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Abstract

Let F be an ordered field extension of R. I prove that each Q-bounded definable set in

an o-minimal expansion of F has a partition into pieces that satisfy the Whitney arc

property, and that any bounded definable set can be decomposed into cells built out of

functions with bounded derivatives.

I show that length is bounded in definable families of curves and I formulate and prove

a Cauchy-Crofton formula for Q-bounded definable curves in an o-minimal expansion of

F.
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Chapter 1

Introduction

A semialgebraic subset of Rn is a finite union of sets given by polynomial equations and

inequalities. For example, the intervals (a, b) ⊂ R and the open disk {(x, y) : x2 + y2 <

1} ⊂ R2 are semialgebraic sets. Semialgebraic sets behave well under nice mappings:

the projection of a semialgebraic set is semialgebraic (this is the Tarski-Seindenberg

theorem, see [10]). These sets also possess good stratifications properties. A broader

class of sets is the class of all globally subanalytic subsets of Rn.

The collection of all semialgebraic subsets of Rn, for n ≥ 0, is an example of an

o-minimal structure over the real field (a consequence of Tarski’s quantifier elimination

for real closed fields) as is the collection of all globally subanalytic subsets of Rn (a

consequence of Gabrielov’s theorem of the complement [2]). The subject of o-minimality

started in the early 1980’s, when Van den Dries [9] realized that many of the properties

of semialgebraic sets and subanalytic sets could be deduced from a small collection

of axioms. These axioms were subsequently studied in detail by Knight, Pillay and

Steinhorn [5].

An o-minimal structure S over an ordered field F is a collection Sn of subsets of

Fn, for each n ≥ 0, satisfying the following conditions:

(i) Sn is a Boolean algebra of subsets of Fn.

(ii) A× F, F× A ∈ Sn+1 whenever A ∈ Sn.
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(iii) If A ∈ Sn+1, then πn(A) ∈ Sn, where πn : Fn+1 −→ Fn is the projection onto the

first n coordinates.

(iv) The diagonals {(x1, . . . , xn) : x1 = xn} belong to Sn for every n.

(v) {(x, y) : x < y} ∈ S2.

(vi) {(x, y, z) : z = x + y}, {(x, y, z) : z = xy} ∈ S3.

(vii) The sets in S1 are precisely the finite unions of intervals (a, b), a, b ∈ F∪{−∞, +∞}

and points of F.

The sets belonging to an o-minimal structure are called the definable sets. A function

is definable if its graph is a definable set.

There are many examples of o-minimal structures over the reals other than the

semialgebraic and subanalytic sets. For instance, there are o-minimal structures over

the real field in which the exponential function and all Pfaffian functions are definable

(Wilkie [13]); or more generally, where non-spiralling leaves of definable hyperplane fields

are definable (Speissegger [8]).

I will concentrate on discussing o-minimal structures over ordered field extensions of

the real field. Proper ordered field extensions of R necessarily contain positive elements

that are smaller than every positive real number, as well as elements that are bigger than

any real number. Ordered field extensions of the real field have played an important

role in real algebraic geometry since Artin’s solution of Hilbert’s seventeenth problem.

In the first chapter of this thesis, I study techniques for partitioning definable sets into

definable pieces satisfying certain geometric properties; this chapter generalizes results

of Kurdyka’s [6]. A typical example of a theorem of this section states that any definable
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set can be partitioned into pieces that are “almost flat”. The main result of this chapter

is that definable sets can be partitioned into pieces whose metric structure is equivalent

to that induced by the ambient space.

The second chapter concerns a generalization of the Cauchy-Crofton formula from

integral geometry to arbitrary o-minimal structures over a field extension of R. I use

this generalization to show that the lengths of the curves in a bounded definable family

of curves are uniformly bounded.

The classical Cauchy-Crofton formula expresses the length of a compact embedded

curve γ ⊂ Rn as an average over the affine Grassmannian of all affine hyperplanes in

Rn of the number of points of intersection of each affine hyperplane with γ (see Howard

[4]).

Given an o-minimal structure over an ordered field F, Berarducci and Otero [1] define

a measure on a certain Boolean algebra of subsets of Fn, n ≥ 0, and show that the

definable subsets of Fn that are bounded by a box with rational corners are measurable

in this sense. Using this measure, I define the length of a definable curve whose image

is contained in a box with rational corners, that is, a curve with Q-bounded image. The

main result of chapter two is the following:

Theorem 1.1. There is a constant C ∈ R>0 such that for every definable injective curve

γ : [0, 1]F −→ Fn with γ([0, 1]) Q-bounded,

length(γ) = C

∫
AGrn−1(Fn)

#(γ ∩ L) dL.

(Here, #(γ∩L) is the number of points of intersection of γ and L, and AGrn−1(Fn) is

the affine Grassmannian of hyperplanes in Fn). I define the integral on the right by using

the Berarducci-Otero measure and I show that it coincides with an analogous integral
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over the real affine Grassmannian for a suitable real curve γ obtained from γ.

The study of this generalization of the Cauchy-Crofton formula was motivated by

an attempt to generalize a result found in [6]: subanalytic sets can be stratified in such

a way that each stratum has the “Whitney arc property”. A set A ⊂ Rn satisfies the

Whitney arc property (WAP), if there is a number K > 0 such that any two points

x, y of A can be joined by a curve γ in A satisfying length(γ) ≤ K|x−y|. This property

was introduced by Whitney in [12], where the author shows that if f is a function of

class Cm defined on a region R that has the Whitney arc property, and if all the m-th

order partials of f can be defined on the boundary B of R so that they are continuous

in R ∪B, then f can be extended to a Cm function on all of Rn.

Chapter one generalizes Kurdyka’s result to sets that are definable in an o-minimal

structure over a field extension of the real field. Moreover, I show that there is a definable

family of curves witnessing the WAP. More precisely:

Theorem 1.2. Let A ⊂ Fn be a definably connected definable set, and asumme that A

is contained in a box with rational corners. Then there is a K ∈ Q>0, which depends

only on n, and definable pairwise disjoint sets Ai, for i = 1, . . . , s, such that

A =
⋃

i=1,...,s

Ai

and for each i, there is a definable family of curves

λi ⊂ A2
i × ([0, 1]× Ai)

with the property that for every pair of points x, y ∈ Ai, λi
x,y is a curve in Ai joining x

and y such that length(λi
x,y) ≤ K|x− y|. In particular, Ai has the WAP.
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Chapter 2

Preliminaries

2.1 Definable sets

This section contains some of the basic definitions and theorems about definable sets.

We refer the reader to [10] for details.

From now on, we fix an o-minimal structure S over an ordered field F. Continuity and

differentiability of functions are defined by the standard limits. Many of the standard

theorems of differential calculus, like the intermediate value theorem and the mean

value theorem, hold for definable functions. Definable continuous images of closed and

bounded sets are closed and bounded; definable, continuous functions on a closed and

bounded set achieve maximum and minimum values.

A definable set A is definably connected if it is not the union of two disjoint

definable open subsets of A. The only definably connected subsets of F are intervals.

Images of definably connected sets under definable and continuous maps are definably

connected. A definable set A is definably path connected if any pair of points of A

can be connected by a definable path in A. Definably connected sets are definably path

connected.

A point in the closure of a subset of Rn is the limit of a sequence of points in the set.

The analogous fact for definable sets in Fn is the following:
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Fact 2.1 (Curve Selection). Let C be a definable set, and let c ∈ C \ C. Then there is

a definable, continuous, injective map γ : (0, 1) −→ C such that limt−→0 γ(t) = a.

A cell in Fn is a special kind of definable set:

Definition 2.2. Let (i1, . . . , im) be a sequence of zeros and ones and k ∈ N. An

(i1, . . . , im) Ck- cell is a subset of Fm defined inductively as follows:

(i) A (0) Ck-cell is a point {r} ⊂ F, a (1) Ck-cell is an interval (a, b) ⊂ F, where

a, b ∈ F ∪ {−∞, +∞}.

(ii) An (i1, . . . , im, 0) Ck-cell is the graph Γ(f) of a definable Ck function f : X −→ F,

where X is a (i1, . . . , im) Ck-cell; an (i1, . . . , im, 1) Ck-cell is a set

(f, g)X := {(x, r) ∈ X × F : f(x) < r < g(x)},

where X is an (i1, . . . , im) Ck-cell and f, g : X −→ F are definable Ck functions

on X such that for all x ∈ X, f(x) < g(x); we also allow f = −∞ or g = +∞.

Observe that the definition of cells depends on the ordering of the coordinates of Fn.

It is easy to check that cells are definably connected.

Definition 2.3. A Cm cell decomposition of Fn is a special partition of Fn into

Cm-cells. The definition is given by induction on n:

(i) A Cm cell decomposition of F is a collection

{(−∞, a1), (a1, a2), . . . , (ak,∞), {a1}, . . . , {ak}}

where a1 < · · · < ak are points of F.
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(ii) A Cm cell decomposition of Fn+1 is a partition A of Fn into Cm-cells such that the

set {πn(A) : A ∈ A} is a Cm cell decomposition of Fn, where πn : Fn+1 −→ Fn is

the projection onto the first n coordinates.

A fundamental fact about definable sets is that they can be partitioned into Cm-cells.

More precisely:

Theorem 2.4 (Cell Decomposition theorem [10], [5] ). The following holds:

(i) Given definable sets A1, . . . , Ak ⊂ Fn, there is a Cm cell decomposition of Fn

partitioning each Ai.

(ii) For every definable function f : A −→ F, with A ⊂ Fn, there is a Cm cell decom-

position D of Fn partitioning A such that the restriction f |B : B −→ F, for each

B ∈ D with B ⊂ A, is a Cm function.

The dimension of a definable set A ⊂ Fn is defined by

dim(A) := max{i1 + . . . , +in : A contains an (i1, . . . , in)-cell}.

For a definable set S ⊂ Fm+n and a point a ∈ Fm, the fiber of S over a is the set

Sa := {x ∈ Fn : (a, x) ∈ S}.

We consider S as describing the family of sets (Sa)a∈Fm , also called a definable family

in Fn with parameters in Fm. In this situation, the cell decomposition theorem shows

the existence of a bound on the number of definably connected components of Sa:

Fact 2.5. Let S ⊂ Fm+n be a definable set. Then there is an N ∈ N such that each fiber

Sa has at most N definably connected components.
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We say that A ⊂ Fd is Q-bounded if A ⊂ [−q, q]d for some q ∈ Q>0.

Definition 2.6. Let A ⊂ Fn, B ⊂ Fm be definable sets. Let λ ⊂ A × ([0, 1] × B) ⊂

Fn × F1+m be a definable set such that for every x ∈ A, the fiber λx is the graph of a

function λx : [0, 1] −→ B. We view λ as describing the family of curves {λx}x∈A. Such

a family is a definable family of curves (in B, parametrized by A). When there is

no risk of confusion, we denote the image of λx also by λx. λ is Q-bounded if

⋃
x∈A

λx([0, 1])

is a Q-bounded subset of Fm.

2.2 The Berarducci-Otero integral

In [1], a theory of measure and integration in o-minimal structures over a field is devel-

oped. This section contains a description of the corresponding integral.

