
Aji(x) =

n∑
i=1

(−1)i+j
∂

∂xi
Mji(x) = (−1)j

p+1∑
i=1

(−1)i
∂

∂xi
Di(x) = 0.

Hence, s2(x) ≡ 0 as we wanted, and we conclude that

div uj(x) = s1(x) = − ∂jε
∂yj

(ϕ(x)− b)Jϕ(x)

Proof of Lemma (4.5).

Let Dij = Dji = det(ψxixj
, ψx0 , . . . , ψ̂xi

, . . . , ψ̂xj
, . . . , ψxp). Applying the product

rule to calculate the derivative of the determinant yields:

∂

∂xi
Di =

∑
j<i

det(. . . , ψxjxi
, . . . , ψ̂xi

, . . .) +
∑
j>i

det(. . . , ψ̂xi
, . . . , ψxjxi

, . . .).

Permutating columns in the matrices, we obtain:

∂

∂xi
Di =

∑
j<i

(−1)j detDij +
∑
j>i

(−1)j−1 detDij =

p+1∑
j=1

(−1)jαijDij,

where

αij =


1 if j < i ,

0 if j = i ,

−1 if j > i .

Then
p+1∑
i=1

(−1)i
∂Di

∂xi
=

p+1∑
i=1

(−1)i+jαijDij = 0,

because the i = j terms are zero and, for i > j, the (i, j) terms cancel the (j, i)

terms (since αij = −αji, Dij = Dji.

With the aid of Lemma (4.4), we can now show a very important property of

the degree:
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Proposition 4.6 Let ϕ ∈ C2(Ω,Rn), and B be a connected component of Rn −

ϕ(∂Ω). Then, for all b ∈ B − ϕ(S), d(ϕ,Ω, b) is constant.

Proof.

From Lemma (4.4), for all ε > 0, Iε(ϕ,Ω, b) is constant on connected com-

ponents of Rn − ϕ(∂Ωε), where ∂Ωε = {x ∈ Rn : dist(x, ∂Ω) ≤ ε}. Taking

ε ≈ 0, we conclude that Iε(ϕ,Ω, b) stays constant on all standard points, b, be-

longing to the same component of Rn − ϕ(∂Ω). Since, from proposition (4.3),

d(ϕ,Ω, b) = Iε(ϕ,Ω, b) for all standard b 6∈ ϕ(∂Ω) ∪ ϕ(S) and ε ≈ 0, the proof is

finished.

The following result establishes the “smallness” of ϕ(S).

Theorem 4.7 (Sard’s Theorem) If O ⊂ Rn is open, f ∈ C1(O,Rn), and S =

{x ∈ O : Jf (x) = 0}. Then f(S) has measure 0.

For a proof, see [23].

We are now ready to extend the definition of degree to all b ∈ Rn − ϕ(∂Ω).

Step 1: Extension of d(ϕ,Ω, b) to all b ∈ Rn − ϕ(∂Ω)

Given b ∈ Rn−ϕ(∂Ω), let B be the connected component of Rn−ϕ(∂Ω), which

contains b. Since B is a connected component of an open set, it should also be

open. By Sard’s theorem, and since the measure of ϕ(B) is greater than 0, there

must exist β ∈ B such that β 6∈ ϕ(S). Define

d(ϕ,Ω, b) = d(ϕ,Ω, β).

By Proposition (4.6), this is well-defined.



89

To deal with the extension of the definition to all ϕ ∈ C(Ω,R), we need the

following result. This is a continuity property with respect to ϕ.

Proposition 4.8 Let ϕ ∈ C2(Ω,Rn), b 6∈ ϕ(∂Ω) ∪ ϕ(S) (both standard). Then,

for all ψ ∈ ∗C2(Ω,Rn) such that ‖ϕ− ψ‖C1(Ω,Rn) ≈ 0, d(ψ,Ω, b) = d(ϕ,Ω, b).

Proof.

d(ψ,Ω, b)− d(ϕ,Ω, b) =

∫
Ω

jb,ε(ψ(x))Jψ(x) dx−
∫

Ω

jb,ε(ϕ(x))Jϕ(x) dx

=

∫
Ω

jb,ε(ψ(x))(Jψ(x)− Jϕ(x)) dx

+

∫
Ω

(
jb,ε(ψ(x))− jb,ε(ϕ(x))

)
Jϕ(x) dx

Since ‖ϕ − ψ‖C1 ≈ 0, ‖Jψ(·) − Jϕ(·)‖C0 ≈ 0, so the first integral is infinitesi-

mal. Also, since ‖ϕ − ψ‖C1 ≈ 0 and jb,ε is continuous, we have that jb,ε(ψ(x)) −

jb,ε(ϕ(x)) ≈ 0. So the second integral is also infinitesimal. Hence, d(ψ,Ω, b) ≈

d(ϕ,Ω, b). Since both values are in ∗Z, we conclude that d(ψ,Ω, b) = d(ϕ,Ω, b).

Step 2: Extension of d(ϕ,Ω, b) to all ϕ ∈ C(Ω,Rn)

First, we find a lifting ψ ∈ ∗C2(Ω,Rn) of ϕ (in the sense that ∀x ∈ Ω ψ(x) ≈

ϕ(x)) and define

d(ϕ,Ω, b) = d(ψ, ∗Ω, b).

To show that this is well-defined we must show that the right-hand side is inde-

pendent of lifting used and is finite.

Let ψ̂ be another lifting and define a homotopy H ∈ ∗C2([0, 1]× Ω,Rn) by

H(t, x) = tψ̂(x) + (1− t)ψ(x).
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Since H(t, x) ≈ ψ(x) ≈ ψ̂(x) ≈ ϕ(x) and dist(b, ϕ(∂Ω)) is standard positive, we

get that b 6= H(t, x) for all x ∈ ∂Ω. Hence d(H(t, ·), ∗Ω, b) is well defined for all

t ∈ ∗[0, 1]. Let t0 ∈ ∗[0, 1] be the ∗supremum of the set of t ∈ ∗[0, 1] such that

d(H(0, ·), ∗Ω, b) = d(H(t, ·), ∗Ω, b). We assume t0 < 1, and derive a contradiction.

Let t ∈ ∗[0, 1]. Then:

H(t, x)−H(t0, x) = (t− t0)ψ̂(x) + (1− t− 1 + t0)ψ(x)

= (t− t0)(ψ̂(x)− ψ(x)). (4.5)

Choose a positive δ ≈ 0 so that t0 + δ, t0 − δ ∈ ∗(0, 1] and δ‖ψ̂ − ψ‖C1 ≈ 0. Then,

say for t = t0 + δ
2
, and using (4.5):

‖H(t, .)−H(t0, .)‖C1 = |t− t0|‖ψ̂ − ψ‖C1 =
δ

2
‖ψ̂ − ψ‖C1 ≈ 0.

Hence from Proposition (4.8), d(H(0, .), ∗Ω, b) = d(H(t, .), ∗Ω, b). Since t > t0 this

gives us a contradiction.

It remains to show that d(ϕ,Ω, b) is finite. Given any arbitrarily small infinitely

large M ∈ ∗R, we can find a ψM ∈ ∗C2(Ω,Rn) lifting of ϕ such that ‖ψM‖C1 ≤M

(just take a convolution of ϕ, extended to Rn, with a Gaussian with sufficiently

large infinitesimal standard deviation). Then:

|d(ϕ,Ω, b)| = |d(ψM ,Ω, b)|

≤
∫

Ω

|jb,ε(ψM(x)||JψM
(x)| dx

≤ M

∫
Ω

|jb,ε(ψM(x)| dx

≈ M

∫
Ω

|jb,ε(ϕ(x))| dx

= Mc.
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(where c is finite). Since this is true for any infinitely large M , the result follows.

Using the conclusions of step 1 and step 2, we can show the following:

Theorem 4.9 Let Ω ⊂ Rn be bounded and open, ϕ ∈ C(Ω,Rn) and b ∈ Rn −

ϕ(∂Ω). Let ψ ∈ ∗C2(Ω,Rn) be a lifting of ϕ. Then, there exists β ≈ b such that

Jϕ(x) 6= 0, for all x ∈ ψ−1(β). Furthermore, d(ψ, ∗Ω, β) is independent of the

choice of ψ and β as above.

Proof. Let ε ∈ R+ be such that Bε(b) ⊂ Rn − ϕ(∂Ω); this means that r
def
=

dist (Bε(b), ϕ(∂Ω)) ∈ R+. Hence, since ψ is a lifting of ϕ:

dist (Bε(b), ϕ(∗∂Ω)) > 0 2.

Therefore, Bε(b) ⊂ ∗Rn − ψ(∗∂Ω). Let Cb be the ∗connected component of ∗Rn −

ψ(∗∂Ω) containing b. Since Bε(b) is ∗connected and contains b, we conclude that

Bε(b) ⊂ Cb. Hence, every β ≈ b is in Cb. Also, by the transfer of Sard’s theorem,

there exists some β ≈ b such that Jψ(x) 6= 0 for all x ∈ ψ−1(β). By our results

from step 1 and step 2, we can conclude that d(ψ, ∗Ω, β) is independent of the

choice of ψ and β satisfying the above conditions.

Definition 4.10 (Nonstandard Definition of Degree) Let Ω ⊂ Rn be bounded

and open, ϕ ∈ C(Ω,Rn) and b ∈ Rn − ϕ(∂Ω). Then,

d(ϕ,Ω, b) =
∑

x∈ψ−1(β)

sgn Jψ(x)

2We consider the ∗ball, ∗Bε(b) = {x ∈ ∗Rn : |x− b| < ε} in ∗Rn. Since B·(·) is a function, we
will use our convention and omit the star on B.
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where ψ ∈ ∗C2(Ω,Rn) is a lifting of ϕ and β ∈ ∗Ω with 0β = b is such that

Jψ(x) 6= 0 for all x ∈ ψ−1(β).

4.2 Basic Properties of Degree

Theorem 4.11 Let Ω ⊂ Rn be a bounded and open, ϕ ∈ C(Ω,Rn), and b ∈

Rn − ϕ(∂Ω). Then d(ϕ,Ω, b) is defined and possesses the following properties:

1. Normalization:

d(id,Ω, b) =

{
1 if b ∈ Ω ,

0 if b 6∈ Ω.

2. Continuity with respect to ϕ:

∃ε ∈ R+ ∀ϕ̂ ∈ C(Ω,Rn) ‖ϕ̂− ϕ‖ < ε ⇒ d(ϕ̂,Ω, b) = d(ϕ,Ω, b).

3. Homotopy Invariance: let H ∈ C(Ω × [0, 1],Rn) such that b 6∈ H(∂Ω ×

[0, 1]). Then, d(H(·, t),Ω, b) is independent of t.

4. Continuity with respect to b: if b and β belong to the same connected

component of Rn − ϕ(∂Ω), then:

d(ϕ,Ω, b) = d(ϕ,Ω, β).

5. Additivity: let Ω = Ω1 ∪ Ω2, Ω1,Ω2 open, Ω1 ∩ Ω2 = ∅. If b 6∈ ϕ(∂Ω1) ∪

ϕ(∂Ω2) then:

d(ϕ,Ω, b) = d(ϕ,Ω1, b) + d(ϕ,Ω2, b).
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6. Excision: if K ⊂ Ω is closed and b 6∈ ϕ(K), then

d(ϕ,Ω, b) = d(ϕ,Ω−K, b).

