
Math 714: Homework 0 solutions1

1. (a) Write the recursion as xk+1 = f (xk) where f (x) = ax2 + bx. If the sequence
converges, it must converge to a fixed point where x = f (x), and hence

0 = ax2 + bx − x = x(ax − (1 − b)). (1)

Therefore either x = 0 or x = 1−b
a .

(b) When xk is close to a fixed point, the sequence will converge if | f ′| < 1, and
diverge if | f ′| > 1. In this case f ′(x) = 2ax + b. At x = 0,

| f ′(0)| = |b|, (2)

and therefore the sequence will converge if |b| < 1 and diverge if |b| > 1. The
convergence/divergence of the sequence for b = ±1 may depend on the precise
value and sign of x0,2 which is not specified in the question, so we do not
address this.
Now consider the other potential fixed point at x = b−1

a . Then∣∣∣∣ f ′
(

b − 1
a

)∣∣∣∣ = |(2 − 2b) + b| = |2 − b| (3)

and hence the sequence converges for b ∈ (1, 3). Again, we do not address the
possible convergence for b = 1 or b = 3.

2. The program cheby 2d.py calculates the Chebyshev polynomials Tk(x) for k =
0, 1, . . . , 5. Figure 1 shows a two-dimensional plot of the function T3(x)T5(y) in the
region (x, y) ∈ [−1, 1]2.

3. (a) For the floating point addition,

(4 + 2)(1 − ϵ) < 4 ⊕ 2 < (4 + 2)(1 + ϵ) (4)

and therefore
6 − 6ϵ < 4 ⊕ 2 < 6 + 6ϵ. (5)

The floating point division will accrue another relative error up to ϵ in magni-
tude. In addition, the value will be minimized if 4 ⊕ 2 takes its maximum value,
and it will be maximized if 4 ⊕ 2 takes its minimum value. Hence

3
6 + 6ϵ

(1 − ϵ) < 3 ⊘ (4 ⊕ 2) <
3

6 − 6ϵ
(1 + ϵ) (6)

so
1 − ϵ

2(1 + ϵ)
< 3 ⊘ (4 ⊕ 2) <

1 + ϵ

2(1 + ϵ)
. (7)

1Written by Chris H. Rycroft.
2For example, when b = 1 and a < 0, then xk+1 = ax2

k + xk. When xk ̸= 0, xk+1 < xk. If x0 is small and
positive, then (xk) is a decreasing sequence bounded below by 0, so it converges. If x0 is negative, then (xk)
is a decreasing unbounded sequence and it diverges.
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Figure 1: Plot of the product of Chebyshev polynomials T3(x)T5(y) considered in question 2.

(b) To simplify Eq. (7), note that

1
1 + ϵ

=
∞

∑
n=0

(−ϵ)n = 1 − ϵ + O(ϵ2) (8)

and
1

1 − ϵ
=

∞

∑
n=0

ϵn = 1 + ϵ + O(ϵ2). (9)

Therefore if terms of O(ϵ2) are neglected, then Eq. (7) becomes

(1 − ϵ)(1 − ϵ)

2
< 3 ⊘ (4 ⊕ 2) <

(1 + ϵ)(1 + ϵ)

2
(10)

and hence writing S = 3/(4 + 2) = 1
2 and S̃ = 3 ⊘ (4 ⊕ 2),

S(1 − 2ϵ) < S̃ < S(1 + 2ϵ) (11)

so |S − S̃| < 2Sϵ = ϵ. Hence λ = 1.

4. (a) Throughout this equation, ∥ · ∥ is taken to mean the Euclidean norm. The first
two parts of this problem can be solved using diagonal matrices only. Consider
first

B =

(
2 0
0 1

)
, C =

(
1 0
0 2

)
(12)
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Then ∥B∥ = 2, ∥B−1∥ = 1 and hence κ(B) = 2. Similarly, κ(C) = 2. Adding the
two matrices together gives

B + C =

(
3 0
0 3

)
= 3I (13)

and hence κ(B + C) = ∥3I∥ ∥1
3 I∥ = 3 × 1

3 = 1. For these choices of matrices,
κ(B + C) < κ(B) + κ(C).

(b) If

B =

(
4 0
0 2

)
, C =

(
1 0
0 −1

)
(14)

then κ(B) = 2 and κ(C) = 1. Adding the two matrices together gives

B + C =

(
5 0
0 1

)
(15)

and hence κ(B + C) = 5. Therefore κ(B + C) > κ(B) + κ(C).

