UW-Madison Math/CS 714

Methods of Computational Mathematics I

Iterative methods I

Instructor: Yue Sun (yue.sun@wisc.edu)

September 23, 2025

Motivation: solving elliptic problems efficiently

The elliptic problem example codes in the previous section used dense linear algebra for solving the linear system.

For the discretized problem Au=f, the matrix A is directly assembled in memory. For an $m\times m$ grid, the matrix $A\in\mathbb{R}^{m^2\times m^2}$ and has m^4 total entries.

A is sparse, meaning most elements are zero. While NumPy can solve matrix systems highly efficiently, the time taken rises very quickly, and NumPy does not exploit the sparsity.

Testing the speed of the Poisson solver

The program *poisson_time.py* measures the time taken to solve the *poisson2.py* test code. It uses two different measures of time.

Wall-clock time measures the time as perceived by the computer user (*i.e.* by looking at the clock on the wall).

Processor time measures the time that a program spends being processed on a CPU.

Measures of time

Almost all modern computers (and even smartphones) have multi-core CPUs. When a program runs on multiple cores, processor time accrues across all of the cores.

Basic Python runs on a single core, but libraries like NumPy often use multiple cores.

Thus, if a program takes one second on n cores, the processor time may be approximately n seconds.

Measures of time

Both measures of time are useful, and highlight different aspects of a calculation.

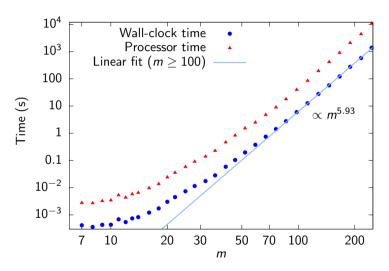
Wall-clock time may be closest to the user's experience, but processor time gives a better indication of the computational resources taken by a job.

Other factors of computer hardware (e.g. hyperthreading, Turbo Boost) can affect timing results.¹

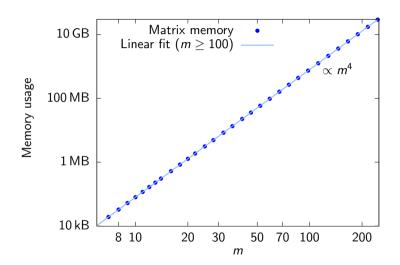
¹See Harvard AM205 video 3.6 for more discussion and examples.

Timing graph

Run with 8 cores on 2020 iMac with 128 GB of memory



Memory graph



Reaching computational limits

When m becomes large the computation time scales like $O(m^6)$. This should be expected. The problem creates an $N \times N$ matrix of size, where $N = m^2$.

NumPy uses the LU factorization to solve the matrix. For an $N \times N$ matrix this takes $O(N^3) = O(m^6)$ time.

The required memory scales like $O(N^2) = O(m^4)$. For both memory and time, the computation scales poorly, and quickly becomes infeasible. We need a better approach to solve systems like this.

Iterative methods for linear systems

See the notes, which introduce three methods for solving sparse linear systems iteratively:

- ► Jacobi method
- ► Gauss-Seidel method
- ► Successive over-relaxation (SOR) method

These methods do not require creating the matrix explicitly in memory, and for a sparse matrix require less computation than direct numerical linear algebra.

Towards the conjugate gradient method

The conjugate gradient method is another iterative method that is widely used.

It can be applied to symmetric positive definite matrices A where all the eigenvalues are positive. Such matrices frequently occur when discretizing PDEs.

If a matrix A is negative definite, so all its eigenvalues are negative, than the conjugate gradient method can be applied to -A, which is SPD.

We begin by considering a simpler method that motivates the conjugate gradient method.

Digression: symmetric positive definite (SPD)

A symmetric matrix $A \in \mathbb{R}^{m \times m}$ is positive definite (SPD) if

- lt is symmetric: $A = A^{T}$.
- For all nonzero vectors $x \in \mathbb{R}^m$, $x^T Ax > 0$.

Descent methods for minimization problems

For a symmetric matrix $A \in \mathbb{R}^{m \times m}$ define the function $\phi : \mathbb{R}^m \to \mathbb{R}$ as

$$\phi(u) = \frac{1}{2}u^{\mathsf{T}}Au - u^{\mathsf{T}}f,$$

where $f \in \mathbb{R}^m$.