Proof.

1. Easy computation.

2. Let d0 be the degree function defined for C2 maps, and d its extension to the

general case. Fix ϕ ∈ C(Ω,Rn), and consider the set:

E =
{
ε ∈ ∗R+ : ∀ψ ∈ ∗C2(Ω,Rn) ‖ψ−ϕ‖C0 < ε⇒ d0(ψ,

∗Ω, b) = d(ϕ, ∗Ω, b)
}
.

This set is internal and contains all positive infinitesimals. Hence, it must

contain some standard ε > 0. Say ‖ϕ̂− ϕ‖C0 < ε
2
. If ψ̂ is a ∗C2 lifting of ϕ̂,

then:

‖ψ̂ − ϕ‖C0 ≤ ‖ψ̂ − ϕ̂‖C0 + ‖ϕ̂− ϕ‖C0 <∼
ε

2
< ε.

Hence,

d(ϕ̂,Ω, b) = d0(ψ̂,
∗Ω, b) = d(ϕ,Ω, b).

3. Use the continuity property 2. to show that the ∗supremum of the set of

all t ∈ ∗[0, 1] such that for all t ∈ ∗[0, t], d(H(·, 0), ∗Ω, b) = d(H(·, t), ∗Ω, b)

equals 1.

4. For ϕ ∈ C2(Ω,Rn), this has already been done. For the general case, let

ψ ∈ ∗C2(Ω,Rn) be a lifting of ϕ. Then:

d(ϕ,Ω, b) = d(ψ,Ω, b) = d(ψ,Ω, β) = d(ϕ,Ω, β).
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5. Let ψ be a ∗C2 lifting of ϕ and β ∈ ∗Ω such that ◦β = b and Jψ(x) 6= 0 for

all x ∈ ψ−1(β). Then:

d(ϕ,Ω, b) = d(ψ,Ω, β)

=
∑

x∈ψ−1(β)

sgn Jψ(x)

=
∑

x∈ψ−1(β)∩Ω1

sgn Jψ(x) +
∑

x∈ψ−1(β)∩Ω2

sgn Jψ(x)

= d(ψ,Ω1, β) + d(ψ,Ω2, β)

= d(ϕ,Ω1, b) + d(ϕ,Ω2, b).

6. Let ψ be a ∗C2 lifting of ϕ and β ∈ ∗Ω such that ◦β = b and Jψ(x) 6= 0 for

all x ∈ ψ−1(β). Note that b 6∈ ϕ(K) and K compact implies that β 6∈ ψ(∗K).

Hence:

d(ϕ,Ω, b) = d(ψ,Ω, β)

=
∑

x∈ψ−1(β)

sgn Jψ(x)

=
∑

x∈ψ−1(β)∩∗(Ω−K)

sgn Jψ(x)

= d(ψ, ∗(Ω−K), β) = d(ϕ,Ω−K, b)

It can be shown that there is a unique Z valued function satisfying the hypothe-

sis and conclusions of Theorem (4.11). That function is called the Brouwer Degree.

For a proof of this see [23]. We conclude that Definition (4.10) is an alternative

way of defining the Brouwer Degree.
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Proposition 4.12 Let Ω ⊂ Rn be bounded and open, ϕ ∈ C(Ω,Rn) and b ∈

Rn − ϕ(∂Ω). Then, for all c ∈ Rn:

d(ϕ,Ω, b) = d(ϕ− c,Ω, b− c)

Proof.

Let Ψ ∈ C2(Ω,Rn) be a lifting of ϕ and β ∈ ∗Ω such that ◦β = b and β 6∈ ϕ(S).

Then, and since

x ∈ (Ψ− c)−1(b− c) ⇔ Ψ(x)− c = b− c⇔ Ψ(x) = b⇔ x ∈ Ψ−1(b),

and Jϕ = Jϕ−c, we get

d(ϕ− c,Ω, b− c) =
∑

s∈(ϕ−c)−1(b−c)

Jϕ−c(x)

=
∑

s∈ϕ−1(b)

Jϕ(x)

= d(ϕ,Ω, b).

4.3 Some Elementary Applications

In this section assume the hypothesis of Theorem (4.11).

Corollary 4.13 If b 6∈ ϕ(Ω) then d(ϕ,Ω, b) = 0.

Proof.

Using excision, d(ϕ,Ω, b) = d(ϕ, ∅, b) = 0.

Corollary 4.14 If d(ϕ,Ω, b) 6= 0 then ∃ξ ∈ Ω such that ϕ(ξ) = b.
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Corollary 4.15 Let (Ωi)i∈I be a family of disjoint open subsets of Ω such that

ϕ−1(b) ⊂ ∪i∈IΩi. Then d(ϕ,Ωi, b) = 0 except for finitely many i and

d(ϕ,Ω, b) =
∑
i∈I

d(ϕ,Ωi, b).

Proof.

ϕ−1(b) ⊂ Ω, is compact, so ϕ−1(b) ⊂ Ωi1 ∪ . . . ∪ Ωik . Hence, for all but finitely

many i, d(ϕ,Ωi, b) = 0. Using excision and additivity:

d(ϕ,Ω, b) = d(ϕ,Ωi1 ∪ . . . ∪ Ωik , b) =
k∑
j=1

d(ϕ,Ωij , b) =
∑
i∈I

d(ϕ,Ωi, b)

Corollary 4.16 If ψ ∈ C(Ω,Rn) and ψ = ϕ on ∂Ω then

d(ψ,Ω, b) = d(ϕ,Ω, b).

Proof.

Since ψ = ϕ on ∂Ω , b 6∈ ϕ(∂Ω) = ψ(∂Ω). Hence, d(ψ,Ω, b) is well defined. Let

H(x, t) = tψ(x) + (1− t)ϕ(x)

For all x ∈ ∂Ω, H(x, t) = tϕ(x) + (1− t)ϕ(x) = ϕ(x) 6= b. Hence d(H(t, .),Ω, b) is

defined for all t and by the homotopy invariance property, it is constant. So:

d(ψ,Ω, b) = d(H(1, .),Ω, b) = d(H(0, .),Ω, b) = d(ϕ,Ω, b).

Corollary 4.17 There is no f ∈ C(B1(0), ∂B1(0)) such that f |∂B1(0)) = id (that

is, there does not exist a (continuous) retraction from B1(0) to ∂B1(0))
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Proof.

Suppose there exist such mapping. By the previous corollary:

d(f,B1(0), 0) = d(id, B1(0), 0) = 1.

Hence, by Corollary (4.14), ∃ξ ∈ B1(0) : f(ξ) = 0. But by hypothesis, the range

of f is a subset of ∂B1(0), and f |∂B1(0) = id. Hence, such ξ cannot exist.

Corollary 4.18 If f ∈ C(B1(0), B1(0)) then f has a fixed point.

Proof.

Suppose f(x) 6= x, ∀x ∈ B1(0). We derive a contradiction. For t ∈ [0, 1),

tf(x) ∈ B1(0). Hence, for all x ∈ ∂B1(0), and t ∈ [0, 1), x − tf(x) 6= 0. Also,

for x ∈ ∂B1(0) and t = 1, x − tf(x) = x − f(x) 6= 0, by our hypothesis. By the

homotopy invariance property:

d(x− tf(x), B1(0), 0) ≡ const.

So

d(id, B1(0), 0) = 1 = d(x− f(x), B1(0), 0).

Hence, by (4.14), there exists ξ such that ξ − f(ξ) = 0 and this contradicts our

assumption.
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Chapter 5

Degree Theory in Nonstandard

Hulls of Hyperfinite Dimensional

Banach Spaces

Hyperfinite dimensional Banach spaces occur in situations where we want to study

the behavior “in the limit” of some class of discrete problems. For example, we

may be interested in studying if some class of finite difference schemes converge

to the solution of a differential equation, as the increments on the independent

variables approach zero.

For its strong properties, a notion of degree for nonstandard hulls of hyperfinite

dimensional Banach spaces may be very useful.

5.1 The Degree in Finite Dimensional Banach

Spaces

We start by showing that the Brouwer degree can be defined in any finite dimen-

sional normed space.

Let V be an n-dimensional normed space. We can identify V with Rn in
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the usual manner. That is, we fix a basis {vi}i=1,...,n for V and identify every

v = α1v1 + . . .+αnvn ∈ V with (α1, . . . , αn). Since all norms in Rn are equivalent,

the representation map preserves point-set topological properties of sets, and con-

tinuity and differentiability of functions 1. So we can define d(ϕ,Ω, b) for any open

and bounded Ω ⊂ V , ϕ ∈ C(Ω, V ) and b ∈ V − ϕ(∂Ω) by computing the degree

relative to the corresponding Rn representations.

However, if we use another basis, {ṽi}i=1,...,n, we get a different representation.

If x = (x1, . . . , xn) and x̃ = (x̃1, . . . , x̃n) are representations corresponding to differ-

ent basis, then x̃ = Mx, where M is non-singular, and, assuming our identification

relative to {vi}i=1,...,n.

representation relative representation relative

to {vi}i=1,...,n to {ṽi}i=1,...,n

Sets Ω Ω̃ = {Mx : x ∈ Ω}

Maps ϕ : Ω → Rn ϕ̃ : Ω̃ → Rn

ϕ̃(x̃) = Mϕ(M−1x̃)

Then, if d̃ is the degree relative to the basis {ṽi}i=1,...,n (computed using the “tilde”

representations, i.e., d̃(ϕ,Ω, b) = d(ϕ̃, Ω̃, b̃)), what is the relation between d and d̃?

Lemma 5.1 Let V be an n-dimensional normed space, and Ω ⊂ V be open and

bounded. Let ϕ ∈ C(Ω, V ), and suppose b ∈ V − ϕ(∂Ω). Let {vi}i=1,...,n and

{ṽi}i=1,...,n be two bases of V , and identify V with its Rn representation relative to

1Interpret the derivative of ϕ : Ω ⊂ V → V at x as a Frèchet derivative, i.e., a bounded linear
map Lx such that ∀ε > 0 ∃δ > 0 ∀y ∈ V ‖y‖V < δ ⇒ ‖f(x+ y)− f(x)− Lxy‖V < ε‖y‖V .



100

{vi}i=1,...,n. If d̃ is the degree relative to {ṽi}i=1,...,n, then

d̃(ϕ,Ω, b) = d(ϕ,Ω, b).

Proof.

Let ϕ ∈ C(Ω, V ), and suppose b 6∈ ϕ(∂Ω) (so d(ϕ,Ω, b) is well defined). Note

that ϕ̃(x̃) = Mϕ(M−1x̃), where M is a constant matrix. Then

b̃ = ϕ̃(x̃) ⇐⇒ Mb = Mϕ(M−1x̃) ⇐⇒ b = ϕ(x), (5.1)

so b̃ 6∈ ϕ̃(∂Ω̃). We conclude that d̃(ϕ,Ω, b) is well-defined. By the chain rule,

ϕ ∈ Ck(A,Rn) iff ϕ̃ ∈ Ck(Ω̃,Rn).

