
UW Madison Math/CS 714

Methods of Computational Mathematics I

Optional activity 1: Introduction to C++1

Instructor: Yue Sun (yue.sun@wisc.edu)

September 10, 2025

1Based off slides from Prof. Chris Rycroft and Rycroft Group alumni Dan Fortunato, Nick Derr,
Nick Boffi, and Michael Emanuel.

https://people.math.wisc.edu/~chr/
https://danfortunato.com/
https://www.nickderr.me/
https://nmboffi.github.io/
https://github.com/memanuel

Intro Syntax Types Functions Compiling Memory Examples

Why learn C/C++?

Isn’t Python the hot language these days? Isn’t C/C++ notoriously hard to learn and
painful to debug?

Many people would say “yes” to both.

But . . .

• C++ is fast. In many applications that is crucial.

• C++ is highly expressive and lets you get close to the hardware.

• C++ provides features for organizing and managing large projects.

• C and C++ have stood the test of time.

2 / 48

Intro Syntax Types Functions Compiling Memory Examples

Compiled vs. interpreted languages

In a compiled language:

• You write a program in source code, e.g. C++
• You run a special program called a compiler, e.g. g++
• This creates an executable program: machine language that can run on your
hardware

In an interpreted language:

• You write a program or just one line of source code, e.g. Python

• You run a program called an interpreter, e.g. python3
• The interpreter runs each line of code one at a time

3 / 48

Intro Syntax Types Functions Compiling Memory Examples

The interpreter

The interpreter itself is an executable program that was compiled

Question: What language was the Python interpreter written in?

4 / 48

Intro Syntax Types Functions Compiling Memory Examples

References

There are several excellent references written by the their creators:

• Brian W. Kernighan and Dennis M. Ritchie, C Programming Language, 2nd
edition, Pearson (1988).

• Bjarne Stroustrup, The C++ programming language, 4th edition, Addison-Wesley
(2013).

There are also many excellent online resources:

• https://cplusplus.com
• https://en.cppreference.com/w/
• https://godbolt.org

5 / 48

https://cplusplus.com
https://en.cppreference.com/w/
https://godbolt.org

Intro Syntax Types Functions Compiling Memory Examples

Anatomy of a C++ program

• A program begins execution in the main() function, which is called automatically
when the program is run.

• Code from external libraries can be used with the #include directive.

#include <cstdio> // Allows us to use printf

int main()
{

printf("Hello world!\n");
return 0; // Indicates the program exited normally

}

Hello world!

6 / 48

Intro Syntax Types Functions Compiling Memory Examples

Syntax

C++ is...

• Case-sensitive

• Whitespace-insensitive

• Statically typed

#include <iostream>
// this code will compile

double cube(double x) {
return x*x*x;

}

int main()
{
double x = 1.2;
std::cout << cube(x) << std::endl;
return 0;

}

7 / 48

Intro Syntax Types Functions Compiling Memory Examples

Syntax

C++ is...

• Case-sensitive

• Whitespace-insensitive

• Statically typed

#INCLUDE <IOStream>
// this code will throw an error, because keywords are

incorrectly capitalized

DOUBLE cube(Double x) {
RETURN x*X*x;

}

INT MAIN()
{

double X = 1.2;
STD::COUT << Cube(x) << std::enDl;
ReTurn 0;

}

8 / 48

Intro Syntax Types Functions Compiling Memory Examples

Syntax

C++ is...

• Case-sensitive

• Whitespace-insensitive

• Statically typed

#include <iostream>
// this code will compile, despite the weird formatting

double cube(double x){return x * x*x;}
int main(){double x=1.2;std::cout<<cube(x)<<
std::endl; return 0;

}

9 / 48

Intro Syntax Types Functions Compiling Memory Examples

Syntax

C++ is...

• Case-sensitive

• Whitespace-insensitive

• Statically typed

#include <iostream>
// this code will not compile, because it is missing

type information

cube(x) {
return x*x*x;

}

main() {
x = 1.2;
std::cout << cube(x) << std::endl;
return 0;

}

10 / 48

Intro Syntax Types Functions Compiling Memory Examples

A note about IO

There are different ways to print strings in C++.

#include <cstdio> // C-style
#include <iostream> // C++-style

int main()
{

puts("I am C-style.");
printf("Me too!\n");
std::cout << "I am C++-style." << std::endl;
return 0;

}

I am C-style.
Me too!
I am C++-style.

