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Abstract

This thesis has two distinct parts. Both involve the effectivization of ideas from other

areas of mathematics, one from geometric analysis and one from set theory.

Chapter 1 will be devoted to notions of dimension. One definition of Hausdorff

dimension can be given in terms of null sets for Hausdorff measure. Altering this defi-

nition by replacing null sets with effective null sets gives one of many characterizations

of effective Hausdorff dimension. We look at what happens when we apply an alternate

criterion for effectively null. This gives us a new dimension notion which is unique from

any previously studied. We prove some of the properties of this new definition.

Chapter 2 will be spent exploring the translation scheme for converting cardinal

characteristics to computability-theoretic highness notions as first studied by Rupprecht.

We will give the definitions for and characterize the effectivizations of four different

cardinal characteristics.
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Chapter 1

Weak 2 Dimension and Partial

Weak 2-Randomness

1.1 Introduction

We will give here a short introduction to the idea of effective dimension including some

of its properties and history. For a more thorough treatment, see [28].

Hausdorff dimension can be thought of as a refinement of notions of measure, specif-

ically as a refinement of the notion of null sets. In one dimension, which is what we will

focus on in this thesis, it provides an infinite gradation for the null sets. The history

of interplay between measure theory and computability theory is quite old, dating at

least to the work of Martin-Löf [24] on random sequences. The relationship between

Hausdorff dimension and computability was first introduced much later, in 2000 by Lutz

[21], [22]. We present one version of the classical definition of Hausdorff dimension, and

then show how one characterization of effective dimension arises naturally from simply

replacing the concepts in the definition with appropriate effective analogs.

Definition 1.1. For X ⊆ 2ω, we define a δ-cover of X as a collection of basic open sets

in Cantor space {[σi]}i∈ω with X ⊆
⋃
i∈ω Cσi and for all i, 2−|σi| < δ. Then we define
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Hs
δ(X) = inf

{∑
i∈ω

2−s|σi| : {Cσi}i∈ω is a δ-cover of X

}
.

The Hausdorff s-measure of X is then defined by

Hs(X) = lim
δ→0
Hs
δ(X).

Finally, the Hausdorff dimension of X is defined by

dim(X) = inf {s ∈ [0, 1] : Hs(X) = 0} .

That is, the infimum of all s for which X is Hausdorff s-null. One of the equivalent

characterizations of effective Hausdorff dimension as introduced by Lutz [22] is a direct

effective analog of the definition above. By replacing “Hausdorff s-null” in the above

statement with “effectively Hausdorff s-null” we recover exactly the definition of effective

dimension as follows.

Definition 1.2. A computable sequence of c.e. sets of finite strings (Sn)n∈N is an s-test

if it satisfies

DWs(Sn) ≤ 1

2n
.

A class A ⊂ 2ω is s-null if there exists a weak 2 s-test (Sn) such that

A ⊆
⋂
n∈ω

[Sn].
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The effective Hausdorff dimension (or just effective dimension) of a set X is

dimW2(X) = inf{s ≥ 0 : {X} is weak 2 s-null}.

In computability there are a number of competing notions of “effectively null.” The

one that is used here is a direct analog of a Martin-Löf test. Work has also been done with

other competing notions of effectively null instead. Replacing Martin-Löf randomness

with computable randomness can be seen in [22] and [33] or with Schnorr randomness

in [9]. These two dimension notions are equivalent, as is shown in[9].

In this thesis, we will define a new dimension notion by changing the type of effective

nullity in this definition to one analogous to the weak-2 test, a stronger randomness

notion. In section 1.3 we will give this definition and demonstrate that it is distinct

from other effective dimension definitions. In section 1.5 we will examine the lowness

property associated with our new definition and characterize its relationship with low

for dimension as studied in [20].

1.2 Preliminaries

In trying to work with effective versions of these definitions, we need to be more careful

about the way that we talk about weights of collections than in the non-effective case. In

particular, we will use the following definitions of weight over the course of this chapter.

Following Miller [25] we define the following:

Definition 1.3. Given a c.e. set of finite strings S ⊂ 2<ω, the direct s-weight of S is
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defined as

DWs(S) =
∑
σ∈S

2−s|σ|.

The prefix-free s-weight of S is defined as

PWs(S) = sup{DWs(V ) : V ⊆ S is prefix-free}

The optimal s-weight (sometimes called vehement s-weight) of S is defined as

OWs(S) = inf{DWs(V ) : [S] ⊆ [V ]}.

We note that, by definition, optimal weight ≤ prefix-free weight ≤ direct weight.

Similarly, for a Σ0
1 class A, we can define optimal s-weight as

OWs(A) = inf{DWs(V ) : A ⊆ [V ]}.

We further define conditional weight for σ ∈ 2<ω in two cases. First, if there is some

τ ≺ σ with τ ∈ S, we define both optimal and direct weight conditioned on σ to be 1.

Otherwise, if S contains no prefixes of σ, then we define the conditional weight by

OWs(S|σ) = OWs{τ ∈ 2<ω : σ _ τ ∈ S}.

DWs(S|σ) = DWs{τ ∈ 2<ω : σ _ τ ∈ S}.

It will be convenient to be able to pass relatively freely between these weight notions,

and it turns out that we can do so effectively so long as we allow slippage in the dimension
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s.

The following definition was also given by Miller in [25].

Definition 1.4. The optimal cover of S ⊆ 2<ω is a set Soc ⊆ 2<ω such that [S] ⊆ [Soc]

and DWs(S
oc) = OWs(S). For the sake of uniqueness, if there are multiple such sets,

we define Soc to be the measure-least such set.

We now reproduce a lemma of Miller. This is Lemma 3.3 from [25].

Lemma 1.5. For any c.e. set S ⊆ 2<ω, we can (effectively) find a c.e. V ⊆ 2<ω such

that [V ] = [Soc] and if P ⊆ V is prefix-free, then DWs(P ) ≤ OWs(S).

See proof in [25].

Lemma 1.6. For all s < t and every Σ0
1 class A with OWs(A) = a, there is a c.e.

V ⊆ 2<ω such that A ⊆ [V ] and DWt(V ) ≤ a · C(s, t) where C(s, t) is a constant

depending only on s, t. Moreover, given a c.e. description S ⊆ 2ω with A = [S], V can

be found effectively in S.

Proof. Let s, t, and A be as in the statement of the lemma. Let S ⊆ 2<ω be c.e. with

A = [S]. Applying Lemma 1.5, there is a c.e. V ⊆ 2<ω such that A = [S] ⊆ [V ] and

every prefix-free subset P ⊆ V has OWs(P ) ≤ a. We will use this fact to get the bound

on the direct t-weight of V that we desire. In particular, we note that the collection

Vi = {σ ∈ V : |σ| = i} is prefix-free, and so we can apply the above bound to find that
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for all i, DWs(Vi) ≤ a. But then DWt(Vi) ≤ 2(s−t)ia and so we have

DWt(V ) = DWt

(⋃
i

Vi

)

=
∑
i

DWt(Vi)

≤
∑
i

2(s−t)ia

=
1

1− 2s−t
· a

as desired, with C(s, t) = 1
1−2s−t .

It will also be convenient to be able, in certain circumstances, to deal with specific

covers with other nice properties.

Definition 1.7. We say that U ⊆ 2<ω is s-closed if for every τ ∈ 2<ω, OWs(U |τ) ≥

1 ⇒ τ ∈ U . Similarly we say that a set V ⊆ 2ω is s-closed if for every τ ∈ 2<ω,

OWs(V |τ) ≥ 1⇒ [τ ] ⊆ V .

It turns out that we can turn a c.e. sequence of strings into a c.e. s-closed sequence

while adding an arbitrarily small amount of optimal weight. (This lemma for prefix-free

weight appears in [20]. The construction given is nearly identical, but the proof in the

optimal weight case is more involved.)

Lemma 1.8. Let ε > 0, s ∈ (0, 1] rational, and S ⊆ 2<ω be a c.e. collection of strings.

Then there is a c.e. collection V ⊆ 2<ω with the following properties

• [S] ⊆ [V ].

• OWs(V ) ≤ OWs(S) + ε.
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• V is s-closed.

Proof. Assuming, without loss of generality, that ε is rational, let V ⊆ 2<ω be the closure

of S under the requirement that for every τ ∈ 2<ω, if there is a finite, prefix-free set

W ⊆ V of extensions of τ such that OWs(W ) > 2−s|τ | − 2−2|τ |−1ε, then τ ∈ U . We note

that this process is computable, as the optimal weight of any finite collection of strings

is computable. Given this, it is easy to see that V is c.e. and s-closed.

To see that the resultant set V has the optimal weight we claimed, let δ > 0, then

there is an S∗ ⊆ 2<ω such that DWs(S
∗) < OWs(S)+δ and [S] ⊆ [S∗]. Then let {τn}n∈ω

the collection of all the τ that are added in the closure process described above. We

then define V ∗ as the collection of minimal strings in σ ∈ S∗ ∪
⋃
n∈ω

τn—that is, strings

have no predecessors in the collection. Then V ∗ clearly has [V ] ⊆ [V ∗] by construction.

Additionally, we claim that DWs(V
∗) < OWs(S) + δ + ε. To see that this is true, we

note that V ∗ can be viewed as the limit of a process whereby we start with S∗ as a cover

of S and while constructing V , every time that a τ enters, we add τ to our cover and

remove every string with τ as a prefix. Every time we add a τ , because of the way that

our construction is structured, we only add direct weight of less than 2−2|τ |−1ε. Further,

each τ can be added to V at most once, and so we have

OWs(V ) ≤ DWs(V
∗) < DWs(S

∗) +
∑
τ∈2<ω

2−2|τ |−1ε < OWs(S) + δ + ε.

However, δ > 0 was arbitrary, and so we have OWs(V ) ≤ OWs(S) + ε, as desired.
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1.3 Weak 2 Dimension

Now, we can define weak 2 dimension completely analogously to the covering definition

of Hausdorff dimension.

Definition 1.9. A computable sequence of c.e. sets of finite strings (Sn)n∈N is a weak 2

s-test if it satisfies

lim
n→∞

DWs(Sn) = 0.

A class A ⊂ 2ω is weak 2 s-null if there exists a weak 2 s-test (Sn) such that

A ⊆
⋂
n∈ω

[Sn].

The weak 2 Hausdorff dimension (or just weak 2 dimension) of a set X is

dimW2(X) = inf{s ≥ 0 : {X} is weak 2 s-null}.

All definitions relativized to a sequence A are defined analogously.

We note that in the case of both effective Hausdorff dimension and computable/Schnorr

dimension there are nice alternative characterizations in terms of both complexity and

martingales. Weak 2 dimension does not lend itself to these characterizations as there

are no known characterizations of weak 2-randomness via martingales or complexity.

Now, having defined weak 2 dimension, we aim to demonstrate that it truly is differ-

ent from the other existing effective dimension notions. Weak 2 dimension is clearly no

greater than effective dimension, the strongest effective dimension notion studied. We

will show that it differs from effective dimension in the strongest possible way. Namely,



9

there are Martin-Löf random sequences (all of which have effective dimension 1) with

weak 2 dimension 0.

Theorem 1.10. If Z ∈ 2ω is ∆0
2 then for every s > 0, {Z} is an s-null Π0

2 class. Hence,

Z has weak 2 dimension 0.

Proof. We adapt the proof that ∆0
2 sequences are not weak 2-random from [26] with a

little bit of extra trickery. Let s > 0 and (Zn)n∈ω be a computable approximation of Z.