To show the equality, we first consider the nice case, i.e., ϕ : Ω → Rn such that

ϕ ∈ C2(Ω,Rn) and b 6∈ ϕ(∂Ω) ∪ ϕ(S).

By the chain rule

ϕ̃′(x̃) = Mϕ′(M−1x̃)M−1 = Mϕ′(x)M−1.

Hence:

Jϕ̃(x̃) = (det M)Jϕ(x)(det M−1) = Jϕ(x). (5.2)

In particular, from (5.1) and (5.2)

b ∈ ϕ(S) ⇐⇒ ∃x ∈ ϕ−1(b) Jϕ(x) = 0

⇐⇒ ∃x̃ ∈ ϕ̃−1(b̃) Jϕ̃(x̃) = Jϕ(x) = 0

⇐⇒ b̃ ∈ ϕ̃(S̃).

Therefore, d̃ can be computed by:

d̃(ϕ,Ω, b) = d(ϕ̃, Ω̃, b̃)
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=
∑

x̃∈ϕ̃−1(b̃)

sgn Jϕ̃(x)

=
∑

x∈ϕ−1(b)

sgn Jϕ(x)

= d(ϕ,Ω, b).

The general case follows easily from lifting ϕ and taking β ≈ b such that β 6∈ ϕ(S).

5.2 The Definition of Degree

We now turn our attention to hyperfinite dimensional Banach spaces and their

non-standard hulls. Let (F, ‖ · ‖) be an internal N -dimensional ∗Banach space,

where N ∈ ∗N is infinite.

We briefly review the nonstandard hull construction. Recall that ∗V (R) is

transitive. So, since F ∈ ∗V (R), then every α ∈ F is internal 2. The galaxy of

α ∈ F is the subset of F given by:

GalF(α) =
{
β ∈ F : ‖β − α‖ <∞

}
.

Here, for each t ∈ ∗R, “t <∞” is an abbreviation for ∃n ∈ N : t ≤ n, i.e., t is not

an infinitely large positive hyperreal 3. For each α ∈ F, let:

◦α =
{
β ∈ F : ‖β − α‖ ≈ 0

}
.

The nonstandard hull of F is the vector space

Hull(F) =
{
◦α : α ∈ GalF(0)

}
,

2More generally, this is true for F ∈ ∗V (X), where X is any base set. However, in our
applications, we will only need ∗V (R).

3Similarly, one can introduce the abbreviation “t > −∞” for ∃n ∈ N : t ≥ −n.
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endowed with the norm:

‖◦α‖Hull(F) = st ‖α‖.

This pair is a Banach space. If A ⊂ F, let

◦A =
{
◦α : α ∈ A ∩GalF(0)

}
.

To improve the readability of this section, we make the following conventions.

The first three roman capital letters will denote internal subsets of F. It would be

quite cumbersome to write
(∗−)

A or (∗∂)A, so we will drop the stars on the symbols

of ∗topological operators. This is done with the understanding that, whenever a

topological operator acts on an internal set, it means its star. For example:

A means
(∗−)

A ,

the ∗closure of A. From the context, it will always be possible to assert the meaning

of the topological operators.

If A ⊂ F is internal and ∗open, then for every Φ ∈ ∗C(A,F), and β ∈ F−Φ(∂A),

d(Φ, A, β) is defined, and gives us an element of ∗Z.

Here is our setup:

1◦) E = Hull(F), where F is an N -dimensional internal Banach space, with N ∈

∗N infinite.

2◦) Ω = ◦A ⊂ E , where A ⊂ GalF(0) is internal, ∗open and ∂Ω = ◦∂A 4.

4∂Ω = ◦∂A is necessary because a ∗open set may be quite nasty. In particular, we may have
◦∂A = ◦A. We need to ensure that 4◦ implies β 6∈ Φ(∂A), and this will be false if ∂A does not
closely match ∂Ω.
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3◦) ϕ : Ω → E is neocontinuous. This means that there exists an internal and

S-continuous Φ : A→ F such that

∀α ∈ A ϕ(◦α) = ◦(Φ(α)).

We call such Φ a lifting of ϕ.

4◦) b ∈ E − ϕ(∂Ω). Let β ∈ F be such that b = ◦β.

The notion of a neocontinuous map was introduced by Fajardo and Keisler [8] in

the more general setting of nonstandard hulls of metric spaces. It is a stronger

property than continuity, but it is weaker than compactness (of maps). Despite

this, neocontinuous maps retain some of the nice properties of compact maps. Now

let us take a closer look at the sets involved in 2◦. Define:

SB(F) =
{
A ⊂ F : “A is internal” and ∂(◦A) = ◦∂A

}
.

Then the sets Ω ⊂ E satisfying 2◦ are of the form Ω = ◦A, where A ∈ SB(F) is

∗open and A ⊂ GalF(0).

Remark 5.2 Let A ⊂ GalF(0) be internal. The internal set

R =
{
r ∈ ∗R+ : ∀α ∈ A ‖α‖ < r

}
contains all infinitely large positive hyperreals. By overspill, it must contain some

r ∈ R+. Hence, there exists r ∈ R+ such that ‖α‖ < r, for all α ∈ A.

Lemma 5.3 (Characterization of SB(F)) Let A ∈ F be internal. Then A ⊂

SB(F) iff

∀α ∈ A ∩GalF(0)
(
◦α ∈ int ◦A ⇒ ∃δ ∈ R+ Bδ(α) ⊂ A

)
. (5.3)
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Proof.

We first show the condition is necessary. Let A ∈ SB(F). Pick α ∈ A∩GalF(0),

with ◦α ∈ int ◦A. There exists ε ∈ R+ such that Bε(
◦α) ⊂ ◦A. Therefore:

◦Bε/2(α) ⊂ int ◦A ⊂ ◦A.

In particular, there are no boundary points of ◦A in ◦Bε/2(α). Hence, since ∂(◦A) =

◦∂A

◦Bε/2(α) ∩ ∂(◦A) = ∅ ⇐⇒ ◦Bε/2(α) ∩ ◦∂A = ∅

=⇒ Bε/4(α) ∩ ∂A = ∅.

Therefore, either Bε/4(α) ⊂ A or Bε/4(α) ⊂ Ac. But α ∈ A, so we must have

Bε/4(α) ⊂ A.

Now, let us show that condition (5.3) is sufficient. Let A ⊂ F be internal, and

assume A 6∈ SB(F). Then ∂(◦A) 6= ◦∂A. Consider α ∈ F such that ◦α ∈ ∂(◦A).

For all ε ∈ R+, Bε(α) ∩ A 6= ∅ and Bε(α) ∩ Ac 6= ∅. But then Bε(α) ∩ ∂A 6= ∅,

which means that ◦α ∈ ◦∂A. Hence, ∂(◦A) ⊂ ◦∂A, so ∂(◦A) $ ◦∂A, i.e., there

exists α ∈ ∂A such that ◦α ∈ int ◦A. Since α ∈ ∂A, Bδ(α) 6⊂ A for all δ > 0.

Choose α̃ ∈ A such that α̃ ≈ α. Then ◦α̃ = ◦α ∈ int ◦A but ∀δ ∈ R+ Bδ(α̃) 6⊂ A.

Hence, condition (5.3) fails.

Proposition 5.4

(1) ∅, F ∈ SB(F)

(2) ∀α ∈ GalF(0) ∀δ > 0 Bδ(α) ∈ SB(F)
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Proof.

(1) is obvious and (2) is an easy consequence of Lemma (5.3).

Lemma 5.5 Let F be hyperfinite dimensional and A ⊂ GalF(0) be ∗open and

internal. Let Φ : A→ F be S-continuous, with Φ(A) ⊂ GalF(0). Then, there exists

an S-continuous and ∗continuous map Ψ : A→ F such that ◦Φ = ◦Ψ.

Proof.

The set A is ∗compact. Let ε > 0, ε ≈ 0, and consider the ∗open covering of

A, {Bε(α) : α ∈ A}. By ∗compactness, there exist α1, . . . , αM ∈ K (with M ∈ ∗N)

such that:

A ⊂
M⋃
i=1

Bε(αi). (5.4)

Define wi : F → F by:

wi(α) = max{0, ε− ‖α− αi‖}, for i = 1, . . . ,M.

Note that each wi is ∗continuous, has support equal to Bε(αi), and for all α ∈ F,

0 ≤ wi(α) ≤ ε. Now, let:

Ψ(α) =

M∑
i=1

wi(α)Φ(αi)

M∑
i=1

wi(α)

=
M∑
i=1

wi(α)Φ(αi)∑M
j=1wj(α)

By inclusion (5.4), for all α ∈ A,
∑M

i=1wi(α) 6= 0, so Ψ is well-defined in A, and

wi(·)Φ(αi)PM
j=1 wj(·)

is ∗continuous. So Ψ is a ∗finite sum of ∗continuous functions and so it
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is ∗continuous. We also have:

Ψ(α)− Φ(α) =

M∑
i=1

wi(α) Φ(αi)

M∑
i=1

wi(α)

−

M∑
i=1

wi(α)

M∑
i=1

wi(α)

Φ(α)

=

M∑
i=1

wi(α)
(
Φ(αi)− Φ(α)

)
M∑
i=1

wi(α)

.

Therefore:

‖Ψ(α)− Φ(α)‖ ≤

M∑
i=1

wi(α) ‖Φ(αi)− Φ(α)‖

M∑
i=1

wi(α)

.

Let r ∈ R+. Whenever wi(α) 6= 0, i.e., α ∈ Bε(αi), we have, just by S-continuity

of Φ, that ‖Φ(αi)− Φ(α)‖ < r. Hence:

‖Ψ(α)− Φ(α)‖ ≤

M∑
i=1

wi(α)‖Φ(αi)− Φ(α)‖

M∑
i=1

wi(α)

≤

M∑
i=1

wi(α)r

M∑
i=1

wi(α)

= r.

Since this is true for arbitrarily small r ∈ R+, we conclude that for all x ∈ A,

‖Ψ(α)− Φ(α)‖ ≈ 0.

The preceding Lemma insures us that, without loss of generality, we can take

the lifting of ϕ satisfying 3◦) to be a ∗continuous function. We are now ready to

give the definition of degree.

Definition 5.6 Let A ∈ SB(F) be ∗open, with A ⊂ GalF(0), and Ω = int ◦A. Let

ϕ : Ω → E be neocontinuous with lifting Φ : A→ F. Furthermore, let b ∈ E−ϕ(∂Ω)
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and β ∈ F such that ◦β = b. Then:

d(ϕ,Ω, b) = d(Φ, A, β). (5.5)

To show that the degree on the right-hand side of (5.5) exists, we must show

that β 6∈ Φ(∂A). The proof goes as follows. Since ∂Ω = ◦∂A, and ∂A ⊂ GalF(0):

ϕ(∂Ω) = ϕ(◦∂A) =
{
◦(Φ(α)) : α ∈ ∂A

}
= ◦(Φ(∂A)).

Hence b 6∈ ϕ(∂Ω) implies that:

∀α ∈ ∂A ‖Φ(α)− β‖ 6≈ 0. (5.6)

In particular, β 6∈ Φ(∂A). We observe that, by Lemma (5.1), the degree on the

right-hand side of (5.5) is independent of the basis of F chosen to get the RN

representation of F, and the actual computation of the degree does not involve the

norm of F. This norm, however plays an important role in establishing the class

of subsets of E where the degree can be defined.

