
UW–Madison Math/CS 714

Methods of Computational Mathematics I

Iterative methods II

Instructor: Yue Sun (yue.sun@wisc.edu)

September 25, 2025

1 / 30

The A-conjugate search direction

The previous analysis suggests that the search direction can be very important in
convergence. Rather than always choose ∇ϕ, we could instead try a different vector
pk−1, and update according to

uk = uk−1 + αk−1pk−1.

As before, we select αk−1 to minimize ϕ(uk−1 + αpk−1). Similar to our previous
analysis, this gives

αk−1 =
pTk−1rk−1

pTk−1Apk−1
.

2 / 30

The A-conjugate search direction

Ideally, we would like to choose pk−1 to point in the direction of the solution, but this
is infeasible.

However, in two dimensions, if we take an arbitrary initial guess u0 and initial step
direction p0, then we can choose p1 that leads directly to the solution!

The vector p1 is chosen to be A-conjugate, so that

pT1 Ap0 = 0

If A = I this would just imply orthogonality. Hence A-conjugacy generalizes the
concept of orthogonality.

3 / 30

The A-conjugate search direction
To see that p1 and p0 are A-conjugate, note
that p0 will be tangent to the level set of ϕ at
u1, so

pT0 r1 = pT0 A(u∗ − u1) = 0.

Since u∗ − u1 = αp1 for some α ̸= 0, it follows
that

pT0 Ap1 = 0.

u0

u*

u1p0

p1

4 / 30

Generalization

We see that in this case

▶ u1 = minα ϕ(u0 + αp0),

▶ u2 = minα,β ϕ(u0 + αp0 + βp1),

and since p0 and p1 are linearly independent, u2 is the global minimizer, u∗.

5 / 30

Generalization

For m dimensions starting from u0, we could aim to choose search directions
p0, p1, p2, . . . such that

▶ u1 = minα ϕ(u0 + αp0),

▶ u2 = minα,β ϕ(u0 + αp0 + βp1),

▶ u3 = minα,β,γ ϕ(u0 + αp0 + βp1 + γp2),

▶ . . . ,

and if the pj are linearly independent, then we would expect that u∗ = um.

This is the basis of the conjugate gradient method, although it is not obvious how to
select the directions pk .

6 / 30

Conjugate gradient method

The conjugate gradient (CG) method is a famous algorithm in scientific computing. It
was originally developed by Hestenes and Stiefel in 1952, although it took time before
it was widely used and understood.

Building on the ideas presented, it provides an effective method for solving large SPD
matrix systems.

7 / 30

Conjugate gradient method
The CG algorithm is given by

1: Choose initial guess u0 = 0 and tolerance ϵ > 0
2: r0 = f − Au0, p0 = r0
3: for k = 1, 2, 3, . . . do
4: wk−1 = Apk−1

5: αk−1 = (rTk−1rk−1)/(p
T
k−1wk−1)

6: uk = uk−1 + αk−1pk−1

7: rk = rk−1 − αk−1wk−1

8: If ∥rk∥ < ϵ, then stop
9: βk−1 = (rTk rk)/(r

T
k−1rk−1)

10: pk = rk + βk−1pk−1

11: end for

(Note that the initial guess could be arbitrary, but we focus on u0 = 0 to simplify the
convergence analysis.)

8 / 30

Conjugate gradient method

We shall now discuss CG in more detail — it’s certainly not obvious why this works!

Let u∗ = A−1f denote the exact solution, and let ek ≡ u∗ − uk denote the error at step
k .

Also, let ∥ · ∥A denote the norm

∥u∥A ≡
√
uTAu.

9 / 30

Krylov subspaces

The only way that we obtain information about the matrix A is via multiplication. This
motivates the definition of a Krylov sequence, which for a given vector b is

{b,Ab,A2b,A3b, . . .}.

The corresponding Krylov subspaces are the spaces spanned by successive groups of
these vectors:

Km(A, b) ≡ span{b,Ab,A2b, . . . ,Am−1b}.

10 / 30

Conjugate gradient method

Theorem: The CG iterate uk is the unique member of Kk(A, f) that minimizes ∥ek∥A.
Also, uk = u∗ for some k ≤ n.

Proof: This result relies on a set of identities which can be derived (by induction) from
the CG algorithm:

(i) Kk(A, f) = span{u1, u2, . . . , uk} = span{p0, p1 . . . , pk−1}
= span{r0, r1, . . . , rk−1}

(ii) rTk rj = 0 for j < k

(iii) pTk Apj = 0 for j < k

11 / 30

Conjugate gradient method

From the first identity above, it follows that uk ∈ Kk(A, f).