We build a c.e. sequence (Vm)m∈ω such that {Z} =
⋂
m Vm. We will then conclude that

the Vm as we constructed them have optimal (s/2)-weight tending to zero, and hence,

as discussed above, there is a c.e. sequence (Wm)m∈ω such that limm→∞DWs(Wm) = 0

and Z ∈
⋂
m

Wm, as desired.

To enumerate Vm, for each n > m, if x is least such that Zn(x) 6= Zn−1(x), put [Zn�x]

into Vm. Since for all x, Zn(x) can only change finitely many times, it follows that for

all x there is some stage tx after which Zn�x is stable. Thus, we have that the optimal

(s/2)-weight of Vm ≤ 2−sx/2 for all m > tx. Since x was arbitrary, this means that the

optimal (s/2)-weight of the Vm vanishes as m → ∞. Finally, we apply Lemma 1.6 to

get c.e. (Wm) such that

lim
m→∞

DWs(Wm) = 0.

So we see that Z is weak 2 s-null. However, since s > 0 was arbitrary, it follows that Z

has weak 2 dimension 0.

Corollary 1.11. There is a Martin-Löf random with weak 2 dimension 0.

Proof. For an example, take any random which is ∆0
2, e.g. Chaitin’s Ω.
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1.4 Partial Weak 2-Randomness

Another route to achieve an alternative characterization of weak 2 dimension is by way

of partial weak 2-randomness.

Definition 1.12. We define X ∈ 2ω to be weak 2 s-random, prefix-free weak 2 s-random,

or optimal weak 2 s-random if

X 6∈
⋂
n∈ω

[An]

whenever {An} is a uniformly c.e. sequence with An ⊆ 2<ω and lim
n→∞

DWs(An) = 0,

lim
n→∞

PWs(An) = 0, or lim
n→∞

OWs(An) = 0, respectively.

We note that an alternative characterization of the definition of weak 2 dimension

can be given in terms of any of these partial randomness notions by

dimW2(X) = sup{s ∈ [0, 1] : X is (prefix-free/optimal) weak 2 s-random}.

Theorem 1.13. For all 0 ≤ s < t ≤ 1 weak 2 t-randomness implies prefix-free weak 2

s-randomness.

Proof. We note that the contrapositive follows directly as a result of the fact that prefix-

free weight ≥ optimal weight. We can apply Lemma 1.5 to members of our weak 2 s-test

to get members of a prefix-free weak 2 t-test with direct weight no more than a fixed

constant multiple of the prefix-free weight of the original set.

Lemma 1.14. For all s ∈ [0, 1], every optimal weak 2 s-test {An}n∈ω is covered by a

prefix-free weak 2 s-test.
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Proof. Let s ∈ [0, 1] and a uniformly c.e. sequence {An}n∈ω an optimal weak 2 s-test.

Then, applying Lemma 1.5 to an enumeration {ai,n} with
⋃
i[ai,n] = An, we can ef-

fectively find a c.e. set Vn ⊆ 2<ω which is also a cover of An and which has that all

prefix-free subsets P ⊆ Vn have DWs(P ) ≤ OWs(An), thus PWs(Vn) ≤ OWs(An), and

so {Vn}n∈ω is a prefix-free weak 2 s-test covering {An}.

Theorem 1.15. For all s ∈ [0, 1], X ∈ 2ω, X is prefix-free weak 2 s-random if and only

if X is optimal weak 2 s-random.

Proof. (⇐) This direction is a trivial result of the fact that prefix-free weight ≥ optimal

weight, hence any prefix-free weak 2 s-test is already a optimal weak 2 s-test.

(⇒) This is a direct result of Lemma 1.14.

These are all the implications that we have been able to show. We note that the

remaining pair of notions (prefix-free and normal) can be separated in the s-random

case, as can be seen in the following theorem. (In fact, if we generalize further the

notion of partial randomness, there is a separate notion using a Solovay-type test that

falls strictly between the two.)

Theorem 1.16 (Reimann and Stephan, 2006). For all s ∈ (0, 1), there exists X ∈ 2ω

such that X is s-random but not prefix-free s-random.

For proofs, see [12] and [29].

We would hope to be able to achieve the corresponding separation for weak 2 s-

randomness and prefix-free weak 2 s-randomness by building A ∈ 2ω which is weak 2

2-random but not prefix-free weak 2 s-random for some s, but have not yet successfully

separated the two. However, we can narrow down the possible computational properties

of such an A.
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Theorem 1.17. If X is (prefix-free) s-random and forms a minimal pair with 0′, then

X is (prefix-free) weak 2 s-random.

Proof. We will prove the case for direct weight, the prefix-free proof is identical. We

prove by contradiction. Let X be s-random but not weak 2 s-random. Then there is

a nested weak 2 s-test {Vn} with X ∈
⋂
n∈ω

[Vn]. We will simultaneously build a set A

which is simple and a Turing operator Γ which witnesses that X ≥T A. We define the

requirement

Re : |We| =∞⇒ A ∩We 6= ∅.

Let A0 = ∅, Γ0 empty. We begin to enumerate the {Vn} and We. At stage t > 0, for each

e < t if Re has not been met so far, and we see n > 2e enter We and DWs(Vn,t) ≤ 2−e,

then we define At = At−1 ∪ {n} and say that Re is met. Additionally, whenever we see

σ enter Vn,t, we define ΓY (n) = At(n) for all Y ∈ [σ].

We claim that A is a simple set. It is clear that if We is infinite, then Re eventually

acts, and so A ∩We 6= ∅. Further, A must be coinfinite because the nth element of A

is at least 2n. Additionally, we claim that ΓX =∗ A and so A ≤T X. To see this, we

note that successively smaller tails of the collection {Vn,t : n enters A at stage t} form

a Martin-Löf s-test, and so X can be in at most finitely many of the Vn,t, and so for all

but finitely many n, ΓX(n) = A(n).

Theorem 1.18. If X is s-random but not prefix-free s-random, then X ≥T 0′.

Proof. Let {An} be a prefix-free s-test such that X ∈
⋂
n∈ω

[An]. We will build a uniformly

c.e. collection of computable sets of strings {Bn}. We begin an enumeration of 0′ while

simultaneously enumerating {An}. When we see i enter 0′, we will add a maximal

prefix-free subset of the part of Ai that we have enumerated thus far as Bi. We note
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that DWs(Bn) ≤ 2−n by definition of our prefix-free s-test. We then let Cn =
⋃
i>n

Bi.

We note that if X ∈ [Bn] for infinitely many of the Bn, then X ∈ [Cn] for all n ∈ ω and

as

DWs(Cn) =
∑
i>n

DWs(Bi) ≤
∑
i>n

2−i = 2−n

we have that {Cn} is an s-test covering X, but by assumption, X is s-random, and so

not contained in any s-test. Then it must be the case that X is contained in at most

finitely many of the [Bn].

Thus, we can compute all but finitely many bits of 0′ (and hence 0′) by trying to

enumerate 0′ and {An} simultaneously and concluding that if we see X enter [An] before

n enters 0′, then n 6∈ 0′. Thus X ≥T 0′, as desired.

Corollary 1.19. If X is weak 2 s-random and forms a minimal pair with 0′, then X is

prefix-free weak 2 s-random.

Proof. This is a direct result of the above theorems. If X is weak 2 s-random, then S is s-

random by definition. Since X forms a minimal pair with 0′ then, in particular, X 6≥T 0′,

and so by Theorem 1.18 X is prefix-free s-random. Finally, since X forms a minimal

pair with 0′, it follows from Theorem 1.17 that X is prefix-free weak 2 s-random.

1.5 Lowness Properties

A common question of interest when dealing with effective definitions and their rela-

tivizations is to ask about the corresponding lowness notion. In particular, the collec-

tion of oracles which are low for a given notion is, roughly speaking, those oracles which

have no more computational strength from the perspective of the given notion than the
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unrelativized version.

Definition 1.20. We say that A is low for weak 2 dimension if for all X ⊆ 2ω

dimW2(X) = dimA
W2(X).

Similarly, A is low for effective dimension if for all X ⊆ 2ω

dim(X) = dimA(X).

Lempp, Miller, Nies, Turetsky, and Weber in [20] gave many alternate characteriza-

tions of low for dimension. The main theorem of the paper providing these equivalences

is as follows:

Theorem 1.21. The following are equivalent:

(1) A is lowish for Martin-Löf random—that is, if X is Martin-Löf random, then

dimA(X) = 1.

(2) A fixes a single dimension s—that is, there exists s ∈ (0, 1] such that for all X ∈ 2ω

we have that

dim(X) = s⇒ dimA(X) = s.

(3) A is low for effective dimension.

(4) A has the Σ0
1-covering property, i.e., if W ⊆ 2<ω is A-c.e., 0 ≤ s < t ≤ 1, and

DWs(W ) < 1, then there is a c.e. set V with DWt(V ) < 1 such that [W ] ⊆ [V ].
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(5) A has the c.e. covering property, i.e., if W ⊆ 2<ω is A-c.e., 0 ≤ s < t ≤ 1, and

DWs(W ) < 1, then there is a c.e. set V ⊇ W with DWt(V ) <∞.

(6) lim inf
|σ|→∞

KA(σ)−K(σ)

|σ|
≥ 0.

(7) A is lowish for K, i.e. lim inf
|σ|→∞

KA(σ)

K(σ)
≥ 1.

We have no immediately apparent way to convert (4) and (5) to versions for weak

2 dimension, (6) and (7) are even less likely candidates, as they deal with complexity

bounds which have no immediate counterpart in weak 2-randomness or dimension, but

(1), (2), and (3) lend themselves nicely to the weak 2 version of dimension. Their

counterparts are presented below.

Conjecture 1.22. The following are equivalent:

(1′) A is lowish for weak 2-random—that is if X is weak 2-random, then dimA
W2(X) = 1.

(2′) A fixes a single weak 2 dimension, that is, there exists s ∈ (0, 1] such that for all

X ∈ 2ω we have that

dimW2(X) = s⇒ dimA
W2(X) = s.

(3′) A is low for weak 2 dimension.

While it seems likely that the full equivalence as stated is true, we do not have a

complete proof. What we can prove are the following.

We first note that (3′)⇒ (2′) is trivial.

We will prove a slightly weaker version of (2′) ⇒ (1′), but first we will need the

following lemma:
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Lemma 1.23. If s is a computable real and s[Z] = {bn/sc : Z(n) = 1}, then

dimW2(s[Z]) = s · dimW2(Z).

Proof. To see that dimW2(s[Z]) ≤ s ·dimW2(Z), let t = dimW2(Z) and r > t. Then there

exists a weak 2 r-test {An}n∈ω c.e. such that ∀n ∈ ω(Z ∈ [An]) and An = {ai,n|i ∈ ω}

with

lim
n→∞

∑
i

2−r|ai,n| = 0

then defining bi,n = {s[x] : x ∈ ai,n} for each i, n ∈ ω, and defining Bn = {bi,n|i ∈ ω} for

all n, we have that ∀n ∈ ω(s[Z] ∈ [Bn]) and

lim
n→∞

∑
i

2−rs|bi,n| ≤ lim
n→∞

∑
i

2−r(|ai,n|+1)

= lim
n→∞

2−r
∑
i

2−r|ai,n|

= 0

Thus we have that dimW2(s[Z]) ≤ sr, but as r > t was arbitrary, it follows that

dimW2(s[Z]) ≤ st.

To see that dimW2(s[Z]) ≥ s ·dimW2(Z), let t = dimW2(s[Z]) then for all r > t there

exists a weak 2 r-test {An}n∈ω c.e. with An = {ai,n|i ∈ ω} such that s[Z] ∈ [An] for all

n and

lim
n→∞

∑
i

2−r|ai,n| = 0.