To show that d(ϕ,Ω, b) is well defined, we must now prove that the right-hand

side of (5.5) is independent of the choice of A, Φ and β satisfying our assumptions.

We begin by showing that the right hand-side of (5.5) is independent of the

choice of A and Φ : A → F. Consider A1, A2 ∈ SB(F) such that Ω = ◦A1 = ◦A2

and Φi : Ai → F, for i = 1, 2, both S-continuous and such that, for all α ∈ Ai,

ϕ(◦α) = ◦(Φi(α)), for i = 1, 2.

Lemma 5.7 Under the above conditions:

(1) Ω = ◦(A1 ∩ A2).
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(2) ◦ (Ai − (A1 ∩ A2)
)

= ∂Ω, for i = 1, 2.

Proof.

(1) To prove the non-trivial inclusion, we note that, since Ω is closed, it is enough

to show that:

Ω = int Ω = Ω− ∂Ω ⊂ ◦(A1 ∩ A2).

So, let a ∈ Ω and α1 ∈ A1 such that ◦α1 = a. By Lemma (5.3), there exists

δ ∈ R+ such that Bδ(α1) ⊂ A1. Say α2 ∈ A2 is such that ◦α2 = a; then

‖α1 − α2‖ ≈ 0, so α2 ∈ A1 ∩ A2 and a ∈ ◦(A1 ∩ A2).

(2) We prove the equality for i = 1. (For i = 2, just switch A2 with A1 in the

i = 1 case). One inclusion is easily established:

∂Ω = ◦∂A1 = ◦(A1 − A1) ⊂ ◦ (A1 − (A1 ∩ A2)
)
.

For the other inclusion, consider α ∈ A1 − (A1 ∩ A2). If α ∈ ∂A1, we are

done, so we may assume that α ∈ A1. Then:

α ∈ A1 − (A1 ∩ A2) = A1 − A2. (5.7)

We want to show that ◦α ∈ ∂Ω. Assume the opposite. Since α ∈ A1,
◦α ∈ Ω,

so by our assumption, ◦α ∈ int Ω. Let α̃ ∈ A2 be such that ◦α̃ = ◦α. By

Lemma (5.3), there exists δ ∈ R+ such that Bδ(α̃) ⊂ A2. Since ‖α− α̃‖ ≈ 0,

we conclude that α ∈ A2. Hence α 6∈ A1 − A2, Thus contradicting equation

(5.7). So, we must have ◦α ∈ ∂Ω.

Consequently, since b 6∈ ϕ(∂Ω) and

∂Ω = ◦ (Ai − (A1 ∩ A2)
)
, i = 1, 2,
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given any α ∈ Ai − (A1 ∩ A2), with i = 1, 2, we have:

b 6= ϕ(◦α) = ◦(Φi(α)).

Thus, |Φi(α)− β| 6≈ 0. Therefore:

β 6∈ Φi(Ai − (A1 ∩ A2)).

Hence, using the transfer of the excision property:

d(Φi, Ai, β) = d(Φi, A1 ∩ A2, β).

To conclude this argument, we still have to show that:

d(Φ1, A1 ∩ A2, β) = d(Φ2, A1 ∩ A2, β).

This follows from the next lemma.

Lemma 5.8 Let Φ, Ψ : A→ F be two liftings of ϕ. Then:

d(Φ, A, β) = d(Ψ, A, β).

Proof.

The transfer of the continuity of the Brouwer degree with respect to Φ reads:

∃ε > 0 ∀Ψ ∈ ∗C(A,F) ‖Φ−Ψ‖0 < ε⇒ d(Φ, A, β) = d(Ψ, A, β), (5.8)

where ‖Φ‖0 = ∗ sup
x∈A

‖Φ(x)‖. Note that the ε in (5.8) may be infinitesimal. Consider

a ∗continuous homotopy H : ∗[0, 1]× A→ F given by:

H(t, x) = tΨ(x) + (1− t)Φ(x).
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Since H(t, x) ≈ Φ(x) ≈ Ψ(x), if there exists t ∈ ∗[0, 1] and x ∈ ∂A such that

H(t, x) = β, then Φ(x) ≈ β. That contradicts the fact that b ∈ ϕ(∂Ω). Hence,

d(H(t, ·), A, β) is defined for all t ∈ ∗[0, 1].

Let t0 ∈ ∗[0, 1] be the ∗supremum of the set of all t ∈ ∗[0, 1] such that

d(H(0, ·), A, β) = d(H(t, ·), A, β). We assume that t0 < 1, and derive a con-

tradiction. Let t ∈ ∗[0, 1]. Then:

H(t, x)−H(t0, x) = (t− t0)Ψ(x) + (1− t− 1 + t0)Φ(x)

= (t− t0)
(
Ψ(x)− Φ(x)

)
.

Choose a positive δ ≈ 0 so that t0 + δ, t0 − δ ∈ ∗[0, 1] and δ‖Ψ − Φ‖0 ≤ ε. Then,

letting t = t0 + δ
2
:

|H(t, ·)−H(t0, ·)‖0 = |t− t0| ‖Ψ− Φ‖0

=
δ

2
‖Ψ− Φ‖0

≤ ε

2
< ε.

Hence, by (5.8), we have that d(H(0, ·), A, β) = d(H(t, ·), A, β). Since t > t0, this

gives a contradiction.

This ends the proof that the right-hand side of (5.5) is independent of the choice

of A and Φ. It remains to show that it is independent of the choice of β.

Let β̂ be such that ◦β̂ = ◦β = b, which means that ‖β̂ − β‖ ≈ 0. To show that

d(Φ, A, β) = d(Φ, A, β̂) it is necessary to show that β and β̂ belong to the same

∗connected component of F− Φ(∂A). Recall equation (5.6):

∀α ∈ ∂A ‖Φ(α)− β‖ 6≈ 0. (5.9)
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Let ε = 2|β̂ − β| ≈ 0. By (5.9), Bε(β) ∩Φ(∂A) = ∅. Therefore, Bε(β) is contained

in a ∗connected component of F− Φ(∂A), Since β̂ ∈ Bε(β) the result follows.

5.3 Basic Properties

Let Ω = int ◦A, with A ⊂ GalF(0). The set of neocontinuous maps ϕ : Ω → E

forms a linear space, nC(Ω). For each ϕ ∈ nC(Ω), let:

‖ϕ‖nC(Ω) = st
(
∗ sup
α∈A

‖Φ(α)‖
)

= st ‖Φ‖0,

where Φ : A → F is a lifting of ϕ. Note that, since ϕ is well-defined with range

in E , ‖Φ(α)‖ < ∞, ∀α ∈ A. Hence ‖Φ‖0 < ∞, which ensures that ‖ · ‖nC(Ω) is a

well-defined norm on nC(Ω), with range in R+ ∪ {0}. This norm will be needed

to state one of the basic properties of our degree.

Theorem 5.9 Let A ∈ SB(F) be ∗open, with A ⊂ GalF(0), and Ω = int ◦A. Let

ϕ : Ω → E be neocontinuous and let b ∈ E −ϕ(∂Ω). Then d(ϕ,Ω, b) is defined and

possesses the following properties:

(1) Normalization:

d(id,Ω, b) =

{
1 if b ∈ Ω,

0 if b 6∈ Ω.

(2) Continuity with respect to ϕ: There exists ε ∈ R+ such that, for all

neocontinuous ψ : Ω → E satisfying ‖ψ − ϕ‖nC(Ω < ε and b 6∈ ψ(∂Ω),

d(ψ,Ω, b) = d(ϕ,Ω, b).
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(3) Continuity with respect to b: If b and b belong to the same connected

component of E − ϕ(∂Ω), then

d(ϕ,Ω, b) = d(ϕ,Ω, b).

(4) Homotopy invariance: Let h : Ω × [0, 1] → E be neocontinuous and such

that b 6∈ h(∂Ω× [0, 1]). Then d(h(·, t),Ω, b) is independent of t.

(5) Additivity-excision: Let Ω1 = int ◦A1, Ω2 = int ◦A2 where A1, A2 ∈ SB(F)

are ∗open and A1, A2 ⊂ A, with A1 ∩ A2 = ∅. If b 6∈ ϕ(Ω− (Ω1 ∪ Ω2)) then

d(ϕ,Ω, b) = d(ϕ,Ω1, b) + d(ϕ,Ω2, b).

Before we prove the theorem, we begin by stating and showing the following.

Lemma 5.10 Let B ⊂ A ⊂ GalF(0) be internal sets, with Ω = int◦A. Let ϕ :

Ω → E be neocontinuous, with Φ : A → F a lifting of ϕ. Let b ∈ E be such that

b 6∈ ϕ(◦B). If β ∈ F is such that ◦β = b, then there exists δ ∈ R+ such that

∀α ∈ Bδ ‖β − Φ(α)‖ ≥ δ

In particular, β 6∈ Φ(Bδ) 5.

Proof.

Assume the opposite. Then the sets

Bn =

{
α ∈ B1/n : ‖β − Φ(α)‖ < 1

n

}
5If A ⊂ F is internal and δ ∈ ∗R+, let Aδ = {α ∈ F : ∃β ∈ A ‖α− β‖ ≤ δ}.
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are all nonempty. Since B1 ⊃ B2 ⊃ B3 ⊃ . . . , by ω1-saturation, there exists

γ ∈ ∩
n∈N

Bn. Therefore:

γ ∈
⋂
n∈N

B1/n ⇒ dist(γ,B) ≈ 0,

and (
∀n ∈ N ‖β − Φ(α)‖ < 1

n

)
⇒ ‖β − Φ(α)‖ ≈ 0.

Then, ◦γ ∈ ◦B and ϕ(◦γ) = ◦(Φ(γ)) = ◦β = b. But this contradicts the fact that

b 6∈ ϕ(◦B).

Proof of Theorem (5.9).

(1) Using the normalization property of the ∗finite dimensional degree:

d(id,Ω, b) = d(id|F, A, β) =

{
1 if β ∈ A ,

0 if β 6∈ A.

If b ∈ Ω = int Ω, then β ∈ A − ∂A (since ◦∂A = ∂Ω), so d(id,Ω, b) = 1. If

b 6∈ Ω then β 6∈ A, so d(id,Ω, b) = 0.

In the rest of the proof, let Φ ∈ ∗C(A,F) be an internal S-continuous lifting of

ϕ and β ∈ F be such that ◦β = b.

(2) We begin by invoking Lemma (5.10), withB = ∂A. Let δ be as in the Lemma.

Now, take any neocontinuous ψ : Ω → E such that ‖ψ − ϕ‖nC(Ω) <
δ
4
. Take

Ψ ∈ ∗C(A,F) to be an S-continuous lifting of φ. Then ‖Ψ − Φ‖0 <
δ
2

and

from Lemma (5.10), for all α ∈ ∂A:

‖β −Ψ(α)‖ ≥ ‖β − Φ(α)‖ − ‖Φ(α)−Ψ(α)‖ > δ − δ

2
=
δ

2
.
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Therefore:

δ

4
< ‖◦β − ◦(Ψ(α))‖ = ‖b− ψ(◦α)‖.

