UW-Madison Math/CS 714
Methods of Computational Mathematics |

Initial value problems |

Instructor: Yue Sun (yue.sun@wisc.edu)

September 30, 2025

1/26

Integration of ODE Initial Value Problems

We consider problems of the form

U(t)=f(u,t), u(to)=n.

Here u(t) € R® and f : R x R® — R*.

Writing this system out in full, we have

u (t) fi(u, t)
uh(t H(u, t
O R I e
ug(t) fs(u, t)
This is a system of s coupled ODEs for the variables uy, up, ..., us.

2/26

ODE IVPs

“Initial value problem” implies that we know u(tp), i.e. u(tg) = n € R® is the initial
condition.

The order of an ODE is the highest-order derivative that appears.
Hence u/(t) = f(u, t) is a first-order ODE system.

Higher order ODEs can be rewritten as first-order ODE systems. Hence we focus on
developing methods for first-order ODEs.

3/26

ODE IVPs

See chapter 5, sections 5.1 to 5.7, for background on this section, which cover
» Existence and uniqueness of solutions
» Lipschitz constant
» One-step methods (forward/backward Euler)
» Truncation error
» Runge—Kutta methods

These concepts were covered in the ODE introduction—see video under the Kaltura
tab on Canvas.

4/26

Example: integrating the Rossler ODE system

Assume ty = 0 and define t, = nk where k is a grid spacing. We use k for a spacing in
time, to distinguish it from h in space.

Let U" be the numerical approximation of u(t,), and set U° = 5. A finite-difference
approximation of u/(t) = f(u(t), t) gives

Un+1 —_yn
k = f(Un? tn)

which becomes
U™t = U™+ kF(U", t),

which is the forward Euler method. It is an explicit method, since U1 can be directly
computed from U".

5/26

Example: integrating the Rossler ODE system

An alternative approach is to note from the fundamental theorem of calculus that

U(tsn) — u(t) = /t () dt = /t " (o),).

Approximating the integral using the trapezoid rule gives the trapezoid method,

k [F(U" ta) + F(U™ th1)]
2

Un+1 _ Un —

The trapezoid method is an implicit method, since in general, root-finding must be
used to find Upy1.

6/26

Example: integrating the Rossler ODE system

The Rossler attractor is a chaotic ODE system with three coupled equations

/
X =—-y—2z

y'=x+ay,
Z=b+z(x—c).

Consider solving this system using the trapezoid method, with
u(t) = (x(t),y(t), z(t)). To evaluate U™, we must find a root of the equation

F(U)=2(U"—-U)+ k[f(U", tn) + f(U, th41)] -

7/26

Example: integrating the Rossler ODE system

In component form, writing U = (X, Y, Z) and U" = (X", Y", Z"),
2(X"—=X)+ k[-Y"-Z"-Y - Z]
F(U) = 2Y"=Y)+ k[X"+aY"+ X + aY] :
2(Z" = Z)+ k[2b+ Z" (X" —¢c)+ Z(X — ¢)]

and the Jacobian is

2 —k —k
J(U)=| k —2+ak 0
kZ 0 —2+4k(X—c)

The program rossler_trap.py solves the Rossler system, using Newton's method to
perform the root-finding at each step.

8/26

https://github.com/rycroft-group/math714/blob/main/f_ivp/rossler_trap.py

Multistep methods

Both the Euler method and the trapezoid method are examples of one-step methods:
the value of U™ is determined solely from U".

More generally we can look at multistep methods that incorporate information from
previous steps. An r-step multistep method has the form

2{: Ogl/n+J = k’}{j ﬁ%f((/n+j,tn+j),
j=0 Jj=0

where a, # 0. If 8, = 0 then the method is explicit; otherwise it is implicit.

9/26

Multistep method example

The general form is

The trapezoid method is consistent with this form when r = 1 and

(O‘O?al) = (1’ _1)a (ﬁmﬁl) = (%’ %)

This gives
k [f(U”, tn) + F(UL, t,,+1)]

ntl _ gyn _
U U >

as before.

10/26

Families of multistep methods

Several different families of multistep methods can be derived using different
approaches.

One approach is to start from the integral relation

thtr thtr
u(tnsr) = u(tnsr—1) +/ U (t)dt = u(tprr—1) +/ f(u(t), t)dt
thyr—1 thtr—1
Then
tnir
Un+r — Un+r71 +/ p(t)dt
thtr—1

where p(t) is a polynomial interpolant of f using several prior values of U"*/. (See
derivation.)

11/26

Adams—Bashforth methods

The first few explicit Adams—Bashforth methods are
1step: U™ = U" 4 kf(U"),
k
2 step: U™ = Ut 4 S(=F(U") + 3F(U™YY),

k
3step: U™ = U2+ T (5F(UM) — 16F(U™H) + 23F(U2)).

12/26

Adams—Moulton methods

The first few implicit Adams—Moulton methods are

k
1step: U™ =U"+ *(f(Un) + f(U™)),

2 step: U2 =yl 4 F(U™) +8F(U™) +5F(U"2)),

12(
SR — (U

Un+3 Un+2
24
+19F(U™2) + 9f (U™3)).

