
Effective Algebra and Effective Dimension

By

Daniel Turetsky

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

(Mathematics)

at the

UNIVERSITY OF WISCONSIN – MADISON

2010

i

Abstract

Effective Dimension is a notion introduced by Lutz, which measures the density of

information in an infinite sequence. Lutz asks how this concept interacts with classical

topological notions. In Chapter two, I present several results concerning this.

Effective Algebra is the study of computable and relatively computable structures

and the relations on them. In Chapter three, I present several results separating notions

of computable categoricity. In Chapter four, I review limitwise monotonic functions and

prove several new results about them. In Chapter five, I construct computable linear

orders on which various natural relations are intrinsically complete.

ii

Acknowledgements

I would like to thank my thesis advisor, Steffen Lempp, for his advice and guidance, and

most of all his patience in the face of my colossal lack of organization.

I am also grateful to all the logic faculty at UW-Madison, with special mention to

Joseph Miller. Thanks also to Rod Downey and Noam Greenberg for a very productive

semester in New Zealand.

Thanks to Nick for being tall, and to all the graduate students and former graduate

students in the math department who listened to me talk about math and made my

time there enjoyable, especially Asher, Diane, Matt, Nick and Zajj.

Finally, thanks to Mom, Dad and Emma for the support through the years.

iii

Contents

Abstract i

Acknowledgements ii

1 Introduction 1
1.1 Effective Dimension . 2
1.2 Computable Categoricity . 3
1.3 Limitwise Monotonic Functions . 4
1.4 Degree Spectrum of Relations . 5

2 Connectedness of Dimension Level Sets 6
2.1 Introduction and Results . 6
2.2 Semi-measures, Complexity and Dimension 7
2.3 Proof of Results . 9

3 Computable Categoricity 20
3.1 Pushing on Isomorphisms . 20
3.2 Eventual Categoricity . 26

4 Limitwise Monotonic Functions 31
4.1 Basics . 31
4.2 A Separation Result . 32
4.3 A Totally Limitwise Monotonic Degree 39

5 Intrinsically Complete Relations 42
5.1 Relations . 42
5.2 Metatheorem . 43
5.3 Back-and-Forth Relations . 45
5.4 Result . 45

Bibliography 59

1

Chapter 1

Introduction

This work consists of several distinct pieces. The two main areas of my research in

the general area of computability theory are algorithmic randomness, and computable

algebra and model theory. Randomness is a notion which is captured in several different

ways. An infinite sequence being random can be defined to mean that it contains

large amounts of information, or that it is hard to predict the behavior of, or that

it exhibits no atypical properties, and all are equivalent definitions. Effective dimension

is a measurement of the extent to which a real is partially random. This can be defined

by the real containing a smaller amount of information, or the real being only somewhat

predictable, and these again yield equivalent definitions.

Computability theory seeks to understand the effective content of mathematics. Al-

though many mathematical objects exist, computability theory asks the question of

whether they can be algorithmically found. For example, although every vector space

has a basis, computability theory tells us that finding a basis is not always algorithmi-

cally possible. Computable algebra is the analysis of classical mathematical structures

such as rings, graphs or linear orders using the tools of computability theory, while

computable model theory generalizes this to arbitrary mathematical structures.

2

1.1 Effective Dimension

Very broadly, Lebesgue measure separates the world into the sets of positive measure

and those of measure 0. This classification is rather coarse, however. In R2, for ex-

ample, points and lines are indistinguishable by Lebesgue measure, as they all have

measure 0. Notions of dimension, such as Hausdorff dimension or packing dimension,

can strengthen this classification by separating certain sets of measure 0. Points have

Hausdorff dimension 0, while lines have Hausdorff dimension 1.

Similarly, randomness separates sequences into those which are random and those

which are not. Effective dimension refines this classification by separating certain non-

random sequences. While the classical dimension of a singleton is always 0, the effective

dimension of a singleton can be nonzero, so effective dimension often studies singletons

(i.e., points).

The study of effective dimension began when Lutz in [12] proved an alternate charac-

terization of the classical notion of Hausdorff dimension. Athreya, Hitchcock, Lutz and

Mayordomo extended this to packing dimension in [3]. These alternate characterizations

were effectivized, giving rise to the concept of effective Hausdorff dimension and effective

packing dimension. Mayordomo in [14] and Athreya, Hitchcock, Lutz and Mayordomo

in [3] then showed the equivalence of Definition 1.1 with Lutz’s original definition in [12].

Definition 1.1. For an infinite sequence x, define the effective Hausdorff dimension of

x as

dimH(x) := lim inf
s→∞

K(x � s)
s

.

Notice that this value is necessarily at most 1. Effective dimension thus measures

when a sequence is partially random, with random sequences having dimension 1 (al-

though the converse fails).

3

Analogous to defining the effective dimension of an infinite sequence, one can define

the effective Hausdorff dimension of a point in Rn. This is no longer a value less than

1, but instead a value less than n. There are several equivalent ways of doing this, one

being to simply consider the binary expansions of the coordinates.

One can then ask how frequent points of any given dimension are. Several easy facts

follow:

• For z ∈ Rn, dimH(z) ∈ [0, n].

• For every α ∈ [0, n], there are densely many z ∈ Rn with dimH(z) = α.

• The set of z ∈ Rn with dimH(z) < n has Lebesgue measure 0.

• The set of z ∈ Rn with dimH(z) > 0 is meager.

A consequence of Lutz’s work in [12] is that if X has classical Hausdorff dimension β,

it contains infinitely many points of effective Hausdorff dimension greater than β− ε for

any positive ε. In [13], Lutz and Weihrauch then asked how effective Hausdorff dimension

interacts with various connectivity properties, and proved several results along these

lines. In Chapter 2, I prove several further results along these lines.

1.2 Computable Categoricity

Computable categoricity is an effective version of categoricity from model theory. For a

cardinal κ, a system of axioms is said to be κ-categorical if every structure of cardinality

κ which satisfies those axioms is isomorphic. In making this notion effective, we restrict

our attention to a computable model and computable isomorphisms between computable

copies of it. Rather than considering all structures which satisfy a given axiom system,

we consider only those which are isomorphic (but not necessarily computably so).

4

Definition 1.2. A computable structure A is computably categorical if for any other

computable structure B with A ∼= B, there exists a total computable function f with

f : A ∼= B.

For example, any linear ordering which contains no adjacencies is computably cate-

gorical; given two computable copies, one can perform a back-and-forth construction to

create an isomorphism. A linear order with only finitely many adjacencies is also com-

putably categorical, because one could begin by correctly mapping the finitely many

points, then run the back-and-forth construction. In fact, this completely characterizes

the computably categorical linear orders; any computable linear order with infinitely

many adjacencies (e.g., the integers as a linear order) has two computable copies be-

tween which there is no computable isomorphism.

One might expect that every computably categorical structure is such because one

can run a back-and-forth construction to create the isomorphism, but this turns out to

correspond to a stronger notion.

Definition 1.3. A computable structure A is relatively computably categorical if for any

other structure B (not necessarily computable) with A ∼= B, there exists a total function

f computable from (the open diagram of) B with f : A ∼= B.

There are analogs of both computable categoricity and relative computable categoric-

ity for ∆n. In Chapter 3, I introduce a new categoricity notion, relatively computable

categorical above a degree, and separate it from the existing notions.

1.3 Limitwise Monotonic Functions

Limitwise monotonic functions are an important tool for studying computable struc-

tures, both because they allow classification other than via the arithmetic hierarchy,

5

and because they often capture the fact that computable structures grow one element

at a time.

In [9], the author collaborated with Kach to investigate limitwise monotonic functions

on a computably ordered domain, with the hope of classifying those sets with a strong

η-representation. Although the investigation proved quite fruitful, no such classification

was obtained. We show here that limitwise monotonic functions are the wrong tool for

such a classification.

We also prove the existence of a totally limitwise monotonic degree, a result later

improved by the author with Downey and Kach in [4].

1.4 Degree Spectrum of Relations

For a relation R on a computable structure A, the degree spectrum of R is the collection

{deg(S) : ∃B computable, (B, S) ∼= (A, R)}.

Clearly if R is definable by some Σc
α (Πc

α) formula in the language of A, then deg(S)

will consist entirely of Σ0
α (Π0

α) degrees.

One often considers the degree spectrum of certain natural relations on a class of

structures. For instance:

Theorem 1.4 (Downey, Lempp, Wu [5]). If L is a computable linear order with infinitely

many adjacencies, the degree spectrum of the successivity relation on L is upwards closed

in the c.e. degrees.

In Chapter 5, we construct a collection of natural relations and study their spectrum.

6

Chapter 2

Connectedness of Dimension Level

Sets

2.1 Introduction and Results

In [13], Lutz and Weihrauch investigate sets in Rn defined by the effective Hausdorff

dimensions of their elements. They show the following:

Theorem 2.1. In Rn, the set of points of dimension strictly less than 1 is totally dis-

connected, as is the set of points of dimension strictly greater than n− 1.

Theorem 2.2. In Rn, the set of points of dimension less than or equal to 1 is path-

connected, as is the set of points of dimension greater than or equal to n− 1.

Restricting these results to the simplest case of n = 2 suggests that the points with

effective Hausdorff dimension 1 are somehow topologically numerous. We investigate

the properties of the dimension one points further, proving the following results:

Theorem 2.3. In Rn (n ≥ 2), the set of points of dimension exactly 1 is connected.

Theorem 2.4. In R2, the set of points of dimension not 1 is not path-connected.

In Section 2.2, we review the appropriate notions. In Section 2.3, we prove the

following result about the abundance of points of dimension 1, from which the above

two results follow.

7

Theorem 2.5. If Z ⊆ Rn (n ≥ 2) is closed, connected, and has the property that for

any open set U with Z ∩U 6= ∅, ind(Z ∩U) ≥ n− 1, then Z contains a point of effective

Hausdorff dimension 1.

Note that by fixing r0, r1 ∈ R relatively random, one can define

F = {(x0, x1, . . . , xn) ∈ Rn | x0 = r0, x1 = r1}.

Then F is a closed set of dimension n−2 with no point of effective Hausdorff dimension

less than 2. So in one sense, Theorem 2.5 is optimal (i.e., ind(Z ∩U) ≥ n−1 is needed).

2.2 Semi-measures, Complexity and Dimension

Throughout the rest of the chapter, let n be a fixed positive integer greater than one.

Convention 2.6. ε denotes the empty string in 2<ω.

λ denotes Lebesgue measure on R.

πi : Rn → R denotes projection onto the ith coordinate.

Definition 2.7. We call a function µ : (2<ω)n → R≥0 a semi-measure if

µ(ε, ε, . . . , ε) ≤ 1

µ(σ0, . . . , σi, . . . , σn−1) ≥ µ(σ0, . . . , σi
a 0, . . . , σn−1)

+ µ(σ0, . . . , σi
a 1, . . . , σn−1).

A semi-measure is enumerable if it is computable from below.

