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Accuracy and stability

The truncation error 7j; at (x;, y;) is defined by substituting the true solution u(x, y)

into the discretization and looking at what is left:

1
h2
+ u(xi, yj—1) + u(xi, yjr1) — 4u(xi, ) — £(xi, y))-

Using Taylor series, this is
2
Tij = Uec + Uy — F(X5, ) + ﬁ(“xxxx + tyyyy) + O(h*),
and substituting in the original equation shows that

h2
Tij = E(Uxxxx + uyyyy) + O(h4)
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Global error

The global error is defined as Ejj = ujj — u(x;, y;). It solves the linear system
AhEh _ _7_h

where 71 € R™ are the local errors assembled into a vector, and A" € R™*m? is the
linear system describing the discretization. As before, the superscript h indicates that
the quantities are associated with a mesh size h.

We aim to show that ||(A")~!| is uniformly bounded at h — 0. This requires finding
the eigenvalues and eigenvectors of A"

3/16



Finding the eigenvalues of A"

To find the eigenvalues of A", we can connect our current two-dimensional problem
back to the eigenvalues of the one-dimensional BVP that we considered previously.

For the one-dimensional BVP, the eigenvectors were
p o . .
u; =sinpmih
for p=1,..., m, with corresponding eigenvalues

2(cos prh — 1)
>\P — T
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Finding the eigenvalues of A"
For the Poisson problem, the matrix can be split into A" = Ah* 4 AMY where

Ui—1j — 2Uij + Uit

h
(A 7XU)I'J‘ frg h2 s
(AP ), = YL 2Ué',j + Uij+1
h

Consider the candidate eigenvector

upi® = (sin prih)(sin qmjh).
By comparing to the one-dimensional BVP
(APXuP9); j = Ap(sin prrih)(sin qmjh) = Apuf?

and

(Ah’yup’q);,j = (sin pwih) Ag(sin gmjh) = )‘quﬁ}q'
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Finding the eigenvalues of A"

It follows that
(A"uP )i = (Ap + Ag)ulf

and therefore uP79 is an eigenvector with eigenvalue

All eigenvalues are negative, and the one closest to zero is
A1 = =272 + O(h?).
The spectral radius (which is also the 2-norm) is therefore

1

(AN = ||~ 5

1
A1

so the discretization is stable.

2(cos pmh + cos qmh — 2)
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Condition number

We can also compute the condition number! of the matrix. This will be useful later.

The 2-norm of A" is determined by eigenvalue of largest magnitude, so that
|AP|| = |Am.m| = 8/h?. The condition number is

8 4
hy _ || ah =1 _ _ -2
KA = [APIAT) ) 5y = s = O(h72).

Thus the matrix becomes ill-conditioned as the grid is refined.

1See homework 0 question 4, Harvard AM205 video 0.3, and associated notes
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https://youtu.be/2_Eb-MPUMd8
https://people.math.wisc.edu/~chr/am205/notes/am205_cond_num.pdf

Code example #2

The program poisson2.py solves the Poisson equation using the method of
manufactured solutions with

Umanu(X,¥) = x(x — 1) sinmy
corresponding to

f(x,y) = —e¥ (2m(x — 1)x* cosy
+ (2 =2y + x((x = 1)(x* + y* — 7%) + 4y)) sin Ty

and boundary conditions u = 0 on 9%2. It measures the global error for a variety of grid
sizes.
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https://github.com/rycroft-group/math714/blob/main/d_elliptic/poisson2.py

Code example #2

The global error E = u — i in both the 2-norm and infinity norm is O(h?).

m | h | E]2 1€l

7 | g | 781x1073 | 1.65x 1073
15 | = | 1.94x107* | 410 x 107*
31| 35 | 485x107° | 1.02 x 10~*
63 | o7 | 1.21x107° | 256 x 107°
95 | 95 | 5.39x107° | 1.14 x 107°
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O-point Laplacian
Another discretization for the Laplacian is based on nine points, so that

(Vau)j = oz (4(ti1y + vipry + uij-1 + Ujji1)

6h2
+ Uj1jo1 F Ui—1j41 + Uip1j—1 + Uir1j41 — 20u).

