
UW–Madison Math/CS 714

Methods of Computational Mathematics I

Initial value problems I

Instructor: Yue Sun (yue.sun@wisc.edu)

September 30, 2025

1 / 26

Integration of ODE Initial Value Problems

We consider problems of the form

u′(t) = f (u, t), u(t0) = η.

Here u(t) ∈ Rs and f : R× Rs → Rs .

Writing this system out in full, we have

u′(t) =


u′1(t)
u′2(t)
...

u′s(t)

 =


f1(u, t)
f2(u, t)

...
fs(u, t)

 = f (u(t), t).

This is a system of s coupled ODEs for the variables u1, u2, . . . , us .

2 / 26

ODE IVPs

“Initial value problem” implies that we know u(t0), i.e. u(t0) = η ∈ Rs is the initial
condition.

The order of an ODE is the highest-order derivative that appears.

Hence u′(t) = f (u, t) is a first-order ODE system.

Higher order ODEs can be rewritten as first-order ODE systems. Hence we focus on
developing methods for first-order ODEs.

3 / 26

ODE IVPs

See chapter 5, sections 5.1 to 5.7, for background on this section, which cover

▶ Existence and uniqueness of solutions

▶ Lipschitz constant

▶ One-step methods (forward/backward Euler)

▶ Truncation error

▶ Runge–Kutta methods

These concepts were covered in the ODE introduction—see video under the Kaltura
tab on Canvas.

4 / 26

Example: integrating the Rössler ODE system

Assume t0 = 0 and define tn = nk where k is a grid spacing. We use k for a spacing in
time, to distinguish it from h in space.

Let Un be the numerical approximation of u(tn), and set U0 = η. A finite-difference
approximation of u′(t) = f (u(t), t) gives

Un+1 − Un

k
= f (Un, tn)

which becomes
Un+1 = Un + kf (Un, tn),

which is the forward Euler method. It is an explicit method, since Un+1 can be directly
computed from Un.

5 / 26

Example: integrating the Rössler ODE system

An alternative approach is to note from the fundamental theorem of calculus that

u(tn+1)− u(tn) =

∫ tn+1

tn

u′(t)dt =

∫ tn+1

tn

f (u(t), t)dt.

Approximating the integral using the trapezoid rule gives the trapezoid method,

Un+1 − Un =
k
[
f (Un, tn) + f (Un+1, tn+1)

]
2

The trapezoid method is an implicit method, since in general, root-finding must be
used to find Un+1.

6 / 26

Example: integrating the Rössler ODE system

The Rössler attractor is a chaotic ODE system with three coupled equations

x ′ = −y − z ,

y ′ = x + ay ,

z ′ = b + z(x − c).

Consider solving this system using the trapezoid method, with
u(t) = (x(t), y(t), z(t)). To evaluate Un+1, we must find a root of the equation

F (U) = 2(Un − U) + k [f (Un, tn) + f (U, tn+1)] .

7 / 26

Example: integrating the Rössler ODE system

In component form, writing U = (X ,Y ,Z) and Un = (X n,Y n,Zn),

F (U) =

 2(X n − X) + k [−Y n − Zn − Y − Z]
2(Y n − Y) + k [X n + aY n + X + aY]

2(Zn − Z) + k [2b + Zn(X n − c) + Z (X − c)]

 ,

and the Jacobian is

JF (U) =

 −2 −k −k
k −2 + ak 0
kZ 0 −2 + k(X − c)


The program rossler trap.py solves the Rössler system, using Newton’s method to
perform the root-finding at each step.

8 / 26

https://github.com/rycroft-group/math714/blob/main/f_ivp/rossler_trap.py

Multistep methods

Both the Euler method and the trapezoid method are examples of one-step methods:
the value of Un+1 is determined solely from Un.

More generally we can look at multistep methods that incorporate information from
previous steps. An r -step multistep method has the form

r∑
j=0

αjU
n+j = k

r∑
j=0

βj f (U
n+j , tn+j),

where αr ̸= 0. If βr = 0 then the method is explicit; otherwise it is implicit.