Define bi,n = {x�{bj/sc}j∈ω|x ∈ ai,n} (that is we only take bits from places of the form

bj/sc, omitting all others). Then defining Bn = {bi,n|i ∈ ω} we have Z ⊆ [Bn] for all n
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and

lim
n→∞

∑
i

2
−r
s
|bi,n| ≤ lim

n→∞

∑
i

2−r|ai,n| = 0.

Thus, dimW2(Z) ≤ r
s
, but again as r > t was arbitrary, it follows that dimW2(Z) ≤ t

s
.

These two combined give us the desired equality.

Using these we will prove partial versions of both (2′)⇒ (1′) and (2′)⇒ (3′).

Theorem 1.24. If A fixes a single computable weak 2 dimension s, then A is lowish for

weak 2-random.

Proof. Let X be weak 2-random and a computable s be as in the statement of (2′).

Applying Lemma 1.23 twice and (2′) once, we can see that:

s dimW2(X) = dimW2(s[X])

= dimA
W2(s[X])

= s dimA
W2(X)

Thus dimA
W2(X) = 1, as desired.

Theorem 1.25. If A fixes a computable weak 2 dimension s, then it also fixes dimension

r for all computable r > s.

Proof. Let X have dimension r and a computable s be as in the statement of (2′) with
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r > s. Applying Lemma 1.23 twice and (2′) once, we can see that:

s

r
dimW2(X) = dimW2

(s
r

[X]
)

= dimA
W2

(s
r

[X]
)

=
s

r
dimA

W2(X)

Giving dimA
W2(X) = r, as desired.

We now tackle the relationship between these two lowness properties. Results of

Downey, Nies, Weber and Yu [10] and Kjos-Hansen, Miller and Solomon [17] combine

to tell us that the lowness properties of the parent randomness notions coincide exactly.

With the dimension versions, the lowness properties coincide below 0′, but not necessarily

outside that lower cone.

Here we will need a stronger version of the following alternate characterization of

low for dimension from the main theorem of [20]:

Theorem 1.26. A is low for dimension if and only if it has the Σ0
1 covering property,

i.e., if W ⊆ 2<ω is A-c.e., 0 ≤ s < t ≤ 1, and DWs(W ) < 1, then there is a c.e. set V

with DWt(V ) < 1 such that [W ] ⊆ [V ].

See proof in [20].

The stronger version of Theorem 1.26 that we want is the contrapositive of this

theorem, replacing direct weight with optimal weight.

Lemma 1.27. If A is not low for effective dimension, then there is a W ⊆ 2<ω which

is A-c.e. and 0 ≤ s < t ≤ 1 such that DWs(W ) < 1 and for every c.e. V ⊆ 2<ω with
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OWt(V ) < 1 it follows that [W ] \ [V ] 6= ∅.

Proof. Let A not low for effective dimension. Then by the converse of Theorem 1.26,

there are an A-c.e. collection W ⊆ 2<ω, and 0 < s < r ≤ 1 with DWs(W ) < 1 such that

for all c.e. V ⊆ 2<ω it follows that if DWr(V ) < 1, then [W ] \ [V ] 6= ∅. Now, we claim

that if we have s < t < r then s, t, and W have the desired property.

Let V ⊆ 2<ω be a c.e. collection such that OWt(V ) < 1. Then there is some

S ⊆ 2ω with [V ] ⊆ [S] with DWt(S) < 1. Let ε = 1 − DWt(S). Then there is a finite

subcollection S∗ ⊂ S with DWt(S \ S∗) < ε
C(t,r)

where C(t, r) is as in Lemma 1.5. Then

we let V ∗ = {σ ∈ V : ¬∃τ ∈ S∗ with τ ≺ σ}. We note that V ∗ is c.e. and has

OWt(V
∗) ≤ DWt(S \ S∗) <

ε

C(t, r)
.

But then by Lemma 1.5 there is a c.e. U covering V ∗ with DWr(U) < ε, and we have

X = S∗ ∪ U a c.e. collection with [V ] ⊆ [X] and DWr(X) < 1 and so by Lemma 1.26 it

follows that [W ] \ [X] 6= ∅.

In comparing the two lowness notions, we start with the containment direction which

always holds. We will actually be able to prove something stronger than just the con-

tainment in this direction. Defining the dual notion for these two dimension notions as

A ∈ Low(weak 2 dimension, effective dimension) meaning

(∀X ⊆ 2ω)(dimA(X) ≥ dimW2(X)),

the following theorem holds:

Theorem 1.28. If A is Low(weak 2 dimension, effective dimension), then A is low for
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effective dimension.

Proof. We prove by contrapositive. Assume that A is not low for effective dimension,

then let W ⊆ 2<ω and 0 < s < t ≤ 1 be as in Lemma 1.27.

We define W n to be the collection of strings that can be achieved by concatenating

exactly n-many strings where each substring is a member of W . That is, W 1 = W , and

W n = {σ _ τ for σ ∈ W n−1, τ ∈ W}. Then we will construct an x ∈
⋂
n

[W n] such that

x 6∈ Bn for all Bn =
⋂
i

Bi,n where {Bi,n}i∈ω is a weak 2 t-test.

Stage 0: Let X0 = ∅, σ0 = λ.

Stage n+1: Given a σn ∈ W n and a c.e.Xn with [Xn] ⊂ [σn] such that OWt(Xn|σn) <

1, and Xn is t-closed, we will avoid the nth weak 2 t-test, {Bi,n}i∈ω. First, we observe

that there must be some i ∈ ω such that DWt(Bi,n|σn) < 1 − OWt(Xn|σn), otherwise

DWt(Bi,n) ≥ 2−|σn|(1 − OWt(Xn)) > 0 for all i, but this is impossible as we know this

quantity tends to zero.

Then we note that the collections Sn = {τ ∈ 2<ω : σn
_ τ ∈ Bi,n} and Yn = {τ ∈

2<ω : σn
_τ ∈ Xn are c.e. and DWt(Sn)+OWt(Yn) < 1. Then, we can apply Lemma 1.8

from above to find Vn ⊆ 2<ω a c.e. t-closed cover of Sn∪Yn with OWt(Vn) < 1. Then by

Lemma 1.27 [W ] \ [Vn] 6= ∅. Let σn+1 ∈ W n with σn+1 � σn such that [σn+1] 6⊆ [σn
_Vn]

and let Xn+1 = {τ ∈ σn _ Vn : τ � σn+1}.

Corollary 1.29. If A is low for weak 2 dimension, then A is low for effective dimension.

In order to prove containment the other direction where it holds, we will need the

following strengthening of the c.e. covering property from [20].

Lemma 1.30. Let A low for effective dimension, I an A-c.e. set with members of the
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form 〈σ, τ〉 such that ∑
〈σ,τ〉∈I

2−s|τ | < 1.

Then for all t > s, there exists a c.e. J ⊇ I with

∑
〈σ,τ〉∈J

2−t|τ | <∞.

Proof. Let t > s. Given I as above, we can build a request set relative to A by RA =

{〈〈σ, τ〉, s|τ |〉 : 〈σ, τ〉 ∈ I}. By assumption, this set has total weight less than 1, and

so by the Kraft-Chaitin Theorem, there is a prefix-free machine M with oracle A with

|MA〈σ, τ〉| = s|τ | for all 〈σ, τ〉 ∈ I. Thus, we have for all 〈σ, τ〉 ∈ I that KA〈σ, τ〉 ≤+

s|τ |. Further, since A is low for dimension, it follows by a result of [20] that A is

lowish for K, and so for all 〈σ, τ〉 ∈ I, we have that K〈σ, τ〉 ≤+ t|τ |. Finally, we define

J = {〈σ, τ〉 : K〈σ, τ〉 < t|τ |+ c} for c large enough that I ⊆ J . This is the desired J , as

the Kraft inequality tells us that

∑
〈σ,τ〉∈J

2−t|τ | < 2c <∞.

We use this property to show that for A which are ∆0
2, the other direction of con-

tainment holds as well.

Theorem 1.31. If A ≤T 0′ and A is low for effective dimension, then for all t > s,

every weak 2 s-null ΠA
2 class has a weak 2 t-null Π0

2 superclass.

Proof. Let X be a weak 2 s-null ΠA
2 class and s < r < t. So X =

⋂
i∈ω[XA

i ] for ΣA
1

collections of strings {XA
i }i∈ω with DWs(X

A
i ) = ai such that limi→∞ ai = 0. (Note: we
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can assume without loss of generality that the [XA
i ] are nested.) Now let Ii = {〈σ, τ〉 :

τ ∈ XA
i with use σ}. Then we apply Lemma 1.30 to the Ii in order to get c.e. Ji ⊇ Ii

with the property ∑
〈σ,τ〉∈Ji

2−r|τ | <∞.

By assumption A ≤T 0′, so let {An}n∈ω be a computable sequence approximating A.

Then we define

Ti,n = {〈σ, τ〉 ∈ Ji : (∃m ≥ n)τ ∈ XAm
i,m with use σ}

and let Ui,n = {τ : (∃σ)〈σ, τ〉 ∈ Ti,n} be the projection of Ti,n onto the second coordinate.

{Ti,n}n∈ω and {Ui,n}n∈ω are computable sequences of c.e. sets. Define

Yj =
⋂

i+n=j

[Ui,n].

Then, we claim that Y =
⋂
j Yj is the desired Π0

2 class.

We first note that X ⊆ Y . This follows from the fact that the [XA
i ] are nested, and

the fact that XA
i ⊆ Ui,n for all i, n. We can see that the latter statement must be true

because of the fact that for any τ ∈ XA
i , there is a use σ ≺ A witnessing τ ∈ Xσ

i , and so

〈σ, τ〉 ∈ Ii ⊆ Ji, and also since An is a computable approximation of A, it follows that

it eventually gets σ right and stops changing, so for all n, there will always be m > n

putting 〈τ, σ〉 ∈ Ti,n, and so τ ∈ Ui,n, as desired.

Finally, we must show that Y is weak 2 t-null. It suffices to demonstrate that

limj→∞OWr(YJ) = 0. Given this, we can apply Lemma 1.6 to each Yi to get a sequence

of c.e. Vi ⊆ 2<ω with Y ⊆ Yi ⊆ [Vi] for all i. Further, since DWt(Vi) ≤ C(r, t) ·OWr(Yi)
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and the latter tends to zero, we also have that limi→∞DWt(Vi) = 0.

We note that OWr(Yj) ≤ inf{OWr(Ui,n) : i + n = j} and limi→∞DWr(Xi) = 0.

Thus, to prove that the optimal r-weight of Yj tends to zero, it suffices to show that

DWr(Ui,n)→ DWr(Xi).

To prove this, we observe that for every i and every 〈σ, τ〉 ∈ Ji \ Ii, there is an m

such that for all n > m, 〈σ, τ〉 6∈ Ti,n. This is true as Ai is a computable approximation

of A which means that for any length of initial segment, it is eventually right and stops

changing. Thus, if σ 6≺ A, 〈σ, τ〉 will eventually stop showing up in Ti,n. Alternatively,

if σ ≺ A is a true initial segment, then if 〈σ, τ〉 6∈ Ii, that means that the enumeration

of Xi with use σ does not see τ entering, and so also 〈σ, τ〉 6∈ Ji.

Now, let ε > 0, then since ∑
〈σ,τ〉∈Ji

2−r2|τ | <∞,

There is a finite collection Ai,ε ⊆ Ji \ Ii such that

∑
〈σ,τ〉∈Ji\(Ii∪Ai,ε)

2−r2|τ | < ε.