A semi-measure is optimal if it multiplicatively dominates all enumerable semi-

measures.

Henceforth, µ will denote an optimal, enumerable semi-measure.

8

Definition 2.8. For (σ0, . . . , σn−1) ∈ (2<ω)n, define the KM-complexity as

KM(σ0, . . . , σn−1) := − log µ(σ0, . . . , σn−1).

Note that KM has the pleasing property that if σi ⊆ τi for all i, then

KM(σ0, . . . , σn−1) ≤ KM(τ0, . . . , τn−1).

Definition 2.9. For f = (f0, . . . , fn−1) ∈ (2ω)n, define the effective Hausdorff dimension

as

dimH(f) := lim inf
n

KM(f1 � n, . . . , fn−1 � n)

n
.

Identifying points in [0, 1) with points in 2ω via binary expansion, we define the

effective Hausdorff dimension of points in [0, 1)n. It is easily verified that the choice of

binary expansion (when more than one exist) has no effect on the dimension. It is also

seen that translation by a rational amount in a direction parallel to an axis has no effect

on the dimension, so we extend this notion to Rn via such translations.

Just as we use binary expansion to identify points, we will also identify sets. Given

σ ∈ 2ω, let [σ] = {f ∈ 2ω : σ ≺ f}. We will identify [σ] with the closed interval

of reals whose binary expansions are contained in [σ]. That is, [σ] is identified with

{0.f ∈ R : f ∈ [σ]}. Note that λ([σ]) = 2−|σ|.

It will be convenient to partition Rn as:

Rn
m = {x ∈ Rn : exactly m-many coordinates of x are rational}

Our definition of effective Hausdorff dimension differs from that used in [13], but the

two notions are equivalent. While we constructed dimension on (2ω)n and then identified

9

this space with Rn in the natural way, Lutz and Weihrauch defined dimension directly

upon Rn. They also base their notion of dimension on Kolmogorov complexity, while

we use KM -complexity. The reader is referred to [14] for the equivalence of martingale

defined dimension and complexity defined dimension, and to [11] by Li and Vitányi for

further reading on KM -complexity and its relation to Kolmogorov complexity.

We also make heavy use of (classical) inductive dimension. The necessary background

can be obtained from Chapter 3 of [15] by van Mill, although we repeat the necessary

results here.

For X ⊆ Rn, let ind(X) ∈ {−1, 0, 1, . . . , n} denote the inductive dimension of a set

X. The definition is such that ind(X) = −1 only when X = ∅.

Proposition 2.10 ([15, Proposition 3.2.10]). ind(Rn
m) = 0.

Proposition 2.11 ([15, Corollary 3.1.7]). If ind(X) = n, then X is not contained in

the union of n-many sets each of inductive dimension 0.

Definition 2.12. If Y is connected, say X separates Y if Y −X is not connected.

Proposition 2.13 ([15, Theorem 3.7.6]). If H ⊆ Rn is open and connected, and X

separates H, then ind(X) ≥ n− 1.

Proposition 2.14 ([15, Theorem 3.2.5]). If X ⊆ Rn is closed and ind(X) > 0, then X

is not totally disconnected.

Proposition 2.15 ([15, Theorem 3.2.5]). If ind(X) = 0, then X is totally disconnected.

2.3 Proof of Results

Our main result is Theorem 2.5. The main tools to proving this are the following two

lemmas. They both say, in a sense, that even if Z has small intersection with a given

10

region, it will have large intersection with a nearby region.

Definition 2.16. Let C,D ⊂ Rn be distinct closed n-cubes. Call D adjacent to C if D

is a translation of C, and there is some point v which is a vertex of both C and D.

Note that any given n-cube has 3n − 1 adjacent n-cubes.

Lemma 2.17. Let C ⊂ Rn be a closed n-cube aligned with the axes (i.e., C is a trans-

lation of [0, a]n for some a). Let {Dj}j<3n−1 be the collection of adjacent n-cubes.

Let Z ⊆ Rn be a closed, connected set. If Z ∩ C 6= ∅, but Z 6⊆ C ∪
⋃
j Dj, then for

some i and some Dj,

λ(πi(Z ∩Dj)) ≥
a

3n−1
. (†)

Proof. Consider πi(Dj). Note that there is some bi such that

πi(Dj) ∈ {[bi, bi + a], [bi + a, bi + 2a], [bi + 2a, bi + 3a]}

for all j. Let

F 0
i =

⋃
πi(Dj)=[bi,bi+a]

Dj,

and

F 1
i =

⋃
πi(Dj)=[bi+2a,bi+3a]

Dj.

Note that 3n−1 many Dj participate in each F ∗i . If πi(F
0
i ∩Z) = [bi, bi+a] or πi(F

1
i ∩Z) =

[bi + 2a, bi + 3a], then by additivity of λ, some Dj must satisfy (†).

If instead πi(F
0
i ∩ Z) ([bi, bi + a] and πi(F

1
i ∩ Z) ([bi + 2a, bi + 3a], then for some

c0i , c
1
i ,

π−1
i (c0i) ∩ F 0

i ∩ Z = ∅

11

and

π−1
i (c1i) ∩ F 1

i ∩ Z = ∅.

If these exist for every i, then

⋃
i

(π−1
i (c0i) ∩ F 0

i) ∪ (π−1
i (c1i) ∩ F 1

i)

separates Z, contradicting connectedness.

Note: The condition that Z be closed is far more than is necessary, of course. The

only place we use it in the above is to imply that πi(Z) is measurable. However, we will

only be applying this lemma for closed Z.

Lemma 2.18. Let C ⊂ Rn be a closed n-cube aligned with the axes (i.e., C is a trans-

lation of [0, a]n for some a). Let {Dj}j<3n−1 be the collection of adjacent n-cubes.

Let Z ⊆ Rn be closed with the property that for any open set U with Z ∩ U 6= 0,

ind(Z ∩ U) ≥ n − 1. If Z ∩ C 6= ∅, but Z 6⊆ C ∪
⋃
j Dj, then for some Dj, Z ∩ Dj

contains a point of dimension at most 1.

Proof. Let D = interior(
⋃
j Dj). By connectedness, Z intersects D. It suffices to show:

Z ∩D ∩Rn
n 6= ∅ or Z ∩D ∩Rn

n−1 6= ∅.

Suppose not. Then Z ∩D ⊆
⋃
j<n−1 Rn

j . But then by Propositions 2.10 and 2.11, this

contradicts the hypothesis on Z.

We now prove the main result.

12

Proof of Theorem 2.5. We build x0, . . . , xn−1 ∈ R in stages by building sequences

{σ0
i }i∈ω, . . . , {σn−1

i }i∈ω

with each σmi ∈ 2<ω. For a fixed i, all the σmi will have the same length, while for a fixed

m, limi |σmi | =∞. However, it will not necessarily be the case that σmi ⊆ σmi+1. Indeed,

limi σ
m
i � s may not exist.

So for each σmi , we shall consider a point ymi ∈ [σmi] (recalling that [σmi] is identified

with a closed subset of R) and take xm = limi y
m
i . Because the diameter of the [σmi] goes

to zero, any choice of ymi will have the same limit. Our point of dimension 1 will then

be (x0, . . . , xn−1).

At every stage, our construction employs one of two possible strategies: one strategy

is for ensuring that the complexity of (x0, . . . , xn−1) is not too low, while the other

ensures that the complexity is not too high.

Strategy 1 (not too low):

Given σ0
i , . . . , σ

n−1
i each of length ` with D = [σ0

i] × · · · × [σn−1
i] satisfying (†) for

some π, without loss of generality assume it satisfies it for π0.

Suppose we wish to extend by k-many bits, for some k. We consider all possible

extensions of σ0
i , . . . , σ

n−1
i . Clearly we are not interested in extensions which take us

away from Z. So consider

E = {(τ 0, . . . , τn−1) ∈ (2k)n : [σ0
i

a τ 0]× · · · × [σn−1
i

a τn−1] ∩ Z 6= ∅}.

By assumption, |E| ≥ |π0(E)| ≥ 2k/3n−1. So there exist some τ 0, . . . , τn−1 such that

2k

3n−1
µ(σ0

i
a τ 0, . . . , σn−1

i
a τn−1) ≤ µ(σ0

i , . . . , σ
n−1
i).

13

Thus

KM(σ0
i

a τ 0, . . . , σn−1
i

a τn−1) ≥ KM(σ0
i , . . . , σ

n−1
i) + k − (n− 1) log 3.

Strategy 2 (not too high):

Given σ0
i , . . . , σ

n−1
i each of length ` with Z ∩ [σ0

i] × · · · × [σn−1
i] containing a point

(d0, . . . , dn−1) of dimension at most 1, note that σki ≺ dk.

If (d0, . . . , dn−1) has dimension exactly 1, the proof is complete. If it has dimension

less than one, then there exists some m ≥ i such that

KM(d0 � m, . . . , dn−1 � m) ≤ m.

Assuming i is not such an m, choosing the least such m results in

KM(d0 � m, . . . , dn−1 � m) ≥ m− 1,

because KM can only increase as m increases.

Construction:

By Lemma 2.17, choose some σ0
0, . . . , σ

n−1
0 all of the same length such that D =

[σ0
0]× · · · × [σn−1

0] satisfies (†) for some π, and such that Z 6⊆ D.

At stage i, if KM(σ0
i , . . . , σ

n−1
i) ≤ |σ0

i |, use Lemma 2.17 to replace σ0
i , . . . , σ

n−1
i

with adjacent strings satisfying (†) for some π. Then follow strategy 1 to generate

σ0
i+1, . . . , σ

n−1
i+1 of length |σ0

i |+ i.

Otherwise, use Lemma 2.18 to replace σ0
i , . . . , σ

n−1
i with adjacent strings such that

Z ∩ [σ0
i] × · · · × [σn−1

i] contains a point of dimension at most 1. Then follow strategy

2, either generating σ0
i+1, . . . , σ

n−1
i+1 or finding a point of dimension 1 and ending the

14

construction.

Take (x0, . . . , xn−1) to be the limit of (y0
i , . . . , y

n−1
i) ∈ [σ0

i]×· · ·× [σn−1
i] as previously

discussed. This is our desired point.

Verification:

Clearly if we halt early via some strategy 2, the construction has succeeded. So

henceforth we assume this does not happen.

There are several points to check. First, we must show that the xk actually exist.

This is an unfortunately involved proof for what is actually a fairly simple idea: for

j ≥ i, consider how σ0
j � |σ0

i | can change through the use of the two lemmas. It can be

changed directly at stage i + 1 (when we trade the cube σ0
i is a part of for an adjacent

cube), or it can be changed indirectly at stage j > i (when we trade a small cube within

σ0
i for a small cube outside of σ0

i). The indirect changes add up in a geometric way, and

so they will only occur at one boundary of the cube of σ0
i+1 � |σ0

i |. So either σ0
j � |σ0

i |

stabilizes, or it switches infinitely between two adjacent cubes which share a boundary.