Definition 2.7. B ⊂ Fd is a polyrectangle of dimension d if B is a finite union of

rectangles [q1, r1)× · · · × [qd, rd) with rational coordinates qi, ri. The set PR(d)(F) is the

set of polyrectangles of dimension d of F. The volume of a rectangle [q1, r1)×· · ·×[qd, rd)

is

µ([q1, r1)× · · · × [qd, rd)) = πd
i=1(ri − qi).

If a polyrectangle P is the disjoint union of rectangles Ri, i = 1, . . . ,m, then µ(P ) :=∑m
i=1 µ(Ri).

Definition 2.8. For a Q-bounded set A ⊂ Fd we define:

The outer measure of A: µ∗(A) := inf{µ(P ) : P ⊃ A, P ∈ PR(d)(F)}. The inner
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measure of A: µ∗(A) := sup{µ(P ) : P ⊂ A, P ∈ PR(d)(F)}. Here the infimum and

supremum are taken in R.

A Q-bounded set A is measurable if µ∗(A) = µ∗(A), and in this case the measure

of A is defined as µ(A) := µ∗(A) = µ∗(A). One of the main results in [1] is the following

Theorem 2.9. Let A be a Q-bounded definable subset of Fd. Then A is measurable.

Moreover, if dim(A) < d then µ(A) = 0.

Let A ⊂ Fd be Q-bounded. For f : Fd −→ F≥0, we define∫
A

f := µ([0, f)A),

provided that [0, f)A := {(x, y) : x ∈ A, 0 ≤ y < f(x)} is measurable. For general

f : Fd −→ F, we put ∫
A

f :=

∫
A

f+ −
∫

A

f−,

provided both terms on the right exist, where f+ and f− are, respectively, the positive

and negative part of f .

This integral can be used to define the length of a definable C1 curve γ : (a, b) −→

Fn, with (a, b) and Im(γ′) Q-bounded, by

length(γ) :=

∫ b

a

|γ′(x)|.

The Berarducci-Otero integral is additive and real valued but in general, it is not

true that
∫

A
cf = c

∫
A

f for c ∈ F. This formula holds for rational c.

2.3 The Cauchy-Crofton formula

A reference for standard facts about Lie groups is Warner [11]. For facts about group

invariant integration see Helgason [3], and for a proof of the Cauchy-Crofton formula
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see Howard [4].

We denote the Lie algebra of a Lie group G by g. A representation of G is a Lie

group homomorphism from G into GL(V ), for a finite dimensional real vector space V .

G acts on itself on the left by conjugation and the identity element e ∈ G is a fixed point

of this action. For g ∈ G, let µg : G −→ G be conjugation by g, that is µg(x) := gxg−1.

The map AdG : G −→ GL(g) given by

AdG(g)(v) := dµg(v), g ∈ G, v ∈ g

is a representation of G. It is called the adjoint representation of G.

Let Cc(G) be the collection of compactly supported continuous real valued functions

on G. A measure on a Lie group G is an R-linear mapping Cc(G) −→ R such that:

for each compact K ⊂ G, there is a constant MK such that for every continuous f with

compact support contained in K,∫
G

f ≤ MK sup
x∈G

|f(x)|.

Let lg : G −→ G and rg : G −→ G denote, respectively, left and right multiplication by

g, that is lg(x) = gx and rg(x) = xg for all x ∈ G. A measure
∫

G
on G is bi-invariant

if for all g ∈ G and all continuous, compactly supported f : G −→ R,∫
G

f ◦ lg =

∫
G

f and

∫
G

f ◦ rg =

∫
G

f.

The following proposition tells us when bi-invariant measures exist.

Fact 2.10. A Lie group G has a bi-invariant measure if and only if | det(AdG(g))| = 1

for all g ∈ G.

See [3] Chapter 1, pg. 88 for the proof.
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For example, semisimple Lie groups and compact Lie groups have bi-invariant mea-

sures.

Let G and H be Lie groups. An action by automorphisms of G on H on the left

is a C∞ map τ : G×H −→ H such that:

(i) τ(g, h1h2) = τ(g, h1)τ(g, h2), for all g ∈ G and h1, h2 ∈ H.

(ii) τ(g1g2, h) = τ(g1, τ(g2, h)), for all g1, g2 ∈ G and h ∈ H.

(iii) τ(e, h) = h, for all h ∈ H, where e ∈ G is the identity element.

τ(g, h) is also commonly denoted as g · h.

Let G and H be lie groups with an action by automorphisms g · h of G on H on the

left. The semidirect product H o G of H and G is the Lie group whose underlying

manifold is the product manifold H ×G and with product operation

(h0, g0)(h1, g1) = (h0(g0 · h1), g0g1).

We identify G and H with subgroups of K by h = (h, eG) and g = (eH , g) where g ∈ G,

h ∈ H and eG, eH are the identity elements of G and H respectively. Conjugation of h

by g in K := H o G corresponds to the action of G on H, in other words ghg−1 = g · h;

in particular, µg maps H into H.

Take g ∈ G and v ∈ h. Since µg maps H into H and k = h⊕ g,

AdK(g)(v) = dµg(v) = d(µg

∣∣H)(v) = dlg(v),

where lg : H −→ H is the map h −→ g · h.

Let G = Rn o On(R), and let v be in the Lie algebra of Rn, that is v ∈ T0Rn = Rn.

Then:
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(i) AdG(g)(v) = gv, for g ∈ On(R).

(ii) AdG(g)(v) = v, for g ∈ Rn.

The first part follows since AdG(g)(v) = dlg(v) for g ∈ On(R), and lg : Rn −→ Rn is

the linear map x −→ gx. For (ii), notice that for g ∈ Rn and h ∈ Rn, µg(h) = h. Let

e1, . . . , en be a basis for T0Rn, and let v1, . . . , vd a basis for the lie algebra of On(R). By

(i) and (ii), for any g = (b, A) ∈ G, the matrix representation of AdG(g) with respect to

this basis is of the form: B ∗

0 C

 ,

where the colums of B are the vectors

AdG(g)(ei) = AdG(b)(AdG(A)(ei)) = AdG(b)(Aei) = Aei,

and therefore det(B) = det(A) = ±1.For g ∈ Rn, and X ∈ On(R),

µg(X) = (g −Xg, X),

and therefore C is the identity matrix. For g ∈ On(R), conjugation by g maps On(R)

into itself, and therefore ∗ = 0 and C is the matrix representation of AdOn(R)(g) in the

basis v1, . . . , vd. Since On(R) is compact it has a bi-invariant measure and therefore

det(AdOn(R)(g) = ±1 for all g ∈ On(R). This shows that for any g ∈ G = Rn o On(R),

det(AdG(g)) = det(B) det(C) = ±1, (2.1)

so Rn o On(R) has a bi-invariant measure.

Let G be a Lie group, and H a closed subgroup. A measure in G/H is G-invariant

if for all g ∈ G, ∫
G/H

f =

∫
G/H

f ◦ Lg,
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where Lg : G/H −→ G/H is left multiplication by g, that is Lg(xH) = gxH. A G-

invariant measure in G/H is unique up to a constant factor. By the change of variables

formula, the existence of a top form ω in G that is G-invariant up to sign implies the

existence of a G-invariant measure.

The existence of a G-invariant measure in a homogeneous space G/H is related to

the determinants of the adjoint representations of G and H. More precisely,

Fact 2.11. G/H has a G-invariant measure if and only if for all h ∈ H,

| det(AdG(h))| = | det(AdH(h))|.

See [3], Chapter 1, Theorem 1.9 for the proof.

The reason the determinants of the adjoint representations play a role in the existance

of a G-invariant measure is that:

Fact 2.12. For h ∈ H,

det((dLh)H) =
det(AdG(h))

det AdH(h))
.

See [3] Chapter 1, lemma 1.7 for the proof.

Lets consider again G = Rn o On(R), the group of isometries of Rn, and let H be

the stabilizer of 〈e1, . . . , en−1〉. H is isomorphic to

(Rn−1 o On−1(R))×O1R.

Therefore by (2.1) for all g ∈ G, h ∈ H, det(AdG(g)) = ±1 and det(AdH(h)) = ±1.

This implies that G/H has a G-invariant measure, and for all h ∈ H,

det((dLh)H) = ±1. (2.2)
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The Cauchy-Crofton formula expresses the length of a compact, embedded curve in

Rn as the average number of points of intersection of the curve with a hyperplane in Rn.

Observe that the set of all affine hyperplanes in Rn can be identified with G/H.

Theorem 2.13. Let G = Rn o On(R) and let H = (Rn−1 o On−1(R)) × O1R be the

stabilizer of 〈e1, . . . , en−1〉 in G. Fix a G-invariant measure dL on G/H. Then, there is

a constant C ∈ R such that for any compact embedded 1-dimensional submanifold γ of

Rn,

length(γ) = C

∫
G/H

#(γ ∩ L)dL,

where for L ∈ G/H, #(γ ∩L) is the number of points of intersection of γ with the plane

g〈e1, . . . , en−1〉 for any g ∈ G with L = gH.

For the proof see [4] 3.18.

2.4 The Affine Grassmannian.

The affine Grassmannian, AGrn−1(Fn), is the set of all affine hyperplanes in Fn. We

will see that it can be regarded as an algebraic subset of the vector space V of affine

linear transformations of Fn.

An affine orthogonal projection is an affine linear map p : Fn −→ Fn with

p2 = p and ker(p− p(0)) ⊥ Im(p− p(0)). In coordinates, the set of affine linear maps is

Fn ×Mn×n(F) and the set of affine orthogonal projections of rank n− 1 is:

{(b, A) ∈ F×Mn×n(F) : Ab = 0, A2 = A, rk(A) = n− 1, and At = A}. (2.3)
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To see this, let A ∈ Mn×n(F). If At = A then ker A ⊥ Im A: take v ∈ ker A and

write

A = (A1 . . . An) =


a1

...

an

 ,

where A1, . . . , An are column vectors, and a1 . . . , an are row vectors. Now if v ∈ ker A,

then ai · v = 0 for all i = 1, . . . , n. But ai = Ai, so Ai · v = 0 for i = 1, . . . , n,

that is v ⊥ Im A. If ker A ⊥ Im A and A2 = A then At = A: Since ker A ⊥ Im A,

Fn = ker A ⊕ Im A. Let v1, · · · , vn−1 be an orthonormal basis of Im A, and Vn an

orthonormal basis of ker A. Since A2 = A, for i = 1, . . . , n− 1 we have Avi = vi. Thus

the matrix of A in the basis v1, . . . , vn is the symmetric matrix

I 0

0 0

 ,

where I is the (n− 1)× (n− 1) identity matrix. Therefore A is symmetric.

To every hyperplane l there corresponds the affine orthogonal projection pl onto l,

and the map l −→ pl is a bijection from AGrn−1(Fn) onto the set of affine orthogonal

projections of rank n − 1. Thus equation (2.3) shows that we can regard the affine

Grassmannian as an algebraic variety, and hence as a definable set (in any o-minimal

structure over a field F).

Similarly, the Grassmannian Grk(Fn) consisting of the k linear subspaces of Fn can

be regarded as an algebraic subvariety of Mn×n(F):

Grk(Fn) = {A ∈ Mn×n(F) : At = A, A2 = A and rkA = k}.
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We consider Mn×n(F) a normed linear space with the operator norm |A| := sup|v|=1 |Av|.

Then Grk(Fn) has finite diameter as a subset of Mn×n(F) and for any ε ∈ Q>0 we can

cover Grk(Fn) by a finite number of balls of radius ε.