Then, since the members of Ai,ε are not in Ii, for each one there is an m so that for

n > m they are not contained in Ti,n. We need only take M the maximum such m and

then for all n > M we have DWr(Ui,n) ≤ DWr(Xi) + ε. Thus it follows that

lim
n→∞

DWr(Ui,n) = DWr(Xi),

as desired.

Corollary 1.32. If A is low for effective dimension and A ≤T 0′, then A is low for
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weak 2 dimension.

Proof. This follows immediately from Theorem 1.31. In particular, if a real X is weak

2 s-null relative to A, then it is weak 2 t-null for all t > s, thus we have dimW2(X) ≤

dimA
W2(X).

It turns out, however, that outside of ∆0
2, this direction of containment does not

necessarily hold. We will use the Y which is described in the following lemma to construct

such an oracle.

Lemma 1.33. There is a Y which is ∆0
2, low for effective dimension, but not K-trivial.

Proof. To prove that such a thing exists, we apply a result which appears in both [11]

and [20] that there is a Π0
1 perfect class, all of whose elements are low for dimension.

To find our Y we can use 0′ to construct the tree and then simply build Y by searching

for incremental extensions. We start with the σ0 = λ, then at the nth step, we search

for an extension σn � σn−1 with K(σn) ≥ K(|σn|) + n. There must always exist such

an extension, as the tree contains uncountably many branches above each node, the

K-trivials are countable, and any non-K-trivial satisfies the desired property for some

finite initial segment. Then Y =
⋃
n σn.

Definition 1.34 (Nies). A set A ∈ 2ω is LR-reducible to a set B (denoted by A ≤LR B)

if every set which is Martin-Löf random relative to B is ML random relative to A.

Similarly, a set A ∈ 2ω is LK-reducible to a set B (denoted by A ≤LK B) if for all

σ ∈ 2<ω, KA(σ) ≥∗ KB(σ).

Lemma 1.35 (Nies). The reducibilities ≤LK and ≤LR are equivalent.
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We now present a theorem of Barmpalias, Miller, and Nies. This is Theorem 4.7 in

[2].

Theorem 1.36. If Y is ∆0
2 and not K-trivial, then for all Z ≥T 0′, there exists X ≤LR Y

such that X ⊕ 0′ ≡T Z.

We will apply this theorem with the specific Y whose existence we proved above to

show that the two lowness notions do not always coincide. This is a more specific version

of Corollary 4.8 from [2].

Corollary 1.37. There exists X(6≤T 0′) with X low for effective dimension, but not low

for weak 2 dimension.

Proof. Let Y be as in Lemma 1.33, then we we apply Theorem 1.36 with Z = 0′′. This

gives us X with X ≤LR Y and so X ≤LK Y , but since Y is low for dimension, so is X

and X ⊕ 0′ ≡T Z. Now let A < 0′′ be 2-random. We note that this A is also a weak

2-random and so weak 2 dimension 1. However,

A ≤T 0′′ ≡T X ⊕ 0′ ≤T X ′.

We have that A is ∆X
2 , and hence, by the relativization of Theorem 1.10, has weak 2

dimension 0 relative to X. Thus X fails (badly) to be low for weak 2 dimension.

We note that as a consequence of these results, the other characterizations of low

for dimension from [20] ((4)-(7) of the main theorem) also characterize low for weak 2

dimension for A ≤T 0′. However, outside of this set, they do not necessarily coincide,

although one direction of the implications is always true.
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Chapter 2

Computable analogs of lesser-known

cardinal characteristics

All work in this Chapter was done jointly with Ivan Ongay-Valverde.

2.1 Introduction

Recent work of Rupprecht [30] and, with some influence of Rupprecht but largely in-

dependently, Brendle, Brooke-Taylor, Ng, and Nies [6] developed and showed a process

for extracting the combinatorial properties of cardinal characteristics and translating

them into highness properties of oracles with related combinatorial properties. Some

of the analogs so derived are familiar computability-theoretic properties, some are new

characterizations of existing notions, and some are completely new. The remarkable

part of this work is that many of the proofs of relationships between the cardinals in the

set-theoretic setting translate almost perfectly to the effective setting. The work so far

has mostly focused on the cardinal characteristics of Cichoń’s diagram.

The nodes in Cichoń’s diagram are defined in a couple of related collections, with

the unbounding number b and the dominating number d defined as follows:

Definition 2.1. For f, g ∈ ωω, we say f dominates g if f ≥ g almost everywhere, that
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c

Cov(N ) Non(M) Cof(M) Cof(N )

b d

Add(N ) Add(M) Cov(M) Non(N )

ℵ1

Figure 1: Cichoń’s diagram

is f ≥∗ g ⇐⇒ ∀∞n ∈ ω f(n) ≥ g(n).

Then b, the unbounding number, is the smallest number of functions not dominated

by any one function, that is min{|A| : A ⊂ ωω such that ∀f ∈ ωω ∃g ∈ A f 6≥∗ g}.

Similarly, d, the dominating number, is the smallest number of functions guaranteed

to dominate any other function, that is min{|A| : A ⊂ ωω such that ∀f ∈ ωω ∃g ∈

A f ≤∗ g}.

Then, the remaining nodes are all characteristics of ideals of the real line.

Definition 2.2. If I ⊂ R is an ideal, we define:

Add(I) is the smallest collection of members of the ideal that union to something

not in the ideal, that is

Add(I) = min

{
|A| : A ⊂ I,

⋃
A∈A

A 6∈ I

}
.
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Cof(I) is the smallest collection of members of the ideal that contains a member

covering any member of the ideal, that is

Cof(I) = min {|A| : A ⊂ I,∀X ∈ I ∃A ∈ A X ⊂ A} .

Non(I) is the size of the smallest set not contained in the ideal, that is

Non(I) = min {|A| : A ⊂ R, A 6∈ I}

Cov(I) is the size of the smallest collection of members of the ideal that covers the

whole space, that is

Cov(I) = min

{
|A| : A ⊂ I,

⋃
A∈A

A = R

}

The remaining 8 nodes are one of these forms for the ideals N , the Lebesgue null

sets, or M, the meager sets.

The arrows here stand for inequalities, with A→ B in the diagram indicating A ≤ B.

There is a purely semantic formulation of the translation scheme to an effective notion

where all of these characteristics can be viewed as either an unbounding number or a

dominating number along the lines of b and d for a different relationship between two

spaces. They can then be semantically converted to the appropriate highness notion.

For all the details of the semantic scheme, see [30] or [6].

An alternative, somewhat intuitive way to think about this translation scheme is to

frame it as follows: When working with cardinal characteristics on the set theory side,

it’s common to build models by forcing extensions that have specific properties. One
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common trick is to force a characteristic to be larger by building an extension which has

a new object that negates the desired property for a specific collection from the ground

model. If we reinterpret the ground model as the computable objects, and the extension

as adding those things computable from an oracle, the highness property corresponding

to the characteristic will be exactly the combinatorial property needed to negate the

characteristic property for the collection of computable objects. Among other things,

this means that the highness notions actually end up looking like the negations of the

characteristics that they were derived from.

For example, let’s take the unbounding number b. In building a forcing extension

to make b larger, we would want to add a function which does bound a collection

of functions from the ground model. When translated to a computability-theoretic

highness notion, this becomes an oracle which computes a function dominating every

computable function. This is exactly the set of oracles of high degree. Similarly, for the

domination number d, in building a forcing extension to make d larger, we would want

to add a function which is not dominated by any of a collection of functions from the

ground model. When translated to the computability side, this becomes an oracle which

computes a function not dominated by any computable function, i.e. of hyperimmune

degree. Some of the analogs, like these, are well-studied, and some were introduced by

Rupprecht in [30].

Translating the remaining characteristics will require introducing effective versions

of null sets and meager sets, as well as some related notions. We present those here:

Definition 2.3. A Schnorr test is a uniformly Σ0
1 sequence of sets {An} such that

µ(An) = 1
2n

.

X ∈ 2ω is Schnorr random iff X 6∈
⋂
An for all Schnorr tests {An}.



30

X ∈ 2ω if Schnorr engulfing if there is a Schnorr test relative to X covering all

Schnorr tests relative to 0.

X ∈ 2ω is weakly Schnorr engulfing iff it computes a Schnorr test containing all

computable reals.

X ∈ 2ω is low for Schnorr tests iff every Schnorr test relative to X is covered b an

unrelativized Schnorr test.

Definition 2.4. An effectively meager set is a uniform union of nowhere dense Π0
1

classes.

X ∈ 2ω is weakly 1-generic iff X escapes all effectively meager sets.

X ∈ 2ω is meager engulfing if there is an X-effectively meager set containing all

effectively meager sets.

X ∈ 2ω is weakly meager engulfing iff it computes an effectively meager set containing

all computable reals.

X ∈ 2ω is low for weak 1-generic iff the weak 1-generics relative to X are the weak

1-generics.

We will later use the following equivalences:

Theorem 2.5 (Rupprecht [30]). The following are equivalent for A ∈ 2ω:

(1) A is Schnorr engulfing;

(2) A meager engulfing;

(3) A computes a high degree.

Theorem 2.6 (Kurtz [19]). The following are equivalent for A ∈ 2ω:
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Computes
a Schnorr
random

Weakly
meager

engulfing

Not low
for weak

1-gen

Not
low for
Schnorr

High
Hyper-
immune

Schnorr
engulfing

Meager
engulfing

Computes
a weak
1-gen

Weakly
Schnorr

engulfing

Figure 2: Effective Cichoń’s diagram

(1) A computes a weak 1-generic.

(2) A is of hyperimmune degree.

In the effective diagram arrows actually do mean implication, where the lower-left

highness properties are generally stronger than the upper-right.

In this thesis, we will expand on this work by looking at four of different cardinal

characteristics not appearing in Cichoń’s diagram. First, we will examine the evasion

number, a cardinal characteristic first introduced by Blass in [3], as well as its less-

studied dual, the prediction number. We will also look at two forms of the so-called

rearrangement number, as introduced by Blass et al. in [4]. In all these cases, we will

give the correct effective analogs, and prove relationships between these new highness

notions and their relationships with other highness notions which are analogous to well-

studied cardinal characteristics.
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2.2 Prediction and Evasion

2.2.1 Definitions

Definition 2.7 (Blass [3]). A predictor is a pair P = (D, π = 〈πn : n ∈ D〉) where

D ∈ [ω]ω (infinite subsets of ω) and where each πn : ωn → ω. By convention, we will

sometimes refer to πn(σ) by simply π(σ). This predictor P predicts a function x ∈ ωω

if, for all but finitely many n ∈ D, πn(x�n) = x(n). Otherwise x evades P . The evasion

number e is the smallest cardinality of any family E ⊆ ωω such that no single predictor

predicts all members of E.

We will also make use of the dual to e, which is explored by Brendle and Shelah in

[7].

Definition 2.8. The prediction number, which we will call o, is the smallest cardinality

of any family O of predictors such that every function is predicted by a member of O.

The known results for e and o position them as illustrated in figure 3 relative to

Cichoń’s diagram.

In order to effectivize our prediction-related cardinal characteristics, we must first

effectivize the definition of a predictor.

Definition 2.9. A computable predictor is a pair P = (D, 〈πn : n ∈ D〉) where D ⊆ ω

is infinite and computable and each πn : ωn → ω is a computable function.

Similarly, we define an A-computable predictor as the relativized version where all

objects are computable relative to some oracle A.