Either way, we see that the limit exists.

Now we make the above argument more rigorous. Without loss of generality, we

consider only x0. For a string σ ∈ 2`, let succ(σ) denote the lexicographic successor of

σ in 2` and pred(σ) denote the lexicographic predecessor of σ in 2`.

Claim 2.19. Let |σ0
i | = `. Then for any j ≥ i, σ0

j � ` is one of σ0
i , succ(σ0

i),

succ(succ(σ0
i)), pred(σ0

i), or pred(pred(σ0
i)).

Proof. Let `k = |σ0
k|. Because of the use of Lemma 2.17 or 2.18 in the construction,

σ0
k+1 � `k need not be σ0

k, but if not, the two strings will be adjacent in 2`k . So

inf[σ0
k+1 � `k] = inf[σ0

k] + ak2
`k ,

15

where ak ∈ {−1, 0, 1}.

Since [σ0
k+1] has diameter 2−`k+1 , we have

inf[σ0
k+1 � `k] ≤ inf[σ0

k+1] ≤ inf[σ0
k+1 � `k] + 2−`k − 2−`k+1 .

Thus,

inf[σ0
i] +

∑
i≤k<j

ak2
−`k ≤ inf[σ0

j] ≤ inf[σ0
i] + 2−`i − 2−`j +

∑
i≤k<j

ak2
−`k .

Taking ak to be worst, we see

inf[σ0
i]− 2 · 2−`i < inf[σ0

j] < inf[σ0
i] + 3 · 2−`i .

So pred(pred(σ0
i)) ≤ σ0

j � `i ≤ succ(succ(σ0
i)).

Claim 2.20. For every i, take y0
i ∈ [σ0

i]. Then x0 = limi y
0
i exists.

Proof. Again, let `i = |σ0
i |.

For any j ≥ i, σ0
j � `i must be one of the five above values. Then consider the closed

interval Ji = [pred(pred(σ0
i)] ∪ [pred(σ0

i)] ∪ [σ0
i] ∪ [succ(σ0

i] ∪ [succ(succ(σ0
i))]. Ji has

diameter 5 · 2−`i , and for any j ≥ i, y0
j ∈ Ji. Thus limi y

0
i converges.

Next we must show that our point lies on Z.

Claim 2.21. (x0, . . . , xn−1) ∈ Z.

Proof. By construction,
(
[σ0
i] × · · · × [σn−1

i]
)
∩ Z 6= 0 for any i. Thus we can take

(y0
i , . . . , y

n−1
i) ∈ Z. Since Z is closed, (x0, . . . , xn−1) = limi(y

0
i , . . . , y

n−1
i) ∈ Z.

Third, we must show that dimH(x0, . . . , xn−1) = 1.

16

Claim 2.22. dimH(x0, . . . , xn−1) ≥ 1.

Proof. Our initial strings σ0
0, . . . , σ

n−1
0 have some complexity KM(σ0

0, . . . , σ
n−1
0) = A.

When we follow strategy 1 at stage i, the length of our strings increase by i many bits,

and the complexity increases by at least i− (n−1) log 3. When we follow strategy 2, our

resulting strings have length `, and our resulting complexity is at least `− 1. Replacing

all the σmi with adjacent strings changes the complexity by at most 2 log |σ0
i |.

So let `i = |σ0
i | and let i0 be the last stage before stage i at which strategy 2 was

followed. Then

KM(σ0
i , . . . , σ

n−1
i) ≥ (`i0 − 1) + (`i − `i0)− (i− i0)((n− 1) log 3 + 2 log `i)

≥ `i − i((n− 1) log 3 + 2 log `i).

If there is no such stage i0, then

KM(σ0
i , . . . , σ

n−1
i) ≥ A+ `i − `0 − i((n− 1) log 3 + 2 log `i)

≥ `i − `0 − i((n− 1) log 3 + 2 log `i).

Note that by construction, strategy 2 will never be employed at successive stages.

So at stage i, strategy 1 will have been used at least every other stage. Further, since

strategy 1 used at stage j always increases the length of the strings by j, `i ≥ i2/4.

Thus −i((n − 1) log 3 + 2 log `i) in the above is a lower order term (recalling that n is

constant), and so

lim inf
i

KM(σ0
i , . . . , σ

n−1
i)

`i
≥ 1.

17

Now consider some `i. Then

x0 � `i ∈ {σ0
i , succ(σ0

i), succ(succ(σ0
i)), pred(σ0

i), pred(pred(σ0
i))},

and similarly for x1, . . . , xn−1. So

|KM(x0 � `i, . . . , xn−1 � `i)−KM(σ0
i , . . . , σ

n−1
i)| ≤ 4 log `i.

So

KM(x0 � `i, . . . , xn−1 � `i) ≥ `i − `0 − i((n− 1) log 3− 2 log `i)− 4 log `i,

and thus

lim inf
i

KM(x0 � `i, . . . , xn−1 � `i)
`i

≥ 1.

Finally, consider some k with `i ≤ k < `i+1. If stage i follows strategy 1, then

k − `i < i, and thus

KM(x0 � k, . . . , xn−1 � k)

k
≥ KM(x0 � `i, . . . , xn−1 � `i)

k

>
KM(x0 � `i, . . . , xn−1 � `i)

`i + i

≥ KM(x0 � `i, . . . , xn−1 � `i)

`i + 2
√
`i

.

If stage i follows strategy 2, then

KM(σ0
i+1 � k, . . . , σn−1

i+1 � k) > k,

18

since `i+1 will be least such that the above does not hold. Thus

KM(x0 � k, . . . , xn−1 � k)

k
≥
KM(σ0

i+1 � k, . . . , σn−1
i+1 � k)− 4 log k

k

>
k − 4 log k

k
.

So

dimH(x0, . . . , xn−1) = lim inf
k

KM(x0 � k, . . . , xn−1 � k)

k
≥ 1.

Claim 2.23. dimH(x0, . . . , xn−1) ≤ 1.

Proof. Suppose not. Then for some i0 and all i > i0,

KM(x0 � `i, . . . , xn−1 � `i) > `i + 4 log `i.

But in this case, KM(σ0
i , . . . , σ

n−1
i) > `i, and so at stage i+1, strategy 2 will be invoked,

resulting in KM(σ0
i+1, . . . , σ

n−1
i+1) ≤ `i+1, and thus

KM(x0 � `i+1, . . . , xn−1 � `i+1) ≤ `i+1 + 4 log `i+1,

contradicting our above assumption about i0.

Thus dimH(x0, . . . , xn−1) = 1. This completes the proof.

Proof of Theorem 2.3. Let X ⊂ Rn be the set of points of dimension 1.

Suppose A,B are open sets in Rn such that A ∩ X and B ∩ X partition X. Then

X ⊆ A ∪B and A ∩B ∩X = ∅. But X is dense, so A ∩B = ∅.

Let Z ′ = bd A. Then Z ′ separates Rn. Let Z be a non-singleton component of Z ′

(Propositions 2.13 and 2.14). Then for any open set U such that U ∩Z 6= ∅, A intersects

19

U but is not dense in U . So Z ∩ U separates U , and thus ind(Z ∩ U) ≥ n− 1.

By the above theorem, Z contains a point of dimension 1, and since Z ⊆ Rn−(A∪B),

this contradicts our choice of A and B.

Proof of Theorem 2.4. Suppose f is any non-constant path in R2. Its image is a con-

nected, locally connected set. Thus in any neighborhood U with imf ∩U 6= ∅, ind(imf ∩

U) ≥ 1 (Proposition 2.15), which in this case means at least n− 1. So by the theorem,

it contains a point of dimension 1.

20

Chapter 3

Computable Categoricity

With Greenberg, Kach and Lempp, I investigated computable categoricity of size ℵ1

linear orders. We discovered a strange class of linear orders that were not relatively

computable, because they contained certain d.c.e information in their order types. Rel-

ative to an oracle for this information, these linear orders became relatively computable

categorical. This led to the notion of relatively computably categorical above a degree.

The question arose if this notion occurs in countable structures.

We begin by illustrating a technique for constructing computably categorical struc-

tures. This technique was developed in collaboration with Downey, Kach and Lempp. In

the following section, we use this technique to separate the three notions of computable

categoricity.

3.1 Pushing on Isomorphisms

We first describe the general structure of the technique. We then demonstrate its use in

a new proof of an existing result of Khoussainov and Shore.

Suppose we are constructing a graph A through the use of various strategies, and

each such strategy has four desirable properties:

1. The strategy will succeed even in the presence of finite injury.

2. At every stage s, the subgraph built by the strategy at stage s is rigid and does not

21

embed into the subgraph built by any other strategy at stage s (including other

instances of the strategy).

3. At every stage s, the subgraph built by the strategy at stage s has a unique

embedding into the subgraph built at stage s+ 1.

4. If the strategy is along the true path, the subgraph created by the full run of the

strategy is computably categorical (not necessarily with any uniformity) (possibly

because it is finite).

Suppose B is another computable structure, and we wish to satisfy the requirement

A ∼= B⇒ (∃f ∈ ∆0
1)[A

∼=f B].

Then at a certain level in the priority tree, we will have a strategy χB for meeting this

requirement. χB does not construct any of A; however, it does construct an isomor-

phism f from A to B, and it affects the construction through its choice of outcome. χB

must correctly map each component in A to a component in B, although it treats com-

ponents differently depending on the strategy that constructed them. The strategy has

two outcomes: “isomorphic” and “not-isomorphic”.

Components created by strategies above χB in the priority tree are ignored. Since

there are only finitely many such strategies, f can be extended to them non-uniformly

after the construction is completed (via property (4)).

Strategies to the right of χB are reset every time χB is visited, and any components

created by them will never again receive attention. χB searches B for identical compo-

nents and maps components appropriately. By property (2), these maps are guaranteed

to be correct.

22

Since χB believes that it is on the true path, it believes that strategies to the left

of it will never again act, and thus any components created by them will never again

receive attention. It handles such components in the same fashion as the previous case.

Strategies beneath the “not-isomorphic” outcome are reset every time χB has out-

come “isomorphic”. χB ignores the components created by such strategies until they

have been reset, at which point it knows that those components will never again receive

attention. It then handles them in the same fashion as the previous two cases.

Components created by strategies beneath the “isomorphic” outcome are only con-

sidered when χB has the “isomorphic” outcome. It only has this outcome when every

such component appears identical to a component in B, and the identical component

in B is the component mapped to by f whenever f has been defined. At such a time,

every such component is mapped to the corresponding component in B (and the ex-

isting maps are extended, via property (3)). Again by property (2) of the strategies

below the “isomorphic” outcome, if χB has the “isomorphic” outcome only finitely of-

ten, then A 6∼= B.

We use this technique in the following proof.

Theorem 3.1 (Khoussainov and Shore[10]). There is a rigid, computably categorical

structure A with no formally c.e. Scott family.

First we remind the reader what it means for a structure to have a formally c.e. Scott

family.

