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Stability

To examine stability of a method, we focus on the test problem

u′(t) = λu(t)

with u(0) = 1. The behavior of a discretization on this test problem provides a lot of
insight into behavior in general.

Solutions will be u(t) = eλt . They converges for the region where Re(λ) ≤ 0, and we
would like our numerical method to do the same.
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Stability for the Euler method

Applying the forward Euler method Un+1 = Un + kλUn gives

Un = (1 + kλ)n

We say that the method is absolutely stable when |1 + kλ| ≤ 1, because the solution
will not diverge.

Only the product z = kλ matters, and we see that on the real line, the interval of
absolute stability where |1 + z | ≤ 1 corresponds to z ∈ [−2, 0]
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Stability for the Euler method

More generally the region of absolute stability in the complex plane is a disc of radius
1, centered on z = −1.

Mathematical instability

Numerical 
stability

Re

Im

(–1,0)

Mathematical stability

As a result we say that the forward Euler method is conditionally stable: when
Re(λ) ≤ 0 we have to restrict k to ensure stability.
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Timestep restriction

In order for the Euler method to be stable, we require −2 ≤ z ≤ 0, which is
−2 ≤ kλ ≤ 0. Consider several different values of λ:

▶ λ = −1 =⇒ k ≤ 2
−λ = 2

▶ λ = −10 =⇒ k ≤ 2
−λ = 1

5

▶ λ = −1000 =⇒ k ≤ 2
−λ = 1

500

For equations where the solution decays on more rapid timescale, the corresponding
timestep must be chosen to be smaller in order to achieve stability.
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Stability regions for multistep methods

Now consider applying a linear multistep method to the equation u′ = λu. Then

r∑
j=0

αjU
n+j = k

r∑
j=0

βjλU
n+j

which becomes
r∑

j=0

(αj − zβj)U
n+j

where z = kλ. This is a linear difference equation, and we already know the general
form of the solution.
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Stability regions for multistep methods

Introduce the stability polynomial

π(ζ; z) = ρ(ζ)− zσ(ζ)

where ρ and σ are the characteristic polynomials introduced previously. Let the roots,
be ζ1, . . . , ζl where l ≤ r , and let mj be the multiplicity of ζj . As before, the general
solution will be

Un =
l∑

j=1

pj(n)ζ
n
j

where pj is a polynomial of degree mj − 1.
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Stability regions for multistep methods

For a given z , we want ensure that the numerical solution will not diverge.

We have already seen how to determine this in the case of zero stability, by applying
the root condition to ρ(ζ) = π(ζ; 0).

We now generalize this: the region of absolute stability for a linear multistep method is
the set of points z ∈ C where π(ζ; z) satisfies the root condition.
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Examples

For the forward Euler method

π(ζ; z) = ζ − (1 + z)

which has a single root at ζ1 = 1 + z . The region of absolute stability is the disk
|1 + z | ≤ 1 that we found previously.

For the backward Euler method

π(ζ; z) = (1− z)ζ − 1

which has a single root at ζ1 = (1− z)−1. The region of absolute stability is given by
|1− z | ≥ 1.
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Stability of backward Euler

In this case the region of stability contains the entire left half plane

(1,0)

Mathematical instability

Numerical 
stability

Re

Im
Mathematical stability

As a result we say that the backward Euler method is unconditionally stable or
A-stable, and there is no restriction on k for stability.
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Example: the trapezoid method

Recall that the trapezoid method is Un+1 − Un = k
2 (f (U

n+1) + f (Un)). The stability
polynomial is

π(ζ; z) = (1− z
2)ζ − (1 + z

2)

so there is a single root at

ζ1 =
2 + z

2− z

The condition |ζ1| ≤ 1 is satisfied when Re(z) ≤ 0. In this case the stability region
contains exactly the left half plane and the method is unconditionally stable.
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Stability calculations for other methods

The program stab region.py computes the stability region for several multi-step
methods in the BDF (backward differentiation formula) family:

▶ 11Un+3 − 18Un+2 + 9Un+1 − 2Un = 6kf (Un+3)

▶ 25Un+4 − 48Un+3 + 36Un+2 − 16Un+1 + 3Un = 12kf (Un+4)

▶ 137Un+5 − 300Un+4 + 300Un+3 − 200Un+2 + 75Un+1 − 12Un = 60kf (Un+5)

For each position z in the complex plane, the program computes the maximum
modulus of a root of π(ζ; z).
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https://github.com/rycroft-group/math714/blob/main/f_ivp/stab_region.py


Boundary locus method

A point z ∈ C is in the stability region if π(ζ; z) satisfies the root condition for this
value of z . If a point z is on the boundary of the stability region, then π(ζ; z) must
have at least one root ζj where |ζj | = 1, i.e.