Finally, we define an oracle A to be of evasion degree if there is a function f ≤T A

which evades all computable oracles, and A is of prediction degree if there is a predictor
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Cof(M) Cof(N )

Cov(N ) Non(M) o

b d

e Cov(M) Non(N )

Add(N ) Add(M)

Figure 3: Cichoń’s diagram including e and o.

P ≤T A which predicts all computable functions.

Because of the fact that we negate the original statements of the definitions of cardinal

characteristics, under our scheme the evasion number e is an analog to being a prediction

degree, and the prediction number o is an analog to being an evasion degree.

We present below known facts about e and o represented by Cichoń’s diagram with

e and o included, as well as their translations into effective analogs.

Theorem 2.10. The following relationships are known for e.
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Cardinal Char. Highness Properties Theorem

add(N ) ≤ e [3] Schnorr engulfing ⇒ prediction degree 2.11

e ≤ non(M) [15] prediction degree ⇒ weakly meager engulfing 2.13

e ≤ cov(M) [3] prediction degree ⇒ weakly 1-generic 2.14

CON(e < add(M)) [5] meager engulfing 6⇒ prediction degree False

CON(b < e) [7] prediction degree 6⇒ high 2.15

Similarly, for o (all results can be found in [7])

Cardinal Char. Highness Properties Theorem

cov(M) ≤ o weakly 1-generic ⇒ evasion degree 2.17

non(M) ≤ o weakly meager engulfing ⇒ evasion degree 2.19

o ≤ cof(N ) evasion degree ⇒ not low for Schnorr tests 2.22

CON(cof(M) < o) evasion degree 6⇒ not low for 1-generics Open

CON(o < d) hyperimmune 6⇒ evasion degree False

– not low for Schnorr Tests 6⇒ evasion 2.28

2.2.2 Prediction Degrees

Theorem 2.11. If A ∈ 2ω is high, then it is of prediction degree.

Proof. Let A be high and set D = ω. We will use the fact that if A is high, then A

can enumerate a list of indices for the total computable functions. A proof of this fact

can be found in [13]. Using this, we simply enumerate all the computable functions.

Then to define πn, for each finite string f ∈ ωn, we go through the list of computable

functions {ϕe} until we find one such that ϕe�n = f . Then we define πn(f) = ϕe(n).

This predictor is computable in A and predicts all computable functions.
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Lemma 2.12. For any predictor P , there is an effectively-in-P meager set covering all

functions predicted by P .

Proof. The collection

Ci = {f : |{n ∈ D : π(f�n) 6= f(n)}| < i}

is nowhere dense and Π0
1 in P , and the collection of functions predicted by P is exactly⋃

i∈N
Ci.

Theorem 2.13. If A is a prediction degree, then A is weakly meager engulfing.

Proof. Assume A is a prediction degree, then there is a predictor P ≤T A which predicts

all computable functions. In particular, we just need a predictor which predicts all 0, 1-

valued computable functions.

Then, by Lemma 2.12 one can, using P , effectively find a meager set covering every

function predicted by P . Thus there is an A-effectively meager set covering all 0, 1-valued

computable functions, and hence covering all computable reals, as desired.

Theorem 2.14. If A ∈ 2ω is of prediction degree, then A is weakly 1-generic.

We will actually prove the equivalent statement that if A is a prediction degree, then

A has hyperimmune degree. This is an analog of the characteristic inequality e ≤ d.

The above theorem is the analog of the strictly stronger cardinal relation e ≤ cov(M).

However, these notions are one of the places where a relationship that is separable in

the set-theoretic case collapses in the computability-theoretic analog, so the theorems

are equivalent. The proof follows one of Blass from [3].
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Proof. GivenA ∈ 2ω which is not weakly 1-generic, by a result of Kurtz, A is hyperimmune-

free. In particular we will use the fact that for all f ≤T A with f : ω × ω → ω, there is

a function g ≤T 0 such that g > f .

Let P = (DP , {πn}) ≤T A be a predictor, and define f : ω × ω → ω by

f(n, k) =


max {πn(t) : t ∈ ωn and ti < k for all i ∈ n} if n ∈ DP

0 otherwise

We note that f ≤T A. Then, by assumption, there is a computable function g such that

g(n, k) > f(n, k) for all n, k. Then we define

x(n) = g(n, 1 + max{x(p) : p < n}).

Now, let n ∈ Dπ and k = 1 + max{x(p) : p < n}. We note that x�n is of length n and

has all values less than k, and so is an admissible t from the definition of f(n, k), so

f(n, k) ≥ πn(x�n). On the other hand, by definition of x and the choice of g, we also

have x(n) ≥ g(n, k) > f(n, k). Thus, we have x(n) > πn(x�n). Since n was arbitrary, it

follows that x evades P , and so A is not a prediction degree.

Theorem 2.15. There is an A which is of prediction degree but does not compute any

B which is high.

Proof. We will force with conditions 〈d, π, F 〉 = p ∈ P where d ∈ 2<ω is a finite partial

function, π = {πn : n ∈ d} and πn : ωn → ω is a finite partial function, F ⊂ ωω is a

finite collection of functions with the property f, g ∈ F, f 6= g ⇒ f�|d| 6= g�|d|. Here, the
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d and π can be thought of as partial approximations of D and π in the eventual predic-

tor we are constructing, and F as the collection of functions that we are committed to

predicting correctly for the rest of the construction.

We define (d′, π′, F ′) as an extension of (d, π, F ) by

(d′, π′, F ′) ≤ (d, π, F ) ⇐⇒ d′ ⊃ d, π′ ⊃ π, F ′ ⊃ F and

f ∈ F, n ∈ dom(d′) \ dom(d)⇒ π′n(f�n) = f(n)

During this construction, we will also maintain the property that
⊕

Fs =
⊕
f∈Fs

f is

hyperimmune-free.

To initialize the construction, we let d0 = 〈〉, π0 = {}, F0 = {}.

We will extend in our construction by the following rules:

Pe: The goal of this requirement will be to ensure that we predict ϕe.

At stage s = 3e, we simply set Fs = Fs−1 ∪ {ϕe} and ds = ds−1
_ 0n with n least

such that for f ∈ Fs−1, if ϕe 6= f , then ϕe�|ds| 6= f�|ds|. Additionally, if πns ∈ πs has that

πns (ϕe�n) is undefined, we define it to be ϕe(n).

Ie: The goal of this requirement is to ensure that D is infinite.

At stage s = 3e + 1, Ds = Ds−1
_ 1, and πs = πs−1 ∪ {πm} with m = |Ds−1| where

πm : ωm → ω with πm(f�m) = f(m) for all f ∈ Fs−1, πm(σ) = 0 for all other σ, and

Fs = Fs−1.

Ee,n: The goal of this requirement will be to ensure that ϕAe is not total or that there

is a computable function he such that ∃∞n(ϕAe (n) ≤ he(n)).

At stage s = 3〈e, 0〉+ 2, we will use the following claim:
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Claim 2.16. We claim that either

(1) There is a uniformly Σ
0,
⊕
Fs

1 collection of functions indexed by d, π, f
∗

where d, π

are as in P and f
∗

is finite initial segments of functions. These functions have the

property that for any collection F̂ of total functions extending the f
∗
, the forcing

condition 〈d, π, Fs ∪ F̂ 〉 can be extended by q = 〈dq, πq〉(n) is below our function.

Syntactically, this is

{he
d,π,f

∗ ∈ ωω :〈d, π, Fs〉 ≤ 〈ds, πs, Fs〉, f
∗

= 〈f ∗i 〉, |f
∗| = l ∈ ω, f ∗i ∈ ω|d|

are distinct and ∀f ∈ Fs, f ∗i ∈ f
∗}f ∗i 6= f�|d|

such that

he
d,π,f

∗(n) ≥ min{m : ∀p = 〈d, π, Fs ∪ F̂ 〉 with F̂ = {fi ∈ ωω}i<l and fi�|d| = f ∗i

∃q ≤ p ϕ〈dq ,πq〉e (n) ↓< m}

or,

(2) There is n ∈ ω and p ≤ 〈ds, πs, Fs〉 such that for any q ≤ p, ϕ
〈dq ,πq〉
e (n) ↑ and

⊕
Fp

is hyperimmune free.

If (2), then we define 〈ds+1, πs+1, Fs+1〉 to be such a p and we do nothing for stages

of the form s = 3〈e, n〉+ 2. This will make ϕ
〈d,π〉
e not total.

If (1), then we can find ĥe ≤T
⊕

Fs such that ĥe ≥∗ he
d,π,f

∗ for all such functions.

However, since this join is hyperimmune-free, it follows that there is a computable

function he for which (∀n)he(n) ≥ ĥe.
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At stage s = 3〈e, n + 1〉 + 2 we can find j > n so that he(j) ≥ he
ds,πs,f

∗(j) where f
∗

are the restrictions of the functions in Fs \ F3〈e,0〉+2 to |ds| and such that ϕ
〈ds,πs〉
e (j) is

not yet defined.

In this situation, we can find ps+1 = 〈ds+1, πs+1, Fs+1〉 such that ϕ
〈ds+1,πs+1〉
e (j) ↓≤

he
ds,πs,f

∗(j) ≤ he(j), however, we note that this property of the ps+1 only depends on

finite initial segments of the the members of Fs+1 \ Fs, and so there actually is such a

condition with
⊕

Fs+1 hyperimmune-free. We pick a condition with this property.

Verification: By construction, the predictor P = 〈
⋃
ds,
⋃
πs〉 has the desired prop-

erties. Pe ensures our predictor predicts all computable functions, Ie ensures that

(
⋃
ds)
−1 (1) is infinite, and Ee,n ensures that the computational strength of the pre-

dictor cannot compute a total function dominating the computable functions, and so P

is not high.

Proof of Claim 2.16:

Proof. Before doing the technical work to show the claim, we will explain the idea of

the upcoming proof. As we see above, we want – if possible – to define the function

hed,π,g∗i in such a way that, given 〈d, π, Fs ∪ G〉 ≤ 〈ds, πs, Fs〉 with G = {gi : i < l + 1}

and gi�|d| = g∗i then we can find q ≤ 〈d, π, Fs ∪ G〉 such that ϕ
〈dq ,πq〉
e (n) is smaller than

hed,π,〈g∗i :i<l+1〉(n). In other words, hed,π,g∗i (n) represents the minimal value that we can

force ϕ
〈D,π〉
e (n) to take given that we already committed to d, π, g∗i .

In order to do this, we try to find all the possible extensions of 〈d, π, Fs ∪ G〉 that

make ϕ
〈dq ,πq〉
e small. In general this is not necessarily possible, but our best chance to

find them is if we restrict ourselves to a compact space (there, we will only have finitely

many extensions that are compatible with everything to consider).
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The conversion from the whole ωω to a compact space is possible thanks to the

following observation: q = 〈dq, πq, F q〉 ≤ 〈d, π, F 〉 and 〈d, π, {g}〉 are compatible if g�|d|

is different from f�|d| for all f ∈ F and g(|d|) is bigger than the |d|th index of all

strings in the domain of any function in πq (more formally, it is bigger than σ(|d|) for all

σ ∈ dom(πn,q) with d(n) = 1).1 This observation hints at the possibility of only worrying

about functions of certain growth while we are looking for our small convergences.

In our proof, we will ask hed,π,g∗i (n) to not only be bigger than the minimal value

that ϕ
〈D,π〉
e can take, but also to be bigger than the values taken by strings in the

domain of functions from π. In that way, we make hed,π,g∗i (n) carry some information of

compatibility. To define the compact space where we will work, we will define functions

Bl that combine nicely the information needed.

