
UW–Madison Math/CS 714

Methods of Computational Mathematics I

Iterative methods I

Instructor: Yue Sun (yue.sun@wisc.edu)

September 23, 2025

1 / 24



Motivation: solving elliptic problems efficiently

The elliptic problem example codes in the previous section used dense linear algebra for
solving the linear system.

For the discretized problem Au = f , the matrix A is directly assembled in memory. For
an m ×m grid, the matrix A ∈ Rm2×m2

and has m4 total entries.

A is sparse, meaning most elements are zero. While NumPy can solve matrix systems
highly efficiently, the time taken rises very quickly, and NumPy does not exploit the
sparsity.

2 / 24



Testing the speed of the Poisson solver

The program poisson time.py measures the time taken to solve the poisson2.py test
code. It uses two different measures of time.

Wall-clock time measures the time as perceived by the computer user (i.e. by looking
at the clock on the wall).

Processor time measures the time that a program spends being processed on a CPU.

3 / 24

https://github.com/rycroft-group/math714/blob/main/e_iter_methods/poisson_time.py
https://github.com/rycroft-group/math714/blob/main/d_elliptic/poisson2.py


Measures of time

Almost all modern computers (and even smartphones) have multi-core CPUs. When a
program runs on multiple cores, processor time accrues across all of the cores.

Basic Python runs on a single core, but libraries like NumPy often use multiple cores.

Thus, if a program takes one second on n cores, the processor time may be
approximately n seconds.

4 / 24



Measures of time

Both measures of time are useful, and highlight different aspects of a calculation.

Wall-clock time may be closest to the user’s experience, but processor time gives a
better indication of the computational resources taken by a job.

Other factors of computer hardware (e.g. hyperthreading, Turbo Boost) can affect
timing results.1

1See Harvard AM205 video 3.6 for more discussion and examples.
5 / 24

https://youtu.be/HG0OlWAQOeY


Timing graph
Run with 8 cores on 2020 iMac with 128GB of memory

10−3

10−2

0.1

1

10

100

103

104

7 10 20 30 50 70 100 200

∝ m5.93

T
im

e
(s
)

m

Wall-clock time
Processor time

Linear fit (m ≥ 100)

6 / 24



Memory graph

10 kB

1MB

100MB

10GB

8 10 20 30 50 70 100 200

∝ m4

M
em

or
y
u
sa
ge

m

Matrix memory
Linear fit (m ≥ 100)

7 / 24



Reaching computational limits

When m becomes large the computation time scales like O(m6). This should be
expected. The problem creates an N × N matrix of size, where N = m2.

NumPy uses the LU factorization to solve the matrix. For an N × N matrix this takes
O(N3) = O(m6) time.

The required memory scales like O(N2) = O(m4). For both memory and time, the
computation scales poorly, and quickly becomes infeasible. We need a better approach
to solve systems like this.

8 / 24



Iterative methods for linear systems

See the notes, which introduce three methods for solving sparse linear systems
iteratively:

▶ Jacobi method

▶ Gauss–Seidel method

▶ Successive over-relaxation (SOR) method

These methods do not require creating the matrix explicitly in memory, and for a
sparse matrix require less computation than direct numerical linear algebra.

9 / 24



Towards the conjugate gradient method

The conjugate gradient method is another iterative method that is widely used.

It can be applied to symmetric positive definite matrices A where all the eigenvalues
are positive. Such matrices frequently occur when discretizing PDEs.

If a matrix A is negative definite, so all its eigenvalues are negative, than the conjugate
gradient method can be applied to −A, which is SPD.

We begin by considering a simpler method that motivates the conjugate gradient
method.

10 / 24



Digression: symmetric positive definite (SPD)

A symmetric matrix A ∈ Rm×m is positive definite (SPD) if

▶ It is symmetric: A = AT.

▶ For all nonzero vectors x ∈ Rm, xTAx > 0.

11 / 24



Descent methods for minimization problems

For a symmetric matrix A ∈ Rm×m define the function ϕ : Rm → R as

ϕ(u) =
1

2
uTAu − uTf ,

where f ∈ Rm.

Suppose that m = 2 and

A =

(
a11 a12
a12 a22

)
, f =

(
f1
f2

)
.

Then

ϕ(u) =
a11u

2
1 + 2a12u1u2 + a22u

2
2

2
− u1f1 − u2f2.

12 / 24



Descent methods for minimization problems

The stationary point of ϕ(u) corresponds to ∇ϕ(u) = 0. For the m = 2 example, this is

∂ϕ

∂u1
= a11u1 + a12u2 − f1 = 0,

∂ϕ

∂u2
= a12u1 + a22u2 − f2 = 0.

Hence the stationary point solves the matrix equation

Au = f ,

which also applies to general m. Call this solution u∗.

Thus finding the stationary point of ϕ is equivalent to solving the matrix equation.