9 / 26

Multistep method example

The general form is
r∑

j=0

αjU
n+j = k

r∑
j=0

βj f (U
n+j , tn+j).

The trapezoid method is consistent with this form when r = 1 and

(α0, α1) = (1,−1), (β0, β1) = (12 ,
1
2).

This gives

Un+1 − Un =
k
[
f (Un, tn) + f (Un+1, tn+1)

]
2

as before.

10 / 26

Families of multistep methods

Several different families of multistep methods can be derived using different
approaches.

One approach is to start from the integral relation

u(tn+r) = u(tn+r−1) +

∫ tn+r

tn+r−1

u′(t)dt = u(tn+r−1) +

∫ tn+r

tn+r−1

f (u(t), t)dt

Then

Un+r = Un+r−1 +

∫ tn+r

tn+r−1

p(t)dt

where p(t) is a polynomial interpolant of f using several prior values of Un+j . (See
derivation.)

11 / 26

Adams–Bashforth methods

The first few explicit Adams–Bashforth methods are

1 step: Un+1 = Un + kf (Un),

2 step: Un+2 = Un+1 +
k

2
(−f (Un) + 3f (Un+1)),

3 step: Un+3 = Un+2 +
k

12
(5f (Un)− 16f (Un+1) + 23f (Un+2)).

12 / 26

Adams–Moulton methods

The first few implicit Adams–Moulton methods are

1 step: Un+1 = Un +
k

2
(f (Un) + f (Un+1)),

2 step: Un+2 = Un+1 +
k

12
(−f (Un) + 8f (Un+1) + 5f (Un+2)),

3 step: Un+3 = Un+2 +
k

24
(f (Un)− 5f (Un+1)

+ 19f (Un+2) + 9f (Un+3)).

13 / 26

Local truncation error

The local truncation error is given by

τ(tn+r) =
1

k

 r∑
j=0

αju(tn+j)− k
r∑

j=0

βju
′(tn+j)

 .

Using Taylor series

u(tn+j) = u(tn) + jku′(tn) +
(jk)2

2
u′′(tn) + . . . ,

u′(tn+j) = u′(tn) + jku′′(tn) +
(jk)2

2
u′′′(tn) +

14 / 26

Local truncation error

Hence

τ(tn+r) =
1

k

 r∑
j=0

αj

 u(tn) +

 r∑
j=0

(jαj − βj)

 u′(tn)

+ k

 r∑
j=0

(
j2

2
αj − jβj

) u′′(tn) + . . .

The method is consistent if τ → 0 and k → 0, which occurs when

r∑
j=0

αj = 0,
r∑

j=0

jαj =
r∑

j=0

βj .

If the first p + 1 terms in τ(tn+r) vanish, then the method is pth order accurate.

15 / 26

Characteristic polynomials

The characteristic polynomials of a multistep method are

ρ(ζ) =
r∑

j=0

αjζ
j , σ(ζ) =

r∑
j=0

βjζ
j

The consistency conditions are equivalent to

ρ(1) = 0, ρ′(1) = σ(1)

We will see that the characteristic polynomials are also useful for determining stability
of a method.

16 / 26

Multistep versus one-step methods

Multistep methods are attractive because they can achieve higher-order accuracy for
limited extra work.

To measure the work required for a method, we can count the number of times that f
will be evaluated.

For a large ODE system, evaluating f may become very expensive, and therefore the
total f evaluations becomes a good proxy for the total workload.

17 / 26

Multistep versus one-step methods

Compare two methods:

▶ Classical fourth-order Runge–Kutta method – requires four intermediate stages to
step from Un to Un+1. Four total f evaluations per timestep.

▶ Four-step Adams–Bashforth method – computing Un+4 requires evaluating
f (Un+3), and reusing f (Un+2), f (Un+1), and f (Un). One total f evaluation per
timestep.

This is not an exact comparison, since it depends on the step size required to achieve a
certain accuracy, but it suggests that multistep methods have some inherent
advantages.

