

UW-Madison Math/CS 714 Methods of Computational Mathematics I

Iterative methods II

Instructor: Yue Sun (yue.sun@wisc.edu)

September 25, 2025

Direct solve: find u^* that solves the linear system Au = f

Minimization problem: find u^* that minimizes the quadratic function $\phi(u) = \frac{1}{2}u^TAu - u^Tf$

Steepest descent

Descent direction
$$-\nabla\phi(u_{k-1})$$
 Update rule
$$u_k=u_{k-1}-\alpha_{k-1}\nabla\phi(u_{k-1})$$

Choose scalar α via a minimization problem (line search) (Drop k-1 here for simplicity)

$$\min_{\alpha \in \mathbb{R}, \alpha \geq 0} \phi(u_{k-1} - \alpha \nabla \phi(u_{k-1})) \rightarrow \frac{d\phi(u + \alpha r)}{d\alpha} = 0 \rightarrow \alpha = \frac{r^T r}{r^T A r}$$

Consider m=2, A is SPD $\nabla \phi(u_{k-1}) = Au_{k-1} - f \equiv -r_{k-1}$

Direct solve: find u^* that solves the linear system Au = f

Minimization problem: find u^* that minimizes the quadratic function $\phi(u) = \frac{1}{2}u^TAu - u^Tf$

Steepest descent

Descent direction
$$-\nabla \phi(u_{k-1})$$

Update rule
$$u_k = u_{k-1} - \frac{\alpha_{k-1}}{\alpha_{k-1}} \nabla \phi(u_{k-1})$$

Choose scalar α via a minimization problem (line search)

(Drop k-1 here for simplicity)

$$\min_{\alpha \in \mathbb{R}, \alpha \geq 0} \phi(u_{k-1} - \alpha \nabla \phi(u_{k-1})) \implies \frac{d\phi(u + \alpha r)}{d\alpha} = 0 \implies \alpha = \frac{r^T r}{r^T A r}$$

Steepest descent in a hike at the Pinnacles National Park

Efficiently solving elliptic PDEs

Direct solve: find u^* that solves the linear system Au = f

Minimization problem: find u^* that minimizes the quadratic function $\phi(u) = \frac{1}{2}u^TAu - u^Tf$

Steepest descent

Descent direction

$$-\nabla \phi(u_{k-1})$$

Update rule

$$u_k = u_{k-1} - \underset{}{\alpha_{k-1}} \nabla \phi(u_{k-1})$$

Choose scalar α via a minimization problem (line search) (Drop k-1 here for simplicity)

$$\min_{\alpha \in \mathbb{R}, \alpha \succeq 0} \phi(u_{k-1} - \alpha \nabla \phi(u_{k-1})) \to \frac{d\phi(u + \alpha r)}{d\alpha} = 0 \to \alpha = \frac{r^T r}{r^T A r}$$

Conjugate gradient

$$p_{k-1}$$

$$u_k = u_{k-1} + \alpha_{k-1} p_{k-1}$$

Choose scalar α via a minimization problem (line search)

(Drop k-1 here for simplicity)

$$\min_{\alpha \in \mathbb{R}, \alpha \geq 0} \phi(u_{k-1} + \alpha p_{k-1}) \quad \Rightarrow \quad \frac{d\phi(u + \alpha p)}{d\alpha} = 0 \quad \Rightarrow \quad \alpha = \frac{p^T r}{p^T A x}$$

At iteration k-1

Efficiently solving elliptic PDEs

Direct solve: find u^* that solves the linear system Au = f **Minimization** problem: find u^* that minimizes the quadratic function $\phi(u) = \frac{1}{2}u^TAu - u^Tf$