We will now show that uk is the unique minimizer in Kk(A, f).

Let ũ ∈ Kk(A, f) be another “candidate minimizer” and let ∆u ≡ uk − ũ, then

∥u∗ − ũ∥2A = ∥(u∗ − uk) + (uk − ũ)∥2A
= ∥ek +∆u∥2A
= (ek +∆u)TA(ek +∆u)

= eTk Aek + 2eTk A∆u +∆uTA∆u

12 / 30

Conjugate gradient method

Next, let r(uk) = f − Auk denote the residual at step k , so that

r(uk) = f − Auk = f − A(uk−1 + αkpk−1) = r(uk−1)− αkApk−1

Since r(u0) = f = r0, by induction we see that for rk computed in line 7 of CG,

rk = rk−1 − αkApk−1

we have rk = r(uk), k = 1, 2, . . .

13 / 30

Conjugate gradient method

Now, recall our expression for ∥u∗ − ũ∥2A:

∥u∗ − ũ∥2A = eTk Aek + 2eTk A∆u +∆uTA∆u

and note that

2eTk A∆u = 2∆uTA(u∗ − uk) = 2∆uT(f − Auk) = 2∆uTrk

Now,

▶ ∆u = uk − ũ ∈ Kk(A, f)

▶ from (i), we have that Kk(A, f) = span{r0, r1, . . . , rk−1}
▶ from (ii), we have that rk ⊥ span{r0, r1, . . . , rk−1}

Therefore, we have 2eTk A∆u = 2∆uTrk = 0

14 / 30

Conjugate gradient method

This implies that,
∥u∗ − ũ∥2A = eTk Aek +∆uTA∆u ≥ ∥ek∥2A,

with equality only when ∆u = 0, hence uk ∈ Kk(A, f) is the unique minimizer!

This also tells us that if u∗ ∈ Kk(A, f), then uk = u∗

Therefore1 CG will converge to u∗ in at most n iterations since Kk(A, f) is a subspace
of Rn of dimension k □

1Assuming exact arithmetic!
15 / 30

Conjugate gradient method

Note that the theoretical guarantee that CG will converge in n steps is of no practical
use.

In floating point arithmetic we will not get exact convergence to u∗.

More importantly, we assume n is huge, so we want to terminate CG well before n
iterations anyway.

Nevertheless, the guarantee of convergence in at most n steps is of historical interest.

Hestenes and Stiefel originally viewed CG as a direct method that will converge after a
finite number of steps.

16 / 30

Simple conjugate gradient example

The program simple cg.py uses CG to solve the one-dimensional Poisson equation for
u(x),

∂2u

∂x2
= f

on the interval [0, 1], with Dirichlet conditions u(0) = u(1) = 0.

Discretize as uj = u(jh), fj = f (jh) where h = 1
n+1 . Hence u0 = un+1 = 0 and

uj+1 − 2uj + uj−1

h2
= fj

for j = 1, . . . , n.

17 / 30

https://github.com/rycroft-group/math714/blob/main/e_iter_methods/simple_cg.py

Conjugate gradient method

We now consider the convergence of the CG method. A famous result for CG is that if
A has 2-norm condition number κ, then

∥ek∥A
∥e0∥A

≤ 2

(√
κ− 1√
κ+ 1

)k

Hence smaller condition number implies faster convergence.

18 / 30

Conjugate gradient method
Suppose we want to terminate CG when

∥ek∥A
∥e0∥A

≤ ϵ

for some ϵ > 0, how many CG iterations will this require?

We have the identities

2

(√
κ− 1√
κ+ 1

)k

= 2

(√
κ+ (1− 1)− 1√

κ+ 1

)k

= 2

(
1− 2√

κ+ 1

)k

= 2

(
1− 2/

√
κ

1 + 1/
√
κ

)k

.

19 / 30

Conjugate gradient method

For large κ it follows that

∥ek∥A
∥e0∥A

≤ 2

(√
κ− 1√
κ+ 1

)k

≈ 2

(
1− 2√

κ

)k

.

Hence we terminate CG when (
1− 2√

κ

)k

≈ ϵ

2
.

20 / 30

Conjugate gradient method

Taking logs gives

k ≈ log(ϵ/2)/ log

(
1− 2√

κ

)
≈ 1

2
| log(ϵ/2)|

√
κ.

where the last expression follows from the Taylor expansion:

log

(
1− 2√

κ

)
≈ log(1)− 2√

κ
= − 2√

κ
.