Taylor expanding shows that

hZ(UXXXX + 2uXny + uyyyy)
12

Viu(xi,yj) = Viu+ + O(h").
The leading order error terms are larger than for the five-point stencil. But these
additional terms allow the error to be written as

h2V2(V2u)

4
5+ O(h*).

Vgu(x,-,yj) =Vu+

The operator V2V? is written as V* and is called the biharmonic operator.
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A more accurate method

This special feature of the 9-point stencil can be used to improve the accuracy of the
method. Since V?u = f,

Vz(V2u) = Upox + 2Usxyy + Uyyyy = V2f
If f =0, then V2(V2u) = 0 and therefore

h2V2(V2u)

> + O(h*) = V2u + O(h%).

Vgu(x,-,yj) =Vu+

Therefore solutions to the Laplace equation will be fourth-order accurate.?

2Assuming that the 9-point discretization is stable.
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A more accurate method

The program laplace.py implements the 9-point stencil for the Laplace equation using
the manufactured solution

Umanu(X7 .y) = cos 3x exp 3y

Dirichlet boundary conditions u = umany are applied on 92.

The program computes the global error for a variety of grid sizes.
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https://github.com/rycroft-group/math714/blob/main/d_elliptic/laplace.py

A more accurate method

The global error E = u — i in both the 2-norm and infinity norm is shown in the table

below.

The errors scale like h°, which is better than O(h*) that we expected. This is still
consistent with our analysis, but likely means that the leading order error term is also

canceling.

m | h | lE]2 IE oo

7 | % |556%x1077 | 1.30x10°°
15 | & | 8.73x107° | 2.03 x 1078
31| 35 | 1.37x 10710 | 3.22 x 10710
63 | g | 217 x 10712 | 512 x 10712
95 | 9= | 1.92x 10713 | 4.64 x 10713
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Extension to the Poisson equation

The fourth-order method can be extended to the Poisson equation V2u = f where f is
non-zero. The numerical f; is modified to
h?_,
fij = f(Xiﬂyj) + Ev f(Xiﬂyj)

and the additional term cancels out the leading order error. The program poisson3.py
demonstrates this using the example of

u(x,y) = x*(1 = x)y(1 - y),

which has
f(x,y) = 2(x — 1)x® + 6x(2x — 1)(y — 1)y

and
V2f(x,y) = 24(x(2x — 1) + (y — 1)y).
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https://github.com/rycroft-group/math714/blob/main/d_elliptic/poisson3.py

Extension to the Poisson equation

The program poisson3.py confirms that the method has O(h?) errors without the
adjustment, and O(h*) errors with the adjustment.

Rather than compute V2f analytically, it is also possible to compute it numerically.

The code also demonstrates this, using a 5-point Laplacian stencil for V2f, and again
achieving O(h*) error.

There are other examples of methods like this, where an additional term is
incorporated to cancel out leading-order error.
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https://github.com/rycroft-group/math714/blob/main/d_elliptic/poisson3.py

Other examples of elliptic equations

In the heat conduction example, the conductivity k(x,y) may be spatially varying.
This results in the equation
V- (kVu) =f.

The same equation appears in other situations. In porous media flow,3 through a
medium with spatially varying permeability x, the fluid pressure p satisfies

V.- (kVp)=f
where in this case f represents fluid inflow and outflow.

Nonlinear elliptic equations also arise, and can be solved using similar methods (e.g.
Newton) as the one-dimensional BVP.

3See, e.g., N. J. Derr et al., Flow-driven branching through a porous medium, Phys. Rev. Lett. 125, 158002
(2020). (doi:10.1103/PhysRevLett.125.158002)
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https://doi.org/10.1103/PhysRevLett.125.158002

