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Stability

This is not completely convincing. We are assuming that solving the difference
equations gives a reasonable approximation of the underlying differential equation.

Instead, let us focus on the discrete system

AhEh = −τh

where the h superscripts indicate that the mesh width is h. (Here, A ∈ Rm×m.)

Solving the system gives
Eh = −(Ah)−1τh.
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Stability

Taking norms1 gives

∥Eh∥ = ∥(Ah)−1τh∥ ≤ ∥(Ah)−1∥∥τh∥.

We know that ∥τh∥ = O(h2). Thus if ∥(Ah)−1∥ is bounded as h → 0, then we will
obtain ∥Eh∥ = O(h2) as desired.

We want ∥(Ah)−1∥ ≤ C for all sufficiently small h. This motivates our definition of
stability.

1This expression is using the matrix norm induced by a vector norm. See AM205 video 0.3 and associated
notes.
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https://youtu.be/2_Eb-MPUMd8
https://people.math.wisc.edu/~chr/am205/notes/am205_cond_num.pdf
https://people.math.wisc.edu/~chr/am205/notes/am205_cond_num.pdf


Stability

Suppose a finite difference method for a linear BVP gives a sequence of equations of
the form AhUh = F h where h is the mesh width. Then the method is stable if (Ah)−1

exists for all h, and there are constants C > 0 and h0 > 0 such that

∥(Ah)−1∥ ≤ C for all h < h0.
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Consistency

A method is consistent with the differential equation and boundary conditions if

∥τh∥ → 0 as h → 0.

Usually ∥τh∥ = O(hp) for some integer p > 0, which implies that the method is
consistent.
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Convergence

A method is convergent if ∥Eh∥ → 0 as h → 0. Using the previous ideas,

(consistency) + (stability) = (convergence).

While the derivation focused on a linear BVP, the same principles can be applied to
most finite difference approximations of differential equations.

The statement can be strengthened to

(O(hp) local trunc. error) + (stability) = (O(hp) global error).
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Proving stability

We know how to check the local truncation error. But it is less obvious how to check
stability, even for a linear BVP.

For more complicated problems, the notion of stability may need to change.
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Stability in the 2-norm

The methods we use for stability analysis will depend on the choice of norm. For now,
we focus on the 2-norm of the linear BVP.

Since A is symmetric, the 2-norm is equal to its spectral radius,

∥A∥2 = ρ(A) = max
1≤p≤m

|λp|,

where λp is the pth eigenvalue of A. Since A−1 is also symmetric,

∥A−1∥2 = ρ(A−1) = max
1≤p≤m

|λ−1
p | =

(
min

1≤p≤m
|λp|

)−1

.

Hence, we need to compute the eigenvalues of A and show they are bounded away
from zero as h → 0.
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Stability in the 2-norm

The derivation shows that the smallest eigenvalue of A is

λ1 =
2(cosπh − 1)

h2
= −π2 + O(h2)

This is bounded away from zero as h → 0. Furthermore,

∥Eh∥2 ≤ ∥(Ah)−1∥2∥τh∥2 ≈
1

π2
∥τh∥2.

Since τhj ≈ h2

12u
(4)(xj), then

∥τh∥2 ≈
h2

12
∥u(4)∥2 =

h2

12
∥f ′′∥2,

which shows how the LTE will depend on the function f .
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Stability in the 2-norm

The eigenvectors that we derived for the discrete system are related to the
eigenfunctions of the differential operator ∂2/∂x2. Consider

up = sin pπx

for p = 1, 2, . . .. They satisfy
∂2

∂x2
up = µpu

p

where µp = −p2π2. They also satisfy the homogenous boundary conditions
up(0) = up(1) = 0.

10 / 26



Stability in other norms

Examining stability in other norms requires a different approach.

In particular, proving that ∥E∥∞ = O(h2) would be useful, because ∥E∥∞ = maxj |Ej |
so this would bound the maximum pointwise error.
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A bound on ∥E∥∞

We can use the bound on ∥E∥2 to obtain a bound on ∥E∥∞. Recall
E = (E1,E2, . . . ,Em) are let Ej be the component with largest magnitude. Then

∥E∥2 =

√√√√1

h

m∑
i=1

|Ei |2

≥
√

1

h
|Ej |2 =

1√
h
|Ej | =

∥E∥∞√
h

.

Since ∥E∥2 = O(h2), it follows that ∥E∥∞ = O(h3/2).

This is useful, although a direct analysis can do better,2 and show that ∥E∥∞ = O(h2).

2See Sec. 2.11 in the finite-difference textbook, which uses Green’s function solutions.
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Neumann boundary conditions

A Neumann boundary condition specifies the derivative of the function instead of its
value. For the example linear BVP, we could use

u′(0) = σ, u(1) = β,

with one Neumann condition at x = 0.

We could also use two Neumann conditions,

u′(0) = σ, u′(1) = η,

although this would be ill-posed by itself, since if u(x) is a solution then u(x) + C for a
constant C is also a solution. We would need an additional constraint to obtain a
unique solution.
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Neumann boundary conditions (approach 1)

We now need to determine U0 as one of the unknowns, and we need an equation for it.
One approach is to use a first-order discretization, so that

U1 − U0

h
= σ.

For convenience, and symmetry, we could also build in the equation

Um+1 = β

into our linear system, to set the Dirichlet condition as well.
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Neumann boundary conditions (approach 1)

This results in the following linear system

1

h2



−h h
1 −2 1

1 −2 1

. . .
. . .

. . .

1 −2 1
0 h2


︸ ︷︷ ︸

A



U0

U1

U2

...
Um

Um+1


︸ ︷︷ ︸

U

=



σ
f (x1)
f (x2)

...
f (xm)
β


︸ ︷︷ ︸

F

Solving this system only results in a first-order accurate solution.
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Neumann boundary conditions (approach 2)

An alternative approach to handle the boundary condition is to use the centered
difference approximation

U1 − U−1

2h
= σ.