Suppose that m=2 and

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix}, \qquad f = \begin{pmatrix} f_1 \\ f_2 \end{pmatrix}.$$

Then

$$\phi(u) = \frac{a_{11}u_1^2 + 2a_{12}u_1u_2 + a_{22}u_2^2}{2} - u_1f_1 - u_2f_2.$$

Descent methods for minimization problems

The stationary point of $\phi(u)$ corresponds to $\nabla \phi(u) = 0$. For the m = 2 example, this is

$$\frac{\partial \phi}{\partial u_1} = a_{11}u_1 + a_{12}u_2 - f_1 = 0,$$

$$\frac{\partial \phi}{\partial u_2} = a_{12}u_1 + a_{22}u_2 - f_2 = 0.$$

Hence the stationary point solves the matrix equation

$$Au = f$$

which also applies to general m. Call this solution u^* .

Thus finding the stationary point of ϕ is equivalent to solving the matrix equation.

Descent methods for minimization problems

Write $u = u_* + \delta$ for $\delta \in \mathbb{R}^m$. The function can be written as

$$\phi(u_* + \delta) = \frac{1}{2}(u_* + \delta)^{\mathsf{T}} A(u_* + \delta) - (u_* + \delta)^{\mathsf{T}} f$$

$$= \frac{1}{2} u_*^{\mathsf{T}} A u_* + \delta^{\mathsf{T}} A u_* + \frac{1}{2} \delta^{\mathsf{T}} A \delta - u_*^{\mathsf{T}} f - \delta^{\mathsf{T}} f$$

$$= \frac{1}{2} \delta^{\mathsf{T}} A \delta - \frac{1}{2} u_*^{\mathsf{T}} f.$$

If A is SPD, then $\delta^{\mathsf{T}} A \delta > 0$ for all $\delta \neq 0$.

Hence u_* is a minimum of ϕ . We could therefore find it by developing an iterative method to find this minimum.

Steepest descent

From here on, we use subscripts to indicate the iteration number, as we will not need to reference individual vector components.

Start from an initial guess u_0 , and construct u_1, u_2, \ldots to approach the minimum.

At one estimate u_{k-1} , the vector $-\nabla \phi(u_{k-1})$ points in the direction of steepest descent.

Hence the next value could be chosen as

$$u_k = u_{k-1} - \alpha_{k-1} \nabla \phi(u_{k-1})$$

for some $\alpha_{k-1} \geq 0$.

Steepest descent

Choose α_{k-1} as the solution of the minimization problem

$$\min_{\alpha} \phi(u_{k-1} - \alpha \nabla \phi(u_{k-1})).$$

The gradient is

$$\nabla \phi(u_{k-1}) = Au_{k-1} - f = -r_{k-1}$$

where $r_{k-1} = f - Au_{k-1}$ is the residual vector, *i.e.* the discrepancy between the LHS and the RHS of the linear system Au = f.

If $r_{k-1} = 0$, then $u_{k-1} = u_*$. The size of r_{k-1} gives an indication of how close u_{k-1} is to the solution.

Steepest descent

For a general u and r,

$$\phi(u + \alpha r) = \left(\frac{1}{2}u^{\mathsf{T}}Au - u^{\mathsf{T}}f\right) + \alpha(r^{\mathsf{T}}Au - r^{\mathsf{T}}f) + \frac{1}{2}\alpha^{2}r^{\mathsf{T}}Ar.$$

Hence

$$\frac{d\phi(u+\alpha r)}{d\alpha} = r^{\mathsf{T}} A u - r^{\mathsf{T}} f + \alpha r^{\mathsf{T}} A r.$$

Since r = f - Au, setting this to zero gives

$$\alpha = \frac{r^{\mathsf{T}} r}{r^{\mathsf{T}} A r}$$

From here, we can write down the steepest descent algorithm.

Steepest descent algorithm

```
1: Choose initial guess u_0 and tolerance \epsilon > 0

2: for k = 1, 2, 3, ... do

3: r_{k-1} = f - Au_{k-1}

4: If ||r_{k-1}|| < \epsilon, then stop

5: \alpha_{k-1} = (r_{k-1}^{\mathsf{T}} r_{k-1})/(r_{k-1}^{\mathsf{T}} A r_{k-1})

6: u_k = u_{k-1} + \alpha_{k-1} r_{k-1}

7: end for
```

This algorithm requires computing two matrix–vector multiplications per iteration, shown in blue.