Definition 3.2. Let A be a structure in a computable language L. A formally Σ0
α-Scott

family on A is a Σ0
1 set X of Σ0

α L
r
ω1,ω

-formulas satisfying the following two properties:

1. For all a ∈ An, there is a ϕ ∈ X such that A |= ϕ(a).

2. For all a, b ∈ An, and any ϕ ∈ X, if A |= ϕ(a)∧ϕ(b), then there is an automorphism
of A sending a to b.

23

A formally Σ0
1-Scott family is also called a formally c.e. Scott family.

We emphasize that the formula ϕ are in the language of the model, not the language

of arithmetic.

Formally Σ0
α-Scott families are of interest because of the following result, proved for

α = 1 by Goncharov [8], and for remaining computable α by Ash [1].

Theorem 3.3. Let A be a computable structure. Then the following are equivalent:

• A has a formally Σ0
α-Scott family.

• A is relatively ∆0
α-categorical.

Proof of Theorem 3.1. Construction:

Let {Xi}i∈ω be an enumeration of all formally c.e. families. Our strategy Γi for

defeating Xi is as follows:

1. Choose a large n. Create a vertex xi with a loop of size 1 and a loop of size n.

Choose these elements disjoint from the parameters of Xi.

2. Wait for a formula φ ∈ Xi to describe xi.

3. Choose a large m. Attach a loop of size m to xi. Choose the elements disjoint

from the parameters of Xi.

4. Create a vertex yi with a loop of size 1 and a loop of size n. Choose these elements

disjoint from the parameters of Xi.

There are two possible outcomes. If the strategy waits forever at step (2), then no

formula in Xi describes xi, and thus Xi is not a Scott family for A. If the strategy

reaches step (4), then φ describes both xi and yi, but clearly xi and yi are not in the

same orbit, so Xi is not a Scott family for A.

24

Clearly this strategy will succeed in diagonalizing against Xi even if it is injured

finitely many times. At every stage, the subgraphs are rigid and incomparable under

embedding by our choice of large m and n. Since the final subgraph is finite, it is

computably categorical. Note that it is essential that steps (3) and (4) occur separately

and in the order listed to ensure that there is always a unique embedding from each

stage to the next.

We then put these Γi on a tree along with χB for ensuring computable categoricity.

Verification:

We have already shown that the resulting structure A has no formally c.e. Scott fam-

ily. A is clearly rigid. All that remains to be shown is that A is computably categorical.

Claim 3.4. If χB is along the true path and A ∼= B, χB will have outcome “isomorphic”

infinitely often.

Proof. Suppose χB is along the true path and has outcome “isomorphic” only finitely

many times. Let t0 be a stage after the final time χB has outcome “isomorphic”. Then

there is some component created by some Γi below the “isomorphic” outcome of χB

which is preventing the “isomorphic” outcome from being achieved again. There are

several possibilities.

It might be that Γi has completed step (1), but no vertex with a loop of size 1 and

a loop of size n ever appears in B. Then B is not isomorphic to A.

It might be that Γi has completed step (3), but no loop of size m appears attached

to f(xi) (recall that if we have reached step (3), then χB has defined f on xi). In this

case, B contains an element with a loop of size n and no loop of size m, but A contains

no such element (since yi has not yet been created). Then B is not isomorphic to A.

It might be that Γi has completed step (4), but no new vertex with a loop of size 1

25

and a loop of size n appears in B. Then the element yi has no match in B, and thus B

is not isomorphic to A.

Claim 3.5. If χB is along the true path and A ∼= B, the map f constructed by χB is

an isomorphism.

Proof. For components built by strategies above f , f is non-uniformly defined correctly.

For components built by a strategy Γi which is incomparable to χB on the priority

tree, if Γi reaches step (4), then since χB is along the true path, it reaches this step

before χB attempts to extend f to these components. So when χB attempts to extend f ,

it searches for the two components in B containing n-loops (for the appropriate n), one

containing an m-loop and one not, and maps the corresponding components in A to

them.

For components built by a strategy Γi which is incomparable to χB on the priority

tree, if Γi did not reach step (4), then there is a unique component in B with an n-

loop (for appropriate n). χB searches for this component and maps the corresponding

component in A to it.

Components built by a strategy Γi below the “not-isomorphic” outcome of χB are

handled identically to the previous two cases.

For components built by a strategy Γi below the “isomorphic” outcome, the only

concern is that χB might map xi to the image of yi. But in this case, after Γi reaches

step (3), χB will never again have the “isomorphic” outcome, since the image of xi

will never appear identical to xi (it will never have an m-loop). This contradicts the

assumption that A ∼= B.

This completes the proof.

26

3.2 Eventual Categoricity

Definition 3.6. For a computable structure A and a degree d, call A relatively com-

putably categorical above d (relatively ∆0
α-categorical above d) if for all B,C with the

open diagrams of B,C ≥T d, and C ∼= B ∼= A, there exists an isomorphism f : B ∼= C

with f computable in B⊕ C (f ∈ ∆0
α(B⊕ C)).

Lemma 3.7. For a computable structure A, the following are equivalent:

1. A is relatively ∆0
α-categorical above d.

2. For any B,C with C ∼= B ∼= A, there exists an isomorphism f : C ∼= B with

f ∈ ∆0
α(B⊕ C⊕ d).

Proof. Clearly (2) implies (1). For the reverse, we use Theorem 3.2.1 in Ash and Knight

[2]. Then there exist B̂, g1 ∈ deg(B⊕ d) and Ĉ, g2 ∈ deg(C⊕ d) such that g1 : B ∼= B̂,

g2 : C ∼= Ĉ.

By relatively ∆0
α-categoricity above d, there exists f : B̂ ∼= Ĉ with f ∈ ∆0

α(B⊕ C⊕ d).

Then g−1
2 ◦ f ◦ g1 ∈ ∆0

α(B⊕ C⊕ d) and g−1
2 ◦ f ◦ g1 : B ∼= C.

Corollary 3.8. If A is relatively ∆0
α-categorical above d, and d ≤ b(β), then A is

relatively ∆0
β+α-categorical above b.

Proof. ∆0
α(B⊕ C⊕ d) ⊆ ∆0

β+α(B⊕ C⊕ b).

In some cases, this notion gives us no new information.

Theorem 3.9. A linear order is relatively computably categorical above some d iff it is

relatively computably categorical.

Proof. The proof that a computably categorical linear order must possess only finitely

many adjacencies succeeds in the presence of a d oracle.

27

The following three theorems, however, separate this notion from the other categoric-

ity notions.

Theorem 3.10. For any nonzero c.e. degree y, there exists a structure A which is

relatively computably categorical above y (and thus relatively ∆0
2-categorical), but A is

not computably categorical.

Proof. Choose Y ∈ y a c.e. set. Our structure is a graph.

Construction:

Begin by constructing an “ω-spine”—a component of type ω. To each element of the

spine, attach a single path of length 1.

When n enters Y , attach a new path of length 2 to the nth element of the spine.

Verification:

Given B ∼= A, we show how B⊕ y computes an isomorphism f .

We non-uniformly know the initial elements of the spines in A and B. f maps the

ω-spines in the obvious way. For the nth element of the spine, if n ∈ Y , f waits until

both a path of length 2 and a path of length 1 appear in both A and B. Then it maps

them as appropriate. If n 6∈ Y , f only waits for paths of length 1 to map.

We build a computable copy A′ isomorphic to A, but not by any computable isomor-

phism. Begin by simply copying A. Since Y is properly c.e., if φe is a total computable

function from A to A′, there will be infinitely many n which enter Y after φe has con-

verged on the 1-path attached to the nth element. Add the 2-path in A′ to defeat φe

(i.e., if φe maps the 1-path in A to the 1-path in A′, extend the 1-path in A′ to a 2-path

and add a new 1-path).

Theorem 3.11. There exists a structure A which is computably categorical, relatively

computably categorical above 0′′ (and thus relatively ∆0
2-categorical above 0′), but A is

28

not relatively ∆0
2-categorical.

Proof. Again our structure is a graph.

Construction:

Again begin with an ω-spine. Coming off each vertex in the spine, attach two cliques,

one larger than the other. Since the formulae in our Scott families are Σ0
2, a formula

may appear, in a Σ0
2 fashion, to hold of an element. When a formula from Scott family

Xn appears to hold of an element from each clique attached to the nth element, we

stop growing the cliques. When it ceases to appear to hold of both elements, we resume

growing both cliques, always maintaining one larger than the other. We push on the

isomorphisms to ensure computable categoricity.

Verification:

Computable categoricity is by the standard isomorphism pushing.

0′′ can tell the sizes of the cliques attached to the nth element, including possibly

infinite. If infinite, either can map to either. If finite, simply wait until the correct

number of elements have appeared and then map.

It is not relatively ∆0
2-categorical because every formally Σ0

2 Scott family is defeated.

If some sentence forever describes elements of both cliques, then it fails, since the cliques

have different finite sizes. If no sentence describes them both, then since they are both

infinite, they are in the same orbit, and thus the family has failed.

Theorem 3.12. There exists a structure A which is computably categorical, relatively

∆0
2-categorical, and not relatively computably categorical above any degree d.

Proof. Again our structure is a directed graph.

Construction:

29

Let 〈i, j〉 be the standard pairing function. The basic strategy is to create a vertex

xi with loops of size 〈2i, j〉, and simultaneously to create elements yi,j, for j ∈ ω. yi,j

will have loops of size 〈2i, n〉 for each n ≤ j, and also a loop of size 〈2i+ 1, j〉.

Thus the basic strategy takes the form:

1. Choose a unique i and set j = 0.

2. Create the element xi with a loop of size 〈2i, 0〉

3. Attach a loop of size 〈2i, j + 1〉 to xi.

4. Create the element yi,j with all appropriate loops.

5. Increment j, return to step (3).

We place these strategies on a tree along with standard isomorphism pushing strate-

gies.

Verification:

The structure is computably categorical because of standard pushing.

Consider the formulae φi,j(z) = “there exists a loop of size 〈2i+ 1, j〉 attached to z”

and ψi(z) = “there exists a loop of size 〈2i, 0〉 attached to z, and for all j ∈ ω, there does

not exist a loop of size 〈2i+ 1, j〉 attached to z.” These are formally Σ2 formulae which

isolate yi,j and xi, respectively, and they extend to a formally Σ2 Scott family for A in

the natural fashion. Thus A is relatively ∆0
2-categorical.

On the other hand, any degree d ≥T 0′′ is capable of determining the true path of the

construction. Thus such a degree is capable of building B ∼= A, with B not isomorphic

to A via any d-computable isomorphism: for a given d-computable partial function φ,

choose an xi ∈ A which does grow to be infinite. Wait until φ converges on xi, and then

arrange that φ(xi) is not part of an infinite component by making it isomorphic to a yi,j

for large j. Thus the structure is not relatively computably categorical above d.