This analysis shows that the number of CG iterations for a given tolerance ϵ grows
approximately as

√
κ

21 / 30

Conjugate gradient method

For the discrete Laplacian, we have κ = O(h−2), hence number of CG iterations should
grow as O(

√
κ) = O(h−1)

For ϵ = 10−4, with the program poisson cg.py , we obtain the following convergence
results

h κ CG iterations

4× 10−2 3.67× 102 32
2× 10−2 1.47× 103 65
1× 10−2 5.89× 103 133
5× 10−3 2.36× 104 272

22 / 30

https://github.com/rycroft-group/math714/blob/main/e_iter_methods/poisson_cg.py

Conjugate gradient method

These results indicate that CG gets more expensive for Poisson equation as h is
reduced for two reasons:

▶ The matrix and vectors get larger, hence each CG iteration is more expensive.

▶ We require more iterations since the condition number gets larger.

23 / 30

Convergence

Convergence of the conjugate gradient method is better when the matrix A has a small
condition number

A way to improve convergence is to use preconditioning. We find a matrix M that is
an approximation to A, and solve M−1Ax = M−1b. We want

▶ M is symmetric and positive definite

▶ M−1A is well conditioned and has few extreme eigenvalues

▶ Mx = b is easy to solve

24 / 30

Preconditioned conjugate gradient method

The preconditioned CG algorithm is given by

1: Choose tolerance ϵ > 0
2: u0 = 0, r0 = f , p1 = M−1f , y0 = M−1r0
3: for k = 1, 2, 3, . . . do
4: z = Apk
5: νk = (yTk−1rk−1)/(p

T
k z)

6: uk = uk−1 + νkpk
7: rk = rk−1 − νkz
8: If ∥rk∥ < ϵ, then stop
9: yk = M−1rk

10: µk = (yTk rk)/(y
T
k−1rk−1)

11: pk+1 = yk + µkpk
12: end for

25 / 30

Examples of preconditioning

▶ Diagonal (Jacobi) preconditioning: define M = diag(a11, a22, . . . , ann).
Straightforward to invert.

▶ Block Jacobi preconditioning: Write the matrix in block form as

A =

 A11 A12 · · · A1k
...

...
. . .

...
Ak1 Ak2 · · · Akk


Define

M =

 A11

. . .

Akk


Performing M−1 requires inverting each block—much faster than solving the
original matrix

26 / 30

Examples of preconditioning

▶ Incomplete LU/Cholesky factorization: a full LU or Cholesky factorization of a
sparse matrix results in fill-in of the zero entries. Adjust algorithm to obtain
approximate result with minimum fill-in.

▶ Multigrid: the multigrid algorithm is an iterative procedure for solving matrix
problems, by applying successive V-cycles. Let M−1 be the matrix applying one
V-cycle—good approximation to the inverse of A.

27 / 30

Krylov subspace methods

We saw that the properties of CG are closely connected to the Krylov subspace
Kk(A, f), and is therefore called a Krylov subspace method.

There are many other examples of Krylov subspace methods, which work via
evaluating matrix–vector multiplications only:

▶ Arnoldi iteration

▶ Lanczos iteration

▶ Generalized minimum residual (GMRES) method

▶ Conjugate residual method

▶ Biconjugate gradient stabilized (BiCGSTAB) method

Some of these methods are no longer restricted to SPD matrices; we can use Krylov
methods to solve arbitrary linear systems Au = f .2

2See Applied Numerical Linear Algebra by James Demmel for more information.
28 / 30

Krylov subspace methods

There are many related algorithms for solving different types of linear systems. The
following flow chart from the textbook3 illustrates some of the different possibilities.

3J. A. Demmel, Applied Numerical Linear Algebra, SIAM 1997.
29 / 30

Other methods for solving elliptic PDEs

There are many other methods for solving elliptic PDEs, including
▶ Fast direct solvers4: Exploit hierarchical low-rank structure to accelerate sparse

PDE matrices or dense boundary integral systems
▶ Recursive skeletonization, HIF-DE, HSS/HODLR methods
▶ Often accelerated by tools like the fast multipole method (FMM) or randomized

linear algebra

▶ Domain decomposition methods: Decompose the domain into subdomains,
solve on each subdomain, and iterate or couple with coarse solves

▶ Boundary integral methods5: Recast the PDE as an integral equation on the
boundary; leads to dense systems often accelerated by FMM or hierarchical solvers

4https://fastalgorithms.github.io/
5https://users.flatironinstitute.org/~ahb/BIE/

30 / 30

https://fastalgorithms.github.io/
https://users.flatironinstitute.org/~ahb/BIE/