13 / 24



Descent methods for minimization problems

Write u = u∗ + δ for δ ∈ Rm. The function can be written as

ϕ(u∗ + δ) =
1

2
(u∗ + δ)TA(u∗ + δ)− (u∗ + δ)Tf

=
1

2
uT∗ Au∗ + δTAu∗ +

1

2
δTAδ − uT∗ f − δTf

=
1

2
δTAδ − 1

2
uT∗ f .

If A is SPD, then δTAδ > 0 for all δ ̸= 0.

Hence u∗ is a minimum of ϕ. We could therefore find it by developing an iterative
method to find this minimum.

14 / 24



Steepest descent

From here on, we use subscripts to indicate the iteration number, as we will not need
to reference individual vector components.

Start from an initial guess u0, and construct u1, u2, . . . to approach the minimum.

At one estimate uk−1, the vector −∇ϕ(uk−1) points in the direction of steepest
descent.

Hence the next value could be chosen as

uk = uk−1 − αk−1∇ϕ(uk−1)

for some αk−1 ≥ 0.

15 / 24



Steepest descent

Choose αk−1 as the solution of the minimization problem

min
α

ϕ(uk−1 − α∇ϕ(uk−1)).

The gradient is
∇ϕ(uk−1) = Auk−1 − f = −rk−1

where rk−1 = f − Auk−1 is the residual vector, i.e. the discrepancy between the LHS
and the RHS of the linear system Au = f .

If rk−1 = 0, then uk−1 = u∗. The size of rk−1 gives an indication of how close uk−1 is
to the solution.

16 / 24



Steepest descent

For a general u and r ,

ϕ(u + αr) =

(
1

2
uTAu − uTf

)
+ α(rTAu − rTf ) +

1

2
α2rTAr .

Hence
dϕ(u + αr)

dα
= rTAu − rTf + αrTAr .

Since r = f − Au, setting this to zero gives

α =
rTr

rTAr

From here, we can write down the steepest descent algorithm.

17 / 24



Steepest descent algorithm

1: Choose initial guess u0 and tolerance ϵ > 0
2: for k = 1, 2, 3, . . . do
3: rk−1 = f − Auk−1

4: If ∥rk−1∥ < ϵ, then stop
5: αk−1 = (rTk−1rk−1)/(r

T
k−1Ark−1)

6: uk = uk−1 + αk−1rk−1

7: end for

This algorithm requires computing two matrix–vector multiplications per iteration,
shown in blue.

18 / 24



Improvement to steepest descent algorithm

At each step we are computing Ark−1 to find αk−1. In addition, we are computing the
residual

rk−1 = f − Auk−1.

Note however that

rk = f − Auk = f − A(uk−1 + αk−1rk−1)

= rk−1 − αk−1Ark−1.

Since we already need to compute Ark−1, we can reuse it to accelerate the
computation of rk , without calculating Auk−1 separately.

19 / 24



Steepest descent algorithm (improved)

1: Choose initial guess u0 and tolerance ϵ > 0
2: r0 = f − Au0
3: for k = 1, 2, 3, . . . do
4: wk−1 = Ark−1

5: αk−1 = (rTk−1rk−1)/(r
T
k−1wk−1)

6: uk = uk−1 + αk−1rk−1

7: rk = rk−1 − αk−1wk−1

8: If ∥rk∥ < ϵ, then stop
9: end for

20 / 24



Steepest descent example

The program s descent.py implements the steepest descent algorithm using

A =

(
3 0.8
0.8 1.2

)
, f =

(
4
6

)
.

This has solution

u∗ =

(
0
5

)
.

The program reaches a tolerance of 10−10 in 43 iterations. It takes a zig-zag path to
reach the solution.

The level sets of ϕ(u) are ellipses. The steepest descent directions are not ideal for
finding the minimum.

21 / 24

https://github.com/rycroft-group/math714/blob/main/e_iter_methods/s_descent.py


Steepest descent example

If the program is modified to run on

A =

(
2 0
0 2

)
, f =

(
4
6

)
,

then it finds the solution

u∗ =

(
2
3

)
in a single iteration.

This demonstrates how the choice of direction can have a large effect on the efficiency.

22 / 24



Geometrical analysis

For an elliptical contour of ϕ(u), define v1 and
v2 on the major and minor axes.

Then ∇ϕ(vj) lies in the direction of u∗, i.e.

∇ϕ(vj) = Avj − f = λj(vj − u∗).

Since Au∗ = f , it follows that

A(vj − u∗) = λj(vj − u∗)

and hence vj − u∗ is an eigenvector of A with
eigenvalue λj .

v1

v2

u*

23 / 24



Geometrical analysis
Consider the v1 and v2 defined on ϕ(u) = 1. Then

1

2
vTj Avj − vTj Au∗ = 1.

From the previous relationship

∥vj − u∗∥22 = (vj − u∗)
T(vj − u∗)

=
(vj − u∗)

TA(vj − u∗)

λj
=

2 + uT∗ Au∗
λj

.

Hence the ratio of the length of the major and minor axes is

∥v1 − u∗∥2
∥v2 − u∗∥2

=

√
λ2

λ1
=

√
κ2(A),

where κ2(A) is the condition number in the 2-norm.

24 / 24