30

This suffices because if a structure is relatively computably categorical above some

degree a, then it immediately follows that it is relatively computably categorical above

any d ≥T a. In particular, consider d = a′′ ≥T 0′′.

31

Chapter 4

Limitwise Monotonic Functions

4.1 Basics

Definition 4.1. A function F is limitwise monotonic if there is a computable approxi-

mation function f(·, ·) such that, for all x,

(i) F (x) = lims f(x, s).

(ii) For all s, f(x, s) ≤ f(x, s+ 1).

A set S is limitwise montonic if it is the range of a limitwise monotonic function.

Definition 4.2 (Kach and Turetsky [9]). A function F : Q → ω is support (strictly)

increasing if F (q1) ≤ F (q2) (F (q1) < F (q2)) whenever q1 < q2 and F (q1), F (q2) > 0, the

range of F is unbounded, and the support of F has order type ω.

A function F : Q → ω is support (strictly) increasing limitwise monotonic on Q

if it is support (strictly) increasing and there is a computable approximation function

f : Q× ω → ω such that F (q) = lims f(q, s) and f(q, s) ≤ f(q, s+ 1).

The intuition here is that most F (q) will be zero, but once we see F (q) > 0 at

some stage (when f(q, s) > 0), then we “know” its relationship with all those q′ with

F (q′) > 0.

We obtain the relativized notion support (strictly) increasing 0′-limitwise monotonic

on Q by allowing the approximation function to be 0′-computable instead of merely

32

computable.

The following useful lemma is easily proved:

Lemma 4.3. There is a computable enumeration {fi(·, ·)}i∈ω of total computable func-

tions f satisfying f(x, s) ≤ f(x, s+ 1) for all x, s, and such that every limitwise mono-

tonic function F is the limit of some fi.

Similar results hold for support increasing and support strictly increasing.

Definition 4.4. The strong η-representation of a set S = {n0 < n1 < n2 < . . . } is the

linear order

η + n0 + η + n1 + η + n2 +

A set is said to have a computable strong η-representation if its strong η-representation

has a computable presentation.

Definition 4.5. A degree a is totally limitwise monotonic if every set B ≤T a is a

limitwise monotonic set.

4.2 A Separation Result

Kach and Turetsky introduced the notions of support (strictly) increasing 0′-limitwise

monotonic on Q in the hope of classifying those sets with a computable strong η-

representation.

It is easily seen that every support strictly increasing 0′-limitwise monotonic on Q

set has a computable strong η-representation, while every set with a computable strong

η-representation is support increasing 0′-limitwise monotonic on Q. However, Frolov

33

and Zubkov ([7]) and Kach and Turetsky ([9]) have shown that the second implication

does not reverse, while we show here that the first does not.

Theorem 4.6 (Turetsky). There is a set S with a computable strong η-representation

that is not support strictly increasing 0′-limitwise monotonic on Q.

Proof. Let {fi(x, s)}i∈ω be an enumeration of candidate total 0′-computable monotonic

approximations on Q (as in Lemma 4.3). By the Limit Lemma, let {f̂i(x, s, t)}i∈ω be an

enumeration of computable approximations to fi so that fi(x, s) = limt f̂i(x, s, t). Note

that since the fi are total, the limit limt f̂i(x, s, t) will always converge to a finite limit.

We construct a computable presentation of a strong η-representation and let S be

the set represented. We meet the following requirements:

Ri : The set S is not the range of Fi.

The strategy to assure Ri hinges on the fact that support strictly increasing limitwise

monotonic functions cannot cope with two blocks in a strong η-representation merging.

This fact is exploited to force a column to infinity.

Strategy for Ri: Let <Q be the natural ordering on Q. The current stage will be denoted

by t.

1. Choose a large number n0 and create blocks B0 and B of sizes n0 − 1 and n0 in L

at an appropriate location. Restrain other strategies from changing these blocks.

2. Wait for a (least) pair 〈x, u0〉 to appear with f̂i(x, u0, t) = n0.

3. Wait for a (least) pair 〈x0, s0〉 to appear with f̂i(x0, s0, t) = n0 − 1 and x0 <Q x.

34

4. Merge B0 and B and any existing larger blocks into a single block of some size m0

and release any restraint on this block. Restrain any blocks from forming of sizes

between n0 − 1 and m0.

5. Wait for an s′0 > s0 with f̂i(x0, s
′
0, t) = m′0 for some m′0 ≥ m0. If more than one

such s′0 exist, choose the least.

6. Release the restraint created at Step 4.

7. Wait for a u1 > u0 with f̂i(x, u1, t) = n1 for some n1 > m0 with n1 the size of a

block in L.

8. Create a block B1 of size n1 − 1 and restrain other strategies from changing this

block or the block found in the previous step. Return to Step 3 with n1 instead of

n0.

Note that our actions in Step 4 and Step 8 can be undone — we can resume densifying

the interval between B0 and B to separate the blocks, and we can densify the block B1

to destroy it. Indeed, this capacity is essential, since there will be times we will need to

roll back the construction to an earlier point. If, on some pair we chose, f̂i changes its

value, we return to the step at which we chose it, undoing all work done in the interim.

Thus, if at some stage t, f̂i(x, u0, t) 6= n0, we roll back the construction to Step 2. If

at some stage t, f̂i(xj, sj, t) 6= nj − 1, we roll back the construction to Step 3 in the jth

loop. If at some stage t, f̂i(xj, s
′
j, t) 6= m′j, we roll back the construction to Step 5 in the

jth loop, reestablishing the appropriate restraint. If at some stage t, f̂i(x, uj, t) 6= nj

(for j > 0), we roll back the construction to Step 7 in the jth loop.

Outcomes for Ri: There are several possible outcomes for the strategy:

35

2: The strategy is infinitely often at Step 2, either because it waits at this step forever,

or because it is infinitely often rolled back to this step. In either case, n0 does not

appear in the range of Fi but does appear as a block size in L, and thus Fi does

not enumerate S.

〈3, j〉: The strategy is infinitely often at Step 3 in the jth loop, either because it waits at

this step forever, or because it is infinitely often rolled back to this step. Further,

none of outcomes 2, 〈3, j′〉, 〈5, j′〉 or 〈7, j′〉 with j′ < j apply. In this case, nj − 1

does not appear in the range of Fi but does appear as a block size in L, and thus Fi

does not enumerate S.

〈5, j〉: The strategy is infinitely often at Step 5 in the jth loop, either because it waits at

this step forever, or because it is infinitely often rolled back to this step. Further,

none of outcomes 2, 〈3, j′〉 with j′ ≤ j, or 〈5, j′〉 or 〈7, j′〉 with j′ < j apply. In

this case, if Fi(xj) converges, then Fi(xj) is between nj − 1 and mj. However, S

will have no element between nj − 1 and mj, and thus Fi does not enumerate S.

〈7, j〉: The strategy is infinitely often at Step 7 in the jth loop, either because it waits at

this step forever, or because it is infinitely often rolled back to this step. Further,

none of outcomes 2, 〈3, j′〉 or 〈5, j′〉 with j′ ≤ j, or 〈7, j′〉 with j′ < j apply. Then

if Fi(x) converges, it does so to a value not contained in S. Thus Fi does not

enumerate S.

∞: The strategy spends only finitely many stages at every step in every loop. Since

Fi(x) ≥ nj for all j, and nj < mj < nj+1, Fi(x) diverges.

36

The Tree: We order the outcomes of a strategy by:

2 < 〈3,0〉 < 〈5,0〉 < 〈7,0〉 < 〈3,1〉 < 〈5,1〉 < 〈7,1〉 < · · · <∞

As usual for infinite injury arguments, the true outcome of a strategy is the limit infimum

of the outcomes.

We arrange the strategies on a tree in the usual fashion. When a strategy τ is rolled

back, we also roll back the work done by any strategies ρ directly below τ .

If strategy ρ is below some non-∞ outcome of strategy τ , the strategy ρ chooses a

large n0 and works with values larger than those used by τ . It is possible that ρ will

be injured by a later merge step of τ . However, if we return to ρ, it will mean we have

rolled back τ to before the merger, thus healing the injury to ρ.

If strategy ρ is below the ∞ outcome of strategy τ , the strategy ρ waits for the

restraint of τ to move to a sufficiently late interval that there is sufficient room for ρ

to work with values beneath the restraint. It chooses its n0 smaller than the restraint

of τ , but larger than the current size of any blocks which existed when ρ was initialized.

When ρ wishes to perform a merger, it waits until τ reaches a Step 6. It then performs

the merger as described, including merging larger blocks that τ previously used. If at

some later point τ is rolled back, the strategy ρ is rolled back with it.

If ρ is below the infinite outcome of τ , it is possible that τ will violate the restraint

of ρ (if τ ’s nj is ρ’s mk). In this case, ρ waits until τ performs a merger, and then

reassigns mk to the value of this new block (so ρ’s mk is τ ’s mj). Barring roll back, τ

will never again violate this restraint.

In this fashion, strategies respect the restraints imposed by strategies directly above

them in the tree. Strategies pay no attention to restraints of any other strategies.

37

Verification: Define the true path inductively using the limit infimum of the temporary

outcomes.

Claim 4.7. If τ is along the true path, and τ is active at stage t and has a restraint at

stage t, then that restraint is not currently violated by some ρ directly below τ .

Proof. If ρ is below some finite outcome of τ , it creates blocks of size larger than the

restraint of τ . If ρ is below the infinite outcome of τ , it respects the restraint of τ as

discussed above.

Claim 4.8. If τ is along the true path, and τ is active at stage t and has a restraint at

stage t, then that restraint is not currently violated by some ρ off the true path.

Proof. Note that the restraint is not violated at the stage it is originally imposed.

Assume ρ is not directly below τ , as that case is handled above.

If the true path follows a finite outcome at the first place it and ρ differ, and ρ is

to the right of the true path, then any activity by ρ between the stage at which the

restraint is imposed and the current stage has been rolled back.

If the true path follows a finite outcome at the first place it and ρ differ, and ρ is to

the left of the True path, then ρ cannot act between the stage at which the restraint is

imposed and the current stage (as in order for it to act, τ would have to be rolled back,

removing the restraint).

If the true path follows an infinite outcome at the first place it and ρ differ, then

let σ be the meet of τ and ρ. Then ρ created blocks above the restraint of σ, while τ

imposes its restraint beneath that of σ.

Claim 4.9. If τ is along the true path, and τ imposes a restraint, there will come a

stage t when either τ will be rolled back to before it imposed this restraint, τ will release

38

this restraint and this release will never be rolled back, or the restraint will never be

violated after stage t.

Proof. Suppose that the restraint is neither rolled back nor released by τ . Then τ will

wait until the σ above it stop violating the restraint. The strategy σ can only violate the

restraint of τ if τ extends the infinite outcome of σ, and if σ has infinite final outcome,

it can only be rolled back to any given step finitely many times. Thus, eventually, σ will

never again violate the restraint of τ . Since no other strategies are capable of violating

the restraint of τ , the restraint is never again violated.