(c) Let A be an invertible 2 × 2 symmetric matrix. First, note that

∥2A∥ = max
v ̸=0

∥2Av∥
∥v∥ = max

v ̸=0

2∥Av∥
∥v∥ = 2 max

v ̸=0

∥Av∥
∥v∥ = 2∥A∥. (16)

Similarly, note that ∥(2A)−1∥ = ∥1
2 A−1∥ = 1

2∥A−1∥. Hence

κ(2A) = ∥2A∥ ∥(2A)−1∥ = 2∥A∥ × 1
2
∥A−1∥ = ∥A∥ ∥A−1∥ = κ(A). (17)

Now suppose that A is a symmetric invertible matrix. Then there exists an
orthogonal matrix Q and a diagonal matrix D such that

A = QTDQ. (18)

Since QTQ = QQT = I, it follows that

A2 = QTDQQTDQ = QTD2Q. (19)

The matrix norm of ∥A∥ is

∥A∥ = max
v ̸=0

∥QTDQv∥
∥v∥ . (20)

Since Q corresponds to a rotation or reflection, it preserves distances under the
Euclidean norm and hence ∥Qw∥ = ∥w∥ = ∥QTw∥ for an arbitrary vector w.
Therefore

∥A∥ = max
v ̸=0

∥DQv∥
∥Qv∥ = max

u ̸=0

∥Du∥
∥u∥ = ∥D∥ (21)
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where u = Qv. Similarly ∥A−1∥ = ∥QTD−1Q∥, and since D−1 is also diagonal
it follows that ∥A−1∥ = ∥D−1∥, so κ(A) = κ(D). With reference to the condi-
tion number notes, κ(A) = |αβ−1| where α is the diagonal entry with largest
magnitude and |β| is the diagonal entry with the smallest entry with smallest
magnitude.
Since D2 is also diagonal, it follows that ∥A2∥ = ∥D2∥. The diagonal entry of
D2 with the largest amplitude will be α2, and the diagonal entry of D2 with the
smallest amplitude will be β−2. Hence

κ(A2) = |α2β−2| = (κ(A))2 . (22)

(d) The result for that κ(2A) = κ(A) is true for arbitrary 2 × 2 invertible matrices.
The derivation that was considered in part (c) did not rely on the matrix being
symmetric.
The result about κ(A2) does not generalize to arbitrary matrices. If

A =

(
1 1
0 1

)
(23)

then

A2 =

(
1 2
0 1

)
. (24)

One can numerically verify that κ(A2) = 5.828 but (κ(A))2 = 6.854, so the two
do not agree.

5. (a) The program gamma vander.py computes the polynomials pk as described in the
question, using the Vandermonde matrix method. Since this question only con-
siders low-order polynomials, the Vandermonde matrix is well-conditioned and
gives accurate answers. With Vandermonde interpolation, it is more straight-
forward to evaluate the coefficients bi of the polynomial when expressed as
∑i bixi.
The polynomials are shown in Table 1, along with the values of |pk(

3
2)− Γ(3

2)|.
In this case, the most accurate value is given when k = 2. This is because
the rapidly growing values of Γ(x) cause large oscillations in the interpolating
polynomial when k gets large.

(b) Table 2 lists the polynomials qk that interpolate log(Γ(x)) at x = 1, 2, . . . , k + 1.
The absolute errors between exp(qk(

3
2)) and Γ(3

2) are also shown. In this case
the most accurate value is given by k = 5. Because the points of log(Γ(x)) do
not grow as rapidly, the interpolating polynomial can match the points better.

(c) The program gamma lagr.py computes the polynomials pk and qk using La-
grange interpolation. This method is better suited to large k, because it does not
suffer from the numerical conditioning problems of the Vandermonde matrix.
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k pk(x) |pk(
3
2 )− Γ( 3

2 )|
1 1 0.11377
2 1

2 x2 − 3
2 x + 2 0.011227

3 1
3 x3 − 3

2 x2 + 13
6 x 0.11377

4 3
8 x4 − 41

12 x3 + 93
8 x2 − 199

12 x + 9 0.23779
5 11

30 x5 − 41
8 x4 + 111

4 x3 − 567
8 x2 + 5033

60 x − 35 0.96534

Table 1: Interpolating polynomials pk(x) for the gamma function for k = 1, 2, 3, 4, 5, using control
points at x = 1, 2, . . . , k + 1. The absolute error of the polynomial to the gamma function at x = 3

2 is
also listed.

k qk(x) | exp(qk(
3
2 ))− Γ( 3

2 )|
1 0 0.11377
2 0.34657x2 − 1.0397x + 0.69315 0.03777
3 −0.047947x3 + 0.63426x2 − 1.5671x1 + 0.98083 0.014437
4 0.0070791x4 − 0.11874x3 + 0.88203x2 +−1.9211x1 + 1.1507 0.0084790
5 −0.00097212x5 + 0.021661x4 − 0.20137x3 + 1.1008x2 − 2.1875x1 + 1.2674 0.0056296

Table 2: Interpolating polynomials qk(x) for log(Γ(x)) for k = 1, 2, 3, 4, 5, using control points at
x = 1, 2, . . . , k + 1. The absolute error of exp(qk(x)) to the gamma function at x = 3

2 is also listed.