Definition 2.14. M ⊂ Fn is a definable embedded submanifold of dimension d if

there are a finite number of definable open sets U1, . . . , Ui ⊂ Fn such that

(i) M ⊂
⋃i

j=1 Uj.

(ii) For each j = 1, . . . , i there is a definable open set Vi ⊂ Fn and a definable C1 map

with C1 inverse hj : Uj −→ Vj such that

hj(Uj ∩M) = Vj ∩ (Fk × {0}).

We will use over and over the fact that C1 cells are definable embedded submanifolds.

Definition 2.15. Let M be a definable embedded submanifold of Fn of dimension k.

The Gauss map for M is the map G : M −→ Grk(Fn) given by

G(p) = TpM.

It is well known that for a definable embedded submanifold M of Fn the Gauss map

is continuous and definable.
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Chapter 3

Geometric Partitions of Definable

Sets

3.1 Motivations

Thruoghout this chapter we fix an o-minimal expansion F of a field (F, <, 0, +,−, 1, ·),

where F is a field extension of the real field.

Consider the situation of the unit circle in R2 with the south pole removed. There

are points on this circle that are very close together in the plane, but far apart on the

circle. However, if we also remove the north pole, we are left with two semicircles, and

a semicircle satisfies the property that any pair of points x, y on the semicircle can be

connected by a path in the semicircle of length at most
√

6|x− y|, where |x− y| is the

Euclidean distance. In other words, the circle can be partitioned into pieces that satisfy

the WAP. That any bounded definable set can be partitioned into definable pieces that

satisfy the WAP will be proved in the second section of this chapter. In the first section

of this chapter, we find a partition of definable sets into pieces that are, after a change

of coordinates, C1-cells with bounded differentials. In the second section, in addition

to a partittion into pieces that have the WAP, we give a partition into pieces that are

Lipschitz cells (after a change of coordinates). In the last section, I discuss uniform
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locall connectedness for a definable set and prove that Lipschitz cells are uniformly

locally connected .

3.2 K-C1-cell partition of definable sets

In this section we define K-C1-cell and establish the existence of a partition of any

definable, bounded subset of Fn into pieces that are Mn-C1-cells after a coordinate

change in On(F). Mn is a bound on the norm of the differentials of the functions defining

the cell, that depends only on n. The proof of this result is by induction, the heart of

which is Lemma 3.7, needed to deal with the top dimensional case. I adapt Kurdyka’s

lemma in [6] to fit this more general situation.

The image under a definable and continuous map of a definable, closed and bounded

set is closed and bounded. Therefore we can define the norm of linear maps:

Definition 3.1. Let L : V −→ W be a linear map between normed F–vector spaces.

Define

|L| := sup
|v|=1

L(v).

A C1-cell is a K-C1-cell, where K ∈ F, if the C1 functions that define the cell satisfy

|df | ≤ K. More precisely:

Definition 3.2. Let (i1, . . . , im) be a sequence of zeros and ones, and K ∈ F>0. An

(i1, . . . , im)-K-C1-cell is a subset of Fm defined inductively as follows:

(i) A (0)-K-C1-cell is a point {r} ⊂ F, a (1)-K-C1-cell is an interval (a, b) ⊂ F,

where a, b ∈ F.
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(ii) An (i1, . . . , im, 0)-K-C1-cell is the graph Γ(f) of a definable C1-function f : X −→

F with |df | ≤ K, where X is an (i1, . . . , im)-K- C1-cell; an (i1, . . . , im, 1)-K-C1-cell

is a set

(f, g)X := {(x, r) ∈ X × F : f(x) < r < g(x)},

where X is an (i1, . . . , im)-K-C1-cell and f, g : X −→ F are definable C1-functions

on X with |df |, |dg| ≤ K such that for all x ∈ X, f(x) < g(x).

We next define the distance between subspaces of Fn. For X,Y ∈ Grk(Fn) ⊂

EndF(Fn), let S and T be the orthogonal projections onto X and Y respectively. The

distance function in the Grassmannian is given by the inclusion above:

δ(X, Y ) := |S − T |.

For a line P in Fn and X ∈ Grk(Fn), define

δ(P, X) := |v − πX(v)|,

where πX is the orthogonal projection onto X, and v is a generator of P of norm 1.

Notice that δ(P, X) = 0 if and only if P ⊂ X, 0 ≤ δ(P, X) ≤ 1 and δ(P, X) = 1 if and

only if P ⊥ X.

Remark 3.3. If δ(P, X) > ε and w ∈ X is a unit vector with πP (w) 6= 0, where πP is

the orthogonal projection onto P , then

|πP (w)− w| ≥ |πP (w)− πX(πP (w))| > |πP (w)|ε.

Therefore, if |πP (w)| ≤ 1/2, then |πP (w)− w| ≥ 1/2, and otherwise |πP (w)− w| ≥ 1
2
ε;

in either case, we have |πP (w)− w| ≥ 1
2
ε.
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Lemma 3.4. Let N ∈ N>0. Then there exists an εn ∈ Q>0 such that for every

X1, . . . , X2n ∈ Grn−1(Fn), there is a line P in Fn such that whenever Y1, . . . , Y2n ∈

Grn−1(Fn) and

δ(Xi, Yi) < εn, i = 1, . . . , 2n,

then

δ(P, Yi) > εn, i = 1, . . . , 2n.

Proof. Choose εn ∈ Q>0 such that the sets

Si := {v ∈ Sn−1 : |v − πXi
(v)| ≤ 2εn},

where πXi
is the orthogonal projection onto Xi, do not cover all of Sn−1, that is,

2n⋃
i=1

Si 6= Sn−1.

Such an εn exists for F = R: we can take εn small enough such that the union of the

Si has very small volume compared to the volume of the sphere. The same εn will

necessarily work for any field F containing R.

Now, we choose

v ∈ Sn−1 −
2n⋃
i=1

Si

and let P := 〈v〉. Then

δ(P, Yi) = |v − πYi
v| ≥ |v − πXi

v| − |πXi
v − πYi

v| > εn,

as required.

Definition 3.5. Let ε > 0. A definable embedded submanifold M of Fn is ε-flat if for

each x, y ∈ M we have δ(TxM, TyM) < ε.
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Lemma 3.6. Let ε ∈ Q>0, , and let S ⊂ Fm be definable. Then S can be partitioned

into a finite number of ε-flat C1-cells.

Proof. By induction on n := dim S; the claim is clear for sets S with dim S = 0. Assume

the claim holds for definable sets S with dim S ≤ n− 1. By the inductive hypothesis

and C1-cell decomposition, it is enough to consider the case where S is an n dimensional

C1-cell. Cover Grn(Fm) by a finite number of balls Bi of radius ε
2

(here we use that ε is

rational), and consider the Gauss map G : S −→ Grn(Fm). Take a cell decomposition

of Fm partitioning each G−1(Bi). Then the n-dimensional cells contained in S are ε-

flat, and the cells of dimension less than n can be partitioned into ε-flat C1-cells by

induction.

Lemma 3.7. Let ε ∈ Q>0, and let A ⊂ Fn be an open and bounded definable set. Then

there are open, pairwise disjoint cells A1, . . . , Ap ⊂ A such that

(i) dim(A− ∪Ai) < n.

(ii) For each i, there are definable, pairwise disjoint sets B1, . . . , Bk (with k depending

on i) such that

(a) k ≤ 2n;

(b) each Bj is a definable subset of ∂Ai and an ε-flat, (n − 1)-dimensional, C1-

submanifold of Fn;

(c) dim(∂Ai − ∪k
j=1Bj) < n− 1.

Proof. By induction on n. The lemma is clear for n = 1. Assume that n > 1 and the

lemma holds for smaller values of n.
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Take a cell decomposition of A into C1-cells. Let C be an open cell in this decompo-

sition; it suffices to prove the lemma for C. Note that C = (f, g)X , where X is an open

cell in Fn−1 and f, g are definable C1-functions on X. Take finite covers of Γ(f) and Γ(g)

by open sets Ui and Vj, respectively, such that each Ui∩Γ(f) and each Vj ∩Γ(g) is ε
2
-flat

(to do this, take a finite cover of the Grassmannian by ε
2
-balls and pull it back via the

Gauss maps for Γ(f) and Γ(g)). The collection of all sets π(Ui)∩ π(Vj) is an open cover

O of X, where π : Fn −→ Fn−1 is the projection onto the first n− 1 coordinates. By the

cell decomposition theorem, there is a C1-cell decomposition of X partitioning each set

in O. Let S be an open cell in this decomposition, and let C0 := (f, g)S. It suffices to

prove the lemma for C0. By the inductive hypothesis, we can find A′
1, . . . , A

′
p ⊂ S and

B′
1, . . . , B

′
k ⊂ ∂A′

i satisfying the conditions (i) and (ii) above. Define

Ai := (f, g)A′i
, i = 1, . . . , p.

Then dim(C0−∪p
i=1Ai) < n. For j = 1, . . . , k, the set (B′

j×F)∩∂Ai is definable. Take a

C1-cell decomposition of this set, and let Bj be the union of the (n−1)-dimensional cells

in this decomposition (note that Bj may be empty). Then Bj is an ε-flat C1-submanifold

of Fn and

dim(((B′
j × F) ∩ ∂Ai)−Bj) < n− 1.

Define Bk+1 := Γ(f
∣∣A′

i) and Bk+2 := Γ(g
∣∣A′

i); by construction these are ε-flat. It is

routine to see that ∂Ai ⊂ Bk+1 ∪Bk+2 ∪ (∂A′
i × F). Thus

∂Ai − ∪k+2
j=1Bj ⊂ ((∂A′

i × F) ∩ ∂Ai)− ∪k
j=1Bj

= (E ∪ ∪k
j=1(B

′
j × F) ∩ ∂Ai)− ∪k

j=1Bj

⊂ ∪k
j=1((B

′
j × F) ∩ ∂Ai −Bj) ∪ E,
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where E is a definable set with dim(E) < n− 1. Therefore dim(∂Ai−∪k+2
j=1Bj) < n− 1.

Since k ≤ 2(n− 1), we get k + 2 ≤ 2n and the lemma is proved.

Theorem 3.8. Let A ⊂ Fn be definable and bounded. Then there are definable, pairwise

disjoint sets Ai, i = 1, . . . , s, such that A = ∪iAi and for each Ai, there is a change of

coordinates σi ∈ On(F) such that σi(Ai) is an Mn-C
1-cell, where Mn ∈ Q>0 is a constant

depending only on n.

Proof. By induction on n; for n = 1 the theorem is clear. We assume that n > 1

and that the theorem holds for smaller values of n. We also proceed by induction on

d := dim(A). It’s clear for d = 0; so we assume that d > 0 and the theorem holds for

definable bounded subsets B of Fn with dim(B) < d.

Case I: dim(A) = n. In this case A is an open, bounded, definable subset of Fn, so by

using the inductive hypothesis and Lemma 3.7, we can reduce to the case where there are

pairwise disjoint, definable B1, . . . , Bk ⊂ ∂A such that k ≤ 2n, dim(∂A−∪k
j=1Bj) < n−1

and each Bj is an εn-flat submanifold, where εn is as in Lemma 3.4. By Lemma 3.4,

there is a hyperplane L such that for each Bj and all x ∈ Bj, we have δ(L⊥, TxBj) > εn.