Now, for the proof, we will show this by induction on l = |f ∗|. Our induction hypoth-

esis is slightly stronger than the statement of the claim. Case (2) remains unchanged,

but we add to case (1) the additional requirement:

(1a) For all f ∈ ωω with f(n) > he
d,π,f

∗(n) for n < |d| then 〈d, π, Fs∪{f}〉 is compatible

with an extension r ≤ 〈d, π, Fs ∪ F̂ 〉 with ϕ〈d
r,πr〉(n) ↓< hed,π,g∗(n), F̂ = {fi ∈

ωω}i<l, and fi�|d| = f ∗i . Furthermore, r does not depend on f .

Case l = 0:

Fix 〈d, π, Fs〉 ≤ 〈ds, πs, Fs〉.

We will define a function hed,π,∅ computable from
⊕

Fs with the desired properties.

Fix n ∈ ω. For each k ∈ ω we will look for qk ≤ 〈d0k1, π, Fs〉 such that ϕ〈dqk ,πqk 〉(n) ↓.
1The compatibility is true because g�k with k > |d| is not mentioned in any function from πq,

therefore, we can create π′ which always predicts g correctly after |d| such that πq ⊆ π′. In this way
〈dq, π′, F ∪ {g}〉 is below q and 〈d, π, {g}〉.
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If there is k0 such that the above do not hold, then we have that p = 〈d0k01, π, Fs〉 satisfies

(2).

Otherwise, we begin searching for extensions q ≤ 〈d, π, Fs〉 with ϕ
〈dq ,πq〉
e (n) ↓. As

soon as we find a convergence to a value m, we let

hed,π,∅(n) = max{m,min{k : ∀i ∈ dq ∀σ ∈ dom(πqi ) σ ∈ ki}}

Notice that the first part of the max ensures (1), and the second part ensures that

(1a) is satisfied, as the only way there is no such extension, is if πq incorrectly predicts f

for some n ∈ (|d|, |dq|], but this is impossible, as f takes a value at some m < |d| which

is larger than anything that shows up in the domain of any of the functions from πq, by

definition.

Case l = 1:

If (2) already has already happened, we are done. Otherwise, fix 〈d, π, Fs〉 ≤

〈ds, πs, Fs〉 and g∗ ∈ ω|d| such that for all f ∈ Fs, f�|d| 6= g∗.

We will define a function hed,π,〈g∗〉 computable from
⊕

Fs with the desired properties.

Now, let he
d0k1,π,∅ be as in the l = 0 case. We define

B1(j) =

 0 j < |d|

max{he
d0k1,π,∅(j) : |d|+ k = j} |d| ≤ j

Notice that, given f ∈ ωω with f�|d| = g∗, if there is j ≥ |d| such that f(j) >

B1(j) then 〈d, π, Fs ∪ {f}〉 is compatible with an extension r ≤ 〈d0k1, π, Fs ∪ ∅〉 with

ϕ〈d
r,πr〉(j) ↓< hed,π,∅(j), for k = j − |d|.
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Since B1 is computable from
⊕

Fs we have that the space

C1 = {f ∈ ωω : f�|d| = g∗ & ∀j ≥ |d| fi(j) ≤ B1(j)}

is effectively compact with respect to
⊕

Fs.

Fix n ∈ ω.

Then we can define open sets in C1 representing bounded convergence. We define

these sets as

Un
m = {h ∈ C1 : ∃q ≤ 〈d, π, Fs ∪ {h}〉 ϕ〈dq ,πq〉e (n) ↓< m}.

Notice that Un
m ⊆ Un

t as long as m ≤ t, and that Un
m is a Σ

0,
⊕
Fs

1 set of functions.

Furthermore, if we call An =
⋃
m∈ω

Un
m, we have that C \An is a Π

0,
⊕
Fs

1 class that can

be express as follows:

{h ∈ C1 : ∀q ≤ 〈d, π, Fs ∪ {h}〉 ϕ〈dq ,πq〉e (n) ↑}.

If C1 \An 6= ∅, using the hyperimmune-free basis theorem, we can find an h which is

hyperimmune-free relative to
⊕

Fs, but since this join is hyperimmune-free, it follows

that h is hyperimmune-free, and we can satisfy (2) with p = 〈d, π, Fs ∪ {h}〉.

Otherwise, C1 = An =
⋃
m∈ω U

n
m, so, by compactness there is m∗, which can be found

in an effective way from
⊕

Fs, such that C1 = Un
m∗ . This m∗ will help us satisfy (1).

Now, in order to satisfy (1a), notice that the set of functions in C1 where adding
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them to Fs still allows for an extension witnessing a small convergence for a fixed d′, π′

Od′,π′ = {f ∈ C1 : ∃〈d′, π′, F 〉 ≤ 〈d, π, Fs ∪ {f}〉 ϕ〈d
′,π′〉

e (n) ↓< m∗}

is Σ
0,
⊕
Fs

1 and that

C1 = Un
m∗ =

⋃
〈d′,π′,∅〉∈P

Od′,π′ .

By effective compactness we can find c ∈ ω and 〈da, πa〉 for all a ≤ c, such that C1 =
c⋃

a=1

Oda,πa . In other words, this gives us finitely many 〈da, πa, ∅〉 forcing a convergence

less than m∗ compatible with 〈d, π, Fs ∪ {f}〉 for all f ∈ C1. Let

hed,π,〈g∗〉(n) = max

 m∗,max{he
d0k1,π,∅(n) : |d|+ k < maxa<c{|da|}},

min{k : ∀a < c∀i ∈ (da)−1({1})σ ∈ dom(πai )(σ ∈ kω)}

 .

Each of these satisfies a different condition. h bigger than m∗ ensures that (1) holds,

the last line ensures that (1a) holds, and the max satisfies a technical requirement we

will need later for the induction step.

Case l + 1:

Fix 〈d, π, Fs〉 ≤ 〈ds, πs, Fs〉 and g∗i ∈ ω|d| for i ∈ [0, . . . , l] such that for all f ∈ Fs,

and all i < l + 1, f�|d| 6= g∗i and g∗i 6= g∗j if i 6= j. Then, by our inductive hypothesis,

we have that for all A ⊂ g∗ with |A| ≤ l, either case (1) and (1a) hold or case (2) holds.

If for any such subset, we see that (2) holds, then by definition, (2) holds of f
∗
, and we

are done. Otherwise, we will define a function hed,π,〈g∗i :i<l+1〉 computable from
⊕

Fs with

the desired properties.
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Now, define

Bl+1(j) =



0 j < |d|

max


he
d0j−|d|1,π,〈f∗i :i<k〉

(j) :

|{f ∗i �|d| : i < k}| = k < l + 1,

(∀i)f ∗i �|d| ∈ g∗,

f ∗i (t) < Bl+1(t) for t ≥ |d|


|d| ≤ j.

In order for our proof to work, following the idea of case l = 1, we will define a compact

space in (ωω)l+1 such that each coordinate is bounded by Bl+1. Restricting to the

functions in this compact space is sufficient, given that for all G ⊆ ωω with G = {gi :

i < l+ 1}, gi�|d| = g∗i , if there is g ∈ G and j ∈ ω with g(j) > Bl+1(j), then we can find

an extension that will make a small convergence.

This is, indeed, true. Assume that there is a function in G exceeding Bl+1. Assume

that g(j) > Bl+1(j) and that, for all i < l + 1, m < j, gi(m) ≤ Bl+1(m) (so, g(j) is the

first time we are above Bl+1). Let G = G0 ∪G1 such that for all f ∈ G0, f(j) > Bl+1(j)

and for all a ∈ G1, a(j) ≤ Bl+1(j). Since |G1| < l+ 1, and we know that for all f ∈ G0,

f(j) > Bl+1(j) and so by definition of Bl+1,

f(j) > Bl+1(j) ≥ hed0j−|d|1,π,〈a�j+1:a∈G1〉(j).

By our inductive hypothesis (specifically, by (1a)) we have that for all f ∈ G0,

〈d0j−|d|1, π, Fs ∪ {f}〉 is compatible with an extension r ≤ 〈d0j−|d|1, π, Fs ∪ G1〉 with

ϕ〈d
r,πr〉(n) ↓< he

d0j−|d|1,π,〈h�j+1:h∈G1〉
(n), and r does not depend on f . This means that

〈d0j−|d|1, π, Fs ∪ G0〉 is compatible with that r ≤ 〈d0j−|d|1, π, Fs ∪ G1〉. Notice that,
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in this case, we have 〈d0j−|d|1, π, Fs ∪G1〉 ≤ 〈d, π, Fs ∪G1〉 and 〈d0j−|d|1, π, Fs ∪G0〉 ≤

〈d, π, Fs∪G0〉 which means that 〈d, π, Fs∪G1∪G0〉 = 〈d, π, Fs∪G〉 is compatible with that

r. In order to make everything work we just need to make sure that hed,π,〈g∗i :i<l+1〉(t) ≥

he
d0j−|d|1,π,〈h�j+1:h∈G1〉

(t) for all t ≥ j (notice that, to do it, we just need to ask for

hed,π,〈g∗i :i<l+1〉 to be bigger than Bl+1. This was the technical requirement necessary in

our previous step.)

Now that we know that our function Bl+1 works as we want. We will create the

compact space.

Since Bl+1 is computable from
⊕

Fs we have that the space of collections of functions

agreeing with g∗i up to |d| and bounded by Bl+1 thereafter, defined by

Cl+1 = {〈fi : i < l + 1〉 : fi ∈ ωω, fi�|d| = g∗i &∀j ≥ |d| fi(j) ≤ Bl+1(j)}

is effectivly compact with respect to
⊕

Fs.

Furthermore, fixing n, we define the sets

Um
n = {〈hi : i < l + 1〉 ∈ Cl+1 : ∃q ≤ 〈d, π, Fs ∪ {hi : i < l + 1}〉 ϕ〈dq ,πq〉e (n) ↓< m}.

We can do the same as the case l = 1. If the compact space is not the union of Un
m

then we can satisfy (2). Otherwise, we can satisfy (1) as we did in l = 1. To satisfy (1a),

we do the same as in l = 1 and we add that hed,π,〈g∗i :i<l+1〉(t) ≥ Bl+1(t) for all t ≥ |d|.
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2.2.3 Evasion Degrees

Now we will look at the results relating evasion degrees to the the rest of the nodes in

the computable version of Cichoń’s diagram.

Theorem 2.17. If A computes a weakly 1-generic, then A is an evasion degree.

Proof. If A computes a weakly 1-generic, then it computes a function escaping all com-

putably meager sets. Furthermore, the collection of sets predicted by any computable

predictor is a computably meager set by Lemma 2.12, and so A computes a function

evading any computable predictor.

Theorem 2.18. If A is DNC, then A is an evasion degree.

Proof. Let {Pe = 〈De, πe〉} be a list of the partial computable predictors by index e.

We note that by a result of Jockusch in [14], A computes a DNC function if and only if

it computes a strongly DNC function—that is, a function f ≤T A such that for all n,

and ∀e ≤ n f(n) 6= ϕe(e). Then we can define g(m) = f(nm) for nm large enough that

f(nm) 6= πe(g�m) for all e ≤ m. We can effectively find nm large enough by a simple

coding argument.

Corollary 2.19. If A is weakly meager engulfing, then A is an evasion degree.

Proof. By a result of Rupprecht in [30] A is weakly meager engulfing if and only if it is

high or DNC. If A is high, then it has hyperimmune degree, and so is an evasion degree

by Theorem 2.17 and the fact that hyperimmune degrees compute weakly 1-generics. If

A is DNC, then it is an evasion degree by Theorem 2.18. This completes the proof.