11 / 48

Intro Syntax Types Functions Compiling Memory Examples

A note about comments

Use // to comment a single line, or /* ... */ for multiple.

Comments are useful but easy to misuse. Here are some good rules to keep in mind.

1 Code tells what you are doing.
Comments tell why you are doing it.

2 Only comment what you cannot express in code.
3 If a comment restates code, delete it.

// Loop from 0 to 10000
for (int x=0; x<10000; ++x) {

...
}

// Calculate primes up to a cutoff
for (int x=0; x<10000; ++x) {

...
}

12 / 48

Intro Syntax Types Functions Compiling Memory Examples

A note about comments

Use // to comment a single line, or /* ... */ for multiple.

Comments are useful but easy to misuse. Here are some good rules to keep in mind.

1 Code tells what you are doing.
Comments tell why you are doing it.

2 Only comment what you cannot express in code.
3 If a comment restates code, delete it.

// Loop from 0 to 10000
for (int x=0; x<10000; ++x) {

...
}

// Calculate primes up to a cutoff
for (int x=0; x<10000; ++x) {

...
}

12 / 48

Intro Syntax Types Functions Compiling Memory Examples

A note about comments

Use // to comment a single line, or /* ... */ for multiple.

Comments are useful but easy to misuse. Here are some good rules to keep in mind.

1 Code tells what you are doing.
Comments tell why you are doing it.

2 Only comment what you cannot express in code.
3 If a comment restates code, delete it.

// Loop from 0 to 10000
for (int x=0; x<10000; ++x) {

...
}

// Calculate primes up to a cutoff
for (int x=0; x<10000; ++x) {

...
}

12 / 48

Intro Syntax Types Functions Compiling Memory Examples

Types
Built-in types

What types are built into C++?

Type Example Size†

bool true 1 byte

char 'a' 1 byte

short -2 2 bytes

int -2 4 bytes

long -2 8 bytes

float 3.4 4 bytes

double 3.4 8 bytes

void – –

†These sizes may be different on your computer. The only guarantee is that
1 = sizeof(char) ≤ sizeof(short) ≤ sizeof(int) ≤ sizeof(long).

13 / 48

Intro Syntax Types Functions Compiling Memory Examples

Types
Strings

Strings are not built into C++, but can be included from an external library.

#include <iostream>
#include <string>

int main()
{

std::string s1 = "Hello";
std::string s2 = " world!";
std::string s3 = s1 + s2;
std::cout << s3 << std::endl;
std::cout << s3.size() << std::endl;
return 0;

}

Hello world!
12

14 / 48

Intro Syntax Types Functions Compiling Memory Examples

Types
Type modifiers

We can modify some types with the prefixes:

1 short

2 long

3 unsigned

4 signed

#1–4 can prefix int, #3–4 can prefix char, and #2 can prefix double.

15 / 48

Intro Syntax Types Functions Compiling Memory Examples

Types
Type modifiers

We can also add the prefix const to any type. This indicates that the value of the
variable cannot be changed; you must initialize a const variable when it is declared.

const int x = 1; // OK
x = 2; // Error
const double y; // Error
y = 3.0; // Error

This may seem unnecessary, but it will prove to be very useful. Using const will help
the compiler enforce rules you set and force your functions to adhere to contracts
about the data they use.

16 / 48

Intro Syntax Types Functions Compiling Memory Examples

Types
Typedefs

We can also define our own types using the typedef keyword.

typedef unsigned int size_t; // Conveys meaning
typedef float real; // Easy to change code to double later

It may seem trivial, but typedefs can help you

• . . . convey meaning in your code
(“What does this type actually represent?”)

• . . . allow for easy modifications down the road
(change one line of code instead of hundreds)

17 / 48

Intro Syntax Types Functions Compiling Memory Examples

Types
References

A reference is an alias to an existing variable. Any type can be made into a reference
type by adding an & after the type’s name.

double x;
double& y = x; // y is a reference to x
x = 1.0;
printf("x = %g, y = %g\n",x,y);
y = 2.0;
printf("x = %g, y = %g\n",x,y);

x = 1, y = 1
x = 2, y = 2

A reference must be initialized when it is created. Once a reference is initialized to a
variable, it cannot be changed to refer to another variable.