Take a cell decomposition B of Fn, with respect to orthonormal coordinates in the L,

L⊥ axis, partitioning each Bj. Let

S := {C ∈ B : dim(C) = n− 1, C ⊂ ∪k
j=1Bj

and note that dim(∂A \ ∪C∈SC) < n− 1. Furthermore,

BAD := {x ∈ A : π−1
L (πL(x)) ∩ ∂A 6⊂ ∪C∈SC}

has dimension smaller than n. To see this, let D be a cell decomposition of ∂A\∪C∈SC.

If x ∈ A and π−1
L (πL(x)) ∩ ∂A 6⊂ ∪C∈SC, then there exists y ∈ π−1

L (πL(x)) ∩ ∂A such
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that y 6∈ ∪C∈SC. Thus, there is a D ∈ D with y ∈ D, and therefore x ∈ π−1
L (πL(D)).

This shows that BAD ⊂ ∪D∈Dπ−1
L (πL(D)); but dim(D) < n − 1 for each D ∈ D so

BAD is a set of dimension strictly smaller than n.

Let U1, . . . , Ul be the elements of {πL(C) : C ∈ S}. Then the set

x ∈ A : x 6∈ π−1
L (∪l

i=1Ui)}

is containes in BAD, and therefore has dimension smaller than n: suppose x ∈ A \

π−1
L (∪l

i=1Ui), since A is bounded and open π−1
L (πL(x))∩∂A 6=, take y ∈ π−1

L (πL(x))∩∂A

since πL(x) 6 ∪C∈SπL(C) we have y 6∈ ∪CıSC, thus x ∈ BAD.

By using the inductive hypothesis, we only need to find the required partition for

each of the set A∩ π−1
L (Ui), i = 1, . . . , l. Fix i ∈ {1, . . . , l} and let U := Ui. Take C ∈ S

with πL(C) = U . Then C = Γ(φ) for a definable C1-map φ : U −→ L⊥ and for all

x ∈ C,

TxC = {(v, dφ(v)) : v ∈ TπL(x)U}.

Let v ∈ TπL(x)U be a unit vector; since δ(L⊥, TxC) > εn and |(v, dφ(v))| =
√

1 + |dφ(v)|2,

it follows from Remark 3.3 that

1

2
εn ≤

1√
1 + |dφ(v)|2

|πL⊥((v, dφ(v)))− (v, dφ(v))| = 1√
1 + |dφ(v)|2

|v|.

Therefore,

|dφ(v)| ≤

√
1

4ε2
n

− 1.

Let

Mn := max

{
Mn−1,

√
1

4ε2
n

− 1

}
.

We have proved that for each Cj ∈ S with πL(Cj) = U there is a definable C1-map

φj : U −→ F, such that Cj = Γ(φj) and |dφj| < Mn.
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By the inductive hypothesis, there is a partition P of U such that each piece P ∈ P

is an Mn−1-C
1-cell after a change of coordinates of L.

A =
∐
P∈P

(φr,φs)S⊂A

(φr, φs)P , (3.1)

and (φr, φs)P is an Mn-C1-cell after a coordinate change.

Case II: dim(A) < n. In this case, after partitioning A into cells which are εn-flat, we

may assume that A is an εn-flat submanifold, where εn is as in Lemma 3.4. As in case I,

there is a hyperplane L such that A is the graph of a function f : U −→ F, U ⊂ L and

|df | < Mn. By the inductive hypothesis, we can partition U into Mn−1-C
1-cells. The

graphs of f over the cells in this partition give the required partition of A.

3.3 Lipschitz partition of definable sets

A K-tame cell is a K-C1-cell which is also a K-Lipschitz cell (see below for definitions).

An element x ∈ F is finite if there is an N ∈ N with |x| < N . We show that any

pair of points x, y in a K-tame cell can be connected by a definable path γ with speed

bounded by |x − y| times a constant that depends on K, and is finite if K is (Lemma

3.10). Using this fact about tame cells, we can prove that K-C1-cells are L-tame, where

L is a constant depending on K, that is finite if K is; therefore any definable bounded

set can be partitioned into pieces that are Lipschitz cells after a change of coordinates.

We conclude by proving that Q-bounded definable sets can be decomposed into pieces

that have the WAP.

Definition 3.9. A function f : A −→ Fn, where A ⊂ Fm, is Lipschitz if there is a

c ∈ F>0 such that for every x, y ∈ A, |f(x) − f(y)| ≤ c|x − y|. Such a constant c is a
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Lipschitz constant for f , and f is called c-Lipschitz. Let (i1, . . . , im) be a sequence

of zeros and ones and let L ∈ F. An (i1, . . . , im)-L-Lipschitz cell is a definable subset

of Fm obtained by induction on m as follows:

(i) A (0)-L-Lipschitz cell is a point {r} ⊂ F, a (1)-L-Lipschitz cell is an interval

(a, b) ⊂ F, where a, b ∈ F.

(ii) An (i1, . . . , im, 0)-L-Lipschitz cell is the graph of a definable L-Lipschitz function

f : X −→ F, where X is an (i1, . . . , im)-L-Lipschitz cell; an (i1, . . . , im, 1)-L-

Lipschitz cell is a set

(f, g)X := {(x, r) ∈ X × F : f(x) < r < g(x)},

where X is an (i1, . . . , im)-L-Lipschitz cell and f, g : X −→ F are definable L-

Lipschitz functions on X such that for all x ∈ X, f(x) < g(x).

An L-C1-cell is L-tame if the Lipschitz functions f that define the cell are L-Lipschitz.

Suppose we have a definable C1-function f : S −→ F. Given a bound on |df |, we

might expect to be able to prove that f is Lipschitz. In general this is false, but if S has

the WAP, then f is Lipschitz. This observation is the key to the proof that K-C1-cells

are tame.

Lemma 3.10. Fix L ∈ F>0 and n ∈ N>0. Then, there is a constant K(n, L) ∈ F>0

depending only on n and L, that is finite if L is, such that for every L-tame cell C ⊂ Fn

there is a definable family of curves γ ⊂ C2 × ([0, 1] × C) such that: For all x, y ∈ C,

γx,y : [0, 1] −→ C is a C1-curve with

(i) γxy(0) = x, γxy(1) = y;
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(ii) |γ′xy(t)| ≤ K(n, L)|x− y|, for all t ∈ [0, 1].

Proof. By induction on n. For n = 1 the lemma is clear. Take n ≥ 1, and assume that

the lemma holds for n. Let C ⊂ Fn+1 be an L-tame cell. Then C = Γ(f) or C = (g, h)X

for some L-tame cell X ⊂ Fn−1 and definable, C1, L-Lipschitz functions f, g, h with

g < h, and |df |, |dg|, |dh| ≤ L. By induction, there are a constant k := K(n− 1, L) and

a definable family of C1-curves β in X with the required properties. Let πn : Fn+1 −→ Fn

be the projection onto the first n coordinates.

If C = Γ(f), we lift β to C via f : fix x, y ∈ C and let γx,y(t) := (α(t), f(α(t))),

where for all t ∈ (0, 1) α(t) := βπn(x),πn(y)(t). Then we have

|γ′xy(t)| ≤ |α′(t)|+ |df(α′(t))|

≤ (1 + L)|α′(t)| ≤ (1 + L)k|πn(x)− πn(y)| ≤ (1 + L)k|x− y|.

If C = (g, h)X , we lift β as follows: Fix x, y ∈ C and let α := βπn(x),πn(y). Let

π : Fn+1 −→ F be the projection onto the last coordinate and take u, v ∈ (0, 1) with

π(x) = uh(α(0)) + (1− u)g(α(0))

π(y) = vh(α(1)) + (1− v)g(α(1)).

Let l(t) := tv + (1− t)u, for t ∈ [0, 1]. We define

γx,y(t) := (α(t), l(t)h(α(t)) + (1− l(t))g(α(t))),

and note that

|γ′xy(t)| ≤ |α′(t)|+ |l′(t)h(α(t)) + l(t)dh(α′(t))− l′(t)g(α(t)) + (1− l(t))dg(α′(t))|

≤ k|x− y|+ |(v − u)(h(α(t))− g(α(t)))|+ 2Lk,
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since l(t), 1 − l(t) are between 0 and 1 and |dh(α′(t))|, |dg(α′(t))| ≤ L|α′(t)|. Let f :=

h− g; we want to bound |(v − u)f(α(t))|. Let a := α(0), b := α(1); then

π(x)− π(y) = vf(b)− uf(a) + g(b)− g(a)

= (v − u)f(α(t)) + v(f(b)− f(α(t)))− u(f(a)− f(α(t)))

+ g(b)− g(a).

So

(v − u)f(α(t)) = πx− πy − v(f(b)− f(α(t))) + u(f(a)− f(α(t)))

+ g(a)− g(b).

But

|f(b)− f(α(t))| ≤ 2L|b− α(t)| = 2L|1− t||α(1)− α(t)

1− t
|

≤ 2L|α′(t0)|

for some t0 between t and 1. Similarly, there is a t1 between t and 1 such that

|f(a)− f(α(t))| ≤ 2L|α′(t1)|.

Since u, v ∈ [0, 1], we get

|(v − u)f(α(t))| ≤ |πy − πx|+ 4Lk|x− y|+ L|a− b|

≤ |x− y|+ 4Lk|x− y|+ L|x− y|;

thus |γ′xy(t)| ≤ K(n, L)|x − y| for some constant K(n, L) depending only on n and L

which is finite if L is. The collection of the curves γxy for x, y ∈ C constitutes the

required family of curves.
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Theorem 3.11. Let L > 0, and let C ⊂ Fn be a L-C1-cell. Then C is a k(n, L)-tame

cell, where k(n, L) depends only on n, L, and is finite if L is.

Proof. By induction on n; the theorem is clear for n = 1. Assume that n > 1 and that

the theorem holds for n − 1. Then C = Γ(f) or C = (g, h)X , where X ⊂ Fn−1 is a

k(n− 1, L)-tame cell and f, g, h are C1-functions on X such that |df |, |dg|, |dh| ≤ L. We

need to show that f, g, h are Lipschitz.

Since X is a k-tame cell, k := k(n− 1, L), it follows from Lemma 3.10 that there is

a constant K(n − 1, k) such that whenever x, y ∈ X, there is a definable, C1-curve γ

joining x and y with |γ′(t)| ≤ K(n − 1, k)|x − y| for all t ∈ [0, 1]. Let g := f ◦ γ; then

there is a t0 ∈ (0, 1) such that

|f(x)− f(y)| = |g(1)− g(0)| = |g′(t0)|

= |df(γ′(t0))| ≤ L|γ′(t0)| ≤ LK(n− 1, k)|x− y|.

showing that f is LK(n− 1, k)-Lipschitz. Similarly, g, h are LK(n− 1, k)-Lipschitz, so

k(n, L) := LK(n− 1, k) is the desired constant.

Definition 3.12. A definable set A ⊂ Fn has the Whitney Arc Property (WAP)

if there is a constant K ∈ F>0 such that for every x, y ∈ A there is a definable curve

γ : [0, 1] −→ A with γ(0) = x, γ(1) = y and length(γ) < K|x− y|.

Remark 3.13. Theorem 3.11 shows that the assumption of Lipschitzness in the defini-

tion of a tame cell is redundant, but for it we used the fact that tame cells have the WAP

(Lemma 3.10).

