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Generalization to higher dimensions

The two-point boundary value problem example was based on looking at the steady
state temperature distribution u(x) of a one-dimensional rod

(x,t)

u(x,t)

ψ

This led to the equation
uxx = f

with boundary conditions of u(a) = α and u(b) = β.

2 / 16



Generalization to higher dimensions

There is a natural generalization of this to multiple dimensions, to find the steady state
temperature distribution u(x , y) in a domain Ω ⊆ R2. Then

uxx + uyy = f

with Dirichlet boundary conditions u = ufix on the domain boundary ∂Ω.
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Elliptic partial differential equations

The equation
∇2u = uxx + uyy = f

for u(x , y) is called the Poisson equation. When f = 0, the equation becomes

∇2u = uxx + uyy = 0,

which is the Laplace equation.

These equations arise in many contexts, such as heat conduction, electrostatics,
gravitation, and probability theory. They are examples of elliptic equations
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Digression: classification of PDEs1

There are three main classes of partial differential equations:

equation type prototypical example equation

hyperbolic wave equation utt − uxx = 0
parabolic heat equation ut − uxx = f
elliptic Poisson equation uxx + uyy = f

Question: Where do these names come from?

1Covered in Appendix E of Finite Difference Methods for Ordinary and Partial Differential Equations
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Digression: classification of PDEs

Answer: The names are related to conic sections

General second-order PDEs have the form

auxx + buxy + cuyy + dux + euy + fu + g = 0

This “looks like” the quadratic function

q(x , y) = ax2 + bxy + cy2 + dx + ey
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Digression: classification of PDEs

Figure: Conic sections2

2Source: Wikipedia
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https://en.wikipedia.org/wiki/Conic_section


PDEs: Hyperbolic
Wave equation: utt − uxx = 0

Corresponding quadratic function is q(x , t) = t2 − x2

q(x , t) = c gives a hyperbola, e.g. for c = 0 : 2 : 6, we have
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PDEs: Parabolic
Heat equation: ut − uxx = 0

Corresponding quadratic function is q(x , t) = t − x2

q(x , t) = c gives a parabola, e.g. for c = 0 : 2 : 6, we have

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

5

10

15

20

25

30

35

9 / 16



PDEs: Elliptic
Poisson equation: uxx + uyy = f

Corresponding quadratic function is q(x , y) = x2 + y2

q(x , y) = c gives an ellipse, e.g. for c = 0 : 2 : 6, we have
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PDEs

In general, it is not so easy to classify PDEs using conic section naming.

Many problems don’t strictly fit into the classification scheme
(e.g. nonlinear, or higher order, or variable coefficient equations)

Nevertheless, the names hyperbolic, parabolic, elliptic are the standard ways of
describing PDEs, based on the criteria:

▶ Hyperbolic: time-dependent, conservative physical process, no steady state

▶ Parabolic: time-dependent, dissipative physical process, evolves towards steady
state

▶ Elliptic: describes systems at equilibrium/steady-state
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Discretization of the Poisson equation

Consider solving the Poisson equation on the unit square Ω = [0, 1]2 with Dirichlet
boundary conditions.

Introduce grid points (xi , yj) where xi = i∆x and yj = j∆y . Let uij be the numerical
approximation of u(xi , yj), and define fij = f (xi , yj).
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Discretization of the Poisson equation

Using the centered-difference discretization, ∇2u = f can be written as

ui−1,j − 2uij + ui+1,j

∆x2
+

ui ,j−1 − 2uij + ui ,j+1

∆y2
= fij .

If ∆x = ∆y = h then this can be written as

ui−1,j + ui+1,j + ui ,j−1 + ui ,j+1 − 4ui ,j
h2

= fij .

The left hand side is the five-point stencil for the Laplacian.
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Linear system for the Poisson equation

For the case of equal grid spacing ∆x = ∆y = h, define m interior grid points in each
direction, so that h = 1/(m + 1).

Values uij will be fixed by the Dirichlet boundary conditions when i = 0, j = 0, i = m,
or j = m.

To solve at the interior grid points, we construct a linear system for the m2 unknowns,
given by for uij with 1 ≤ i ≤ m and 1 ≤ j ≤ m.

We can now examine the accuracy and stability of this discretization, generalizing the
methods introduced previously.

14 / 16



Linear system for the Poisson equation

See derivation: ordering the unknowns and equations
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Code example #1

The program poisson.py solves the Poisson equation

∇2u = f

on the domain Ω = [0, 1]2 using

f (x , y) = exp
(
−3

(
(x − 0.3)2 + (y − 0.7)2

))
and

u = 0 on ∂Ω.
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https://github.com/rycroft-group/math714/blob/main/d_elliptic/poisson.py