18 / 48

Intro Syntax Types Functions Compiling Memory Examples

Types
Pointers

Each variable has an address in memory. The & operator can be used to take the
address of a variable.

int x = 1;
printf("%p\n",&x);

0x7ffeef76096c

19 / 48

Intro Syntax Types Functions Compiling Memory Examples

Types
Pointers

A pointer is a variable whose value is such an address. Any type can be made into a
pointer type by adding an * after the type’s name.

We can retrieve the value of the variable being pointed to by using the dereference
operator, which is a * before the pointer’s name.

double x = 1.0;
double* y = &x; // y is a pointer to x
x = 1.0;
printf("x = %g, y = %g\n",x,*y);
*y = 2.0;
printf("x = %g, y = %g\n",x,*y);

x = 1, y = 1
x = 2, y = 2

20 / 48

Intro Syntax Types Functions Compiling Memory Examples

Types
Arrays

An array is a collection of variables of the same type that is contiguous in memory. To
make an array, add [] after the variable’s name with a size inside the brackets.

double a[5] = {1000.0, 2.0, 3.4, 17.0, 50.0};
double b[] = {1000.0, 2.0, 3.4, 17.0, 50.0}; // Same
int c[10];
c[2] = 1;

Note that arrays are zero-indexed. An array can also be used as a pointer.

double a[] = {1000.0, 2.0, 3.4, 17.0, 50.0};
double* p = a;
double* q = &a[0]; // Same

21 / 48

Intro Syntax Types Functions Compiling Memory Examples

Scoping

All variables have a scope—the extent of code in which they exist. A variable’s scope
begins when it is declared and ends at the closing curly brace of that level.

int a = 1; // a’s scope begins. a has global scope.

int main()
{

double b; // b’s scope begins
b = 2.7;
bool c = true; // c’s scope begins
if (a < b) {

bool d = c; // d’s scope begins
} else { // d’s scope ends

c = false;
}

return 0;
} // b and c’s scopes end

22 / 48

Intro Syntax Types Functions Compiling Memory Examples

Functions
Declaration and definition

Functions must be declared before they are
called.
They can be defined before or after they are
called.

#include <cstdio>

// f is declared and defined here
double f(double x, double y) {

return x/y + y/x;
}

int main() {
double a = -3.2, b = 7.5, c = f(a,b);
printf("%g\n",c);
return 0;

}

-2.77042

23 / 48

Intro Syntax Types Functions Compiling Memory Examples

Functions
Declaration and definition

Functions must be declared before they are
called.
They can be defined before or after they are
called.

#include <cstdio>

// f is declared here, but not defined
double f(double x, double y);

int main() {
double a = -3.2, b = 7.5, c = f(a,b);
printf("%g\n",c);
return 0;

}

// f is defined here
double f(double x, double y) {

return x/y + y/x;
}

-2.77042

23 / 48

Intro Syntax Types Functions Compiling Memory Examples

Functions
Passing arguments

Functions can take and return arguments of any type.
Arguments that are passed by value are local to the function.

#include <cstdio>

void add_two(int x) {
x += 2;

}

int main() {
int x = 1;
add_two(x);
printf("%d\n",x); // What will this print?
return 0;

}

1

24 / 48

Intro Syntax Types Functions Compiling Memory Examples

Functions
Passing arguments

Functions can take and return arguments of any type.
Arguments that are passed by value are local to the function.

#include <cstdio>

void add_two(int x) {
x += 2;

}

int main() {
int x = 1;
add_two(x);
printf("%d\n",x); // What will this print?
return 0;

}

1

24 / 48

Intro Syntax Types Functions Compiling Memory Examples

Functions
Passing arguments

Functions can take and return arguments of any type.
Arguments that are passed by reference can be modified.

#include <cstdio>

void add_two(int& x) {
x += 2;

}

int main() {
int x = 1;
add_two(x);
printf("%d\n",x); // What will this print?
return 0;

}

3

25 / 48

Intro Syntax Types Functions Compiling Memory Examples

Functions
Passing arguments

Functions can take and return arguments of any type.
Arguments that are passed by reference can be modified.

#include <cstdio>

void add_two(int& x) {
x += 2;

}

int main() {
int x = 1;
add_two(x);
printf("%d\n",x); // What will this print?
return 0;

}

3

25 / 48

Intro Syntax Types Functions Compiling Memory Examples

Functions
Passing arguments

Functions can take and return arguments of any type.
Arguments that are passed by pointer can have their contents modified.