Corollary 3.14. Let A ⊂ Fn be a definable set. Then there is a partition A = ∪s
i=1 such

that for each i the set Ai is definable and there is a change of coordinates σi ∈ On(F)

with σi(Ai) an L-Lipschitz cell, where L ∈ Q>0 is a constant depending only on n.



30

Proof. By Theorem 3.11, this follows from Theorem 3.8.

Recall that A ⊂ Fn is Q-bounded if there is a q ∈ Q>0 such that A ⊂ [−q, q]n.

Theorem 3.15. Let A ⊂ Fn be a Q-bounded, definably connected definable set. Then

there is a K ∈ Q>0, which depends only on n, and definable pairwise disjoint sets Ai,

i = 1, . . . , s such that

A =
s⋃

i=1

Ai

and for each i there is a definable family of curves

λi ⊂ A2
i × ([0, 1]× Ai)

with the property that for any pair of points x, y ∈ Ai, λi
x,y is a curve in Ai joining x

and y with length(λi
x,y) ≤ K|x− y|. In particular, Ai has the WAP.

Proof. Let A = ∪Ai be as in Theorem 3.8 so that for each Ai there is a σ ∈ On(F)

with σ(Ai) a Mn-C1-cell. By Lemma 3.10 and Theorem 3.11 there is a constant K,

depending only on n and finite since Mn is, and a definable family of curves γ in σ(Ai)

with |γ′xy| ≤ K|x− y| for all x, y ∈ σ(Ai), therefore

length(γxy) =

∫ 1

0

|γ′xy| ≤ K|x− y|.

Since σ ∈ On(F), Ai has the required family of curves.

3.4 Lipschitz cells are uniformly locally connected

Next we will introduce uniformly locally connected sets. We prove that Lipschitz cells

are uniformly locally connected. In the next chapter, we will use the Cauchy-Crofton
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formula to prove that any ULC set has the WAP. But the ULC property is of independent

topological interest. There is a rough analogy between the ULC property for definable

sets and the normality property of algebraic varieties, which is related to Zariski’s main

theorem and obstructions to extending rational maps (Mumford [7]).

Definition 3.16. Let a = (a1, . . . , an) ∈ Rn and α = (α1, . . . , αn) ∈ (0,∞)n. The α-

box centered at a is the open box

B(a, α) :=
{

(x1, . . . , xn) ∈ Rn : xi ∈ (ai −
αi

2
, ai +

αi

2
)
}

.

Definition 3.17. A definable set U ⊂ Fn is uniformly locally connected if there is

an α = (α1, . . . , αn) ∈ (0, 1)n such that for every u ∈ U and every δ ∈ (0, 1), the set

U ∩B(u, δα) is definably connected.

Lemma 3.18. Let C ⊂ Fn be a definable set, k > 0, and f : C −→ F a k-Lipschitz,

definable function on C. Then f has a definable k-Lipschitz extension f : C −→ F.

Proof. Let c ∈ ∂C. By curve selection (Chapter 2, fact 2.1), there is a definable,

continuous curve γ : (0, 1) −→ C, such that limt−→0 γ(t) = a. Now limt−→0 f(γ(t))

exists in F ∪ {±∞}, and since f is Lipschitz limt−→0 f(γ(t)) must actually be in F.

Suppose α : (0, 1) −→ C is another definable, continuous curve with limt−→0 α(t) = c. If

l1 := limt−→0 f(γ(t)) does not equal l2 := limt−→0 f(α(t)) let ε := |l1 − l2|/2. Let δ > 0

be such that |f(γ(t) − l1| < ε/2 and |f(α(t)) − l2| < ε/2 for all t ∈ (0, δ). Then, for

t ∈ (0, δ),

2ε = |l1 − l2|

≤ |f(γ(t))− l1|+ |f(α(t)− l2|+ |f(α(t))− f(γ(t))|

< ε + |f(α(t))− f(γ(t))|
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That is |f(α(t))− f(γ(t))| > ε, but this is impossible since γ(t), α(t) converge to c as t

goes to 0 and f is Lipschitz. We define

f(c) := lim
t−→0

f(γ(t)).

To see that f is Lipschitz, let c, d ∈ C, let α, γ be continuous, definable curves in C

which converge to c, d respectively as t −→ 0, then

|f(c)− f(d)| = lim
t−→0

|f(α(t))− f(γ(t))|

≤ lim
t−→0

k|α(t)− γ(t)|

= k|c− d|,

as required.

In what follows, πn : Fn+1 −→ Fn will denote the projection from Fn+1 onto the first

n coordinates and π : Fn+1 −→ F the projection onto the last coordinate.

Lemma 3.19. Let X ⊂ Fn be a definable set, f, g, h : X −→ F definable, continuous

functions with continuous extensions f, g, h : X −→ F. Assume that g(x) < h(x) for

all x ∈ X.

(i) If C = Γ(f), then ∂C = Γ(f
∣∣
∂X

).

(ii) If C = (g, h)X , then

∂C ={x ∈ Fn+1 : πn(x) ∈ ∂X and g(πn(x)) ≤ π(x) ≤ h(πn(x))}

∪ Γ(h) ∪ Γ(g).

Proof. For (i), let (x, f(x)) ∈ Γ(f
∣∣
∂X

). By curve selection (Chapter 2, fact 2.1), there

is a definable, continuous curve γ : (0, 1) −→ X with γ(t) −→ x as t −→ 0. Thus
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f(γ(t)) −→ f(x) as t −→ 0, that is (x, f(x)) ∈ C. It is clear that (x, f(x)) 6∈ C.

Suppose now that c ∈ ∂C, and let γ : (0, 1) −→ C be a definable, continuous curve in

C converging to c as t −→ 0. Let

x := lim
t−→0

πn(γ(t)),

then

(x, f(x)) = ( lim
t−→0

πn(γ(t)), lim
t−→0

f(πn(γ(t)))) = (πn(c), π(c)) = c,

and x 6∈ X since c 6∈ C.

Now we prove (ii). Γ(h), Γ(g) are contained in ∂C. Thus (i) implies that Γ(g
∣∣
∂X

) =

∂(Γ(g)) ⊂ Γ(g) ⊂ C, moreover, Γ(g
∣∣
∂X

) ⊂ ∂C, and similarly for h. Let x ∈ Fn+1 with

πn(x) ∈ ∂X, and g(πn(x)) ≤ π(x) ≤ h(πn(x)). We may assume the inequalities are

strict. Let

t0 :=
π(x)− g(πn(x))

h(πn(x))− g(πn(x))
,

and let γ : (0, 1) −→ X be a definable, continuous curve in X converging to πn(x) as

t −→ 0, then t0 ∈ (0, 1), and t −→ (γ(t), t0h(γ(t)) + (1 − t0)g(γ(t))) is a curve in C

converging to (πn(x), t0h(πn(x)) + (1− t0)g(πn(x))) = x as t −→ 0. For the other inclu-

sion, let c ∈ ∂C, then πn(c) ∈ X. Moreover if γ : (0, 1) −→ C is a definable, continuous

curve in C converging to c as t −→ 0, then g(πn(γ(t))) < π(γ(t)) < h(πn(γ(t))). Taking

the limit as t −→ 0 we get g(πn(c)) ≤ π(c) ≤ h(πn(c)). Assume that πn(c) ∈ X, since

c 6∈ C, we have π(c) 6∈ (g(πn(c)), h(πn(c))), thus c ∈ Γ(h) ∪ Γ(g). If πn(c) ∈ ∂X, then c

belongs to the right hand side of the equation in (ii).

Theorem 3.20. Every Lipschitz cell C ⊂ Fn is uniformly locally connected.

Proof. For n = 1 the theorem is obvious. Assume now that n > 1 and the theorem

holds for i = 1, . . . , n. Let C ⊂ Fn+1 be a Lipschitz cell. Then, there is a Lipschitz cell
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X = πn(C) ⊂ Fn such that either C = Γ(f) where f is a definable, c-Lipschitz function

on X, or C = (g, h)X , where g(x) < h(x) for all x ∈ X, g is a definable, c1-Lipschitz

function on X and h is a definable, c2-Lipschitz function on X; in this case, we let

c = max{c1, c2}. By Lemma 3.18, f, g, h extend to c-Lipschitz functions f, g and h on

X, respectively.

By the inductive hypothesis, X is uniformly locally connected, so there is a tuple

α = (α1, . . . , αn) of positive reals, such that for all x ∈ X and δ ∈ (0, 1), the set

X ∩ B(x, δα) is definably connected. Let d > c max{α1, . . . , αn}, δ ∈ (0, 1), a ∈ C and

B be the box B(a, δ(α, d)). To finish the proof of the theorem it is enough to prove that

B ∩ C is definably path connected.

Claim 3.21. If C = Γ(f), and x ∈ C ∩ ∂B, then π(x) ∈ (π(a)− δd/2, π(a) + δd/2) .

Proof. By Lemma 3.19, C = Γ(f), thus since a ∈ C, π(a) = f(πn(x)). Also, since

x ∈ ∂B, πn(x) ∈ B(πn(a), αδ), so that |πn(x) − πn(a)| ≤ δ
2
max{αj}. If π(x) /∈ (π(a) −

δd
2
, π(a) + δd

2
) then |f(πn(x))− f(πn(a))| = |π(x)− π(a)| ≥ δd

2
. Therefore,

|f(πn(x))− f(πn(a))|
|πn(x)− πn(a)|

≥
δd
2

|πn(x)− πn(a)|

≥ d

max{α1, . . . , αn}
> c,

contradicting that f is c-Lipschitz.

Since the image of a closed, bounded, definable set under a continuous, definable

map is closed and bounded ([10], Chapter 6, 1.10), πn(C) = πn(C). Thus πn(a) ∈ X.

Also, πn(B) is the box B(πn(a), δα) ⊂ Fn. Furthermore, for x1, x2 ∈ B ∩ C, πn(x1),

πn(x2) ∈ X∩πn(B). By induction X is uniformly locally connected, so there is a definable
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path γ : [0, 1] −→ X ∩ πn(B) joining πn(x1), and πn(x2). We will construct a definable

path in C ∩B between x1, and x2, showing that C ∩B is definably path connected.

Case I: C = Γ(f). f ◦γ is a definable path in C joining x1, and x2. If f ◦γ([0, 1]) 6⊆ B,

then there is an x ∈ X ∩ πn(B) such that f(x) /∈ (π(a) − δd
2
, π(a) + δd

2
). Without loss

of generality, assume f(x) ≥ π(a) + δd
2
. Since f ◦ γ is continuous and definable, the

value π(a) + δd
2

should be achieved, but then there will be an x ∈ X ∩ πn(B) with

(x, f(x)) ∈ ∂B ∩ C, and π((x, f(x))) = f(x) /∈ (π(a)− δd
2
, π(a) + δd

2
), contradicting the

previous claim. Thus, f ◦ γ([0, 1]) ⊂ B, and f ◦ γ is a definable path in C ∩ B joining

x1, and x2 as wanted.

Case II: C = (g, h)X . Recall that B is the δ(α, d)-box B(a, δ(α, d)). Let l, u : X ∩

πn(B) −→ F be the functions

l(x) := max{g(x), π(a)− δd

2
}, u(x) := min{h(x), π(a) +

δd

2
}.

Claim 3.22. For all x ∈ X ∩ πn(B), u(x) > l(x).