3 step:

13/26

Local truncation error

The local truncation error is given by

tn—i—r = Za_] tn—H _kZ/BJ tn—i—J

Using Taylor series

)2

u(tnej) = u(tn) + jku'(tn) + (Jl;)u”(t,,) -
)2

U (thyj) = U'(tn) + jku"(tn) + (Jl;)u"’(tn) +....

14 /26

Local truncation error

Hence

The method is consistent if 7 — 0 and kK — 0, which occurs when

ZogzO, Zjozj ZBJ
=0

If the first p + 1 terms in 7(tn,) vanish, then the method is pth order accurate.

15/26

Characteristic polynomials

The characteristic polynomials of a multistep method are
r . r .
p(Q) =D, o= B¢

j=0 j=0

The consistency conditions are equivalent to

p1)=0, P(1)=0(1)

We will see that the characteristic polynomials are also useful for determining stability
of a method.

16 /26

Multistep versus one-step methods

Multistep methods are attractive because they can achieve higher-order accuracy for
limited extra work.

To measure the work required for a method, we can count the number of times that f
will be evaluated.

For a large ODE system, evaluating f may become very expensive, and therefore the
total f evaluations becomes a good proxy for the total workload.

17/26

Multistep versus one-step methods

Compare two methods:
» Classical fourth-order Runge—Kutta method — requires four intermediate stages to
step from U™ to U"TL. Four total f evaluations per timestep.
» Four-step Adams—Bashforth method — computing U"** requires evaluating
f(U™3), and reusing f(U"2), f(U™1), and £(U"). One total f evaluation per
timestep.

This is not an exact comparison, since it depends on the step size required to achieve a
certain accuracy, but it suggests that multistep methods have some inherent
advantages.

18/26

Multistep versus one-step methods

Multistep methods have some disadvantages:

» Starting values — for an r-step method, the values of U°, U',..., U™ are
required to begin. Can use an exact solution, or use a one-step method to begin
with.

» Even timestep spacing — the derived formulae rely on the timestep size k being
equal. By contrast, one-step methods allow the timestep to be adaptively chosen.

» Stability — Multistep methods introduce additional stability considerations that are
not present for one-step methods.

19/26

Digression: Runge—Kutta methods

Runge—Kutta (RK) methods are another type of one-step discretization, a very popular
choice.

Aim to achieve higher order accuracy by combining evaluations of f (i.e. estimates of
y') at several points in [tk, tki1]-

RK methods all fit within a general framework, which can be described in terms of
Butcher tableaus.

We will first consider two RK examples: two evaluations of f and four evaluations of f.

20/26

Digression: Runge—Kutta methods

The family of Runge—Kutta methods with two intermediate evaluations is defined by
Yk+1 = Yk + h(aki + bks),

where ki = f(tx, yk), ko = f(tx + ah, yx + Bhky).

The Euler method is a member of this family, with a =1 and b = 0.

By careful analysis of the truncation error,! it can be shown that we can choose
a, b, a, B to obtain a second-order method.

1See order condition notes.
21/26

https://people.math.wisc.edu/~chr/am205/notes/am205_rk2_multi.pdf

Digression: Runge—Kutta methods

[order2.py] Three such examples are:
» The modified Euler method (a =0, b=1, a = =1/2):

1 1
Yi+1 = Yk + hf <tk +shoyict 2hf(tka}/k)> :
» The improved Euler method (or Heun's method) (a=b=1/2, a = =1):

1
Yk+1 = Yk + Eh[f(tka)/k) + f(te + h, yi + hf (ti, yi))]-

» Ralston’'s method (a=1/4, b=3/4, a« =2/3, f =2/3)

1
Vi1 = Yk + Zh[f(tkv)/k) +3F(tk + &y + D F(tk, i)

22/26

https://github.com/rycroft-group/math714/blob/main/activities/02_ode_review/order2.py

Digression: Runge—Kutta methods
The most famous Runge—Kutta method is the “classical fourth-order method”, RK4:

1
Y41 = Yk + gh(kl + 2ko + 2k3 + ka)

where

ki = f(te, yh),

ko = f(tk+h/2,yx+ hki/2),
ks = f(tk+h/2,Yk+hk2/2),
ks = f(tx + h,yx + hks).

Analysis of the truncation error in this case (which gets quite messy!) gives
Ti = O(h%).

23/26

Digression: Butcher tableau

Summarizes an s + 1 stage Runge—Kutta method using a triangular grid of coefficients

7]
a1 | B0

Qs ﬁs,o Bs,l ﬁs,sfl
0 Y- TUs—1 Vs

The ith intermediate step is -
i

F(te + aib,yi+ b Bijk).
j=0
The (k + 1)th answer for y is

s
Yir1 =yi+h> k.
=0

24 /26

Digression: Butcher tableau

Forward Euler:

ki = f(tx, y«)
Yk+1 = Yk + hky

Two-step methods:

ki = f(tx, yk)
ko = f(tk + ah, yi + 5/7/(1)
Yk+1 = Yk + h(aky + bkp)

25 /26

Digression: Butcher tableau

RK4:
= f(tkayk) 0
= f(tx + h/2,yi + hky /2) 12| 1/2
= f(tx + h/2,yi + hk/2) 1{2 8 162 1
= f(tk + h, yx + hks)

h '1/6 1/3 1/3 1/6
Vkt1 = Yk + g(kl + 2ky + 2k3 + ka)

26 /26