Surprisingly, we actually get an even stronger result, which differs greatly from the

analogous case on the set theoretic side:
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Corollary 2.20. If A is not low for weak 1-generics, then A is an evasion degree.

Proof. By a result of Stephan and Yu in [32], A is not low for weak 1-generics if and

only if A is hyperimmune or DNC. Combining this with Theorem 2.17 and Theorem

2.18, we have the desired result.

Definition 2.21. We define a trace to be a function g : ω → [ω]<ω with |g(n)| = n. A

computable trace will simply have g computable.

We define A ∈ 2ω to be computably traceable if for all f ∈ ωω with f ≤T A, there is

a computable trace g such that f(n) ∈ g(n) for all n.

Theorem 2.22. If A is an evasion degree then A is not low for Schnorr tests.

Proof. Let A be low for Schnorr tests. Then, by a result of Terwijn and Zambella in

[34], it follows that A is computably traceable. Let f ≤T A be a total function. Then

we define g by g(n) = f�In where In =
[
n(n−1)

2
, n(n+1)

2

)
. (Any computable partition of

ω into disjoint sets with |In| = n works here.) Note that since g ≤T f ≤T A, it follows

that g is computably traceable. Then, by assumption, there is a computable trace T

where T (n) ⊂ ωn, |T (n)| = n, and g�In ∈ T (n). However, for any n, there are at most

n − 1 values on which a first difference between members of T (n) is witnessed. Put

another way, there are at most n− 1-many values i such that there are σ, τ ∈ T (n) with

σ�i = τ�i, but σ(i) 6= τ(i). So there must be j ∈ In where for all σ, τ ∈ T (n), σ�j =

τ�j ⇒ σ(j) = τ(j). Then, we can computably build a predictor which predicts f by

adding j to D, and accurately predicting all the elements of the trace.

To prove the next theorem we will use the notion of clumpy trees introduced by

Downey and Greenberg in [8]. A necessary lemma and definitions are reproduced here.

K will be used to refer to prefix-free Kolmogorov complexity.
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Lemma 2.23. There is a computable mapping (σ, ε) 7→ nε(σ) which maps a finite binary

string σ ∈ 2<ω and a rational ε > 0 to a natural number n such that there is some binary

string τ of length n such that

K(στ)

|στ |
≥ 1− ε.

Definition 2.24. A perfect function tree is a function T : 2<ω → 2<ω that preserves

extension and compatibility.

Let T be a perfect function tree, σ ∈ im T , the image of T , and let ε be a positive

rational. We say that T contains an ε-clump above σ if for all binary strings τ of length

nε(σ), στ = T (ρτ), where σ = T (ρ). We further define T to be ε-clumpy if for all σ ∈ T ,

T contains an ε-clump above σ.

Definition 2.25 (Athreya, et al.[1]). Given A ∈ 2ω, the effective packing dimension of

A is given by

lim sup
n→∞

K(A�n)

n

Theorem 2.26. There is an A ∈ 2ω which is not an evasion degree, but has positive

packing dimension.

Proof. The idea of this proof will be to use forcing with computable trees with some

specific properties. First, at the eth stage, we will be pruning to a tree consisting

entirely of paths A for which ϕAe is computably predictable. We will use this to ensure

that the result of our forcing does not compute an evading function. Second, the trees

will be clumpy, allowing us to choose extensions which occasionally have high relative

complexity. This will mean our resulting set has positive packing dimension.
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Given an initial segment Ae−1 and a computable tree Te−1 extending this initial seg-

ment, we will prune our tree to Te, so that there is a single predictor that always predicts

ϕAe (n) for every remaining path A ∈ Te while maintaining the clumpiness requirement.

At every stage in our construction, we will assume that there is no initial segment

σ in our current tree Te−1 such that ϕAe is non-total for all paths A � σ. Additionally,

we will assume that for any σ ∈ Te, there exist τ1, τ2 � σ such that ϕτ1e 6= ϕτ2e . If either

of these fail, we define Ae = σ and Te is the portion of Te−1 extending σ. In either

case, the clumpiness condition is preserved for the next stage. In the case that the first

assumption fails, ϕAe is not total for all A � σ, and so we need not predict it accurately.

In the case that the latter assumption fails, ϕAe is computable for all A � σ, and so can

be predicted easily.

Each run of the construction will go as follows: We will rotate through 3 distinct

goals. We can think of them as clumping, differentiating, and predicting.

First, we will add clumps. Given a collection {σi} of initial segments in the tree,

each of length n, we will search for m > n such that Te−1�m contains a 1/2-clump above

σi for each σi. Then, the collection given by Te−1�m will be the {τi} for the next stage.

Next, we will differentiate. We look for j > m so that each m-length τi has an

extension γi of length j such that ϕγie is distinct for each such γi. We are guaranteed to

find these by our previous assumption about splitting.

In the final step, we predict. We now look for d ∈ ω such that ϕγie (d) is undefined

for all γi previously defined. We add this d to D for the predictor we are building, and

for each γi we look for a further extension σi � γi such that ϕσie (k) ↓ for all k ≤ d. Then

we define π(ϕσie �d) = ϕσie (d). For all other strings a of length d, we can define π(a) = 0.

Now, finally, these σi become the initial segments of the tree that we start with for the
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next pass through these three steps. We repeat the process indefinitely.

Finally, once Te is defined, we will pick Ae � Ae−1 with |Ae| > 2|Ae−1| and K(Ae)
|Ae| > 1

2
.

Such a string is guaranteed to exist because of the clumpiness condition on our tree.

Then, A =
⋃
Ae is the desired degree, as it is a path through each Te, and so ϕAe is

computably predictable, but by construction, A has packing dimension ≥ 1/2.

Note that there is nothing special about 1/2 in our construction, and a small alter-

ation in the proof can give us A with effective packing dimension of 1.

Lemma 2.27 (Downey and Greenberg[8]). A ∈ 2ω computably traceable ⇒ A has effec-

tive packing dimension 0.

Indeed, this is true of c.e. traceable sets as well.

Corollary 2.28. There is a degree which is not computably traceable, but not an evasion

degree.

Proof. This is an immediate result of Lemma 2.27 and Theorem 2.26.

In our finished diagram including prediction and evasion (Figure 4), we have included

some of the alternate characterizations of nodes we used that include properties of and

relations to the computable functions.

2.3 Rearrangement

The rearrangement number was recently introduced in [4] by Blass, Brendle, Brian,

Hamkins, Hardy, and Larson. All results and definitions about this characteristic can

be found there.
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Figure 4: Effective Cichoń’s diagram including prediction and evasion degrees.
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2.3.1 Definitions

Definition 2.29. The rearrangement number rr is defined as the smallest cardinality of

any family C of permutations of ω such that, for every conditionally convergent series∑
an of real numbers, there is a permutation p ∈ C for which

∑
ap(n) 6=

∑
an.

A priori, there are a few different ways of making this happen, namely making the

permuted series diverge to infinity, making the permuted series oscillate, and making

the permuted series sum to a different finite sum than the original series. In practice,

oscillation is easier to achieve than the other two, and so it only makes sense to isolate

the other two possibilities, giving a few additional characteristics, where the variation

requirement is stronger.

Definition 2.30. We present three additional refinements, giving slightly different char-

acterizations:

• rrf is defined the same way as rr, but where the sum is required to converge to a

different finite number.

• rri is defined the same way, but the sum is required to diverge to infinity.

• rrfi is defined the same way, but the sum is required to either diverge to infinity

or converge to a different finite number.

Simply by definition, one can easily see that rr ≤ rrfi ≤ rrf , rri. The authors in [4]

were able to show that it is consistent that rr < rrfi, but were unable to conclusively show
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Non(M) Cof(M) Cof(N )

Cov(N ) rr rrfi

b d

Add(N ) Add(M) Cov(M) Non(N )

Figure 5: Cichoń’s diagram including rr and rrfi.

whether or not the latter three characteristics were separable from each other. Similarly,

on the effective side, we have been unable to separate the finite case, the infinite case, or

the case allowing either from each other, and so here we will only present the highness

notions analogous to rr and rrfi (although it should be clear what the other two would

look like.)

Definition 2.31. We define a conditionally convergent series of rationals
∑
an to be

computably imperturbable if, for all computable permutations p, we have that

∑
an =

∑
ap(n)

Also, we define
∑
an to be weakly computably imperturbable if no computable permuta-

tion p has that either

∑
ap(n) = B 6= A =

∑
an or

∑
ap(n) = ±∞.
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Equivalently, we can define a series to be weakly computably imperturbable if the only

way we get inequality of series under computable permutation is by oscillation, that is

∑
an 6=

∑
ap(n) ⇒

∑
ap(n) fails to converges by oscillation.

Finally, we define a real X ∈ 2ω as (weakly) computably imperturbable if it computes a

series with the corresponding property.

We present here known facts about rr and rrfi along with their computable analogs.

All results can be found in [4].

Theorem 2.32. The following relationships are known for rr and rrfi.

Cardinal Char. Highness Properties Theorem

b ≤ rr high ⇒ imperturbable 2.33

d ≤ rrfi weak 1-gen ⇒ weakly imperturbable 2.34

non(N ) ≤ rr computes a Schnorr random ⇒ imperturbable 2.43

rr ≤ cov(M) impertubable ⇒ weakly meager engulfing 2.44

CON(non(N ) < rr) imperturbable 6⇒ computes a Schnorr random Open

CON(b < rr) imperturbable 6⇒ high 2.45

CON(rr < rrfi) weakly imperturbable 6⇒ imperturbable 2.46

CON(d < rrfi) weakly imperturbable 6⇒ hyperimmune 2.47

2.3.2 Imperturbability results

The following is an adaptation of Theorems 15 and 16 in [4].

Theorem 2.33. If X is high, then it is imperturbable.
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Proof. Let X ∈ 2ω be high and
∑
an be any computable conditionally convergent series.

By a classic result of Martin in [23], this means that there is a (strictly increasing)

function f ≤T X such that f dominates all computable functions. Let
∑
an be any

computable conditionally convergent series. Define the sequence {bk} by

bk =


an k = fn(0)

0 otherwise

,

using the convention that fn is the n-times application of f , that is

fn(a) =

n︷ ︸︸ ︷
f(· · · f(f(a))).

We claim that
∑
bp(n) =

∑
an for all computable permutations p. To see that this

is true, for each e ∈ ω, we will define a computable function ge such that if ϕe is a

permutation, it follows that ϕe(i) ≤ n, ge(n) ≤ ϕe(j) ⇒ i ≤ j for all i, j ∈ ω. Clearly,

given such computable functions, we can see that the series
∑
bk defined above has the

desired property, as f dominates all of the ge, and so no computable permutation alters

the order of any more than finitely many non-zero elements, leaving the sum unchanged.

In order to define ge(n), we first assume ϕe is a permutation, if it isn’t, nothing

that we do matters, as we do not have to defeat it. We begin searching computably for

An = {l ∈ ω : ϕe(l) ≤ n}. At some finite stage in our computation, we will have found lk

such that ϕe(lk) = k for all k ≤ n. This follows from the fact that ϕe is a permutation.

Then, let a = max{lk : k ≤ n}. Finally, we can define ge(n) = max{ϕe(m) : m ≤ a}.

This ge has the desired property by construction.
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The following is an adaptation of Theorem 18 in [4].

Theorem 2.34. If X is of hyperimmune degree, then X is weakly imperturbable.