18 / 26

Multistep versus one-step methods

Multistep methods have some disadvantages:

▶ Starting values – for an r -step method, the values of U0,U1, . . . ,U r−1 are
required to begin. Can use an exact solution, or use a one-step method to begin
with.

▶ Even timestep spacing – the derived formulae rely on the timestep size k being
equal. By contrast, one-step methods allow the timestep to be adaptively chosen.

▶ Stability – Multistep methods introduce additional stability considerations that are
not present for one-step methods.

19 / 26

Digression: Runge–Kutta methods

Runge–Kutta (RK) methods are another type of one-step discretization, a very popular
choice.

Aim to achieve higher order accuracy by combining evaluations of f (i.e. estimates of
y ′) at several points in [tk , tk+1].

RK methods all fit within a general framework, which can be described in terms of
Butcher tableaus.

We will first consider two RK examples: two evaluations of f and four evaluations of f .

20 / 26

Digression: Runge–Kutta methods

The family of Runge–Kutta methods with two intermediate evaluations is defined by

yk+1 = yk + h(ak1 + bk2),

where k1 = f (tk , yk), k2 = f (tk + αh, yk + βhk1).

The Euler method is a member of this family, with a = 1 and b = 0.

By careful analysis of the truncation error,1 it can be shown that we can choose
a, b, α, β to obtain a second-order method.

1See order condition notes.
21 / 26

https://people.math.wisc.edu/~chr/am205/notes/am205_rk2_multi.pdf

Digression: Runge–Kutta methods

[order2.py] Three such examples are:

▶ The modified Euler method (a = 0, b = 1, α = β = 1/2):

yk+1 = yk + hf

(
tk +

1

2
h, yk +

1

2
hf (tk , yk)

)
.

▶ The improved Euler method (or Heun’s method) (a = b = 1/2, α = β = 1):

yk+1 = yk +
1

2
h[f (tk , yk) + f (tk + h, yk + hf (tk , yk))].

▶ Ralston’s method (a = 1/4, b = 3/4, α = 2/3, β = 2/3)

yk+1 = yk +
1

4
h[f (tk , yk) + 3f (tk +

2h
3 , yk +

2h
3 f (tk , yk))].

22 / 26

https://github.com/rycroft-group/math714/blob/main/activities/02_ode_review/order2.py

Digression: Runge–Kutta methods

The most famous Runge–Kutta method is the “classical fourth-order method”, RK4:

yk+1 = yk +
1

6
h(k1 + 2k2 + 2k3 + k4)

where

k1 = f (tk , yk),

k2 = f (tk + h/2, yk + hk1/2),

k3 = f (tk + h/2, yk + hk2/2),

k4 = f (tk + h, yk + hk3).

Analysis of the truncation error in this case (which gets quite messy!) gives
Tk = O(h4).

23 / 26

Digression: Butcher tableau

Summarizes an s + 1 stage Runge–Kutta method using a triangular grid of coefficients

α0

α1 β1,0
...

...
αs βs,0 βs,1 . . . βs,s−1

γ0 γ1 . . . γs−1 γs

The ith intermediate step is

f (tk + αih, yk + h
i−1∑
j=0

βi ,jkj).

The (k + 1)th answer for y is

yk+1 = yk + h
s∑

j=0

γjkj .

24 / 26

Digression: Butcher tableau

Forward Euler:

k1 = f (tk , yk)

yk+1 = yk + hk1

0

1

Two-step methods:

k1 = f (tk , yk)

k2 = f (tk + αh, yk + βhk1)

yk+1 = yk + h(ak1 + bk2)

0
α β

a b

25 / 26

Digression: Butcher tableau

RK4:

k1 = f (tk , yk)

k2 = f (tk + h/2, yk + hk1/2)

k3 = f (tk + h/2, yk + hk2/2)

k4 = f (tk + h, yk + hk3)

yk+1 = yk +
h

6
(k1 + 2k2 + 2k3 + k4)

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6

26 / 26