ζj = e iθ

for some real θ. Then π(e iθ; z) = 0, so

ρ(e iθ)− zσ(e iθ) = 0

and therefore

z(θ) =
ρ(e iθ)

σ(e iθ)

Tracing out all points like this gives the locus of all points potentially on the boundary
of the stability region.
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Example: boundary locus method

For the forward Euler method

ρ(ζ) = ζ − 1, σ(ζ) = 1

Hence

z(θ) =
ρ(e iθ)

σ(e iθ)
= e iθ − 1.

This will trace out the unit disk centered on z = −1, which matches our previous
analyses. To determine which side is stable, we can evaluated the root condition at a
single point.
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ODE Stability

Our understanding of the stability of u′ = λu extends directly to the case u′ = Au,
where u ∈ Rs ,A ∈ Rs×s

Suppose that A is diagonalizable, so that we have the eigenvalue decomposition
A = VΛV−1, where

▶ Λ = diag(λ1, λ2, . . . , λs), where the λj are eigenvalues

▶ V is matrix with eigenvectors as columns, v1, v2, . . . , vs

Then,
u′ = Au = VΛV−1u =⇒ V−1u′ = ΛV−1u =⇒ z ′ = Λz

where z ≡ V−1u and z0 ≡ V−1u0
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ODE Stability

Hence we have s decoupled ODEs for z , and stability of zi is determined by λi for each
i

Since z and u are related by the matrix V , then (roughly speaking) if all zi are stable
then all ui will also be stable

Hence we have Re(λi ) ≤ 0 for i = 1, . . . , s =⇒ u′ = Au is a stable ODE

16 / 23



Stiff systems

You may have heard of “stiffness” in the context of ODEs. This is an important
concept although not one with a general mathematical definition.

One definition of stiffness for a linear ODE system y ′ = Ay is that A has eigenvalues
that differ greatly in magnitude.

The eigenvalues determine the time scales, and hence large differences in λ’s =⇒
resolve disparate timescales simultaneously.
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Stiff systems

Suppose we’re primarily interested in the long timescale. Then:

▶ We’d like to take large time steps and resolve the long timescale accurately

▶ But we may be forced to take extremely small timesteps to avoid instabilities due
to the fast timescale

In this context it can be highly beneficial to use an implicit method since that enforces
stability regardless of timestep size
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Stiff systems

From a practical point of view, an ODE is stiff if there is a significant benefit in using
an implicit instead of explicit method

e.g. this occurs if the time-step size required for stability is much smaller than size
required for the accuracy level we want

Example [stiff.py/stiff2.py ] : Consider u′ = Au, u0 = (1, 0) where

A =

[
998 1998
−999 −1999

]
which has λ1 = −1, λ2 = −1000 and exact solution

u(t) =

[
2e−t − e−1000t

−e−t + e−1000t

]
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https://github.com/rycroft-group/math714/blob/main/f_ivp/stiff.py
https://github.com/rycroft-group/math714/blob/main/f_ivp/stiff2.py


Different stability definitions

The previous example demonstrates the benefits of using the backward Euler method,
which we showed previously was unconditionally stable or A-stable, i.e. the region of
absolute stability contains the entire left half plane, Re(z) ≤ 0.

For linear multistep methods, A-stability is restrictive. Dahlquist’s second barrier
theorem states that any A-stable linear multistep methods is at most second-order
accurate.

Furthermore, the trapezoidal rule is the A-stable method with smallest truncation error.
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A(α)-stability

For many stiff problems, the eigenvalues are large and negative, but do not have large
imaginary components.

Hence it is useful to introduce A(α)-stability, when a method that is stable for all
z ∈ C in the wedge such that |π − arg(z)| ≤ α.1

A method is A(0)-stable if it is stable for the negative real axis.

1Here arg(z) is measured over the range [0, 2π).
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L-stability

Even though backward Euler and the trapezoid method are A-stable, the way that they
handle large negative eigenvalues is different. For u′ = λu, and z = kλ, then
Un+1 = R(z)Un.

For backward Euler,

R(z) =
1

1− z
=⇒ |R(z)| → 0 as z → ∞.

For the trapezoid method,

R(z) =
2 + z

2− z
=⇒ |R(z)| → 1 as z → ∞.
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L-stability

It is preferable to have rapid decay of terms with large negative λ. See stiff3.py , which
demonstrates this for the trapezoid rule applied to the example stiff ODE.

Even though the trapezoid rule gives stable results, there are large transient oscillations
from the λ2 = −2000 eigenvalue. This motivates an additional definition.

A method is defined to be L-stable if it is A-stable and the stability function satisfies
limz→∞ |R(z)| = 0.

The backward Euler method is L-stable.
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https://github.com/rycroft-group/math714/blob/main/f_ivp/stiff3.py