Improvement to steepest descent algorithm

At each step we are computing Ar_{k-1} to find α_{k-1} . In addition, we are computing the residual

$$r_{k-1} = f - Au_{k-1}.$$

Note however that

$$r_k = f - Au_k = f - A(u_{k-1} + \alpha_{k-1}r_{k-1})$$

= $r_{k-1} - \alpha_{k-1}Ar_{k-1}$.

Since we already need to compute Ar_{k-1} , we can reuse it to accelerate the computation of r_k , without calculating Au_{k-1} separately.

Steepest descent algorithm (improved)

```
1: Choose initial guess u_0 and tolerance \epsilon > 0

2: r_0 = f - Au_0

3: for k = 1, 2, 3, ... do

4: w_{k-1} = Ar_{k-1}

5: \alpha_{k-1} = (r_{k-1}^{\mathsf{T}} r_{k-1})/(r_{k-1}^{\mathsf{T}} w_{k-1})

6: u_k = u_{k-1} + \alpha_{k-1} r_{k-1}

7: r_k = r_{k-1} - \alpha_{k-1} w_{k-1}

8: If ||r_k|| < \epsilon, then stop

9: end for
```

Steepest descent example

The program s_descent.py implements the steepest descent algorithm using

$$A = \begin{pmatrix} 3 & 0.8 \\ 0.8 & 1.2 \end{pmatrix}, \qquad f = \begin{pmatrix} 4 \\ 6 \end{pmatrix}.$$

This has solution

$$u_* = \left(\begin{array}{c} 0 \\ 5 \end{array} \right).$$

The program reaches a tolerance of 10^{-10} in 43 iterations. It takes a zig-zag path to reach the solution.

The level sets of $\phi(u)$ are ellipses. The steepest descent directions are not ideal for finding the minimum.

Steepest descent example

If the program is modified to run on

$$A = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}, \qquad f = \begin{pmatrix} 4 \\ 6 \end{pmatrix},$$

then it finds the solution

$$u_* = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

in a single iteration.

This demonstrates how the choice of direction can have a large effect on the efficiency.

Geometrical analysis

For an elliptical contour of $\phi(u)$, define v_1 and v_2 on the major and minor axes.

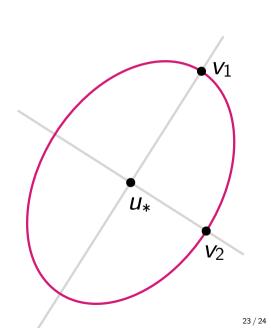
Then $\nabla \phi(v_i)$ lies in the direction of u_* , *i.e.*

$$\nabla \phi(\mathbf{v}_j) = A\mathbf{v}_j - f = \lambda_j(\mathbf{v}_j - \mathbf{u}_*).$$

Since $Au_* = f$, it follows that

$$A(v_j-u_*)=\lambda_j(v_j-u_*)$$

and hence $v_j - u_*$ is an eigenvector of A with eigenvalue λ_i .



Geometrical analysis

Consider the v_1 and v_2 defined on $\phi(u) = 1$. Then

$$\frac{1}{2}v_j^\mathsf{T}Av_j-v_j^\mathsf{T}Au_*=1.$$

From the previous relationship

$$||v_{j} - u_{*}||_{2}^{2} = (v_{j} - u_{*})^{\mathsf{T}}(v_{j} - u_{*})$$

$$= \frac{(v_{j} - u_{*})^{\mathsf{T}}A(v_{j} - u_{*})}{\lambda_{j}} = \frac{2 + u_{*}^{\mathsf{T}}Au_{*}}{\lambda_{j}}.$$

Hence the ratio of the length of the major and minor axes is

$$\frac{\|v_1 - u_*\|_2}{\|v_2 - u_*\|_2} = \sqrt{\frac{\lambda_2}{\lambda_1}} = \sqrt{\kappa_2(A)},$$

where $\kappa_2(A)$ is the condition number in the 2-norm.