So, we conclude that b 6∈ ψ(∂Ω); as a consequence, d(ψ,Ω, b) is defined. It

remains to show it equals d(ϕ,Ω, b). Consider the homotopy H : A×∗[0, 1] →

F given by:

H(α, t) = tΦ(α) + (1− t)Ψ(α).

H is clearly S-continuous in A× ∗[0, 1]. Also:

‖Φ(α)−H(α, t)‖ = ‖(1− t)Φ(α) + (1− t)Ψ(α)‖

= (1− t)‖Φ(α)−Ψ(α)‖

< (1− t)
δ

2
≤ δ

2
.

Hence, for α ∈ ∂A, and using the Lemma (5.10) again:

‖β −H(α, t)‖ ≥ ‖β − Φ(α)‖+ ‖Φ(α)−H(α, t)‖ > δ − δ

2
=
δ

2
.

So β 6∈ H(∂A× ∗[0, 1]). By the homotopy invariance of the Brouwer degree:

d(ϕ,Ω, b) = d(Φ, A, β) = d(H(·, 0), A, β)

= d(H(·, 1), A, β) = d(Ψ, A, β) = d(ψ,Ω, b).

(3) From Proposition (4.12):

d(Φ, A, β) = d(Φ− β,A, 0).

Hence, and since Φ− β lifts ϕ− b:

d(ϕ,Ω, b) = d(Φ− β,A, 0) = d(ϕ− b,Ω, 0).
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Consider the function d(ϕ− ·,Ω, 0) : E −ϕ(∂Ω) → ∗Z. From property (2) of

this theorem (continuity with respect to ϕ), d(ϕ−·,Ω, 0) is continuous. Since

it is ∗Z-valued, it must be constant on connected components of E − ϕ(∂Ω).

(4) LetH ∈ ∗C(A×∗[0, 1],F) be an S-continuous lifting of h. Since by hypothesis,

∀t ∈ [0, 1] b 6∈ h(∂Ω, t), by Lemma (5.10), dist(H(∂A, t), β) 6≈ 0 (for all

t ∈ [0, 1]. Using the S-continuity of H, we conclude that β 6∈ H(∂A×∗[0, 1])).

Now, using the homotopy invariance of the Brouwer degree:

d(h(·, t),Ω, b) = d(H(·, t), A, β) ≡ constant.

(5) Apply Lemma (5.10) (to ϕ, Ω, b, Φ, A, β), with B = A − (A1 ∪ A2). Note

that b 6∈ ϕ(◦B). Otherwise, for some α ∈ A − (A1 ∪ A2), ϕ(◦α) = b. But

α ∈ A− (A1 ∪A2) implies that ◦α ∈ ◦A and ◦α 6∈ int ◦A1,
◦α 6∈ int ◦A2. This

means that ◦α ∈ Ω − (Ω1 ∪ Ω2), so b ∈ ϕ(Ω − (Ω1 ∪ Ω2)). This leads to a

contradiction. So b 6∈ ϕ(◦B); hence, the conditions of the Lemma (5.10) are

satisfied. Therefore, β 6∈ Φ(A−(A1∪A2)). Using now the additivity-excision

property of the Brouwer degree:

d(ϕ,Ω, b) = d(Φ, A, β) = d(Φ, A1, β) + d(Φ, A2, β) = d(ϕ,Ω1, b) + d(ϕ,Ω2, b).

5.4 Some Elementary Applications

We begin by showing some results similar to corollaries (4.13)-(4.18).

Corollary 5.11 If b 6∈ ϕ(Ω), then d(ϕ,Ω, b) = 0



116

Proof.

Use additivity-excision with A1 = A2 = ∅.

Corollary 5.12 (Basic Existence Criteria):

If d(ϕ,Ω, b) 6= 0 then there exists x ∈ Ω such that ϕ(x) = b.

Proof.

Use Corollary (5.11).

Our degree theory actually shows the following stronger result

Corollary 5.13 (Extended Existence Criteria):

Let Ω = ◦A, with A ∈ SB(F), A ⊂ GalF(0) and A is ∗open. Let ϕ : Ω → E be

neocontinuous and b ∈ E − ϕ(∂Ω). If d(ϕ,Ω, b) 6= 0, then there exists x ∈ Ω such

that ϕ(x) = b. Furthermore, if Φ : A → F is any ∗continuous lifting of ϕ, and

β ∈ F− Φ(∂A) such that ◦β = b, then there exists α ∈ A such that Φ(α) = β.

Proof.

The first part of the statement is Corollary (5.12). As for the second, it follows

from the fact that the degree is well-defined. Thus:

0 6= d(ϕ,Ω, b) = d(Φ,Ω, β),

for any lifting Φ of ϕ, and ◦β = b. From Corollary (4.14) (basic existence property

for the Brouwer degree), the result follows.
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Corollary 5.14 (Fixed Point Theorem): Let A ∈ SB(F), A ⊂ GalF(0) be

∗open. Let Ω = int ◦A and assume Ω is a convex neighborhood of 0. Let ϕ : Ω → Ω

be neocontinuous. Then ϕ has a fixed point in Ω. Furthermore if Φ : A :→ F is

any ∗continuous lifting of ϕ, then Φ has a fixed point in A.

Proof.

Without loss of generality, ϕ has no fixed points on ∂Ω (otherwise we are done).

So d(id− ϕ,Ω, 0) is defined. Consider a homotopy:

h(t, x) = x− tϕ(x).

It is easily seen that h is neocontinuous on Ω × [0, 1]. Also, for all x ∈ ∂Ω,

h(x, 1) = x − ϕ(x) 6= 0 (by assumption), and for t ∈ [0, 1), from the convexity of

Ω, tϕ(x) ∈ Ω, so h(x, t) = x− tϕ(x) 6= 0. Hence, by homotopy invariance

d(id− ϕ,Ω, 0) = d(h(·, 1),Ω, 0) = d(h(·, 0),Ω, 0) = d(id,Ω, 0) = 1.

Now, apply Corollary (5.13) to get the result.

Corollary 5.15 (Perturbation lemma): Let R ∈ R+, and ϕ : BR(0)× [0, 1] →

E be neocontinuous and such that ϕ(x, 0) ≡ c ∈ E. Assume there exists r ∈ (0, R)

verifying:

∀θ ∈ [0, 1] ,∀u ∈ BR(0) u = ϕ(u, θ) ⇒ ‖u‖E ≤ r. (5.10)

Then, for all θ ∈ [0, 1], ϕ has a fixed point in BR(0) ⊂ E. Furthermore, if Φ :

BR(0) ⊂ F → F is a ∗continuous lifting of ϕ, then Φ has a fixed point in BR(0) ⊂ F.

Proof.
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Set up a homotopy h(x, θ) = x − ϕ(x, θ). If x ∈ ∂BR(0), i.e., ‖x‖E = r < R,

then by (5.10) h(x, θ) 6= 0 for all θ ∈ [0, 1]. Hence 0 6∈ h(∂BR(0) × [0, 1]). By

homotopy invariance:

d(h(·, θ), BR(0), 0) = const = d(h(·, 0), BR(0), 0).

Since h(·, 0) is the map idE + c it is easy to see that, the degree on the right hand

side is 1. Hence:

d(h(·, θ), Br(0), 0) = 1.

The result now follows from Corollary (5.13).
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Chapter 6

The Boundary Value Problem for

Newton’s Law of Motion

In this chapter, we use the degree theory in nonstandard hulls of hyperfinite dimen-

sional Banach spaces to show convergence of schemes for a nonlinear test problem.

The key result is Corollary (5.15), which provides us convergence results from

appropriate a priori bounds.

Our test problem consists of the equation

x′′ = f(x′, x, t), (6.1)

where x : I → Rn, and I = [a, b] ⊂ R, a < b. We assume f : R2n+1 → Rn is

continuous and bounded. We impose boundary conditions at t = a and t = b:

x(a) = x0 ∈ Rn; x(b) = x1 ∈ Rn. (6.2)

For this problem, the a priori bounds will be relatively easy to establish 1.

Equation (6.1) can be interpreted as Newton’s law of motion 2. We are looking

for solutions of (6.1) which pass through x0 when t = a and through x1 when t = b.

1To generalize the results of this chapter to a nonlinear elliptic Dirichlet problem for the
equation Lu = f(∇u, u, t), we need a priori (discrete) bounds for a discretization of the linear
elliptic equation.

2Variables have been scaled so that, in equation (6.1), all the mass of each particle equals 1.
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As the following example shows, there is no guaranteed uniqueness of solution

for (6.1)-(6.2), even when f is smooth.

Example 6.1 Let x : R → R such that

x′′ = −π2x; x(0) = x(1) = 0.

Any function of the form x(t) = A sin(πt), with A ∈ R solves this problem.

Lack of uniqueness complicates the study of convergence of finite difference (or

other discrete) schemes. Different schemes may converge to different solutions (if

they converge at all), and we may not have a priori information to establish to

which solution a particular scheme converges.

Therefore, the direct approach, i.e., to show the existence of an actual solution

as an appropriate limit of discrete ones, may be the best way to handle this type

of problem. In addition, it gives us more information about the ”meaning” of the

differential equation problem, in that it shows it as the limiting case of appropriate

discrete schemes. In this chapter we will use the setup in chapter 5.

We hope that our methods can later be generalized to the PDE analogue of

(6.1), i.e., Lu = f(Du, u, ·), with L a (linear) uniformly elliptic operator.

6.1 A Discretization of the Boundary Value

Problem

We look for a discretized version of equation (6.1). It does not need to be a

particularly accurate one; at the end we will get a result valid for a large class of

discretizations which is, in some sense, close to the one we are about to introduce.
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First we work in the standard universe. Let a, b ∈ R, b > a. To discretize

I = [a, b], we consider a positive h ∈ R, of the form h = b−a
N

with N ∈ N − {0}.

Then, define:

[a, b]h =
{
a, a+ h, . . . , a+Nh = b

}
= (a+ hN) ∩ [a, b].

For all other h, just let the h-discretization be the 1/N -discretization, where N is

the unique positive integer satisfying:

1

N
≤ h <

1

N + 1
.

Thus, and without loss of generality, we need only define the discretizations for

the case h = 1/N .

Let:

ah = min Ih = a,

bh = max Ih = b.

Note that, for α, β ∈ Ih, the discretized interval [α, β]h is contained in Ih. For

convenience, for each β ≥ α, α, β ∈ Ih, define:

[α, β)h = [α, β]h − {β};

(α, β]h = [α, β]h − {α};

(α, β)h = [α, β]h − {α, β}.

It is obvious that some of these “intervals” may be the empty set.

For standard h, the set of all gridfunctions X : Ih → Rn is just (Rn)Ih . With

the pointwise sum and product, this is a finite dimensional linear space.
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Now, we move to the nonstandard universe, and consider h ≈ 0. From a

previous observation, it is enough to consider h of the form h =
1

N
, with N ∈ ∗N.

Then, ah = a < b = bh. We need an internal linear space of grid functions. It is

well-known that given internal sets A, B, the set of all internal functions g : A→ B

is an internal set, which is denoted by AB. In particular, we let (∗Rn)Ih
def
= Fh be

the internal set of all internal X : Ih → ∗Rn. By transfer, any internal norm for

Fh makes it into a ∗Banach space.