Proof. Suppose there is an x ∈ X ∩ πn(B) with u(x) = l(x). Since g(x) 6= h(x),

we must have that either u(x) = h(x), and l(x) = π(a) − δd
2
, or l(x) = g(x), and

u(x) = π(a) + δd
2
. Assume the first possibility. Consider the box B(a1, δ(α, d)) around

a1 = (πn(a), h(πn(a))) ∈ Γ(h), and note that this box projects onto πn(B), and that by

lemma 3.19 (ii), π(a) ≤ h(πn(a)). By assumption the function h
∣∣(πn(B) ∩X) takes the

value l(x) = π(a)−δd/2, as well as values arbitrarily close to h(πn(a)); but π(a)−δd/2 ≤

h(πn(a)) − δd/2 < h(πn(a)) and h is a continuous, definable function on the definably

connected set X ∩ πn(B) so the value h(πn(a)) − δd/2 must be achieved, say at a

point y ∈ X ∩ πn(B). We can now apply the previous claim to x1 = (y, h(πn(a)) −

δd/2) ∈ Γ(h)∩∂B1, where B1 is the box B(a1, δ(α, d)), to obtain that h(πn(a))−δd/2 ∈
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(h(πn(a))− δd/2, h(πn(a))+ δd/2), a contradiction. The second possibility is handled in

a similar manner. Thus for all x ∈ X ∩ πn(B), u(x) 6= l(x), but u, l are continuous and

definable, therefore the sets

{x ∈ X ∩ πn(B) : u(x) > l(x)}, {x ∈ X ∩ πn(B) : u(x) < l(x)},

are open and definable. X ∩ πn(B) is their union. Since B is a box with center at a

point of C, we can find c with c ∈ B ∩ C. Then l(c) < π(c) < u(c), but X ∩ πn(B) is

definably connected, so

X ∩ πn(B) = {x ∈ X ∩ πn(B) : u(x) > l(x)}

as wanted.

Let x ∈ X ∩ πn(B), and let r := l(x) + 1/2(u(x)− l(x)). Then

g(x), π(a)− δd

2
≤ l(x)

< r < u(x) ≤ π(a) +
δd

2
, h(x),

so that (x, r) ∈ C ∩B, and πn((x, r)) = x. Thus we have X ∩πn(B) = πn(C ∩B). From

this we get that

C ∩B =

{x ∈ Fn+1 : πn(x) ∈ πn(B ∩ C), and l(πn(x)) < π(x) < u(πn(x))} =

{x ∈ Fn+1 : πn(x) ∈ X ∩ πn(B), and l(πn(x)) < π(x) < u(πn(x))}.

Let F (x, t) := (x, tu(x) + (1 − t)l(x)). F is continuous and by Lemma 3.19, F : (X ∩

πn(B))× [0, 1] −→ C ∩B. Let t be such that F (πn(x1), t) = x1, for instance,

t :=
π(x1)− l(πn(x1))

u(πn(x1))− l(πn(x1))
.
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Join x1 to F (πn(x2), t) by the path Ft ◦ γ, where Ft : X ∩ πn(B) −→ C ∩ B is given

by Ft(x) := F (x, t). Then join F (πn(x2), t) to x2 by a vertical segment. This gives a

definable path in C ∩B joining x2 and x1 as wanted.
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Chapter 4

The Cauchy-Crofton formula

4.1 Motivations

In this chapter we define the length of a definable Q-bounded curve. The curves in the

family of Lemma 3.10 have bounded derivatives. In general, the curves in an arbitrary

bounded family of curves may not have bounded derivatives, but we will use the Cauchy-

Crofton formula to show that they have bounded length. We also state a generalization

of the Cauchy-Crofton formula by using the Berarducci-Otero measure and prove it by

reducing to the real case.

4.2 The length of a definable Q-bounded curve.

We reparametrize any definable Q-bounded curve by a piecewise C1 map. This particular

reparametrization satisfies other properties that will allow us to reduce the generalized

Cauchy-Crofton formula to the real case.

Recall that A ⊂ Fn is Q-bounded if it is contained in a box with rational coordinates.

An element x of Fn is finite if it is bounded in magnitude by some natural number,

infinite otherwise and infinitesimal if |x| < r for every r ∈ R>0 in this case we write

x ≈ 0. For a finite x ∈ F the monad of x, µ(x) consists of all y ∈ F with y − x ≈ 0 ,

we write y ≈ x for y ∈ µ(x) and we say that y is infinitesimally close to x. For finite
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x ∈ F the standard part of x is st(x) := sup{r ∈ R : r < x}. If x = (x1, . . . , xn) ∈ Fn

is finite, st(x) := (st(x1), . . . , st(xn)).

Lemma 4.1. Let f : (a, b) −→ (c, d) be a definable and twice differentiable function,

where (a, b), (c, d) ⊂ F are Q-bounded. Then f ′ is finite outside a finite union of monads.

Proof. For r ∈ F>0, let

Ar := {x ∈ (a, b) : |f ′(x)| > 1/r}.

This is a definable family of sets. By the mean value theorem, any interval contained

in Ar, r ≈ 0, is of infinitesimal length. Thus Ar, r ≈ 0 is contained in a finite union of

monads, let nr be the minimum number of monads containing Ar. By Chapter 2, Fact

2.5, there is an N ∈ N such that Ar, r ∈ F>0, is a union of at most N disjoint intervals

and points; let s ≈ 0 be such that

ns = max
r≈0

nr,

and let A be the finite union of the ns monads containing As. For r < s, Ar ⊂ As so

Ar ⊂ A. For r > s, r ≈ 0, As ⊂ Ar so ns is at most nr; since ns is maximal, nr = ns

and therefore Ar must be contained in A. f ′ is finite away from A.

For (a, b) ⊂ F, (a, b)R consists of the reals numbers between a and b, notice this may

be an open, closed or half closed interval. For a function f : (a, b) −→ Fn, (a, b) ⊂ F,

with Q-bounded image we define f : (a, b)R −→ R by f(x) = st(f(x)). Similarly, for a

function f : A −→ Fn of m variables which maps finite elements into finite elements, we

define f : AR −→ Rn by f(x) = st(f(x)) where AR = A ∩ Rm.

Lemma 4.2. Let f : (a, b) −→ (c, d) be a definable and differentiable function, where

(a, b), (c, d) ⊂ F are Q-bounded. Suppose that for x 6≈ a, b both f ′ and f ′′ are finite. Then
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f is differentiable on the interior of (a, b)R and for x ∈ (a, b) with st(x) ∈ Int((a, b)R),

st(f ′(x)) = f
′
(st(x)).

Proof. We first consider the case where 0 ∈ (a, b) but 0 6≈ a, b, f(0) = 0, and f ′(0) = 0.

Let ε ∈ R>0. If δ ≈ 0 and δ > 0 then

|f(h)

h
| < ε

whenever |h| < δ. Otherwise there would be a δ > 0, δ ≈ 0 and h ∈ (a, b), |h| < δ with

|f(h)

h
| > ε,

thus by the mean value theorem there is an x between 0 and h such that

|f ′(x)| = |f(h)

h
| > ε,

and a z between 0 and x with

|f ′′(z)| = |f
′(x)

x
|

but this last fraction is infinite. This shows that the set

{δ ∈ F>0 : for all h ∈ (a, b), |h| < δ =⇒ |f(h)

h
| < ε/2}

contains all positive infinitesimals. This set is also definable, so by the cell decomposition

theorem it is a finite union of intervals and points and therefore it must contain a positive

real δ. This shows that f is differentiable at 0 and f
′
(0) = 0.

For x0 in (a, b) with st(x0) ∈ Int((a, b)R), consider the function

g(x) := f(x0 − x)− f(x0)− f ′(x0)x.

Since g(0) = 0, g′(0) = 0 and 0 is not infinitesimally close to the endpoints of Dom(g),

g is differentiable at 0 and g′(0) = 0. It follows that f is differentiable at st(x0) with

derivative st(f ′(x0)).
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Theorem 4.3. Let γ : (a, b) −→ Fn be a definable curve with Q-bounded image. Then,

there are a0 = a < · · · < ak = b such that each restriction γ
∣∣(ai, ai+1) is either constant

or has a reparametrization σ with σ′ finite, σ′′(x) finite for x 6≈ ai, ai+1, and with σ an

embedded C1-curve in Rn.

Proof. By the C1-cell decomposition theorem γ is piecewise C1, so without loss of gen-

erality we can assume that γ is C1. Also γ′ = 0 in a finite union of intervals and points,

and γ is constant on those intervals where γ′ = 0; thus we may assume that γ′ 6= 0.

Similarly we can assume that γ is injective.

Gr1(Fn) is the disjoint union of the definable sets

Ai := {l ∈ Gr1(Fn) : l = 〈v〉, |vi| ≥ |vj| for j ≥ i, and |vi| > |vj| for j < i}.

Let φ : (a, b) −→ Gr1(Fn) be the Gauss map of γ. The sets φ−1(Ai) are definable, and

therefore are a union of intervals and points. Suppose that I is one of these intervals and

let J := γi(I). Since γ′i 6= 0 on I, J contains an interval; and since J is a finite union

of intervals and points the intermediate value theorem shows that J is a single interval.

Moreover, J is Q-bounded because γ is. We define σI : J −→ Fn as σI := γ ◦ γ−1
i . σI is

a C1 function since γi|I is invertible with C1 inverse. Moreover, σ′I is finite: for x ∈ J ,

σ′I(x) generates the line 〈γ′(γ−1
i (x))〉 ∈ Ai thus (σI)

′
i(x) ≥ (σI)

′
j(x), but (σI)

′
i(x) = 1.

By Lemma 4.1, there are points b0, . . . , bk such that J = (b0, bk), σ′′I and σ′′′I exist

on (bi, bi+1) and are finite except possibly on the monads of bi and bi+1. Lemma 4.2

shows that for the restriction σ of σI to one of this subintervals σ, σ′ are differentiable

and σ′ = st(σ′), σ′
′
= st(σ′′). Since st(σ′) = σ′ it follows that σ is twice differentiable.

Finally, (σ)i(t) = t, therefore for (c, d) ⊂ Dom(σ) we have

σ((c, d)) = {x ∈ Rn : c < xi < d} ∩ Im(σ)
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showing that σ is an embedding.

4.3 The integral on AGrn−1(Fn)

We will define a top form on a big open subset of AGrn−1(Fn). This will be done by

choosing a top form at a given point and translating it by using a section of the action

map of the group of motions on AGrn−1(Fn). The integral on AGrn−1(Fn) is then defined

by integration of this top form, for F = R the integral is the one invariant under the

group of motions, that is, it is the one for which the Cauchy-Crofton’s formula (Chapter

2, Theorem 2.13) holds.

Recall from Chapter 2 that to every hyperplane l in Fn there corresponds the affine

orthogonal projection pl onto l, and the map l −→ pl is a bijection from AGrn−1(Fn)

onto the set of affine orthogonal projections of rank n − 1. In coordinates, the set of

affine linear maps is Fn ×Mn×n(F) and the set of affine orthogonal projections of rank

n− 1 is:

AGrn−1(Fn) = {(b, A) ∈ F×Mn×n(F) : Ab = 0, A2 = A, rk(A) = n− 1, and At = A}.

In this way we regard the affine Grassmannian as an algebraic variety, and hence as a

definable set.

