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Accuracy and stability

The truncation error τij at (xi , yj) is defined by substituting the true solution u(x , y)
into the discretization and looking at what is left:

τij =
1

h2
(
u(xi−1, yj) + u(xi+1, yj)+

+ u(xi , yj−1) + u(xi , yj+1)− 4u(xi , yj)
)
− f (xi , yj).

Using Taylor series, this is

τij = uxx + uyy − f (xi , yj) +
h2

12
(uxxxx + uyyyy ) + O(h4),

and substituting in the original equation shows that

τij =
h2

12
(uxxxx + uyyyy ) + O(h4).
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Global error

The global error is defined as Eij = uij − u(xi , yj). It solves the linear system

AhEh = −τh

where τh ∈ Rm2
are the local errors assembled into a vector, and Ah ∈ Rm2×m2

is the
linear system describing the discretization. As before, the superscript h indicates that
the quantities are associated with a mesh size h.

We aim to show that ∥(Ah)−1∥ is uniformly bounded at h → 0. This requires finding
the eigenvalues and eigenvectors of Ah.
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Finding the eigenvalues of Ah

To find the eigenvalues of Ah, we can connect our current two-dimensional problem
back to the eigenvalues of the one-dimensional BVP that we considered previously.

For the one-dimensional BVP, the eigenvectors were

upi = sin pπih

for p = 1, . . . ,m, with corresponding eigenvalues

λp =
2(cos pπh − 1)

h2
.
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Finding the eigenvalues of Ah

For the Poisson problem, the matrix can be split into Ah = Ah,x + Ah,y where

(Ah,xu)ij =
ui−1,j − 2ui ,j + ui+1,j

h2
,

(Ah,yu)ij =
ui ,j−1 − 2ui ,j + ui ,j+1

h2
.

Consider the candidate eigenvector

up,qi ,j = (sin pπih)(sin qπjh).

By comparing to the one-dimensional BVP

(Ah,xup,q)i ,j = λp(sin pπih)(sin qπjh) = λpu
p,q
i ,j

and
(Ah,yup,q)i ,j = (sin pπih)λq(sin qπjh) = λqu

p,q
i ,j .
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Finding the eigenvalues of Ah

It follows that
(Ahup,q)i ,j = (λp + λq)u

p,q
i ,j

and therefore up,q is an eigenvector with eigenvalue

λp,q = λp + λq =
2(cos pπh + cos qπh − 2)

h2
.

All eigenvalues are negative, and the one closest to zero is

λ1,1 = −2π2 + O(h2).

The spectral radius (which is also the 2-norm) is therefore

ρ((Ah)−1) =

∣∣∣∣ 1

λ1,1

∣∣∣∣ ≈ 1

2π2
,

so the discretization is stable.
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Condition number

We can also compute the condition number1 of the matrix. This will be useful later.

The 2-norm of Ah is determined by eigenvalue of largest magnitude, so that
∥Ah∥ = |λm,m| ≈ 8/h2. The condition number is

κ(Ah) = ∥Ah∥∥(Ah)−1∥ ≈ 8

2π2h2
=

4

π2h2
= O(h−2).

Thus the matrix becomes ill-conditioned as the grid is refined.

1See homework 0 question 4, Harvard AM205 video 0.3, and associated notes
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https://youtu.be/2_Eb-MPUMd8
https://people.math.wisc.edu/~chr/am205/notes/am205_cond_num.pdf


Code example #2

The program poisson2.py solves the Poisson equation using the method of
manufactured solutions with

umanu(x , y) = x(x − 1)exy sinπy

corresponding to

f (x , y) = −exy
(
2π(x − 1)x2 cosπy

+ (2− 2y + x((x − 1)(x2 + y2 − π2) + 4y)
)
sinπy

and boundary conditions u = 0 on ∂Ω. It measures the global error for a variety of grid
sizes.
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https://github.com/rycroft-group/math714/blob/main/d_elliptic/poisson2.py


Code example #2

The global error E = u − û in both the 2-norm and infinity norm is O(h2).

m h ∥E∥2 ∥E∥∞
7 1

8 7.81× 10−3 1.65× 10−3

15 1
16 1.94× 10−4 4.10× 10−4

31 1
32 4.85× 10−5 1.02× 10−4

63 1
64 1.21× 10−5 2.56× 10−5

95 1
96 5.39× 10−6 1.14× 10−5
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9-point Laplacian
Another discretization for the Laplacian is based on nine points, so that

(∇2
9u)ij =

1

6h2
(
4(ui−1,j + ui+1,j + ui ,j−1 + ui ,j+1)

+ ui−1,j−1 + ui−1,j+1 + ui+1,j−1 + ui+1,j+1 − 20uij
)
.