Given X ∈ Fh, we introduce the discrete counterparts of the derivatives to be

the corresponding (right) difference quotients:

δ+
hX(t0) =

1

h

(
X(t0 + h)−X(t0)

)
.

The following shorter notations will be often used:

X
(0)
h = X

X ′
h = δ+

hX

X ′′
h = δ+

h δ
+
hX = (δ+

h )2X

...

X
(n)
h = (δ+

h )nX

To be able to compute X
(n)
h (t), we need the values of X(t), X(t+h), . . . , X(t+nh),

so the domain of X
(n)
h (t) is [ah, bh − nh]h.

The discretized version of problem (6.1)-(6.2) that we will be needing for our

proofs is: 
X ′′
h = f(X ′

h, X, t) for t ∈ Ih − {bh, bh − h},

X(ah) = x0,

X(bh) = y0,

(6.3)
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In general, this is a nonlinear system of N equations.

A small collection of straightforward results concerning this little discrete “cal-

culus” is now in order. They are well known from the literature on difference

equations. Some of them will turn out to be quite useful in this chapter.

Proposition 6.2 Let h > 0 and Ih be a discretized interval. Let X, Y ∈ Fh, and

c, d ∈ ∗R. Then:

(1)
(
cX + dY

)′
h

= cX ′
h + dY ′

h;

(2)
(
X · Y

)′
h
(t) = X(t+ h) · Y ′

h(t) +X ′
h(t) · Y (t), for all t ∈ [ah, bh)h.

The discrete counterpart of the integral is just the Riemann sum, given by

∑
t∈[α,β)h

X(t)h = h
(
X(α) +X(α+ h) + . . .+X(β − h)

)
,

for β > α. To simplify our calculations, let
∑

t∈∅X(t)h = 0. As an relevant

example, we compute the Riemann sum of the constant function, F (t) = A ∈ ∗Rn:

∑
t∈[α,β)h

Ah = h
β − α

h
A = (β − α)A. (6.4)

The Riemann sum inherits all the properties of summation. We choose to prove the

following well known proposition, just to illustrate the simplicity of our notation.

Proposition 6.3 Let h > 0 and Ih a discretized interval. Let α, β ∈ Ih, α ≤ β

and X, Y ∈ Fh. then:

(1) Fundamental Identity:

∑
t∈[α,β)h

X ′
h(t)h = X(β)−X(α).
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(2) Summation by Parts Formula:

∑
t∈[α,β)h

X ′
h(t) · Y (t)h = X(t) · Y (t)

∣∣∣∣β
t=α

−
∑

t∈[α,β)h

X(t+ h) · Y ′
h(t)h.

Proof.

To prove identity (1), we have:

∑
t∈[α,β)h

X ′
h(t)h =

∑
t∈[α,β)h

(
X(t+ h)−X(t)

)
.

The last sum telescopes to X(β)−X(α).

To show the summation by parts formula, (2), start with Proposition (6.2),

part (2):

(X · Y )′h(t) = X(t+ h) · Y ′
h(t) +X ′

h(t) · Y (t).

Summing both sides, from α to β, yields:

∑
t∈[α,β)h

(X · Y )′h(t)h =
∑

t∈[α,β)h

X(t+ h) · Y ′
h(t)h+

∑
t∈[α,β)h

X ′
h(t) · Y (t)h.

We now apply the fundamental identity, and get:

(X · Y )(t)

∣∣∣∣β
t=α

=
∑

t∈[α,β)h

X(t+ h) · Y ′
h(t)h+

∑
t∈[α,β)h

X ′
h(t) · Y (t)

which is equivalent to the desired formula.

To finish this section, we study possible internal ∗norms for Fh. We know that

all (internal) ∗norms for Fh are ∗equivalent, i.e.:

∃c1, c2 ∈ ∗R+ c1 |||X||| ≤ ‖X‖ ≤ c2 |||X|||

(for any ∗norms ‖ ·‖, ||| · ||| : Fh → ∗R). Anyway, this fact does not seem to be very

useful since if, say, c1 is infinitesimal, it may happen that a galaxy of (Fh, ||| · |||)
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is contained in a monad of (Fh, ‖ · ‖). Hence, different norms in Fh may lead to

completely different nonstandard hulls of Fh. Here are some useful ones:

(1) The L∞h -norm or max norm:

‖X‖L∞h = max
t∈Ih

|X(t)| 3 .

(2) The Lph-norm:

‖X‖Lp
h

=

(∑
t∈Ih

(X(t))ph

)1/p

,

where p ≥ 1 is standard 4.

The L∞h -norm is useful for looking at uniform convergence, while the Lph-norms

give weaker notions of convergence.

To study convergence to a solution of (6.1)-(6.2) we need, as well, to get a handle

on the size of the difference quotients. If we use the L∞h norm to measure the size

of X and its difference quotients up to order k, we get the discrete equivalent of

the Ck norm:

‖X‖k =
k∑
j=1

‖X(j)
h ‖L∞h = ‖Xh‖L∞h + ‖X ′

h‖L∞h + . . .+ ‖X(k)
h ‖L∞h . (6.5)

Recall that the domain of X
(i)
h is [ah, bh−nh]h. Only for the purpose of computing

the ‖X(i)
h ‖L∞h , consider each X

(i)
h trivially extended to Ih.

If we use an Lph norm in (6.5) (in place of the L∞h norm), we get a discrete

analogue of a Sobolev norm. In this chapter, we will be interested in finding

strong solutions of (6.1), i.e., we want to find x ∈ C2([a, b],Rn). For that, (6.5) is

an appropriate choice.

3where | · | is the euclidean norm in ∗Rn.
4the case p = 2 is just the ∗euclidean norm in Fh, renormalized (by multiplication with

√
h)

in order to make the galaxy of 0 interesting.
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6.2 S-differentiability of Functions in Fh

This section contains some results needed to pass from the discrete solutions of

(6.3) to the continuous solutions of (6.1)-(6.2). Some definitions of S-continuity in

the literature require that the range of the function contains only finite points. In

our case we do not require finiteness, so X ∈ Fh is S-continuous means only that,

for all t1, t2 ∈ Ih:

t1 ≈ t2 ⇒ ◦(X(t1)) = ◦(X(t2)).

In [26], Stroyan shows a converse of Taylor’s formula, which can be used to

show smoothness of the standard part of an internal map. Our approach relies

on a generalization of a notion of S-differentiability. As with S-continuity, the

following S-differentiability condition for X ∈ Fh does not assume finiteness of X ′
h.

Definition 6.4 Let X ∈ Fh. X is S-differentiable (abbrev. S-C1) iff for all ε ∈

R+, there exists δ ∈ R+ such that:

∀t0, t ∈ Ih, t0 6= bh |t− t0| < δ ⇒
∣∣∣X(t)−X(t0)−X ′

h(t0)(t− t0)
∣∣∣ < ε|t− t0|.

Proposition 6.5 Let X ∈ Fh. Then, the following are equivalent:

(i) X is S-C1;

(ii) X ′
h is S-continuous;

(iii) For all t0, t ∈ Ih, with t0 6= bh, if t ≈ t0 then:

∃ε ≈ 0
∣∣∣X(t)−X(t0)−X ′

h(t0)(t− t0)
∣∣∣ = ε|t− t0|.
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Proof.

(i) ⇒ (iii).

Let |t− t0| ≈ 0. If t = t0, the inequality is obvious. If 0 6= |t− t0| ≈ 0 then for

any ε ∈ R+, it follows from (i) that

∣∣∣X(t)−X(t0)−X ′
h(t0)(t− t0)

∣∣∣ < ε|t− t0|.

Then ∣∣∣X(t)−X(t0)−X ′
h(t0)(t− t0)

∣∣∣ / |t− t0| ≈ 0,

as wanted.

(iii) ⇒ (ii).

Let t1, t2 ∈ Ih, be such that t1 ≈ t2. Then, for some ε1, ε2 ≈ 0:

∣∣∣(X ′
h(t2)−X ′

h(t1)
)
(t2 − t1)

∣∣∣
=
∣∣∣X(t2)−X(t1)−X ′

h(t1)(t2 − t1) +X(t1)−X(t2)−X ′
h(t2)(t1 − t2)

∣∣∣
≤
∣∣∣X(t2)−X(t1)−X ′

h(t1)(t2 − t1)
∣∣∣+ ∣∣∣X(t1)−X(t2)−X ′

h(t2)(t1 − t2)
∣∣∣

= ε1|t2 − t1|+ ε2|t1 − t2|.

Therefore ∣∣∣X ′
h(t2)−X ′

h(t1)
∣∣∣ ≤ ε1 + ε2 ≈ 0.

(ii) ⇒ (i).

Let t1, t2 ∈ Ih, with |t1 − t2| ≈ 0. Using equation (6.4) and the fundamental

identity, we have:

∣∣∣X(t2)−X(t1)−X ′
h(t1)(t2 − t1)

∣∣∣ =
∣∣∣ ∑
t∈[t1,t2)h

X ′
h(t)h−X ′

h(t1)(t2 − t1)
∣∣∣
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=
∣∣∣ ∑
t∈[t1,t2)h

X ′
h(t)h−

∑
t∈[t1,t2)h

X ′
h(t1)h

∣∣∣
≤

∣∣∣ ∑
t∈[t1,t2)h

(
X ′
h(t)−X ′

h(t1)
)
h
∣∣∣

≤
∑

t∈[t1,t2)h

∣∣∣X ′
h(t)−X ′

h(t1)
∣∣∣h.

Say ε ∈ R+. By the S-continuity of X ′
h,∣∣∣X ′

h(t)−X ′
h(t1)

∣∣∣ < ε,

and so:

∣∣∣X(t2)−X(t1)−X ′
h(t1)(t2 − t1)

∣∣∣ < ∑
t∈[t1,t2)h

εh = ε(t2 − t1). (6.6)

So the set of all δ such that, whenever |t1− t2| < δ, inequality (6.6) holds, includes

all positive infinitesimals. Since this set is internal, it must contain some δ ∈ R+.

Lemma 6.6 Let X ∈ Fh be such that ‖X ′
h‖L∞h is finite. Then X is S-continuous.

Proof.

Say ‖X ′
h‖L∞h < M , with M finite. Let t1, t2 ∈ I, t1 ≈ t2. Using the fundamental

identity and equation(6.4):

|X(t2)−X(t1)| =
∣∣∣ ∑
t∈[t1,t2)h

X ′
hh
∣∣∣

≤
∑

t∈[t1,t2)h

|X ′
h|h

≤
∑

t∈[t1,t2)h

Mh = M(t1 − t2).



129

Theorem 6.7 Let X ∈ Fh be S-C1, with ‖X‖1 <∞. Then, the function x : I →

Rn given by

x(◦t) = ◦(X(t)), for t ∈ Ih, (6.7)

is well-defined, belongs to C1(I,Rn), and:

x′(◦t) = ◦(X ′
h(t)), for t ∈ Ih. (6.8)

Proof.