The group of motions of Fn, G = Fn o On(F), acts transitively on AGrn−1(Fn) by

g · l := {gx : x ∈ l}

for l a hyperplane in Fn. Define g · pl := pg·l. Then we can check that g · pl is the

composition of functions gplg
−1: clearly (gplg

−1)2 = gplg
−1. Also if we write pl = (a, A)

and g = (b, B), where a, b ∈ Fn, B ∈ On(F), and A is a rank n − 1 matrix with
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Aa = 0, A2 = A and At = A. Then gplg
−1 = (c, BAB−1) for some c ∈ Fn, thus

(BAB−1)t = BAB−1 so

ker(gplg
−1 − gplg

−1(0)) ⊥ Im(gplg
−1 − gplg

−1(0)).

Therefore gplg
−1 is an orthogonal projection. Since Im(gplg

−1) = g · l, we get

gplg
−1 = pg·l. (4.1)

We define τ : U −→ G, where

U := {(b, (A1 . . . An)) ∈ AGrn−1(Fn) : b 6= 0 and rk(A1 . . . An−1) = n− 1}

by

τ(b, (A1 . . . An)) = (b, (GS(A1, . . . , An−1),
b

|b|
)).

GS(A1, . . . , An−1) is the n by n− 1 matrix whose column vectors are those obtained by

applying the Gram-Schmidt process to the vectors A1, . . . , An−1 and

(GS(A1, . . . , An−1),
b

|b|
)

is the n × n matrix with b
|b| as the last column. τ is an algebraic map. Note that U is

an open subset of AGrn−1(Fn) with lower dimensional complement.

Let l0 := 〈e1, . . . , en−1〉, and denote pl0 by p0. If π : G −→ AGrn−1(Fn) is the map

π(g) = g · p0,

then π ◦ τ = id|U , in other words τ is a section for the action of G in AGrn−1(Fn). For,

by equation (4.1), if l is such that p = pl, then τ(p) ·p0 = p if and only if τ(p) · l0 = l and

this last equation is clear. Let H be the stabilizer of l0. Since G is acting transitively on

AGrn−1(Fn) we can view AGrn−1(Fn) as the quotient G/H, in particular AGrn−1(Fn)
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is a non-singular subvariety of Fn(n+1). The map π above is precisely the projection

π : G −→ G/H.

Now we define a top form in U . Let ω1, . . . , ωn be a basis of the dual of the tangent

space to AGrn−1(Rn) at p0. Viewing AGrn−1(Rn) as a subset of AGrn−1(Fn), ω1, . . . , ωn

are a basis of the cotangent space of AGrn−1(Fn) at p0 which take real values on tangent

vectors to AGrn−1(Rn). For tangent vectors X1, . . . , Xn to AGrn−1(Fn) at p ∈ U , we

define

ωp(X1, . . . , Xn) := det(ωi(dL(τ(p))−1Xj))

where, for g ∈ G, Lg : AGrn−1(Fn) −→ AGrn−1(Fn) is the map p −→ g · p. Notice that

Lg extends to a map in all of V . The map L : G × V −→ V given by L(g, p) = g · p is

an algebraic map, therefore dL is algebraic. For g ∈ G, p ∈ V and X tangent to V at

p, (dLg)p(X) = dL(g,p)(0, X) and therefore (dLg)p(X) is an algebraic function of g, p, X.

Since τ is algebraic, dL(τ(p))−1)(X) is an algebraic function of p, X and therefore ω is

algebraic.

Now we define an algebraic chart α : U −→ {v ∈ Fn : v · en 6= 0} by

α(b, A) = b.

Let h : {v ∈ Fn : v · en 6= 0} −→ F be the function such that

δα−1(ω) = hdr1 ∧ · · · ∧ drn,

where δα−1(ω) is the pull back of ω, and r1, . . . rn are the standard coordinate functions

on Fn. h is an algebraic function. For a definable function f on AGrn−1(Fn) we define

∫
AGrn−1(Fn)

f :=

∫
Fn

(f ◦ α−1)|h|, (4.2)
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whenever the integral on the right exists in the Berarducci-Otero sense. We will show

that if f has Q-bounded support and image, then the integral on (4.2) exists.

Lemma 4.4. For a Q-bounded set S ⊂ Fn, h(S) is Q-bounded.

Proof. For b ∈ {v ∈ Fn : v · en 6= 0}, α−1(b) = (b, A), where A is the matrix of the

orthogonal projection onto b⊥. If b = (x1, . . . , xn) we can directly check that the matrix

A = (aij)ij is given by

aii =
x2

1 + · · ·+ x̂2
i + · · ·+ x2

n√
x2

1 + · · ·+ x2
n

,

where x̂2
i means that the term x2

i is omitted from the sum, and

aij = − xixj√
x2

1 + · · ·+ x2
n

.

Therefore the partial derivatives

∂aij

∂xk

, i, j, k = 1, . . . , n

are bounded in magnitude by a natural number, and thus there is a C ∈ N such that

for all b ∈ Dom(h),

|(dα−1)b| ≤ C.

Now, conjugation by (b, A) ∈ G is an affine linear map on Fn × Mn×n(F). For, if

(x, Y ) ∈ Fn ×Mn×n(F) then the composition (b, A)(x, Y )(b, A)−1 is given by

(b + Ax, Ay)(−A−1b, A−1) = (b + Ax− AY A−1b, AY A−1)

= (b, 0) + (Ax− AY A−1b, AY A−1).

Therefore the differential of conjugation by (b, A) ∈ G is the linear map

(x, Y ) −→ (Ax− AY A−1b, AY A−1),
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which has operator norm bounded by 2 + |b| since |A| = 1,

|Ax + AY A−1b| ≤ |x|+ |Y ||b| and

|AY A−1| ≤ |Y |.

Now,

h(b) = ωα−1(b)(dα−1(
∂

∂r1

), . . . , dα−1(
∂

∂rn

))

= det(ωi(dL(τ(α−1(b)))−1(dα−1(
∂

∂rj

)))),

an therefore it follows from the bounds on the differential of conjugation, and of dα−1

that |h| is bounded by a natural number near |b| = 0.

Since ω1, . . . , ωn are cotangent vectors to AGrn−1(Rn), h takes real values on real

entries, and therefore the image of a Q-bounded set is also Q-bounded.

Proposition 4.5. Let f be a definable function on AGrn−1(Fn) ⊂ Fn ×Mn×n(F) with

Q-bounded support and image. Then ∫
AGrn−1(Fn)

f

exits.

Proof. f ◦α−1 vanishes outside a Q-bounded set, and by Lemma 4.4 h maps the support

of f to a Q-bounded set. Therefore (f ◦ α−1)|h| is a Q-bounded function vanishing

outside a Q-bounded set , it follows by Chapter 2, Theorem 2.9 that (f ◦ α−1)|h| is

integrable.

Now we show that for F = R, the integral (4.2) coincides with the G-invariant integral

on AGrn−1(Rn).
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The real affine Grassmannian AGrn−1(Rn) sits inside AGrn−1(Fn), it consists of

all the pairs (b, A) ∈ AGrn−1(Fn) with real entries. If ωR, αR and hR are the form,

function and chart constructed above for the real field, then hR = h|AGrn−1(Rn) = h

and αR = α|AGrn−1(Rn) = α. We show that ωR is G-invariant up to sign, and therefore

the integral in (4.2) is the G-invariant measure on AGrn−1(Rn).

Lemma 4.6. For every g ∈ G, the pullback of ωR by Lg is ωR up to sign. That is

δLg(ωR) = ±ωR.

Proof.

(δLg(ωR))p(X1, . . . , Xn) = (ωR)g·p(dLg(X1), . . . , dLg(Xn))

= det(ωi(dL(τ(g·p))−1dLg(Xj))).

Also, τ(p) · p0 = p, thus

τ(g · p) · p0 = g · p = gτ(p) · p0,

and therefore there is an h ∈ H with

(τ(g · p))−1gτ(p) = h.

Thus

dLτ(g·p)−1dLg(Xj) = dLhτ(p)−1g−1dLg(Xj) = dLhdLτ(p)−1(Xj),

so

det(ωi(dLτ(g·p)−1dLg(Xj))) = det(dLh) det(ωi(dLτ(p)−1(Xj)))

= ±(ωR)p(X1, . . . , Xn)

since by Chapter 2, equation (2.2), det(dLh) = ±1 for all h ∈ H.
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4.4 The generalized Cauchy-Crofton formula

For a Q-bounded definable curve γ in Fn, the length of γ is the average number of points

of intersection of γ with an affine hyperplane. The proof is a reduction to the standard

Cauchy-Crofton formula for the length of a curve in Rn. The main point is that the

number of points of intersection of γ with a hyperplane L defined over the reals is the

same as the number of points of intersection of the standard part of γ, γ, with the real

points of L, as long as L is not tangent to the curve γ.

Lemma 4.7. Let f : B −→ [0, q] be a definable function, where B ⊂ Fn is a Q-bounded

box and q ∈ Q, then f is Riemann integrable, and∫
B

f =

∫
BR

f

Proof. Let P be a polyrectangle. If P ⊃ [0, f), then P ⊃ [0, f). Thus, µ∗([0, f)) ≥

µ∗([0, f)). Also, if P ⊂ [0, f) then P ⊂ [0, f). Thus µ∗([0, f)) ≤ µ∗([0, f)). Since [0, f)

is µ-measurable we get

µ∗([0, f)) ≤ µ([0, f)) ≤ µ∗([0, f)).

But µ∗([0, f)) ≥ µ∗([0, f)), thus [0, f) is µ-measurable, so f is Riemann integrable.

Moreover, ∫
BR

f = µ([0, f)) =

∫
B

f.

Let γ : (0, 1) −→ Fn be a definable curve with Q-bounded image γ′ finite and γ′′(x)

finite for x 6≈ 0, 1. Note that it follows from Lemma 4.7 that

length(γ) = length(γ).
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We will assume that γ is an embedded C1 curve in Rn.

Lemma 4.8. Let f : AGrn−1(Fn) −→ F be the function f(L) = #(γ ∩ L). Then∫
AGrn−1(Fn)

f =

∫
AGrn−1(Rn)

f |AGrn−1(Rn).

Proof. ∫
AGrn−1(Fn)

f =

∫
Fn

(f ◦ α−1)|h|

=

∫
Rn

(f ◦ α−1)|h|

=

∫
Rn

(f ◦ α−1
R )|hR|

=

∫
AGrn−1(Rn)

f |AGrn−1(Rn),

where the second equality is given by Lemma 4.7, noting that f(L) is finite whenever L

intersects γ transversely, and that the set

{b ∈ Fn : f(α−1(b)) 6= 0}

is contained in a Q-bounded box because γ is Q-bounded.

We would like to compare the integral in Lemma 4.8 above with∫
AGrn−1(Rn)

#(γ ∩ L) dL.

For this, let g : AGrn−1(Rn) −→ R be the function L −→ #(γ ∩ L).