This makes use of the solution U−1 at a ghost node, outside of the interval. We can
obtain a second equation for U−1 by discretizing u′′ = f at x = 0, so that

U−1 − 2U0 + U1

h2
= f (x0).

Combining the two equations allows the ghost node term to be eliminated, so that

−U0 + U1

h
= σ +

hf (x0)

2
.

Will give second-order accuracy overall.
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Neumann boundary conditions (approach 3)

A third approach would be to use a second-order one-sided derivative

−3U0 + 4U1 − U2

2h
= σ.

This would result in the linear system

1

h2



−3h/2 2h −h/2
1 −2 1

1 −2 1

. . .
. . .

. . .

1 −2 1
0 h2


︸ ︷︷ ︸

A



U0

U1

U2

...
Um

Um+1


︸ ︷︷ ︸

U

=



σ
f (x1)
f (x2)

...
f (xm)
β


︸ ︷︷ ︸

F

A possible disadvantage with this approach is that the matrix is no longer tridiagonal.3

3Hence tridiagonal matrix solvers (e.g. the Thomas algorithm) could no longer be used.
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Pendulum: nonlinear boundary value problems
Nonlinear BVPs can use many of the same approaches, but complications arise. As an
example, consider a pendulum of length L with time-dependent angle θ(t) from the
vertical. It will follow the equation

θ′′(t) = −g

L
sin θ(t)

where g is the gravitational acceleration. Rescaling time so that g/L = 1 gives

θ′′(t) = − sin θ(t).

For small angles sin θ ≈ θ, so this can be approximated by simple harmonic motion

θ′′(t) = −θ(t),

which has general solution
θ(t) = A cos t + B sin t.
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Pendulum: large angles

Suppose now that the pendulum has large oscillations, so that the linear approximation
sin θ ≈ θ does not hold. We could also search for solutions where the pendulum
reaches two specific angles at two specific times t = 0 and t = T .

Then we have a two point nonlinear BVP

θ′′(t) = − sin θ(t),

with
θ(0) = α, θ(T ) = β.
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Pendulum: nonlinear discretization

This problem can be discretized using the same methods as before, writing
h = T/(m + 1), defining θ0 = α, θm+1 = β, and

θi−1 − 2θi + θi+1

h2
+ sin θi = 0

for i = 1, . . . ,m.

This forms a nonlinear system with m equations for m unknowns. It can be written as

G (θ) = 0

where G : Rm → Rm and θ = (θ1, θ2, . . . , θm).

We can no longer solve the system with linear algebra alone, and we need a new
approach.
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Nonlinear systems of equations

Nonlinear systems of equations are more complicated to solve than linear systems.
There may be zero, one, or any number of possible solutions, and it is difficult to know
a priori how many solutions there will be.

Whereas linear systems can be solved in a single step, nonlinear systems are often
solved using iteration. Starting from an initial guess, the solution is iteratively
improved until it converges on a solution.

We will look at the Newton’s method, which finds a root to the system G (θ) = 0 by
using a sequence of linear approximations of G .
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Newton’s method in one dimension

To begin, first consider a scalar function f : R → R,
and let x0 be an approximation for its root.

Draw the tangent line from (x0, f (x0)). The place
where it crosses the x axis is

x1 = x0 −
f (x0)

f ′(x0)

Assuming that the function is nearly linear near the
root, this will give a better approximation.

Apply iteratively to obtain a sequence x0, x1, x2, . . .
that converges to root (under certain conditions).

x0
x1

x2 x

(x)f

Ta
nge
nt

Ta
ng
en
t
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Newton’s method

Alternatively, Newton’s method can be thought of as making a sequence of linear
Taylor series approximations of the function. Write x = xk +∆xk .

The linear Taylor series is

flin(x) = f (xk) + ∆xk f
′(xk).

Setting flin(x) = 0 gives

∆xk = − f (xk)

f ′(xk)

and then the next iterate is
xk+1 = xk +∆xk .
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Multidimensional Newton’s method

This directly extends to finding the root of a function f (x) where f : Rm → Rm. At a
given iterate xk ∈ Rm, write x = xk +∆xk . Then the linear Taylor series is

flin(x) = f (xk) + Jf (xk)∆xk

where Jf (xk) ∈ Rm×m is the Jacobian of f evaluated at xk . Setting flin(x) = 0 gives

Jf (xk)∆xk = −f (xk),

which is a linear system that can be solved for ∆xk . Then

xk+1 = xk +∆xk

as before.
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Returning to pendulum problem

The nonlinear equations describing the pendulum problem are

θi−1 − 2θi + θi+1

h2
+ sin θi = 0 (1)

for i = 1, . . . ,m, with the boundary conditions that θ0 = θm+1 = 0. We therefore
perform nonlinear root-finding on

G (θ) =



h−2(−2θ1 + θ2) + sin θ1
h−2(θ1 − 2θ2 + θ3) + sin θ2
h−2(θ2 − 2θ3 + θ4) + sin θ3

...
h−2(θm−2 − 2θm−1 + θm) + sin θm−1

h−2(θm−1 − 2θm) + sin θm


. (2)
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Jacobian for the pendulum problem

Hence the Jacobian has components

Jij(θ) =


h−2 if |i − j | = 1,

−2h−2 + cos θi if i = j ,

0 otherwise

and can be written as

J(θ) =
1

h2


−2 + h2 cos θ1 1

1 −2 + h2 cos θ2 1
. . .

. . .
. . .

1 −2 + h2 cos θm−1 1
1 −2 + h2 cos θm

 .

See Homework 1 Question 3 for a similar example.
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