Claim 4.10. For any block created in L, the limit infimum of its size is finite.

Proof. Let B be some block created by some strategy τ .

Suppose ρ is some other strategy. Let σ be ρ meet τ . In order for ρ to affect B,

either ρ is σ or ρ is below the infinite outcome of σ, and either τ is σ or τ is below the

finite outcome of σ. But by our construction of how strategies below an infinite outcome

behave, ρ must have been initialized before B was created.

Thus there are only finitely many ρ that can affect B. Further, barring roll back,

each strategy will only affect a given block finitely many times. Thus either one of these

strategies is infinitely often rolled back, in which case B is constantly returned to a given

finite size, or the size of B stabilizes.

Claim 4.11. There are blocks of arbitrarily large size in L.

Proof. Let τ be a strategy along the true path being initialized at stage t such that this

initialization will never be rolled back. During initialization, τ creates a large block.

Since τ will never have its initialization rolled back, this block will never be destroyed.

It may be grown into a larger block, but by the above, some large block will result.

Thus L has arbitrarily large blocks.

39

Claim 4.12. Each strategy along the true path meets its requirement.

Proof. Immediate from construction.

This completes the proof.

4.3 A Totally Limitwise Monotonic Degree

We prove the following theorem:

Theorem 4.13. There exists a noncomputable c.e. degree a such that for every set

B ≤T a, B is limitwise monotonic.

This theorem was later strengthened in by the author with Downey and Kach [4]:

Theorem 4.14 (Downey, Kach, Turetsky). A computably enumerable degree a is totally

limitwise monotonic if and only if a is non-high.

Proof of Theorem 4.13. We construct a c.e. set A and computable functions fj(·, ·). The

fj will be nondecreasing in the second coordinate and will witness that A is totally

limitwise monotonic as follows: for Turing functional Φj, if ΦA
j is an infinite set, then

Fj(·) = lims fj(·, s) will be total and range Fj = ΦA
j .

We thus must meet the following three sorts of requirements:

Pi : A 6= Wi

Rj : ΦA
j ⊆ range Fj

Nk,x : |ΦA
j | =∞⇒ limt fk(x, t) <∞ & limt fk(x, t) ∈ ΦA

j .

Strategy for Pi:

Our strategy here is standard: choose a large element y and keep y out of A. When y

enters Wi, enumerate y into A.

40

Strategy for Rj:

Whenever an element z appears in ΦAs
j,s that is not in the range of f(·, s), we choose

a large x and define fj(x, s+ 1) = z.

Strategy for Nk,x:

Let s0 be the stage at which this strategy was initialized, and let z0 = fk(x, s0).

If |ΦA
j | =∞, then there must eventually be a z1 ∈ ΦAs

j,s with z1 ≥ z0. When this occurs,

restrain A � ϕ(z1) and define fk(x, s+ 1) = z1.

Construction:

We arrange the Pi and Nk,x requirements on a priority tree in the usual fashion.

The Rj requirements do not go on the tree.

We define fj(x, 0) = 0 for every j, x. At the end of stage s, if fj(x, s + 1) has not

been defined by some Rj or Nj,x strategy, define fj(x, s+ 1) = fj(x, s).

Verification:

Claim 4.15. fj is a total computable function which is nondecreasing in the second

coordinate.

Proof. Immediate from the construction.

Claim 4.16. ΦA
j ⊆ range Fj.

Proof. Suppose z ∈ ΦA
j with use ϕ(z). Choose a stage s such that As � ϕ(z) has

converged, and ΦA
j,s(z) ↓. Then at this stage, if there is not already an x such that

fj(x, s) = z, a new x will be chosen for this purpose. For all s′ > s, fj(x, s
′) = z, and

thus Fj(x) = z.

Claim 4.17. Every strategy is injured only finitely many times.

41

Proof. By induction on the priority of the strategy.

Claim 4.18. Every Pj and Nk,x strategy meets its requirement.

Proof. Immediate from the construction.

This completes the proof.

42

Chapter 5

Intrinsically Complete Relations

This chapter is motivated by the following result.

Theorem 5.1 (Downey, Moses [6]). There is a computable linear order L such that the

successivity relation on L is intrinsically ∆0
2-complete. That is, the degree spectrum of

the successivity relation on L is precisely {0′}.

We extend the above result by introducing higher complexity natural relations and

constructing linear orders on which they are intrinsically ∆0
α-complete for the natural α.

The proof involves a metatheorem of Ash, which we review.

5.1 Relations

We recall that for a linear order L, the condensation of L is defined to be L/ ∼, where

x ∼ y � |{z : x <L z <L y}| < ω.

The α-condensation of L, denoted L(α), is then defined inductively.

Definition 5.2. Given a linear order L, denote by Succ(L) the set

{{a, b} : a, b ∈ L and {a, b} is a successivity in L}.

43

Definition 5.3. Given a linear order L, define the binary relation Sα by

Sα(x, y) � {[x]L(α) , [y]L(α)} ∈ Succ(L(α)).

Definition 5.4. Given a linear order L, define the binary relation Iα by

Iα(x, y) � [x]L(α) = [y]L(α) .

Definition 5.5. Given a linear order L, define the binary relation Dα by

Dα(x, y) � ([x]L(α) , [y]L(α))(L(α)) is infinite dense without endpoints.

Note that if L is computable, then Sα is ∆0
2α+2, while Iα is ∆0

2α+1 and Dα is ∆0
2α+3.

5.2 Metatheorem

We introduce the necessary terminology and state without proof the metatheorem. For

a proof, see Ash and Knight [2].

Definition 5.6. Let L and U be sets. An alternating tree on L and U is a tree P

consisting of non-empty finite alternating sequences `0u1`1u2`2 . . . , where `i ∈ L and

ui ∈ U .

Definition 5.7. For P an alternating tree on L and U , an instruction function for P is

a function q from the set

{τ ∈ P : |τ | = 2n+ 1}

to U , such that if q(τ) = u, then τu ∈ P .

44

Definition 5.8. For P an alternating tree on L and U , and q an instruction function

for P , a run of (P, q) is a path

π = `0u1`1u2`2 . . .

such that π � m ∈ P for all m, and π(2m+ 1) = q(π � 2m+ 1).

Definition 5.9. An α-system is a structure of the form

(L,U, `0, P, E, (≤β)β<α),

where L and U are c.e. sets, `0 ∈ L, P is a c.e. alternating tree on L and U , all sequences

in P begin with the element `0, E is a computable function E : L→ [ω]<ω (where E(`)

is a canonical index for a finite set), and the ≤β are uniformly c.e. binary relations on L

satisfying the following:

1. ≤β is reflexive and transitive.

2. For γ < β, ` ≤β `′ ⇒ ` ≤γ `′.

3. ` ≤0 `
′ ⇒ E(`) ⊆ E(`′).

4. If τ`0u ∈ P , and
`0 ≤γ0 `1 ≤γ1 · · · ≤γk−1

`k,

for α > γ0 > γ1 > · · · > γk, then there exists `∗ such that τ`0u`∗ ∈ P , and
`i ≤γi `∗, for all i ≤ k.

We extend E to paths through P by taking unions, i.e, defining

E(π) =
⋃
i∈ω

E(π(2i+ 1)).

45

Theorem 5.10 (Ash). Let (L,U, `0, P, E, (≤β)β<α) be an α-system. Then for any ∆0
α-

computable instruction function q, there is a run π of (P, q) such that E(π) is c.e., and

a c.e. index can be found uniformly for indices for q and the α-system.

5.3 Back-and-Forth Relations

We introduce a further concept that will be necessary for the main result. Although the

notions are quite general, applying to any collection of computable structures (and can

be found in Ash and Knight [2]), we describe them for the special case of linear orders.

Definition 5.11. We define the standard back-and-forth relations by recursion. Let A

and B be linear orders, and a ∈ A, b ∈ B:

We define (A, a) ≤0 (B, b) if and only if |a| ≤ |b|, and the map ai 7→ bi is an

embedding of a into b (as finite suborders of A and B).

For α > 0, we define (A, a) ≤α (B, b) if and only if |a| ≤ |b|, and for each d ∈ B and

each β < α, there exists c ∈ A such that (B, bd) ≤β (A, ac).

We will use the following proposition in the next section. For a proof, see [2].

Proposition 5.12. For any computable ordinal α, there exists a uniformly computable

sequence {Cn, cn}n∈ω of linear orders where each Cn has order type ωα · n, and cn is the

n-tuple of “first elements” from copies of ωα in Cn. Further, for β < α, the standard

back-and-forth relations ≤β on pairs (Cn, a) are uniformly c.e. in β.

5.4 Result

Theorem 5.13. For any computable ordinal α, there is a computable linear order L such

that Iα on L is intrinsically ∆0
2α+1-Turing complete, Sα is intrinsically ∆0

2α+2-Turing

46

complete and Dα is intrinsically ∆0
2α+3-Turing complete.

It suffices to prove the following three lemmas:

Lemma 5.14. For any computable ordinal α, there is a computable linear order L such

that Iα on L is intrinsically ∆0
2α+1-Turing complete.

Lemma 5.15. For any computable ordinal α, there is a computable linear order L such

that Sα on L is intrinsically ∆0
2α+2-Turing complete.

Lemma 5.16. For any computable ordinal α, there is a computable linear order L such

that Dα on L is intrinsically ∆0
2α+3-Turing complete.

Proof of Lemma 5.15. Let {Ci, ci}i∈ω be the sequence from the previous section.

Let {Bi}i∈ω be an effective listing of all computable linear orders. We build L to

have the form

wα · (η + 3 + A0 + 4 + A1 + 5 + A2 + . . .),

where each Aj contains no block of size greater than two. Thus if Bi
∼= L, the image of

ωα · ((3 + i) +Ai + (4 + i)) is uniquely defined in Bi, and can be identified by the unique

blocks of size ωα · (3 + i) and ωα · (4 + i).

We build each Ai to ensure that if Bi
∼= L, then Sα(Bi) restricted to the image

of ωα · Ai is ∆0
2α+2-Turing complete.

Definition of U :

47

Let

U = {〈{wi}i<n, {Xi}i<n,{Ri}i<n, {Si}i<n, σ〉 :

wi is a finite linear order,

Xi ⊆ [wi]
2,

{a, b}, {c, d} ∈ Xi ⇒ a, b ≤wi c, d or a, b ≥wi c, d,
Ri, Si ⊆ wi,

|Ri| = 3 + i and |Si| = 3, or Ri = Si = ∅,
every element of Ri is to the left of every element of Si,

{a, b} is an adjacency in Ri ⇒ {a, b} ∈ Xi,

{a, b} is an adjacency in Si ⇒ {a, b} ∈ Xi,

σ ∈ 2<ω.}

Let us pause a moment to give some intuition for what these tuples are. We wish to

diagonalize against all Bi, and so each wi will be Bi at some stage s.