By Lemma (6.6), X is S-continuous, and each X(t) is finite since ‖X‖1 < ∞;

hence x is well defined by (6.7), and x ∈ C(I,Rn). To prove differentiability, first

note that X ′
h is S-continuous (this follows form Proposition (6.5)), and X ′

h(t) is

finite since ‖X‖1 < ∞. Hence, the function on the right-hand side of equation

(6.8),

y(◦t)
def
= ◦(X ′

h(t)) for t ∈ Ih,

is well-defined and continuous. Fix ε ∈ R+ and pick δ ∈ R+ such that, for all

t2, t1 ∈ Ih, with t1 6= bh:

|t2 − t1| < δ ⇒
∣∣∣X(t2)−X(t1)−X ′

h(t1)(t2 − t1)
∣∣∣ < ε

2
|t2 − t1|. (6.9)

Then, whenever |t2 − t1| < δ and ◦t2 6= ◦t1 (i.e. 0 6≈ |t2 − t1| < δ), we have, using

the S-continuity of the functions involved:

∣∣∣x(◦t2)− x(◦t1) − y(◦t1)(
◦t2 − ◦t1)

∣∣∣
=

∣∣∣◦(X(t2))− ◦(X(t1))− ◦ ((X ′
h)(t1))

◦(t2 − t1)
∣∣∣

=
∣∣∣◦(X(t2)−X(t1)−X ′

h(t1)(t2 − t1)
)∣∣∣

=
◦ ∣∣∣(X(t2)−X(t1)−X ′

h(t1)(t2 − t1)
)∣∣∣.
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Using (6.9), and since ε ∈ R+ and |t2 − t1| 6≈ 0:

◦ ∣∣∣(X(t2)−X(t1)−X ′
h(t1)(t2 − t1)

)∣∣∣ ≤ ◦( ε
2
|t2 − t1|

)
=
ε

2
|◦t2 − ◦t1| < ε|◦t2 − ◦t1|

This shows the (standard) statement:

∀ε > 0 ∃δ > 0 ∀s, ŝ ∈ I 0 < |s− ŝ| < δ ⇒ |x(s)− x(ŝ)− y(ŝ)(s− ŝ)| < ε|s− ŝ|,

which implies the (uniform) differentiability of x in I, with x′ = y.

Corollary 6.8 Let X ∈ Fh and k ∈ N. If ‖X‖k < ∞ and X
(k)
h is S-continuous,

then the function x : I → Rn given by

x(◦t) = ◦(X(t)), for t ∈ Ih,

is well-defined. Furthermore, x ∈ Ck(I,Rn), with

x(j)(◦t) = ◦(X
(j)
h (t)), for t ∈ Ih, j ∈ {1, . . . , k},

and ‖x‖Ck(R,Rn) =
◦(
‖X‖h

)
.

Proof.

The proof is by induction on k. For k = 0 the result follows from both the

S-continuity of X, and ‖X‖0 < ∞. Now assume the result holds at some k ∈ N.

Since ‖X‖k+1 < ∞, we have ‖X(k+1)
h ‖L∞h < ∞, so by Lemma (6.6), X

(k)
h is S-

continuous. Hence, using the induction hypothesis,

x(◦t) = ◦(X(t)), for t ∈ Ih,

is well-defined and x ∈ Ck(I,Rn), with:

x(j)(◦t) =
◦(
X

(j)
h (t)

)
for t ∈ Ih, j ∈ {1, . . . , k}.
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Now, consider the function:

y(◦t) =
◦(
X

(k)
h (t)

)
= x(k)(◦t) for t ∈ Ih, j ∈ {1, . . . , k}.

We know that ‖X(k)
h ‖1 = ‖X(k)

h ‖L∞h +‖X(k+1)
h ‖L∞h ≤ ‖X‖k+1 <∞ and the function

X
(k+1)
h is S-continuous. Applying Theorem (6.7), we get that y is well-defined,

y ∈ C1(I,Rn), and

y′(◦t) = ◦(X
(k+1)
h (t)) for t ∈ Ih, j ∈ {1, . . . , k}.

But since y = x(k), we must have x ∈ Ck+1(I,Rn) and x(k+1) = y′, i.e.

x(k+1)(◦t) =
◦(
X

(k+1)
h (t)

)
for t ∈ Ih.

As for the norm estimate, the case k = 0 is easy. For the induction step:

‖x‖Ck+1 = ‖x‖Ck +
∥∥x(k+1)

∥∥
C0

= ◦(‖X‖k) +
∥∥x(k+1)

∥∥
C0

= ◦(‖X‖k) +
◦(
‖X(k+1)

h ‖L∞h
)

= ◦ (‖X‖k+1) .

Corollary 6.9 Suppose x = ◦X ∈ Hull(Fh, ‖ · ‖k), where X ∈ Fh and X
(k)
h is

S-continuous. Then the function x̂ : I → Rn given by

x̂(◦t) = ◦(X(t)), for t ∈ Ih,

is well-defined and depends only on x. Furthermore, x̂ ∈ Ck(I,Rn), with

x̂(j)(◦t) =
◦(
X

(j)
h (t)

)
for t ∈ Ih, j ∈ {1, . . . , k},

and ‖x̂‖Ck = ‖x‖Hull(Fh,‖·‖k).
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Proof.

By Corollary (6.8), the function x̂ is well-defined, belongs to Ck(I,Rn), and

‖x̂‖Ck = ◦ (‖X‖k). We just have to show that x̂ is independent of the choice of X.

So let Y be such that Y
(k)
h is S-continuous and:

‖X − Y ‖k = ‖X − Y ‖L∞h + ‖X ′
h − Y ′

h‖L∞h + . . .+ ‖X(k)
h − Y

(k)
h ‖L∞h ≈ 0.

This implies that∣∣∣X(j)(t)h − Y
(j)
h (t)

∣∣∣ ≈ 0 ∀ t ∈ Ih ∀j ∈ {0, . . . , k}.

So using X or Y to compute x̂ gives exactly the same result. Also:

‖x̂‖Ck =
◦(
‖X‖k

)
= ‖x‖Hull(Fh,‖·‖k).

Remark 6.10 At this point, we want to stress that the general discrete schemes

for second order differential equations, as introduced in Chapter 3, can be used with

the degree theory of Chapter 5. To clarify this point, let Rn
h be a discrete scheme

for Rn. Let h be a positive infinitesimal and assume that Rn
h is consistent with Rn,

i.e., ◦(Rn
h) = Rn. Let O ⊂ Rn be open. We can then form a ∗finite dimensional

internal space Fh = ROh. Considering operators

δi,h : ROh → ROh ,

δ2
ij,h : ROh → ROh ,

such that δi,h is consistent with
∂

∂xi
and δ2

ij,h is consistent with
∂2

∂xi∂xj
, we can

introduce a norm for Fh as follows:

‖U‖2 = ‖U‖L∞h +
n∑
i=1

‖δi,hU‖L∞h +
n∑

i,j=1

‖δ2
ij,hU‖L∞h .
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Take E = Hull(Fh, ‖ · ‖2). From consistency, ◦Oh = O and ◦∂Oh = ∂O. As with

the special case treated in Chapter 6, it can be shown that E contains an isomorphic

copy of C2(O) (with C2 norm). More specifically, for each U ∈ GalFh
(0) such that

each δij,hU is S-continuous, then

◦U = u ∈ C2(O),

◦(DhU) = Du,

◦(D2
hU) = D2u.

Here, Dh = (δ1,h, . . . , δ1,h), (the “discrete gradient”), and D2
h =

(
δ2
ij,h

)
i,j=1...,n

(the

“discrete second derivative operator”).

6.3 Bounds for a Discrete Linear Problem

We look for an explicit formula for the solution of a simple linear version of problem

(6.17): 
X ′′
h(t) = G(t), for t ∈ [α, β − 2h]h,

X(α) = A,

X(β) = B.

where G ∈ Fh, and A,B ∈ ∗Rn.

Proposition 6.11 Let α, β ∈ Ih, β > α, and G ∈ Fh. Consider the problem:{
X ′′
h(t) = G(t) for t ∈ [α, β − 2h]h,

X(α) = X(β) = 0
(6.10)

Then, X(·) : [α, β]h → ∗Rn given by

X(t) = C(t− α) +
∑

s∈(α,t)h

(t− s)G(s− h)h, (6.11)
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with

C =
−1

β − α

∑
s∈(α,t)h

(β − s)G(s− h)h, (6.12)

is the unique internal solution to (6.10).

Proof.

We start by checking that X satisfies the difference equation in (6.10):

h2X ′′
h(t) = X(t+ 2h)− 2X(t+ h) +X(t)

= C(t− α) + 2hC +
∑

s∈(α,t+2h)h

(t− s)G(s− h)h+
∑

s∈(α,t+2h)h

2hG(s− h)h

−2C(t− α)− 2hC − 2
∑

s∈(α,t+h)h

(t− s)G(s− h)h− 2
∑

s∈(α,t+h)h

hG(s− h)h

+C(t− α) +
∑

s∈(α,t)h

(t− s)G(s− h)h

= (t− (t+ h))G(t)h+ 2hG(t)h− (t− t)G(t− h)h

= −h2G(t) + 2h2G(t) = h2G(t),

for t = α, α+ 1, . . . , β − 2h.

This shows that X, as given by (6.11), satisfies the difference equation in (6.10)

(with arbitrary C). Also, X(α) = 0. As for the other boundary condition, and

using (6.12):

X(β) = C(β − α) +
∑

s∈(α,β)h

(β − s)G(s− h)h = 0.

Uniqueness follows from the fact that the scheme
{
δ−h δ

+
h : h ∈ R+

}
, with Ωh =

[α, β]h and ∂Ωh = {α, β}, has a maximum principle.
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Proposition 6.12 Let α, β ∈ Ih with β > α, A,B ∈ ∗Rn, and G ∈ Fh be internal.

Consider the problem:
X ′′
h(t) = G(t), for t ∈ [α, β − 2h]h,

X(α) = A,

X(β) = B.

(6.13)

Then X, defined in [α, β]h by

X(t) = X0(t) +
t− α

β − α
B +

β − t

β − α
A, (6.14)

and with X0(t) given by (6.11) and (6.12), is its unique internal solution.

Proof.

An easy computation shows that X1(t) = t−α
β−αB + β−t

β−αA defines a solution to

the homogeneous problem:
X ′′
h(t) = 0 for t ∈ [α, β − 2h]h,

X(α) = A,

X(β) = B.

Hence, X(t) = X0(t) + X1(t) solves problem (6.13). By maximum principle for{
δ−h δ

+
h : h ∈ R+

}
, the solution is unique.

Lemma 6.13 Let α, β ∈ Ih with β > α, A,B ∈ ∗Rn, and G ∈ Fh be such that

‖G‖L∞h is finite. Consider the problem:
X ′′
h(t) = G(t), for t ∈ [α, β − 2h]h,

X(α) = A,

X(β) = B.

(6.15)
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If X : [α, β]h → ∗Rn is the unique internal solution of this problem, and ‖X‖2 <∞,

then:

‖X‖2 <∼ C1 + C2‖G‖L∞h ,

where C1 = |B−A|
β−α + |A|+ |B| and C2 = 3

2
(β − α) + (β − α)2. 5

Proof.