#include <cstdio>

void add_two(int* x) {
*x += 2;

}

int main() {
int x = 1;
add_two(&x);
printf("%d\n",x); // What will this print?
return 0;

}

3

26 / 48

Intro Syntax Types Functions Compiling Memory Examples

Functions
Passing arguments

Functions can take and return arguments of any type.
Arguments that are passed by pointer can have their contents modified.

#include <cstdio>

void add_two(int* x) {
*x += 2;

}

int main() {
int x = 1;
add_two(&x);
printf("%d\n",x); // What will this print?
return 0;

}

3

26 / 48

Intro Syntax Types Functions Compiling Memory Examples

Functions
Passing arguments

Passing a const reference ensures your functions can only alter what they are
supposed to.

#include <cstdio>
#include <string>

void get_length(const std::string& s, int& len) {
s = "I am malicious!"; // Will not compile
len = s.size();

}

int main() {
int len;
std::string s = "My length is 16.";
get_length(s, len);
printf("%d\n",len);
return 0;

}

27 / 48

Intro Syntax Types Functions Compiling Memory Examples

Compiling
Basic commands

g++︸︷︷︸
compiler

-Wall -Wextra︸ ︷︷ ︸
turn on warnings

-o program︸ ︷︷ ︸
name the output
(default is a.out)

file1.cpp file2.cpp︸ ︷︷ ︸
your code

The compiler can generate warnings, which allow compilation to continue, and errors,
which abort the compilation.

Other useful options:

• -pedantic: Even more warnings

• -std=c++11: Warn if you violate the C++11 standard
(or any standard you choose)

• -O0 – -O3: Optimize to varying degrees, from least to most

• -g: Include debug information (will be useful later)

28 / 48

Intro Syntax Types Functions Compiling Memory Examples

Compiling
The stages of compilation

Preprocessing

Compilation

Assembly

Linking

#include <cstdio>

int main()
{

// Comment
printf("Hello world!\n");
return 0;

}

29 / 48

Intro Syntax Types Functions Compiling Memory Examples

Compiling
The stages of compilation

Preprocessing

Compilation

Assembly

Linking

· · ·
int printf(const char * , ...)

__attribute__((__format__ (
__printf__, 1, 2)));

· · ·

109 "/usr/include/stdio.h" 2 3
2 "hello_world.cpp" 2

int main()
{

printf("Hello world!\n");
return 0;

}

• Strips comments

• Processes lines
starting with #

• Inserts contents of
header files

30 / 48

Intro Syntax Types Functions Compiling Memory Examples

Compiling
The stages of compilation

Preprocessing

Compilation

Assembly

Linking

· · ·
_main:

@main
.cfi_startproc

BB#0:
pushq %rbp

Lcfi0:
.cfi_def_cfa_offset 16

Lcfi1:
.cfi_offset %rbp, -16
movq %rsp, %rbp

Lcfi2:
.cfi_def_cfa_register %rbp
subq $16, %rsp
leaq L_.str(%rip), %rdi
movl $0, -4(%rbp)

· · ·

• Translates to
assembly instructions

• Specific to processor
architecture

31 / 48

Intro Syntax Types Functions Compiling Memory Examples

Compiling
The stages of compilation

Preprocessing

Compilation

Assembly

Linking

cffa edfe 0700 0001 0300 0000 0100 0000
0400 0000 0002 0000 0020 0000 0000 0000
1900 0000 8801 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
9800 0000 0000 0000 2002 0000 0000 0000
9800 0000 0000 0000 0700 0000 0700 0000
0400 0000 0000 0000 5f5f 7465 7874 0000
0000 0000 0000 0000 5f5f 5445 5854 0000
0000 0000 0000 0000 0000 0000 0000 0000
2a00 0000 0000 0000 2002 0000 0400 0000
b802 0000 0200 0000 0004 0080 0000 0000
· · ·

• Translates to binary
object code

• Instructions for
processor

32 / 48

Intro Syntax Types Functions Compiling Memory Examples

Compiling
The stages of compilation

Preprocessing

Compilation

Assembly

Linking

cffa edfe 0700 0001 0300 0080 0200 0000
0f00 0000 b004 0000 8500 2000 0000 0000
1900 0000 4800 0000 5f5f 5041 4745 5a45
524f 0000 0000 0000 0000 0000 0000 0000
0000 0000 0100 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 1900 0000 d801 0000
5f5f 5445 5854 0000 0000 0000 0000 0000
0000 0000 0100 0000 0010 0000 0000 0000
0000 0000 0000 0000 0010 0000 0000 0000
0700 0000 0500 0000 0500 0000 0000 0000
· · ·

• Fills in missing pieces
from external

libraries
(e.g. printf)

• Puts things in the
right order

• Produces the final
program

33 / 48

Intro Syntax Types Functions Compiling Memory Examples

Header files

We can implement functionality across multiple files.