Suppose that L ∈ AGrn−1(Rn) ⊂ AGrn−1(Fn) is a hyperplane which intersects γ

transversely, and denote by LR the set of R points of L. Let p ∈ γ ∩ L, then there are

t0 < t1 such that γ|[t0, t1] ∩ L = {p} and γ(t0), γ(t1) lie on opposite sides of L. Then

γ(t0), γ(t1) must lie on opposite sides of L, so there is a t ∈ (t0, t1) such that γ(t) ∈ L.
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Since t ≈ st(t) and γ′ is finite, γ(st(t)) ≈ γ(t). Thus st(γ(st(t))) = st(γ(t)) ∈ st(L) =

LR, i.e. γ(st(t)) ∈ L. But L intersects γ only at p when the parameter runs in [t0, t1]

and st(t) ∈ [t0, t1] so γ(st(t)) = p, in particular γ(t) ≈ p. It follows that g(L) ≤ f(L)

whenever L is transverse to γ.

On the other hand, if f(L) > g(L) then there are two infinitesimally close points of

γ in L, that is, there are γ(t0), γ(t1) ∈ L with γ(t0) ≈ γ(t1) and say t0 < t1. Assume

t0 6≈ 0, 1. By Lemma 4.2, for all s, t ≈ t0, and i = 1, . . . , n, γ′i(s) ≈ γ′i(t). By the mean

value theorem, there are u1, . . . , un ∈ (t0, t1) such that γ′i(ui)(t1 − t0) = γi(t1) − γi(t0),

therefore for all t ≈ t0,

γ′(t) ≈ 1

t1 − t0
(γ(t1)− γ(t0)).

This means that st(γ′(t)) is paralel to st(γ(t1)− γ(t0)), in other words, if l is the secant

line through γ(t0), γ(t1), we must have st(l) tangent to γ at st(t0). In particular, we have

that L is tangent to γ at some point of γ. Thus f(L) ≤ g(L) whenever L is transverse

to γ and not infinitesimally close to γ(0), γ(1).

We have shown that f and g agree almost everywhere, thus∫
AGrn−1(Rn)

#(γ ∩ L) dL =

∫
AGrn−1(Rn)

#(γ ∩ L) dL.

But γ is an embedded curve, so by the Cauchy-Crofton formula

length(γ) = C

∫
AGrn−1(Rn)

#(γ ∩ L) dL,

and since length(γ) = length(γ), we have

Proposition 4.9. There is a constant C ∈ R>0 such that for every definable curve

γ : (0, 1) −→ Fn with Q-bounded image, γ′ finite, γ′′(x) finite for x 6≈ 0, 1. and γ an
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embedded C1 curve in Rn,

length(γ) = C

∫
AGrn−1(Fn)

#(γ ∩ L) dL.

Let γ : (0, 1) −→ Fn be a definable injective curve with Q-bounded image. Suppose

that 0 = a0 < · · · < ak = 1 is a partition of (0, 1) such that:

Each restriction γ
∣∣(ai, ai+1), i = 0, . . . , k − 1, has a reparametrization αi with α′i

finite, α′′i (x) finite for x 6≈ 0, 1, and αi an embedded C1 curve in Rn.

Then
k−1∑
i=0

∫
AGrn−1(Fn)

#(αi ∩ L)dL =

∫
AGrn−1(Fn)

#(γ ∩ L)dL.

Therefore we can define

length(γ) :=
k−1∑
i=0

length(αi),

and this is independent of the partition and reparametrization. Moreover we have the

generalized Cauchy-Crofton formula:

Theorem 4.10. There is a constant C ∈ R>0 such that for any definable injective curve

γ : (0, 1) −→ Fn with Q-bounded image,

length(γ) = C

∫
AGrn−1(Fn)

#(γ ∩ L)dL.

4.5 Length in definable families of curves

We now prove that there is a bound for the lengths of the curves in a Qbounded definable

family. It should be noted that this result does not depend on the full strength of the

generalized Cauchy-Crofton formula (Theorem 4.10). We conclude by using this result

to prove that uniformly locally connected sets have the WAP.
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Proposition 4.11. If A ⊂ Fm is definable and definably connected, then there is a

definable family of curves λ ⊂ A2×([0, 1]×A) such that for every a, a′ ∈ A, λ(a,a′)(0) = a,

λ(a,a′)(1) = a′, and λ(a,a′) is piecewise C1.

Proof. We use induction on m. The case m = 1 is trivial. For m > 1, assume first

that A is a cell. By induction, we may assume that A is an open cell in Fm, for, if A

itself is not open, then A is the graph of a function g : U −→ F, U ⊂ Fm−1, and we

may lift the paths in U to paths in A by using g. Let C be the projection of A into

Fm−1 so that A = (f, g)C for some definable functions f, g on C. By induction there is

a definable family of curves Λ in C with the required property. Assume that f , g take

values in F (the other cases are handled similarly). Let (y, r), (z, s) ∈ A with y, z ∈ C.

We first connect (y, r) to (y, (f(y) + g(y))/2) by a vertical path in A. The path Λ(y,z) in

C connecting y and z lifts to the path

t −→ (Λ(y,z)(t), (f(Λ(y,z)(t)) + g(Λ(y,z)(t)))/2)

connecting (y, (f(y)+g(y))/2) to (z, (f(z)+g(z))/2). The last point can be connected to

(z, s) by a vertical path in A. Concatenating these three paths, we get a path λ((y,r),(z,s))

in A connecting (y, r) and (z, s). The collection of these paths constitutes the required

definable family.

In the general case, since A is definably connected, we can write it as the union of

cells C1, . . . , Ck, where for i < k either Ci intersects the closure of Ci+1, or Ci+1 intersects

the closure of Ci ([10] Chapter 3, (2.19)). By definable choice ([10] Chapter 6, (1.2)), we

can definably pick an element e(Ci, Ci+1) in Ci ∩Ci+1 (if Ci ∩Ci+1 6= ∅) and a definable

curve γi : (0, ε] −→ Ci+1 such that limt−→0 γi(t) = e(Ci, Ci+1). Combining this with the

fact that the result was already proved for cells we get the desired family λ.
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Theorem 4.12. Let λ ⊂ A × ([0, 1] × B) ⊂ Fn × Fm+1 be a definable and Q-bounded

family of curves. Then there is a K ∈ R>0 such that for any x ∈ A, length(λx) ≤ K.

Proof. Let λ ⊂ A× ([0, 1]×B) ⊂ Fn×Fm+1 be a definable family of curves. By Chapter

2, Fact 2.5, there is a natural number N such that for any affine (m− 1)-plane L ⊂ Fm

and x ∈ A, if L ∩ λx is finite then it contains at most N points.

Let

Λ :=
⋃
x∈A

λx([0, 1]).

Take x ∈ A, then by the Cauchy-Crofton formula (Theorem4.10), there is a C ∈ R>0

such that

length(λx) = C

∫
AGrm−1(Fm)

#(λx ∩ L)dL ≤ C

∫
L∩λx 6=∅

NdL ≤ NC

∫
L∩Λ6=∅

dL.

The last integral is finite since λ is Q-bounded, thus

K := NC

∫
L∩Λ6=∅

dL

is the required constant.

Remark 4.13. Note that since length(λx) = length(λx), the ordinary Cauchy-Crofton

formula (Chapter 2, Theorem 2.13) together with a bound for #(λx ∩ L) is all that is

needed for the proof of Theorem 4.12. That such a bound exists was part of the proof of

the generalized Cauchy-Crofton formula.

Corollary 4.14. If A ⊂ Fn is definable, Q-bounded, and definably connected, then

there is a definable family of curves λ ⊂ A2 × ([0, 1] × A) and K > 0 such that for

any pair of points x, y ∈ A, λ(x,y) is a piecewise C1 curve in A joining x and y with

length(λ(x,y)) ≤ K.
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Recall that for a = (a1, . . . , an) ∈ Rn, and α = (α1, . . . , αn) ∈ (0,∞)n. The α- box

centered at a is the open box

B(a, α) :=
{

(x1, . . . , xn) ∈ Rn : xi ∈ (ai −
αi

2
, ai +

αi

2
)
}

.

Recall as well that a definable set U ⊂ Fn is uniformly locally connected if there is

an α = (α1, . . . , αn) ∈ (0, 1)n such that for every u ∈ U and every δ ∈ (0, 1), the set

U ∩B(u, δα) is definably connected.

For convenience we use the max norm in Fn, that is, for x = (x1, . . . , xn) ∈ Fn,

|x| := max{|xi| : i = 1, . . . , n}.

Proposition 4.15. If A ⊂ Fn is a definable, Q-bounded, definably connected, and uni-

formly locally connected set, then there is a K > 0 and a definable family of curves

γ ⊂ A2 × [0, 1] × A such that for x, y ∈ A, γx,y(0) = x, γx,y(1) = y, and length(γx,y) ≤

K|x− y|.

Proof. For λ > 0 and a ∈ Fn let fa,λ : Fn −→ Fn be the dilation about a, that

is fa,λ(x) = λ(x − a) + a. Since A is uniformly locally connected, there is a tuple

α = (α1, . . . , αn) ∈ (0, 1)n such that for every a ∈ A and δ ∈ (0, 1), the set B(a, δα) ∩A

is definably connected. For a ∈ A and δ ∈ (0, 1) define

Bδ,a := fa,1/δ(B(a, δα) ∩ A).

This set is definably connected since B(a, δα) ∩ A is. By Proposition 4.11, there is a

definable family of curves λδ,a ⊂ B2
δ,a × ([0, 1] × Bδ,a) such that for b, b′ ∈ Bδ,a, λδ,a

b,b′ is

piecewise C1, λδ,a
b,b′(0) = b and λδ,a

b,b′(1) = b′. Consider

λ := {(δ, a, x, y, ε, z) ∈ ((0, 1)× A× (Fn)2)× ([0, 1]× Fn) : (x, y, ε, z) ∈ λδ,a}.
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This is a definable and Q-bounded family of curves. Thus by Theorem 4.12, there is a

K1 > 0 such that for every δ ∈ (0, 1), a ∈ A, and b, b′ ∈ Bδ,a, length
(
λδ,a

b,b′

)
≤ K1.

Similarly, by Corollary 4.14 there is a definable family of curves Λ ⊂ A2× ([0, 1]×A)

and K2 > 0 such that for each x, y ∈ A, Λx,y : [0, 1] −→ A is a piecewise C1 curve in A

joining x and y, and length(Λx,y) ≤ K2.

Now let x, y be distinct points in A, and assume that |x− y| < min{αj/3}. Let

δ :=
3|x− y|
min{αj}

, y′ := fx,1/δ(y) =
1

δ
(y − x) + x.

Then δ ∈ (0, 1) and for any j,

|xj − yj| <
3

2

αj

min{αj}
|x− y| = δαj

2
.

Thus, y ∈ B(x, δα), that is, y′ ∈ Bδ,x. Consider the curve λδ,x
x,y′ in Bδ,x, joining x and y′,

and let γx,y : [0, 1] −→ Fn be defined by

γx,y(t) := fx,δ(λ
δ,x
x,y(t)) = δ(λδ,x

x,y′(t)− x) + x.

Then γx,y(t) is a curve in A joining x and y, and moreover,

length(γx,y) = δ length
(
λδ,x

x,y′

)
≤ δK1 =

3K1

min{αj}
|x− y|.

Now assume that |x − y| ≥ 1
3
min{αj}, and let γx,y := Λx,y. Then γ is a curve in A

joining x and y and

length(γx,y) ≤
K2

|x− y|
|x− y| ≤ 3K2

min{αj}
|x− y|.

The collection of curves γx,y constitutes the required definable family.

K :=
3 max{K1, K2}

min{αj}
,

is the required constant.
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