Figure 2 shows the absolute errors |pk(
3
2)− Γ(3

2)| and | exp(qk(
3
2))− Γ(3

2)| for
k = 0, 1, 2, . . . , 30. The errors for pk diverge approximately exponentially. The
errors for exp(qk) appear to converge as k gets large, but the convergence rate
is very slow. It is unclear whether the polynomials will converge to the correct
value as k → ∞, or if there will be a non-zero error in the limit.

6. (a) The Taylor series of f at x − h and x + h are

f (x − h) = f (x)− h f ′(x) +
h2

2
f ′′(x) + O(h3), (25)

f (x + h) = f (x) + h f ′(x) +
h2

2
f ′′(x) + O(h3), (26)

respectively. Adding these two equations together shows that

f (x − h) + f (x + h) = 2 f (x) + h2 f ′′(x) + O(h3) (27)

and therefore

h2 f ′′(x) = f (x − h)− 2 f (x) + f (x + h) + O(h3). (28)

Dividing through by h2 shows that

f ′′(x) =
f (x − h)− 2 f (x) + f (x + h)

h2 + O(h). (29)

Therefore α = γ = 1 and β = −2.
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Figure 2: Errors in the interpolating polynomials, |pk(
3
2 ) − Γ( 3

2 )| and | exp(qk(
3
2 )) − Γ( 3

2 )|, for
k = 0, 1, 2, . . . , 30.

6



(b) The Taylor series of f at x + h is

f (x + h) = f (x) + h f ′(x) +
h2

2
f ′′(x) +

h3

6
f ′′′(x)

+
h4

24
f (4)(x) +

h5

120
f (5)(x) + O(h6) (30)

and the Taylor series of f ′ at x + h is

f ′(x + h) = f ′(x) + h f ′′(x) +
h2

2
f ′′′(x) +

h3

6
f (4)(x) +

h4

24
f (5)(x) + O(h5). (31)

Analogous expressions exist for f (x − h) and f ′(x − h) by switching the signs
of the odd powers of h in Eqs. (30) & (31). Consider the expression

f ′′(x) =
a f (x − h) + b f (x) + c f (x + h)

h2

+
r f ′(x − h) + s f ′(x) + t f ′(x + h)

h
+ O(h4). (32)

Equating terms proportional to h−2 f (x), h−1 f ′(x), f ′′(x), . . . , h3 f (5)(x) yields
the linear system

1 1 1 0 0 0
−1 0 1 1 1 1

1
2 0 1

2 −1 0 1
−1

6 0 1
6

1
2 0 1

2
1
24 0 1

24 −1
6 0 1

6
− 1

120 0 1
120

1
24 0 1

24





a
b
c
r
s
t


=



0
0
1
0
0
0


. (33)

Solving this system using the program deriv.py shows that (a, b, c, r, s, t) =
(2,−4, 2, 1

2 , 0,−1
2), and therefore

f ′′(x) =
2 f (x − h)− 4 f (x) + 2 f (x + h)

h2 +
f ′(x − h)− f ′(x + h)

2h
+O(h4). (34)

(c) For the function f (x) = e4 sin x, the first and second derivatives are

f ′(x) = 4 cos xe4 sin x, f ′′(x) = 4e4 sin x(4 cos2 x − sin x). (35)

The program deriv2.py calculates second derivative of f using the formulae
in Eqs. (29) & (34), using grid spacings of h = 2−k for k = 0, 1, 2, . . . , 23. The
absolute error magnitudes E are shown in Fig. 3. For Eq. (29), the errors follow

E ≈ 125.9h1.995. (36)
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Figure 3: Absolute error magnitudes for the two finite difference formulae for the second derivative
of f (x) = e4 sin x at x = 1.

Hence the error appears to scale like h2 one order higher than O(h) as given in
Eq. (29). This is still consistent with the formula, and is due to cancellation of
the leading order error term due to symmetry. For Eq. (34), the errors follow

E ≈ 112.7h3.994 (37)

which is consistent the expected O(h4) error.

8