• A header file exposes the interface to our functionality. It is only required to
contain a function’s declaration.

• This is all the caller of a function needs to know in order to call it.
• Usually named e.g. file.h or file.hh.

• An implementation file implements the functionality. It contains a function’s
definition.

• Usually named e.g. file.cpp or file.cc.

34 / 48

Intro Syntax Types Functions Compiling Memory Examples

Header files
add.hh

// Protect against multiple or circular includes
#ifndef ADD_HH
#define ADD_HH

int add(int x,int y);

#endif

add.cc

int add(int x,int y)
{

return x+y;
}

main.cc
#include <cstdio>
#include "add.hh"

int main()
{

printf("%d\n",add(3, 4));
return 0;

}

g++ add.cc main.cc
35 / 48

Intro Syntax Types Functions Compiling Memory Examples

Memory management
Stack vs. heap

There are two types of memory in C++. Both are stored in RAM but have different properties.

• Stack: Memory reserved by the CPU each time a function is called and freed when a
function returns. Holds local variables and bookkeeping data. Each thread has a stack.

• Heap: Memory that can be dynamically allocated/freed at runtime by the program.
Threads share the heap.

Stack Heap
double x[10]; double* x = new double[10];

faster access (likely in cache) slower access (likely out of cache)

memory has local scope memory has global scope

compiler can make lots of optimizations compiler can’t make lots of optimizations

limits on size no limits on size

fixed size known compile time size can change at runtime

automatically deallocated by CPU must deallocate yourself (delete)

36 / 48

Intro Syntax Types Functions Compiling Memory Examples

Memory management
Stack vs. heap

There are two types of memory in C++. Both are stored in RAM but have different properties.

• Stack: Memory reserved by the CPU each time a function is called and freed when a
function returns. Holds local variables and bookkeeping data. Each thread has a stack.

• Heap: Memory that can be dynamically allocated/freed at runtime by the program.
Threads share the heap.

Stack Heap
double x[10]; double* x = new double[10];

faster access (likely in cache) slower access (likely out of cache)

memory has local scope memory has global scope

compiler can make lots of optimizations compiler can’t make lots of optimizations

limits on size no limits on size

fixed size known compile time size can change at runtime

automatically deallocated by CPU must deallocate yourself (delete)

36 / 48

Intro Syntax Types Functions Compiling Memory Examples

Memory management
Stack vs. heap

Every new must have a matching delete!

#include <iostream>

int main()
{

const int m = 10;
double x[m]; // Stack allocated

double* y = new double; // Heap allocated

int n;
std::cout << "Input a size: ";
std::cin >> n;
double* z = new double[n]; // Heap

allocated

delete y;
delete [] z;

return 0;
}

37 / 48

Intro Syntax Types Functions Compiling Memory Examples

Memory management
Common pitfalls

The compiler will likely not catch memory errors, which may cause your program to
crash at runtime.

1 Segmentation faults
• Index out of bounds
• Dereference a null pointer

2 Uninitialized memory

3 Off-by-one errors

4 Memory leaks

double* x = new double[10];
x[11] = 1.0; // Segmentation fault

int* x = NULL;
*x = 1; // Segmentation fault

38 / 48

Intro Syntax Types Functions Compiling Memory Examples

Memory management
Common pitfalls

The compiler will likely not catch memory errors, which may cause your program to
crash at runtime.

1 Segmentation faults
• Index out of bounds
• Dereference a null pointer

2 Uninitialized memory

3 Off-by-one errors

4 Memory leaks

void scale(double c, double* x, int N) {
for (int i=0; i<N; ++i)

x *= c;
}
· · ·
double* x = new double[10]; // x is uninitialized. What if it is NaN?
scale(0, x, 10); // Is x guaranteed to be zero after this?

39 / 48

Intro Syntax Types Functions Compiling Memory Examples

Memory management
Common pitfalls

The compiler will likely not catch memory errors, which may cause your program to
crash at runtime.