By Lemma (6.6), X ′
h and X are S-continuous. To prove the estimate in (i), we

use the obtained solution formula for (6.15) :

‖X‖L∞h ≤ t− α

β − α
|B|+ β − t

β − α
|A|+ |C|(β − α) + ‖G‖L∞h

∑
s∈(α,t)h

(t− s)h.

The above hyperfinite Riemann sum can be estimated by:

∑
s∈(α,t)h

(t− s)h ≈
∫ t

α

(t− s) ds =
(t− α)2

2
≤ (β − α)2

2
.

Therefore:

‖X‖L∞h <∼ |A|+ |B|+ |C|(β − α) +
(β − α)2

2
‖G‖L∞h ,

where C is given by (6.12). Estimating C now, yields:

|C| ≤
‖G‖L∞h
(β − α)

∑
s∈(α,t)h

(t− s)h

<∼
‖G‖L∞h
(β − α)

(β − α)2

2

=
1

2
(β − α)‖G‖L∞h .

Hence:

‖X‖L∞h <∼ |A|+ |B|+ (β − α)2‖G‖L∞h .
5Note that both C1 and C2 depend only on the boundary data of the linear problem.
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To estimate ‖X ′
h‖L∞h we, first compute X ′

h:

hX ′
h(t) = X(t+ h)−X(t)

=
1

β − α

(
(t+ h− α)B + (β − t− h)A− (t− α)B − (β − t)A

)
+C(t+ h− α)− C(t− α)

+
∑

s∈(α,t+h)h

(t+ h− s)G(s− h)h−
∑

s∈(α,t)h

(t− s)G(s− h)h

= h

(
B − A

β − α
+ C +G(t− h)h+

∑
s∈(α,t)h

G(s− h)h

)

Then, and using our previous estimate of C again:

‖X ′
h‖L∞h ≤ |B − A|

β − α
+ |C|+ ‖G‖L∞h

∑
s∈(α,t+h)h

h

<∼
|B − A|
β − α

+
1

2
(β − α)‖G‖L∞h + (β − α)‖G‖L∞h

=
|B − A|
β − α

+
3

2
(β − α)‖G‖L∞h .

From the equation X ′′
h = G, we have ‖X ′′

h‖L∞h = ‖G‖L∞h . So, and putting together

the previous estimates, we conclude that:

‖X‖2 = ‖X‖L∞h + ‖X ′
h‖L∞h + ‖X ′′

h‖L∞h

<∼
|B − A|
β − α

+ |A|+ |B|+ 3

2
(β − α)‖G‖L∞h + (β − α)2‖G‖L∞h

= C1 + C2‖G‖L∞h .

Assuming, in addition, that G is S-continuous, then X ′′
h = G becomes S-continuous

as well.
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6.4 An Existence and Convergence Result

We recall the main problem of this chapter,
x′′ = f(x′, x, t) for t ∈ I,

x(a) = x0,

x(b) = x1,

(6.16)

and its discrete counterpart,
X ′′
h(t) = f(X ′

h(t), X(t), t) for t ∈ [ah, bh − 2h]h,

X(ah) = x0,

X(bh) = y0.

(6.17)

To solve the problem (6.17), we are going to look at fixed points of a map defined

as follows. Given Y : Ih → ∗Rn and θ ∈ ∗[0, 1], consider the linear problem:
X ′′
h(t) = θf(Y ′

h(t), Y (t), t) for t ∈ [ah, bh − 2h]h,

X(a) = x0,

X(b) = y0.

(6.18)

From Proposition (6.12), there is a unique solution to (6.18); it is actually given

using formulas (6.14), (6.10) and (6.11), if we take G = Gθ
def
= θf(Y ′

h, Y, ·). Hence,

we can define Φ : Fh× ∗[0, 1] → Fh so that Φ(Y, θ) is the unique solution of (6.18).

Then, a fixed point of Φ(·, 1) is a solution of problem (6.18).

Our next task is to get bounds on Φ(X, θ), that will make it possible to apply

Corollary (5.15).

Proposition 6.14 Let Φ : Fh → Fh be the map defined above. Then, there exists

a finite r > 0 such that Φ satisfies:

(i) ‖Φ(X, θ)‖2 ≤ r;
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(ii) Φ is S-continuous (with respect to the norm ‖(X, θ)‖ = ‖X‖2 + |θ|).

Proof.

Since f : R2n+1 → Rn is bounded, ‖f‖L∞h <∞. Hence, by Lemma (6.13):

‖Φ(X, θ)‖2 <∼ C1 + C2θ‖f‖L∞h .

where C1 and C2 are finite. So, just pick r � C1 + C2θ‖f‖L∞h .

As for (ii), consider X, Y ∈ Fh such that ‖X − Y ‖2 ≈ 0, and θ1, θ2 ∈ ∗[0, 1]

such that θ1 ≈ θ2. Then, Φ(X, θ1)− Φ(Y, θ2) is the solution, Z, of:
Z ′′
h(t) = θ1f(X ′

h(t), X(t), t)− θ2f(Y ′
h(t), Y (t), t)

def
= G(t) for t ∈ [a, b− 2h]h,

Z(a) = X(a)− Y (a) = 0,

Z(b) = X(b)− Y (b) = 0.

Since f : R2n+1 → Rn is continuous and bounded, its star is S-continuous. Hence,

G is S-continuous. Since ‖X − Y ‖2 ≈ 0, and θ1 ≈ θ2, for all t ∈ [a, b− h]h:

G(t) = θ1f(X ′
h(t), X(t), t)− θ2f(Y ′

h(t), Y (t), t)

≈ θ2f(X ′
h(t), X(t), t)− θ2f(X ′

h(t), X(t), t)

= 0

Consequently, ‖G‖L∞h ≈ 0. Using Lemma (6.13):

‖Z‖2 <∼

(
3

2
(b− a) + (b− a)2

)
‖G‖L∞h ≈ 0.

Hence:

‖Φ(X, θ1)− Φ(Y, θ2)‖ = ‖Z‖ ≈ 0.
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We now consider the non-standard hull of (Fh, ‖ · ‖2). Let E = Hull(Fh, ‖ · ‖2),

and take R > r finite, where r is given by Proposition (6.14). Let Ω = int ◦BR(0) ⊂

E . By the same proposition, the map ϕ
def
= ◦Φ : Ω × [0, 1] → E is well-defined.

Also, ϕ and Ω satisfy the setup of our degree theory.

We recall that Φ was obtained from an approximation scheme that uses right

difference quotients. We do not want our results to be related only to this particular

scheme, which is great for computing estimates like the one in Lemma (6.13), but

is not particularly accurate for numerical computation.

However, many other schemes just give rise to other liftings of ϕ. Here is an

example of a more accurate one.

Example 6.15 (Using central difference quotients) In the discrete problem

(6.17), we replace the one-sided differences by central differences and get:
X(t−h)−2X(t)+X(t+h)

h2 = f
(
X(t+h)−X(t−h)

2h
, X(t), t

)
for t ∈ (a, b)h,

X(a) = x0,

X(b) = y0.

(6.19)

Note that

X ′′
h(t− h) =

X(t− h)− 2X(t) +X(t+ h)

h2
,

and

1

2

(
X ′
h(t− h) +X ′

h(t)
)

=
X(t+ h)−X(t− h)

2h
,

so, problem (6.19) is equivalent to:
X ′′
h(t) = f

(
1
2
(X ′

h(t) +X ′
h(t+ h)) , X(t+ h), t+ h

)
for t ∈ [a, b− 2h]h,

X(a) = x0,

X(b) = y0.
(6.20)
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As before, define Ψ : BR(0) × ∗[a, b] → Fh — with the same R as for Φ and

BR(0) ⊂ Fh) — so that X = Ψ(Y, θ) is the solution of:
X ′′
h(t) = θf

(
1
2
(Y ′

h(t) + Y ′
h(t+ h)) , Y (t+ h), t+ h

)
for t ∈ [a, b− 2h]h,

X(a) = x0,

X(b) = y0.

To determine ‖Ψ− Φ‖2, we use Lemma (6.13). Fix θ and Y , and let:

Z = Ψ(Y, θ)− Φ(Y, θ).

Then, Z satisfies

Z ′′
h(t) = θf

(
1
2
(Y ′

h(t) + Y ′
h(t+ h)) , Y (t+ h), t+ h

)
− θf (Y ′

h(t), Y (t), t) ≈ 0,

for all t ∈ [a, b− 2h]h, and

Z(a) = Z(b) = 0.

By Lemma (6.13):

‖Ψ(Y, θ)− Φ(Y, θ)‖2 = ‖Z‖2 ≈ 0.

Therefore, ◦Ψ = ◦Φ = ϕ, as desired.

The last example shows that ϕ actually is approximated by many more than

the scheme we did work out for the best part of this chapter. Our degree theory

will enable us to show that any scheme on Fh which approximates ϕ has a fixed

point which approximates a solution of (6.16).

Theorem 6.16 Let Ψ be any ∗continuous lifting of ϕ on Fh. Then, for any finite

R > r:
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(i) There exists a fixed point of ϕ(·, 1) in Br(0).

(ii) There exists a fixed point of Ψ(·, 1) in BR(0) ⊂ Fh.

(iii) Let X be a fixed point of Ψ ∈ BR(0). Then, the function x : [a, b] → Rn

given by

x(◦t) = ◦(X(t)) ∀ t ∈ [a, b]h,

is well-defined, belongs to C2([a, b],Rn), and is a solution of:
x′′(t) = f(x′(t), x(t), t) for t ∈ [a, b],

x(a) = x0,

x(b) = y0.

Proof.

We are in the conditions of Corollary (5.15). Hence, there exists χ ∈ BR(0) ⊂ E

such that χ = ϕ(χ, 1). This shows (i). As for (ii), and since Ψ is a lifting of ϕ, the

same Corollary ensures that there exists X ⊂ BR(0) ⊂ Fh such that X = Ψ(X, 1).

Now, and using the lifting Φ of ϕ previously defined in this section:

‖X − Φ(X, 1)‖2 ≤ ‖X −Ψ(X, 1)‖2 + ‖Ψ(X, 1)− Φ(X, 1)‖0 ≈ 0. (6.21)

Hence

X(a) ≈ Φ(X, 1)(a) = x0

X(b) ≈ Φ(X, 1)(b) = y0

and

X ′′
h(t) ≈ Φ(X, 1)′′h(t) = f(X ′

h(t), X(t), t),
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for all t ∈ [a, b − 2h]h. This means that X ′′
h is S-continuous. Hence, by Corollary

(6.8), x : [a, b] → Rn given by

x(◦t) = ◦(X(t)) ∀ t ∈ [a, b]h,

is well-defined, and is in C2([a, b],Rn), with

x′(◦t) = ◦(X ′
h(t)),

x′′(◦t) = ◦(X ′′
h(t)),

for all t ∈ [a, b]h. Therefore:

x(a) = ◦(X(a)) = x0,

x(b) = ◦(X(b)) = y0.

Also:

x′′(◦t) = ◦(X ′′
h(t)) =

◦(
f(X ′

h(t), X(t), t)
)

= f
(
◦(X ′

h(t)),
◦(X(t)), ◦t

)
= f

(
x′(◦t), x(◦t), ◦t

)
,

for all t ∈ [a, b]h. This concludes the proof.
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