Ri will be our guess for the left separator in Bi (the ωα · (3 + i) block). It will not

be the full block, but rather a single point from each copy of ωα. Similarly, Si will be

our guess for the right separator in Bi—actually just the leftmost three elements of it (a

point each from the leftmost three ωα copies in the ωα · (4 + i) block of Bi). We describe

these as guesses, because they will not necessarily be correct at first—our instruction

function is one jump too weak to be able to compute these blocks. For example, when

searching for the (ωα · 7)-block, we may mistake the (ωα · 9)-block for it. However, we

will eventually realize this mistake and move left in search of the correct block. This

will eventually settle on the correct block (assuming Bi has the correct form).

σ will be an initial segment of the set we wish to code into Sα(Bi)—in this case,

0(2α+2).

Xi will be pairs in Sα(Bi); however, we cannot make Xi all of Sα(Bi), for a reason

we now explain. Suppose {a, b} ∈ Sα(Bi). Then for any â ∈ [a]L(α) , b̂ ∈ [b]L(α) , it is

the case that {â, b̂} ∈ Sα(Bi), and there are infinitely many such pairs â, b̂. Suppose

48

every computation we define in our reduction were to use only these pairs. Then the

set computed could be computed from knowledge of a, b and B
(α)
i , which would require

only 0(2α+1). For this reason, it is important that the pairs used in our computations

span infinitely many α-condensation classes.

We achieve this with the third requirement above: no two pairs in Xi can partake

in precisely the same α-condensation classes. If we think of S0(B
(α)
i) as a collection of

equivalence classes on Sα(Bi), the third requirement requires that Xi contain no more

than a single element from each equivalence class. In fact, Xi will contain exactly one

element from each class.

49

Definition of L:

Let

L = {〈v, p, Y, {Ti}i<n+1,{wi}i<n, {Xi}i<n, {Ri}i<n, {Si}i<n, {Γi}i<n, {zi}i<n, σ〉 :

v is a finite linear order,

p is a finite partial injection from ω to C|v|,

Y ⊆ [v]2,

{a, b} ∈ Y ⇒ {a, b} is an adjacency in v,

Ti ⊆ v,

|Ti| = 3 + i,

{a, b} is an adjacency in Ti ⇒ {a, b} ∈ Y,
wi is a finite linear order,

Xi ⊆ [wi]
2,

|Xi| < ω,

{a, b}, {c, d} ∈ Xi ⇒ a, b ≤wi c, d or a, b ≥wi c, d,
Ri, Si ⊆ wi,

|Ri| = 3 + i and |Si| = 3, or Ri = Si = ∅,
every element of Ri is to the left of every element of Si,

{a, b} is an adjacency in Ri ⇒ {a, b} ∈ Xi,

{a, b} is an adjacency in Si ⇒ {a, b} ∈ Xi,

σ ∈ 2<ω,

|(Y)i| = |σ| = n,

|X∗i | ≤ n,

{a, b}, {b, c} ∈ X∗i ⇒ a = c,

zi ∈ ω,
Γi is a finite set of consistent computations,

Γ
X∗i
i has a computation for every m < |X∗i |,
γi(m) contains at least m+ 1 many ones,

the computations in Γi check only positive information,

(∀m > zi) Γ
X∗i
i (m) 6= σ(m)⇒ Order Property 1 for m,

(∀m > zi) Γ
X∗i
i (m) = σ(m)⇒ Order Property 2 for m.}

50

We explain some of the terminology in the above. Let

(Y)i := {{a, b} ∈ Y : Ti <v a and b <v Ti+1}.

Let

X∗i := {{a, b} ∈ Xi : Ri <wi a and b <wi Si}.

If Ri = Si = ∅, we let X∗i = ∅.

Order Property 1 for m is the following: Consider x the finite linear order consisting

of the first (m+1)-many elements of X∗i (by Gödel number), with the ordering inherited

from wi, and y the finite linear order consisting of the first (m + 1)-many elements

of (Y)i, with the ordering inherited from v. Our requirement on the ordering of the

pairs in Xi, along with the fact that every element of (Y)i is an adjacency of v, justifies

these orderings. As finite linear orderings of the same size, there is a unique isomorphism

between them. Order Property 1 states that the first element (by Gödel number) of x

maps to the (m+ 1)st element (by Gödel number) of y.

Order Property 2 for m is the following: Consider y the finite linear order consisting

of the first (m+1)-many elements of (Y)i (by Gödel number), with the ordering inherited

from v. Order Property 2 states that in y, the (m+ 1)st element (by Gödel number) is

the immediate successor of the mth element.

As we did before, we pause a moment to give an intuition for what these tuples

represent. Every element of the tuples in U recurs in the tuples of L, with the same

meaning.

v will be a linear order we are building which will have the form η + 3 + A0 + 4 +

A1 + 5 +A2 + In other words, v will be the α-condensation of L. We make no claim

that v will be a computable order; in fact, it will necessarily have jump 0(2α+2).

51

p is used in constructing a computable L ∼= ωα · v. For more details, see Ash &

Knight Chapter 18, §4 [2].

Ti will be the ith separator in v (i.e., the 3 + i-block).

Γi will be the reduction we build witnessing Sα(Bi) ≥T 0(2α+2). In fact, it will not

compute 0(2α+2), but rather some set which differs in only a finite number of elements.

As discussed before, Ri and Si will not necessarily be correct at first. Any com-

putations created while they are wrong cannot be trusted, nor can they necessarily be

corrected. zi tracks this fact by denoting the level below which our computations cannot

be trusted. It will not increase while Ri and Si remain constant.

Definition of the System:

Given ` ∈ V , we define E(`) = Diagat(dom(p)) t Γ0 t Γ1 t Here we think of

dom(p) as having the ordering induced by p−1(C|v|).

Given `, `′ ∈ V and β < 2α + 1, we define

` ≤β `′ � E(`) ⊆ E(`′),

& v ⊆ v′,

& (ωα + C|v|, range(p)) ≤β (ωα + C|v′|, range(p′)).

52

We define

` ≤2α+1 `
′ � ` ≤2α `

′,

& n ≤ n′,

& Ti = T ′i ,

& wi ⊆ w′i,

& Ri 6= ∅ ⇒ R′i 6= ∅,
& Ri = R′i or R′i is left of Ri,

& Si = S ′i or S ′i is left of Si,

& [Ri = R′i 6= ∅ and Si = S ′i 6= ∅]⇒ zi = z′i,

& The first |X∗i |-many elements of (Y)i (by Gödel number) are in (Y ′)i,

& Xi ⊆ X ′i,

& |X∗i | = |X ′i
∗| ⇒ (Y)i ⊆ (Y ′)i,

& σ ⊆ σ′,

& (Y ′\Y) ∩ [v]2 = ∅.

We let `0 = 〈∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅〉, and let P consist of those finite alternating

sequences `0u1`1u2 . . . such that `k ∈ L, uk ∈ U , and if

uk = 〈{w′k,i}i<n′k , {X
′
k,i}i<n′k , {R

′
k,i}i<n′k , {S

′
k,i}i<n′k , σ

′
k〉

`k = 〈vk, pk, Yk, {Tk,i}i<nk+1, {wk,i}i<nk , {Xk,i}i<nk ,
{Rk,i}i<nk , {Sk,i}i<nk , {Γk,i}i<nk , {zk,i}i<nk , σk〉

then the following hold:

1. nk = n′k = k, wk,i = w′k,i, Xk,i = X ′k,i, Rk,i = R′k,i, Sk,i = S ′k,i and σk = σ′k.

2. wk,i ⊆ wk+1,i, Xk,i ⊆ Xk+1,i, Rk,i ⊆ Rk+1,i, Sk,i ⊆ Sk+1,i and σk ⊆ σk+1.

3. `k ≤2α+1 `k+1.

4. wk,i is an ordering of the first k many constants from the universe of Bi.

5. vk is an ordering containing the first k many constants from A.

6. |X∗k+1,i| − |X∗k,i| < 2.

7. There exists di, ei ∈ vk+1\vk with di the immediate successor of Ti and ei the
immediate predecessor of Ti+1.

53

8. If a, b ∈ vk but {a, b} 6∈ Yk, then there exists c ∈ vk+1 between a and b.

9. k ⊆ dom(pk).

10. c|vk| ⊆ range(pk).

11. f−1
k+1 ◦ pk+1 ◦ p−1

k ◦ fk = i. Here fm is the (unique) isomorphism from vm to c|vm|
(since they are finite linear orders of the same cardinality), while i is the inclusion
map from vk to vk+1. In particular, we require that pk+1 ◦ p−1

k (c|vk|) ⊆ c|vk+1|.

Claim 5.17. (L,U, `0, P, E, (≤β)β<2α+2) is a (2α + 2)-system.

Proof. The only non-trivial condition is the final partial order condition.

Suppose τ`0u ∈ P , and

`0 ≤β0 `
1 ≤β1 · · · ≤βm−1 `

m,

for 2α + 2 > β0 > · · · > βm.

The relations ≤β for β < 2α + 1 concern only the maps p, and constructing a map

p∗ for a chain of such proceeds exactly as in Chapter 18, §4 of [2]. This allows us to

restrict to the case `0 ≤2α+1 `
1.

Let

u = 〈{wu,i}i<nu , {Xu,i}i<nu , {Ru,i}i<nu , {Su,i}i<nu , σu〉,
`0 = 〈v0, Y0, {T0,i}i<n0+1, {w0,i}i<n0 , {X0,i}i<n0 ,

{R0,i}i<n0 , {S0,i}i<n0 , {Γ0,i}i<n0 , {z0,i}i∈n0 , σ0〉,
`1 = 〈v1, Y1, {T1,i}i<n1+1, {w1,i}i<n1 , {X1,i}i<n1 ,

{R1,i}i<n1 , {S1,i}i<n1 , {Γ1,i}i<n1 , {z1,i}i∈n1 , σ1〉.

We construct `∗ as follows:

Let n∗ = nu = n0 + 1, {w∗,i}i<n∗ = {wu,i}i<nu , {X∗,i}i<n∗ = {Xu,i}i<nu , {R∗,i}i<n∗ =

{Ru,i}i<nu , {S∗,i}i<n∗ = {Su,i}i<nu , σ∗ = σu. For i < n0, let T∗,i = T0,i.

54

We create v∗ by adding elements to v1. We define Y∗ by defining (Y∗)i. We add n0 +3

additional elements to the far right of v1 and let T∗,n0 consist of these new elements. For

any two elements a, b ∈ v0, if {a, b} 6∈ Y0, we add an element between them if there is

not already such an element.

We then consider each i < n∗ separately. There are three cases.

(Case 1.) Suppose Ru,i 6= R0,i or Ru,i = ∅. (The commonality of this case is that we

may define z∗,i as we please.)

Let f, g be new elements. We let (Y∗)i = {{f, g}} ∪ (Y0)i.

We add f and g to v1 such that (Y∗)i satisfies Order Property 2. We add new least

and greatest elements to the interval between Ti and Ti+1.

