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• Computation has been recognized as the “third pillar” of scientific discovery.
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Three pillars of scientific discovery
theory, experiment, and computation

Theory Experiment Computation



• Computation has been recognized as the “third pillar” of scientific discovery.

• It is also at the core of the emerging data-driven & machine-learning scientific paradigm.
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Three pillars of scientific discovery
theory, experiment, and computation

"Evolution of scientific paradigms.” Figure 1.1 from Jovana Andrejevic,
“Towards data-driven methods for complex systems: Unfolding the crumpling dynamics of thin sheets”, PhD thesis, Harvard University, 2022.



• It is the study of mathematical problems that are solved using computers.

• It focuses on developing and analyzing numerical algorithms to obtain approximate
solutions to problems that may be difficult or impossible to solve analytically, or problems 
that are highly nonlinear or have multi-physics coupling.

• It has many real-world applications, including in physics, engineering, finance, and more.
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Computational mathematics
an informal definition



• A computational model for simulating the large-scale deformation of thin sheets that 
can serve as an effective tool for data-driven studies of crumpling dynamics.
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What can we do with computational mathematics?
simulation of crumpled sheets

J. Andrejevic, L. M. Lee, S. M. Rubinstein, and C. H. Rycroft, A model for fragmentation kinetics of crumpled thin sheets, Nat. Commun. 12, 1470 (2021).
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What can we do with computational mathematics?
simulation of crumpled sheets

Newton’s method, conjugate gradient, 
preconditioning, explicit/implicit integration

J. Andrejevic and C. H. Rycroft, Simulation of crumpled sheets via alternating quasistatic and dynamic representations, J. Comput. Phys. 471, 111607 (2022).



• A computational model for simulating interactions between squishy solids and fluids 
that can be a tool for studying complex suspension and large-deformation under water.
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What can we do with computational mathematics?
simulation of fluid–structure interaction

Y. Sun and C. H. Rycroft, A fully-integrated lattice Boltzmann method for fluid–structure interaction, J. Comput. Phys. 526, 113774 (2025).

upwinding finite-difference, methods for fluid simulations
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What can we do with computational mathematics?
simulation of fluid–structure interaction

Y. L. Lin, N. J. Derr, and C. H. Rycroft, Eulerian simulation of complex suspensions and biolocomotion in three dimensions, Proc. Natl. Acad. Sci. 119, e2105338118 (2022).

multigrid method, Godunov-type upwinding, projection method
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What can we do with computational mathematics?
simulation of more real-world problems

spectral method

Differentiable simulation of the Earth’s atmosphere
(Google Research)

finite volume method

Auto-ignition of a dual-fuel pulse
(NREL, Sandia)

Moving bodies in compressible flow
(NASA, NREL, LBNL)

Merging of two black holes 
(in slow-motion) (SXS Project)
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Roadmap of the semester
how to approximate solutions to differential equations

BVP ODEs

Elliptic PDEs

Iterative 
methods

IVP ODEs

Parabolic 
PDEs

Hyperbolic 
PDEs

FVM

Mixed eq.

Spectral 
methods

How to set up BCs and linear system (1D heat eq.)
How to do numerical analysis (error, stability, convergence, consistency)

How to set up 2D FD stencils and linear system (2D heat eq. w/o time dep.)
Numerical analysis —> direct solve is infeasible for both time and memory

To solve elliptic problems efficiently
How to build descent methods and conjugate gradient

Begin studying time-dependent ODEs
Numerical analysis (error, stability, convergence, stiffness)

Extend 2D elliptic (heat) eq. with time-dependence with new discretizations
Numerical analysis (error, stability, convergence, stiffness)

Expand our repertoire for solving PDEs 
A similar set up to FD but with spectral convergence via a smart differentiation matrix

Navier–Stokes: hyperbolic (transport) + parabolic (diffusion) + elliptic (incompressibility)
Numerical methods specific to simulating incompressible NSEs

Discretize hyperbolic PDEs via integral formulation for numerical conservation
More numerical methods, applications to waves and shocks

New discretizations for time-dependent, conservative, no SS PDEs (wave, advection)
Numerical analysis (error, stability, convergence, consistency)
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The finite difference method

There are multiple ways to discretize PDEs, and decompose a continuous problem into
a finite, discrete one that can be solved numerically on a computer.

The bulk of this course will focus on the finite difference method, which is effective for
a wide range of problems.

There are other approaches (e.g. finite element method, finite volume method, spectral
methods). We will explore some of these, although underlying ideas are often similar.
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Finite difference approximations

Let u : R → R be a smooth function, meaning that we can differentiate it several
times, and each derivative is a well-defined bounded function over an interval
containing a point of interest x̄ .

Try approximating u′(x̄) by a finite difference approximation using only several values
of u near x̄ . Obvious choice is

D+u(x̄) =
u(x̄ + h)− u(x̄)

h

where h is a small value.

Called a one-sided approximation, since only evaluated at points with x ≥ x̄ .

Matches the definition of the derivative in the limit as h → 0.
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Alternative formula

We could equally use a point in the negative direction, to obtain

D−u(x̄) =
u(x̄)− u(x̄ − h)

h
.

An alternative is the centered approximation,

D0u(x̄) =
u(x̄ + h)− u(x̄ − h)

2h
=

D+u(x̄) + D−u(x̄)

2
.

How accurate are these formulas? How do we derive additional ones?
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Truncation errors

The standard approach for error analysis is to perform Taylor series approximations.
We have that

u(x̄ + h) = u(x̄) + hu′(x̄) +
h2

2
u′′(x̄) +

h3

6
u′′′(x̄) + O(h4),

u(x̄ − h) = u(x̄)− hu′(x̄) +
h2

2
u′′(x̄)− h3

6
u′′′(x̄) + O(h4).

Then

D+u(x̄) =
u(x̄ + h)− u(x̄)

h
= u′(x̄) +

h

2
u′′(x̄) +

h2

6
u′′′(x̄) + O(h3).

Leading order term is O(h), so the method is first order accurate.
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Truncation errors

From Taylor series expansions

u(x̄ + h)− u(x̄ − h) = 2hu′(x̄) +
h3

3
u′′′(x̄) + O(h5)

since terms with even powers of h cancel. Hence

D0u(x̄)− u′(x̄) =
h2

6
u′′′(x̄) + O(h4).

Leading order term is O(h2), so the method is second order accurate.
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Deriving finite difference approximations

See derivation: method of undetermined coefficients
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Second order derivatives

The same approaches can be used to derive higher order formulae. For example, the
standard second order centered approximation is

D2u(x̄) =
u(x̄ − h)− 2u(x̄) + u(x̄ + h)

h2

= u′′(x̄) +
h2

12
u(4)(x̄) + O(h4).

Due to cancellation of odd powers of h, this formula is second order accurate.

See derivation: a general formula
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