Proof. This proof will be very similar to that of Theorem 2.33. Here, let X be of

hyperimmune degree. Then, in particular, there is some f ≤T X such that f > ϕe

infinitely often for any e. That is, for every e, there are infinitely many n with f(n) >

ϕe(n). Here, we will also require that f is strictly increasing. Again, for
∑
an some

computable conditionally convergent series, we define the sequence {bk} by

bk =


an k = fn(0)

0 otherwise

.

We claim that for all ε > 0 and e ∈ ω, if ϕe is a permutation, then there are infinitely-

many distinct pairs i, j ∈ ω such that

∣∣∣∣∣
i∑

n=0

bϕe(n) −
j∑

n=0

an

∣∣∣∣∣ < ε.

To see that this is true, we can use exactly the same ge as we used in Theorem 2.33.

Remember, if ϕe is a computable permutation, then ge is total computable. Since f is

not dominated by any computable function, it follows that f(n) > ge(n) infinitely often.

In particular, since f is monotone increasing, there must be infinitely-many n so that

fn+2(0) ≥ ge(f
n(0)). For each such n, there is an initial partial sum of the bϕe(k) which

differs from
j∑

n=0

an by at most |aj+1|. These pairs have the desired property. Then, since

|an| → 0 for n large, the initial partial sums of the bϕe(k) are infinitely often arbitrarily

close to those of the an. It follows that
∑
bϕe(k) can neither converge to a different limit



57

than
∑
an, nor diverge to infinity. Thus we have that

∑
bk is a weakly imperturbable

sum, as desired.

For the next lemma we will need the following definitions and facts from [31]:

Definition 2.35. A computable metric space is a triple X = (X, d, S) such that

(1) X is a complete metric space with metric d : X ×X → [0,∞).

(2) S = {ai}i∈ω is a countable dense subset of X.

(3) The distance d(ai, aj) is computable uniformly from i and j.

A point x ∈ X is said to be computable if there is a computable function h : ω → ω

such that for all m > n, we have d(ah(m), ah(n)) ≤ 2−n and x = lim
n→∞

ah(n) The sequence

(ah(m)) is the Cauchy-name for x.

Definition 2.36. Let Y = (Y, S, dY) be a computable metric space. The space of

measurable functions from (2ω, λ) to Y is a computable metric space under the metric

dmeas(f, g) =

∫
min(dY, 1) dλ

and test functions of the form ϕ(x) = ci1[σi] when x ∈ [σi] (prefix-free σ0, . . . , σk−1 ∈

2<ω; c0, . . . , ck−1 ∈ S). The computable points in this space are called effectively mea-

surable functions.

Lemma 2.37 (Rute[31]). Suppose f : (X, µ)→ Y is effectively measurable with Cauchy-

name (ϕn) in dmeas. The limit lim
n→∞

ϕn(x) exists on all Schnorr randoms x.
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Lemma 2.38 (Kolmogorov[18]). Let X0, . . . , Xn be independent random variables with

expected value E[Xi] = 0 and finite variance. Then for each λ > 0

P

[
max
0≤k≤n

(
k∑
i=0

Xi

)
≥ λ

]
≤ 1

λ2

n∑
i=0

Var(Xi).

This collection of lemmas will be used to prove the following result which is an

effectivization of a theorem of Rademacher [27].

Lemma 2.39. If the sequence of rationals {an} is computable,
∑
a2n <∞ is computable,

and X ∈ 2ω is a Schnorr random, then
∑
an(−1)X(n) converges.

Proof. To see this, we will find a Cauchy-name for the function f(x) =
∑
an(−1)x(n) in

the metric dmeas. Then we need only apply Lemma 2.37 to get the desired result.

Given a computable sequence of rationals {an} with
∑
a2n < ∞ computable, and

m ∈ ω we define ϕm(x) =
im∑
n=0

an(−1)x(n) where im is least such that

∞∑
n=im

a2n <
1

8m+1
.

To see that this is a Cauchy-name, given j > m, we have that

dmeas(ϕj, ϕm) ≤ 1

2m+1
+ µ

{
x ∈ 2ω :

∣∣∣∣∣
ij∑

n=im+1

an(−1)x(n)

∣∣∣∣∣ > 1

2m+1

}
.

However, we can effectively bound the measure of the set in this inequality by

{
x ∈ 2ω :

∣∣∣∣∣
ij∑

n=im+1

an(−1)x(n)

∣∣∣∣∣ > 1

2m+1

}
⊂
∞⋃
k=0

{
x ∈ 2ω :

∣∣∣∣∣
im+k∑
j=im

aj(−1)x(j)

∣∣∣∣∣ > 1

2m+1

}
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Then, applying Lemma 2.38, we have

∞⋃
k=0

{
x ∈ 2ω :

∣∣∣∣∣
im+k∑
j=im

aj(−1)x(j)

∣∣∣∣∣ > 1

2m+1

}
≤ 1

(1/2m+1)2

∞∑
j=im

a2j

<
1

2m+1
,

and so dmeas(ϕm, ϕj) ≤ 1
2m+1 + 1

2m+1 = 1
2m

, as desired. Thus, ϕm is a Cauchy name, as

desired. Then, by Lemma 2.37, it must converge on all Schnorr randoms.

Lemma 2.40 (Folklore). A computable permutation of a Schnorr Random is Schnorr

Random.

The following is an adaptation of Theorem 11 in [4].

Lemma 2.41. Given a computable permutation p, there is a computable permutation q

with the property that there are infinitely many i such that {q(n) : n ≤ i} = {p(n) : n ≤

i} and infinitely many j such that {q(n) : n ≤ j} = {0, . . . , j}.

Proof. We can essentially just build this. Let p be a computable permutation, then we

alternate between conditions. We define q0(0) = 0, and then we build q in stages such

that the domain of qs will always be an initial segment of ω. For each s > 0, we do the

following:

If s is odd, we aim to add an i so that {q(n) : n ≤ i} = {p(n) : n ≤ i}. To do this, we

begin to search computably for mk ∈ ω for k on which qs−1 has already been defined such

that p(mk) = qs−1(k) for each k ∈ dom(qs−1). Then we will define qs up to max{mk} by

simply building a bijection between p{0, . . . ,max{mk}} picking one element at a time.

This is simple, as the collection is computable, and qs−1 is already a bijection with a

subset, and so we can simply extend. Then, max{mk} will be the desired i.
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If s is even, we aim to add a j so that {q(n) : n ≤ j} = {0, . . . , j}. This is even

more straightforward. The j we choose will be j = max(range(qs−1)), and we can simply

build a bijection between the finite, computable, same-size sets, {0, . . . , j} \ range(qs−1)

and {0, . . . , j} \ dom(qs−1) in order to extend qs−1 to qs.

It is straightforward to see that, from the way we constructed q, q =
⋃
qs is a

bijection, and range(q) = dom(q) = ω. Thus, q is a computable permutation, and has

the desired property.

Note, this result can actually be extended so that, given any two permutations p1, p2,

there is a permutation q ≤T p1 ⊕ p2 such that there are infinitely many i, j such that

{q(n) : n ≤ i} = {p1(n) : n ≤ i} and {q(n) : n ≤ i} = {p2(n) : n ≤ i}.

The following is an adaptation of Theorem 6 in [4].

Lemma 2.42. If
∑
an is not computably imperturbable, then there is a computable

permutation p such that
∑
ap(n) fails to converge due to oscillation.

Proof. Let
∑
an be a series which is not computably imperturbable. That is, there is a

computable permutation p such that

∑
an 6=

∑
ap(n).

We can assume that
∑
ap(n) = ±∞ or

∑
ap(n) = B 6= A =

∑
an, otherwise there is

nothing to show. Now let q be as in Lemma 2.41. This q has the desired property. If∑
ap(n) =∞, then for i as in the lemma, we have that

i∑
n=0

aq(n) =
i∑

n=0

ap(n),
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thus we can see that these partial sums grow without bound, but simultaneously, for j

as in the lemma, we have that

j∑
n=0

aq(n) =

j∑
n=0

an,

and so these partial sums tend towards A =
∑
an. Thus, the whole series must be

non-convergent due to oscillation. A similar argument shows that if
∑
ap(n) = B 6= A,

then there are infinite subsequences of initial sums of
∑
aq(n) converging to both A and

B, which also means that
∑
aq(n) must be non-convergent due to oscillation.

Theorem 2.43. If X computes a Schnorr Random, then X is imperturbable.

Proof. Let X ∈ 2ω and A ≤T X be Schnorr Random. Then, we claim that if we define

an = (−1)A(n)

n
, the series

∑
an is imperturbable. To see this, let p be a computable

permutation, then
∑
ap(n) converges by Lemma 2.39 and Lemma 2.40. Namely, the

sequence
{

1
p(n)

}
is a computable sequence by construction,

∑(
1

p(n)

)2

=
∑ 1

n2
=
π2

6

is computably converging to a computable sum, and the indices of negative entries of

our sequence is Schnorr Random by Lemma 2.40. Thus, we can apply Lemma 2.39, and

so the series converges for all computable permutations. Further, since this series must

converge for all computable permutations, it follows from Lemma 2.42 that it must be

imperturbable.

Theorem 2.44. If X is imperturbable, then X is weakly meager engulfing.
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Proof. We will actually show that X is weakly meager engulfing in the space of permu-

tations, but there is a computable bijection between Let X imperturbable, then there is

a conditionally convergent imperturbable series
∑
an ≤T X. We claim that the set of

permutations leaving this sum unchanged is contained in an X-effectively meager set.

In particular, the set of permutations which do not make the sum +∞ is exactly the set

E =
⋃
k∈ω

⋂
m≥k

{
p :

m∑
n=0

ap(n) ≤ k

}

Now, we simply observe that the intersection

Ek =
⋂
m≥k

{
p :

m∑
n=0

ap(n) ≤ k

}

is Σ0
1 in X, additionally, it is nowhere dense, as any initial segment which falls in the

appropriate range can then have all terms of the same sign for long enough to escape

the interval.

Thus, E is an X-effectively meager set of permutations containing all computable

permutations, as desired.

We can immediately see that almost all of the forgoing implications are not reversible.

This follows from the theorems plus existing, known cuts of the computable Cichoń’s

diagram. These cuts are cataloged in [6] §4.2.

Corollary 2.45. There is an X which is imperturbable but not high.

Proof. This is a direct result of Theorem 2.43 plus the fact that there is a Schnorr

random which is not high. In fact, there is a low ML-random, which we can see from
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the low basis theorem plus the existence of a universal ML-test. See e.g. [26] Theorem

1.8.37.

Corollary 2.46. There is an X which is weakly imperturbable but not imperturbable.

Proof. We will use the fact that weakly meager engulfing is equivalent to high or DNC,

a proof of which can be found in [16]. The corollary follows directly from Theorems

2.34 and 2.44 plus the existence of a set of hyperimmune degree which is not weakly

meager engulfing. Any nonrecursive low r.e. set suffices. Obviously, being of hyperim-

mune degree means that it is also weakly computably imperturbable. Additionally, by

Arslanov’s completeness criterion ([26], 4.1.11), such a set cannot be DNC, and is not

high by definition. Thus, the set is also not weakly meager engulfing.

Corollary 2.47. There is an X which is weakly imperturbable and hyperimmune-free.

Proof. This follows directly from Theorem 2.43 plus the fact that imperturbable implies

weakly imperturbable and the existence of a Schnorr random which is hyperimmune-

free. The fact follows by taking a set A of hyperimmune-free PA degree (see e.g. [26]

1.8.32 and 1.8.42).
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Figure 6: Effective Cichoń’s diagram including imperturbability.
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