We let Γ∗,i = Γ1,i. We choose z∗,i larger than any m for which Γ∗,i contains a

computation.

(Case 2.) Ru,i = R0,i 6= ∅ and X0,i = Xu,i.

Let z∗,i = z0,i.

Let f, g be new elements. We let (Y∗)i = {{f, g}} ∪ (Y0)i.

We add f and g to v1 such that (Y∗)i satisfies Order Property 2. We add new least

and greatest elements to the interval between Ti and Ti+1.

We let Γ∗ = Γ1.

(Case 3.) Ru,i = R0,i 6= ∅ and X0,i 6= Xu,i. Let |X∗0,i| = p.

Let z∗,i = z0,i.

Let fp, gp, . . . , fn0 , gn0 be new elements. We define (Y∗)i to contain the first p many

elements of (Y0)i, along with {fp+1, gp+1}, . . . , {fn, gn}.

If Γ
Xu,i
1 does not contain a computation for p, we let Γ∗ be Γ1 along with an additional

computation correctly computing σu(p) from Xu,i. Otherwise, we let Γ∗ = Γ1.

55

If Γ
Xu,i
∗ = σu(p), we add fp and gp such that (Y∗)i satisfies Order Property 2. Oth-

erwise, we add them such that (Y∗)i satisfies Order Property 1. We add fm and gm

satisfying Order Property 2 for p < m ≤ n0. We add new least and greatest elements to

the interval between Ti and Ti+1.

We let Y∗ and v∗ be as constructed in this fashion. We define

`∗ = 〈v∗, p∗, Y∗, {T∗,i}i<n∗+1, {w∗,i}i<n∗ , {X∗,i}i<n∗ ,
{R∗,i}i<n∗ , {S∗,i}i<n∗ , {Γ∗,i}i<n∗ , {z∗,i}i∈n∗ , σ∗〉.

By construction, `∗ is precisely as required.

Definition of the Instruction Function:

For τ ∈ P of length 2n−1, let q(τ) = 〈{wi}i<n, {Xi}i<n, {Ri}i<n, {Si}i<n, σ〉 where σ =

∅(2α+2) � n (∅(2α+1) for finite α), wi = Bi � n, Xi is the Gödel least choice set for Sα(Bi)

restricted to wi, Ri is the Gödel least choice set for the leftmost (i + 3)-block in the α-

condensation of Bi restricted to wi, and Si is the Gödel least choice set for the leftmost

3-block in the α-condensation of Bi restricted to wi to the right of Ri.

Verification:

By the metatheorem, there is a run π of (P, q) such that E(π) is c.e., and an index

for E(π) can be effectively found. Let Lπ be the linear order whose atomic diagram is

enumerated by E(π), and let {Γπ,i}i∈ω be the Turing functionals enumerated by E(π).

Claim 5.18. Define Aπ =
⋃
vk for the vk along π. Then Lπ = ωα · Aπ.

Proof. As in Chapter 18, §4 of [2].

Claim 5.19. Lπ has the form

ωα · (η + 3 + A0 + 4 + A1 + 5 + A2 + . . .),

56

where each Ai contains no block of size greater than two.

Proof. Immediate by construction.

Claim 5.20. If Bi has the form

ωα · (η + 3 +Bi,0 + 4 +Bi,1 + 5 +Bi,2 + . . .),

then Ai has infinitely many successivities.

Proof. Clearly a pair {a, b} is a successivity in Ai iff {a, b} ∈ (Yk)i for cofinitely many k.

Because of the form of Bi, there exists a k0 such that Rk,i = Rk0,i and Sk,i = Sk0,i

for all k > k0. We restrict our attention to k > k0.

There are two possibilities. If Bi,i has only finitely many successivities, then there

is a k1 with X∗k1,i a full choice set for Sα(Bi). Then X∗k,i = X∗k1,i for all k > k1. The

(Yk)i thus form a strictly increasing chain for k > k1, and thus Ai has infinitely many

successivities.

IfBi,i has infinitely many successivities, then for anym, there is a k1 such that |X∗k1,i| >

m. Then the first m many elements of (Yk1)i will be elements of (Yk)i for any k > k1,

and thus Ai will have at least m many successivities. Thus Ai has infinitely many

successivities.

Claim 5.21. If Bi has the form

ωα · (η + 3 +Bi,0 + 4 +Bi,1 + 5 +Bi,2 + . . .),

then the successivities of Ai are ordered with type ω+n, n+ω∗ or ω+ω∗ for some finite

(possibly empty) n.

57

Proof. Because of the form of Bi, there exists a k0 such that Rk,i = Rk0,i and Sk,i = Sk0,i

for all k > k0. We restrict our attention to k > k0.

There are two cases. If Bi,i has only finitely many successivities, let k1 be such

that X∗k1,i = Succ(Bi,i). Let n be the number of successivities in (Yk)i to the right of the

newest successivity. Then every additional successivity will be added to Ai to satisfy

Order Property 2, so the type of the successivities in Ai will be ω + n.

IfBi,i has infinitely many successivities, call a true stage a stage k+1 at whichX∗k+1,i 6=

X∗k,i. Let |X∗k+1,i| = m+ 1. Then let Ck consist of the mth element of (Yk+1)i and those

elements of (Yk)i to the left of the mth element of (Yk+1)i, and let Dk consist of those

elements of (Yk)i to the right of the mth element of (Yk+1)i. Note that at the next true

stage, all successivities not in Ck or Dk will be removed, and new successivities will

only be added between Ck and Dk. Thus C =
⋃
k Ck and D =

⋃
kDk partition the

successivities of Ai, and C is finite or ω, while D is finite or ω∗.

Claim 5.22. If Bi has the form

ωα · (η + 3 +Bi,0 + 4 +Bi,1 + 5 +Bi,2 + . . .),

and Bi,i has infinitely many successivities, then Γ
Sα(B)
π,i is total.

Proof. Immediate from construction.

Claim 5.23. If Bi
∼= Lπ, then Γ

Sα(B)
π,i ≡fin ∅(2α+2) (or ∅(2α+1) for finite α).

Proof. Let {a, b} be the first successivity of Bi,i (by Gödel number). In Bi,i, there are

either only n-many successivities to the left of {a, b} or only n-many to the right, for

some finite n. Without loss of generality, we consider the first case. Let {c, d} be the

58

successivity in Ai corresponding to {a, b}. Note that this is well-defined because ω + n,

n+ ω∗ and ω + ω∗ are all rigid.

Let k be a stage such Rk,i and Sk,i have converged and such that these n-many

successivities have all appeared inX∗k,i, and |X∗k,i| > zk,i, and {c, d} has appeared in (Yk)
∗,

and the n-many successivities to the left of {c, d} have all appeared in (Yk)
∗. At a true

stage k′+1 > k, let m+1 = |X∗k′+1,i|. Then Γ
Sα(B)
π,i (m) = Γ

X∗
k′+1,i

π,i (m) must be correct, else

an (n+ 1)st successivity would be placed immediately to the left of {c, d}, contradicting

our choice of {c, d}.

This completes the proof.

Lemmas 5.14 and 5.16 use a similar construction. For Lemma 5.14, the Ai each have

the form ζ · τ , where ζ is the order-type of the integers, and τ is either ω+ ω∗, ω+ n or

n+ ω.

For Lemma 5.16, the Ai resemble the Ai of Lemma 5.15, but the adjacencies are each

replaced with a copy of ζ.

In both cases, the separators are of the form ω∗ + ζ · (3 + i) + ω.

Proof of Theorem 5.13. Let L0, L1 and L2 be the linear orders from Lemmas 5.14, 5.15

and 5.16. Let L = L0 + 1 + L1 + 1 + L2.

59

Bibliography

[1] C. J. Ash. Categoricity in hyperarithmetical degrees. Ann. Pure Appl. Logic,

34(1):1–14, 1987.

[2] C. J. Ash and J. Knight. Computable structures and the hyperarithmetical hierarchy,

volume 144 of Studies in Logic and the Foundations of Mathematics. North-Holland

Publishing Co., Amsterdam, 2000.

[3] Krishna B. Athreya, John M. Hitchcock, Jack H. Lutz, and Elvira Mayordomo. Ef-

fective strong dimension in algorithmic information and computational complexity.

In STACS 2004, volume 2996 of Lecture Notes in Comput. Sci., pages 632–643.

Springer, Berlin, 2004.

[4] Rodney G. Downey, Asher M. Kach, and Daniel Turetsky. Limitwise monotonic

functions and applications. Submitted.

[5] Rodney G. Downey, Steffen Lempp, and Guohua Wu. On the complexity of the

successivity relation in computable linear orderings. Submitted.

[6] Rodney G. Downey and Michael F. Moses. Recursive linear orders with incomplete

successivities. Trans. Amer. Math. Soc., 326(2):653–668, 1991.

[7] Andrey N. Frolov and Maxim V. Zubkov. Increasing η-representable degrees. Sub-

mitted.

[8] Sergei S. Goncharov. Autostability and computable families of constructivizations.

Algebra i Logika, 14:392–408, 1975 (English translation).

60

[9] Asher M. Kach and Daniel Turetsky. Limitwise monotonic functions, sets, and

degrees on computable domains. J. Symbolic Logic, 75(1):131–154, 2010.

[10] Bakhadyr Khoussainov and Richard A. Shore. Computable isomorphisms, degree

spectra of relations, and Scott families. Ann. Pure Appl. Logic, 93(1-3):153–193,

1998. Computability theory.

[11] Ming Li and Paul Vitányi. An introduction to Kolmogorov complexity and its ap-

plications. Texts in Computer Science. Springer, New York, third edition, 2008.

[12] Jack H. Lutz. Dimension in complexity classes. In 15th Annual IEEE Conference

on Computational Complexity (Florence, 2000), pages 158–169. IEEE Computer

Soc., Los Alamitos, CA, 2000.

[13] Jack H. Lutz and Klaus Weihrauch. Connectivity properties of dimension level sets.

MLQ Math. Log. Q., 54(5):483–491, 2008.

[14] Elvira Mayordomo. A Kolmogorov complexity characterization of constructive

Hausdorff dimension. Inform. Process. Lett., 84(1):1–3, 2002.

[15] Jan van Mill. The infinite-dimensional topology of function spaces, volume 64 of

North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam,

2001.

	Abstract
	Acknowledgements
	Introduction
	Effective Dimension
	Computable Categoricity
	Limitwise Monotonic Functions
	Degree Spectrum of Relations

	Connectedness of Dimension Level Sets
	Introduction and Results
	Semi-measures, Complexity and Dimension
	Proof of Results

	Computable Categoricity
	Pushing on Isomorphisms
	Eventual Categoricity

	Limitwise Monotonic Functions
	Basics
	A Separation Result
	A Totally Limitwise Monotonic Degree

	Intrinsically Complete Relations
	Relations
	Metatheorem
	Back-and-Forth Relations
	Result

	Bibliography