1 Segmentation faults
• Index out of bounds
• Dereference a null pointer

2 Uninitialized memory

3 Off-by-one errors

4 Memory leaks

int m = 4, n = 5, size = m*n;
double* x = new double[size];
for (int i=size-1; i>0; --i) // The loop does not set x[0]

x[i] = size - i;

40 / 48

Intro Syntax Types Functions Compiling Memory Examples

Memory management
Common pitfalls

The compiler will likely not catch memory errors, which may cause your program to
crash at runtime.

1 Segmentation faults
• Index out of bounds
• Dereference a null pointer

2 Uninitialized memory

3 Off-by-one errors

4 Memory leaks

if (· · ·) {
double x[10];
double* y = new double[10];
· · ·

} // x and y go out of scope here
// The memory for x (on the stack) is freed, but for y (on the heap) is not, since we forgot
// Since y is now out of scope, we can’t free it anymore!

41 / 48

Intro Syntax Types Functions Compiling Memory Examples

Speed test: Ridders’ root-finding method

Consider a continuous function f defined on an interval [a, b] and assume that
f (a) < 0 and f (b) > 0.

The bisection method is a simple approach to efficiently find a root of f over the
interval. Define c = (a+ b)/2, and compute f (c). There are two cases:

• If f (c) < 0 then a root is in [c , b].

• If f (c) ≥ 0 then a root is in [a, c].

In each case, the length of the interval containing the root is halved.

When the procedure is applied iteratively, the interval rapidly converges around a root
of f .

42 / 48

Intro Syntax Types Functions Compiling Memory Examples

Speed test: Ridders’ root-finding method

The bisection method only uses the sign of f at the evaluation points. It does not use
the values of f .

Ridders’ method improves upon this, by using the function values to converge more
rapidly on the root.3

As a speed test, suppose that we wanted to construct a table of inverse cosines. We
want to find the root of

f (x ;λ) = λ− cos x

for many values of λ ∈ [−1, 1].

3See AM225 root-finding notes for a complete description of the method.
43 / 48

https://people.math.wisc.edu/~chr/am225/notes/am225_ridders.pdf

Intro Syntax Types Functions Compiling Memory Examples

Speed test: Ridders’ root-finding method

The programs ridders array.py and ridders array.cc implement Ridders’ method
in Python and C++. They compute the inverse cosines using 4× 106 values of λ.

Before running the program, take a guess at the relative speed difference between the
two implementations.

44 / 48

Intro Syntax Types Functions Compiling Memory Examples

Typical output

The Python version reports times of

Time: 40.51 s (total)
Time: 10.1268 microseconds (per value)

The C++ version reports times of

Time: 0.763 s (total)
Time: 0.190742 microseconds (per value)

This represents a factor of 53 speed difference. This will depend on hardware and
software versions, although in general C++ is at least an order of magnitude faster.

45 / 48

Intro Syntax Types Functions Compiling Memory Examples

Comments on the speed comparison

The relative slowness of Python is well-documented and is due to many reasons:
interpreted language, dynamic typing, etc.4

There are many considerations in the language choice:

• Python offers great flexibility

• Many Python library routines (e.g. NumPy) are in compiled code and are much
faster

• Extra speed not required for many tasks; need to weigh the time of the
programmer against the time of computation

Compiled languages are a good choice for critical code bottlenecks.

4See, e.g., https://jakevdp.github.io/blog/2014/05/09/why-python-is-slow/
46 / 48

https://jakevdp.github.io/blog/2014/05/09/why-python-is-slow/

Intro Syntax Types Functions Compiling Memory Examples

Matrix computations and timing

The directory matrices contains several examples of matrix operations and timing.
The source code files matrix.cc and matrix.hh implement routines to construct
matrices and print them.

A matrix A ∈ Rm×n is stored as a one-dimensional array with mn elements. The
routines use row-major ordering, meaning that element aij is stored at position ni + j .5

5Assuming that the matrix rows and columns are indexed from zero.
47 / 48

Intro Syntax Types Functions Compiling Memory Examples

Matrix computations and timing

The program mat timing.cc measures the time to make random matrices of different
sizes m.

For each size, the program tries to generate as many random matrices as possible in a
1 s interval.

Suppose N trials were completed in time T > 1 s. Then the average time for one trial
is T/N. This gives better timing accuracy for timing trials that can be computed
quickly.

48 / 48

	Introduction
	Syntax
	Types
	Functions
	Compiling
	Memory management
	Examples

