Math/CS 714: Initial value problems

We start with the integral relation

$$u(t_{n+r}) = u(t_{n+r-1}) + \int_{t_{n+r-1}}^{t_{n+r}} f(u(t), t) dt,$$

then

$$U^{n+r} = U^{n+r-1} + \int_{t_{n+r-1}}^{t_{n+r}} p(t) dt$$

where p(t) is a polynomial interpolant of f(u(t),t) using several prior values of U^{n+j} . Our goal is to derivate parameters for an r-step method by first interpolating (finding p(t)) and then integrating the interpolant.

There are two families of multistep methods:

- Adams–Bashforth methods: explicit, use only previous values of $f(f_n, \ldots, f_{n+r-1})$.
- Adams–Moulton methods: implicit, use previous values of f and the current value (f_n, \ldots, f_{n+r}) .

The derivation below considers two-step (r = 2) Adams–Bashforth and Adams–Moulton methods.

1 Derivation of Adams-Bashforth methods

A mathematical solution to the ODE u'(t) = f(t, u) satisfies

$$u(t_{n+2}) = u(t_{n+1}) + \int_{t_{n+1}}^{t_{n+2}} f(t, u) dt.$$
 (1.1)

We aim to approximate f(t,u) over the interval $[t_{n+1},t_{n+2}]$ using a polynomial interpolant p(t) based on r previous values of f, $t_{n-r+1},t_{n-r+2},\ldots,t_n$. Function values at these points, $f_l=f(t_l,u(t_l))$, are known.

When r = 2, we have two values (f_n, f_{n+1}) , and thus use linear interpolation to construct p(t):

$$p(t) = f_{n+1} + s(f_{n+1} - f_n), (1.2)$$

where s is a new variable that satisfies $t=t_{n+1}+sh$ and $h=t_{n+2}-t_{n+1}$. The variable s varies from 0 to 1 as t goes from t_{n+1} to t_{n+2} .

To obtain a numerical update formulate, we just need to substitute Eq. (1.2) into Eq. (1.1) and then evaluate the integral:

$$u(t_{n+2}) = u(t_{n+1}) + \int_{t_{n+1}}^{t_{n+2}} p(t) dt$$

$$= u(t_{n+1}) + \int_{0}^{1} p(t_{n+1} + sh)h ds$$

$$= u(t_{n+1}) + h \int_{0}^{1} [f_{n+1} + s(f_{n+1} - f_n)] ds$$

$$= u(t_{n+1}) + h \left[f_{n+1}s + (f_{n+1} - f_n) \frac{s^2}{2} \right]_{0}^{1}$$

$$= u(t_{n+1}) + h \left(\frac{3}{2} f_{n+1} - \frac{1}{2} f_n \right).$$
(1.3)

The two-step explicit Adams-Bashforth method is second-order accurate, and is thus given by

$$U^{n+2} = U^{n+1} + \frac{h}{2} \left(-f(U^n) + 3f(U^{n+1}) \right). \tag{1.4}$$

2 Derivation of Adams-Moulton methods

We have the same mathematical solution to the ODE as in Eq. (1.1). The difference is that we now use r previous values of f and the current value to construct the polynomial interpolant p(t)—so we have r+1 values of f to interpolate.

When r=2, we have three values (f_n, f_{n+1}, f_{n+2}) , and thus use quadratic interpolation to construct p(t). Suppose we use the same change of variable s as before, then we have

$$u(t_{n+2}) = u(t_{n+1}) + h \int_0^1 p(s) ds$$
 (2.1)

where p(s) is a quadratic polynomial that interpolates f_n, f_{n+1}, f_{n+2} at s = -1, 0, 1, respectively. Using Lagrange interpolation, we have

$$p(s) = f_n L_0(s) + f_{n+1} L_1(s) + f_{n+2} L_2(s)$$
(2.2)

where $L_i(s)$ are the Lagrange polynomials for $\{-1,0,1\}$:

$$L_0(s) = \frac{(s-1)s}{2}$$
, $L_1(s) = 1 - s^2$, $L_2(s) = \frac{s(s+1)}{2}$.

Substituting Eq. (2.2) into the integral, we have

$$u(t_{n+2}) = u(t_{n+1}) + h \int_0^1 \left[f_n \frac{(s-1)s}{2} - f_{n+1}(1-s^2) + f_{n+2} \frac{s(s+1)}{2} \right] ds$$

$$= u(t_{n+1}) + h \left[f_n \left(\frac{s^3}{6} - \frac{s^2}{4} \right) + f_{n+1} \left(s - \frac{s^3}{3} \right) + f_{n+2} \left(\frac{s^3}{6} + \frac{s^2}{4} \right) \right]_0^1$$

$$= u(t_{n+1}) + h \left(f_n \left(\frac{1}{6} - \frac{1}{4} \right) + f_{n+1} \left(1 - \frac{1}{3} \right) + f_{n+2} \left(\frac{1}{6} + \frac{1}{4} \right) \right)$$

$$= u(t_{n+1}) + \frac{h}{12} \left(5f_{n+2} + 8f_{n+1} - f_n \right).$$
(2.3)

The two-step implicit Adams-Moulton method is third-order accurate, and is thus given by

$$U^{n+2} = U^{n+1} + \frac{h}{12} \left(-f(U^n) + 8f(U^{n+1}) + 5f(U^{n+2}) \right). \tag{2.4}$$