
Math/CS 714: Assignment 2

1. Iterative methods (2 points).

(a) Consider the 2 × 2 matrix

A =

(
1 ρ
−ρ 1

)
. (1)

Under what conditions will the Jacobi and Gauss–Seidel methods converge?

(b) Consider the n × n matrix

C =



3 −1
−1 3 −1

−1 3 −1
. . .
−1 3 −1

−1 3


. (2)

Starting from u0 ∈ Rn, for which values of ω ∈ R does the iteration

uk+1 = uk + ω(b − Cuk) (3)

for k = 0, 1, 2, . . . converge to a solution of Cu = b? What iterative method from
the lectures does this most closely resemble? How is it different?

2. Triangular domain revisited with conjugate gradient (8 points). Question 4 of the
first homework assignment looked at solving the Poisson equation

∇2u = f (4)

on the triangular domain T with vertices at (0, 0), (1, 0), and (s, 1
2) where s =

√
3

2 .
Dirichlet boundary conditions u = 0 are applied on the boundary ∂T. For n ∈ N

and h = 1/n, the domain is discretized with points

xi,j = (h(i + 1
2 j), hsj)) (5)

for 0 ≤ i ≤ n, 0 ≤ j ≤ n − i. The points where i = 0, j = 0, or i + j = n are boundary
points, and all others are interior. Let ui,j be the numerical approximation for u(xi,j).
The Laplacian is discretized using

∇2
6ui,j =

2(−6ui,j + ui+1,j + ui,j−1 + ui−1,j+1 + ui−1,j + ui,j+1 + ui+1,j−1)

3h2 . (6)

As in Homework 1, consider solving Eq. (4) using the f that creates the exact solution

uex(x, y) =
(
(2y −

√
3)2 − 3(2x − 1)2

)
sin y. (7)
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The problem can be expressed as a linear system Au = f where u ∈ RN is the solution
vector at the N = (n− 1)(n− 2)/2 interior grid points. Define an appropriate 2-norm
as

∥r∥2 =

√√√√ s
2n2

n−1

∑
j=1

n−j−1

∑
i=1

r2
i,j (8)

for a vector r describing a field on the grid.

(a) For a range of grid sizes from n = 10 up to at least n = 160 measure the wall-
clock time Tn to solve the system using your code.1 By making a log–log plot of
Tn versus n, fit the timing data to

Tn = anb, (9)

and comment on the exponent b.

(b) Write a code to implement the conjugate gradient (CG) algorithm to solve
Au = f . Your code should not explicitly build A as a dense matrix. It should
either represent A as a sparse matrix, or contain a function that can directly
compute Aq for a given vector q. The CG algorithm should terminate when
∥r∥2 < 10−10, where r is the residual vector. For the case when n = 40 test that
your program gives the same results as the original version.

(c) For n = 10, 20, 40, 80, 160, calculate the number of iterations k required in order
to reach the termination criterion.

(d) Measure the wall-clock time of the CG algorithm to solve the linear system for a
range of grid sizes from n = 10 up to at least n = 160. Fit the data to Eq. (9) and
comment on how the exponent compares to your result from part (a).

(e) Consider the block Jacobi preconditioner M with block sizes of w = ⌊
√

N⌋. In
general, w will not evenly divide N, and therefore let the final block of M be
smaller. Implement the preconditioned CG algorithm, and repeat part (c) to
measure the number of iterations required to reach the termination criterion.

(f) Repeat part (d), fitting the timing data to Eq. (9)

(g) Optional. Would this question be possible if ∇2
3 was used instead of ∇2

6?

(h) Optional. With the block Jacobi preconditioner, the ordering of the points
within the linear system will affect the performance. In particular, having a
large number of matrix entries within the Jacobi blocks will likely make the
preconditioner more effective. Consider approaches to reorder the points to
achieve better performance.

1If you had difficulty with completing this question, you can alternatively use the code poisson tri.py

from the homework 1 solutions.
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3. ODE integration methods (7 points).

(a) Consider solving the differential equation y′ = f (t, y) at timepoints tk with cor-
responding numerical solutions yk. The multi-step Nyström numerical method
is based upon the integral relation

y(tk+1) = y(tk−1) +
∫ tk+1

tk−1

f (t, y)dt. (10)

Derive an implicit multi-step numerical method by approximating the integrand
f (t, y) with the polynomial interpolant using the function values at tk−2, tk−1,
tk, and tk+1. Your method should have the form

yk+1 = yk−1 + h(α fk−2 + β fk−1 + γ fk + η fk+1) (11)

where α, β, γ, and η are constants to be determined, h is the timestep interval
size, and fl = f (tl, yl) for an arbitrary l.

(b) Find the exact solution to the second-order differential equation

y′′(t) + 2y′(t) + 26y(t) = 0. (12)

subject to the initial conditions y(0) = 1, y′(0) = 0.

(c) Write Eq. (12) as a coupled system of two first-order differential equations for
y = (y, v) = (y, y′). Solve the system over the interval 0 ≤ t ≤ 3 with a timestep
of h = 0.02 using your multi-step method from part (a).2

Before Eq. (11) can be applied, y1 and y2 must be calculated accurately. Use one
of the following two approaches:

i. set them based on the exact solution from part (b),
ii. calculate them using the classical fourth-order Runge–Kutta method.

Plot the exact and numerical solutions over the range 0 ≤ t ≤ 3.
Make a log–log plot of the absolute error between the numerical and exact
values of y at t = 3 as a function of h, over the range from h = 10−3 to h = 10−1.
Show that your method is fourth-order accurate.

(d) Suppose that instead of setting y1 and y2 accurately, you instead make use of
forward Euler steps. Create a log–log plot of the absolute error of y at t = 3 as a
function of h. Determine the order of accuracy, and discuss why this is the case.

4. Linear difference equation (3 points).

(a) Find the general solution of the linear difference equation

Un+3 + 2Un+2 − 4Un+1 − 8Un = 0. (13)
2Even though Eq. 11 is an implicit method and would be hard to solve in general, the linearity of the

system in Eq. 12 means that for this case, the update equation for yk+1 can be derived analytically.
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(b) Determine the particular solution with initial data U0 = 4, U1 = −2, and
U2 = 8.

(c) Consider the iteration Un+1
Un+2
Un+3

 =

 0 1 0
0 0 1
8 4 −2

 Un
Un+1
Un+2

 , (14)

which we can define as Un+1 = AUn. The matrix A is called the companion
matrix for the difference equation in Eq. (13). A general solution of the difference
equation is given by Un = AnU0. If A = RJR−1 is the Jordan canonical form for
A, then An = RJnR−1. Determine the eigenvalues and Jordan canonical form
for this matrix and show how this is related to the general solution found in
part (a).
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