Taylor expanding shows that

∇2
9u(xi , yj) = ∇2u +

h2(uxxxx + 2uxxyy + uyyyy )

12
+ O(h4).

The leading order error terms are larger than for the five-point stencil. But these
additional terms allow the error to be written as

∇2
9u(xi , yj) = ∇2u +

h2∇2(∇2u)

12
+ O(h4).

The operator ∇2∇2 is written as ∇4 and is called the biharmonic operator.
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A more accurate method

This special feature of the 9-point stencil can be used to improve the accuracy of the
method. Since ∇2u = f ,

∇2(∇2u) = uxxxx + 2uxxyy + uyyyy = ∇2f

If f = 0, then ∇2(∇2u) = 0 and therefore

∇2
9u(xi , yj) = ∇2u +

h2∇2(∇2u)

12
+ O(h4) = ∇2u + O(h4).

Therefore solutions to the Laplace equation will be fourth-order accurate.2

2Assuming that the 9-point discretization is stable.
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A more accurate method

The program laplace.py implements the 9-point stencil for the Laplace equation using
the manufactured solution

umanu(x , y) = cos 3x exp 3y

Dirichlet boundary conditions u = umanu are applied on ∂Ω.

The program computes the global error for a variety of grid sizes.
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https://github.com/rycroft-group/math714/blob/main/d_elliptic/laplace.py


A more accurate method

The global error E = u − û in both the 2-norm and infinity norm is shown in the table
below.

m h ∥E∥2 ∥E∥∞
7 1

8 5.56× 10−7 1.30× 10−6

15 1
16 8.73× 10−9 2.03× 10−8

31 1
32 1.37× 10−10 3.22× 10−10

63 1
64 2.17× 10−12 5.12× 10−12

95 1
96 1.92× 10−13 4.64× 10−13

The errors scale like h6, which is better than O(h4) that we expected. This is still
consistent with our analysis, but likely means that the leading order error term is also
canceling.

13 / 16



Extension to the Poisson equation

The fourth-order method can be extended to the Poisson equation ∇2u = f where f is
non-zero. The numerical fij is modified to

fij = f (xi , yj) +
h2

12
∇2f (xi , yj)

and the additional term cancels out the leading order error. The program poisson3.py
demonstrates this using the example of

u(x , y) = x3(1− x)y(1− y),

which has
f (x , y) = 2(x − 1)x3 + 6x(2x − 1)(y − 1)y

and
∇2f (x , y) = 24(x(2x − 1) + (y − 1)y).
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https://github.com/rycroft-group/math714/blob/main/d_elliptic/poisson3.py


Extension to the Poisson equation

The program poisson3.py confirms that the method has O(h2) errors without the
adjustment, and O(h4) errors with the adjustment.

Rather than compute ∇2f analytically, it is also possible to compute it numerically.

The code also demonstrates this, using a 5-point Laplacian stencil for ∇2f , and again
achieving O(h4) error.

There are other examples of methods like this, where an additional term is
incorporated to cancel out leading-order error.
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https://github.com/rycroft-group/math714/blob/main/d_elliptic/poisson3.py


Other examples of elliptic equations

In the heat conduction example, the conductivity κ(x , y) may be spatially varying.
This results in the equation

∇ · (κ∇u) = f .

The same equation appears in other situations. In porous media flow,3 through a
medium with spatially varying permeability κ, the fluid pressure p satisfies

∇ · (κ∇p) = f

where in this case f represents fluid inflow and outflow.

Nonlinear elliptic equations also arise, and can be solved using similar methods (e.g.
Newton) as the one-dimensional BVP.

3See, e.g., N. J. Derr et al., Flow-driven branching through a porous medium, Phys. Rev. Lett. 125, 158002
(2020). (doi:10.1103/PhysRevLett.125.158002)
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https://doi.org/10.1103/PhysRevLett.125.158002

