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Convergence

As for boundary value problems, we would like to ensure that our numerical method
will converge to the exact solution.

For a fixed time T > 0, we would like our numerical solution UN to approach u(T ).
Define N = T/k. Then convergence means that

lim
k→0,Nk=T

UN = u(T ).

It is possible that a method may converge for one problem but not for another. For a
mathematical definition, we would like to ensure that a method converges for all
problems in a reasonably large class and for all reasonable starting values.
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Convergence

Let Un(k) be the numerical solution with step size k. For reasonable starting values,
we might require that Uν(k) should approximate u(νk) for ν = 0, 1, . . . , r − 1.

Since k → 0, a weaker condition that we could impose is

lim
k→0

Uν(k) = η (1)

for ν = 0, 1, . . . , r − 1, where u(0) = η is our initial condition.
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Convergence

Definition. An r -step method is convergent if applying the method
to any ODE u′(t) = f (u(t), t) where f (u, t) is Lipschitz continuous
in u, and with any set of starting values satisfying Eq. (1), we obtain
convergence in the sense that

lim
k→0,Nk=T

UN = u(T )

for any T > 0 where the ODE has a unique solution.
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Convergence for a test problem

Consider the linear ODE
u′(t) = λu(t) + g(t)

where u(t0) = η. This has general solution

u(t) = eλ(t−t0)η +

∫ t

t0

eλ(t−τ)g(τ)dτ.
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Euler’s method for the linear problem

Applying Euler’s method to the test problem gives

Un+1 = Un + k(λUn + g(tn)) = (1 + kλ)Un + kg(tn).

The local truncation error is

τn =

(
u(tn+1)− u(tn)

k

)
− (λu(tn) + g(tn)) =

k

2
u′′(tn) + O(k2).

Since
u(tn+1) = (1 + kλ)u(tn) + kg(tn) + kτn,

then defining global error as En = Un − u(tn) gives

En+1 = (1 + kλ)En − kτn.
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Euler’s method for the linear problem

Applying this recursively shows that

En = (1 + kλ)En−1 − kτn−1

= (1 + kλ)
[
(1 + kλ)En−2 − kτn−2

]
− kτn−1

and

En = (1 + kλ)E 0 − k
n∑

m=1

(1 + kλ)n−mτm−1.

Note that |1 + kλ| ≤ ek|λ| and hence

(1 + kλ)n−m ≤ e(n−m)k|λ| ≤ enk|λ| ≤ e |λ|T

where tn = nk ≤ T .
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Euler’s method for the linear problem
Then

|En| ≤ e |λ|T

(
|E0|+ k

n∑
m=1

|τm−1|

)

≤ e |λ|T
(
|E0|+ nk max

m∈{1,...,n}
|τm−1|

)
Let N = T/k be the number of timesteps to reach T . Define

∥τ∥∞ = max
0≤n≤N−1

|τn|

where we expect from our previous analysis that

∥τ∥∞ ≈ k

2
∥u′′∥∞ = O(k)

where ∥u′′∥∞ is the maximum of u′′ over [0,T ].
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Euler’s method for the linear problem

Then for t = nk ≤ T ,
|En| ≤ e |λ|T (|E 0|+ T∥τ∥∞).

From the condition about starting values, |E 0| → 0 as k → 0. Indeed, if U0 is chosen
to be u(t0), then E 0 = 0. Hence

|En| ≤ e |λ|TT∥τ∥∞ = O(k)

as k → 0. Hence the method converges and is first order accurate.
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Euler’s method for general problems

Suppose the same analysis is applied to u′ = f (u, t) where f (u, t) is Lipschitz
continuous with constant L. Then1

|En| ≤ eLTT∥τ∥∞ = O(k).

The bound exponentially diverges, although in practice the numerical errors are much
smaller than this.

For general one-step methods, if the local truncation error is O(kp) then the global
error will also be O(kp). Hence the method converges as k → 0, which is referred to
as zero-stability.

1See the ODE workshop slides for more detail.
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Zero-stability for multistep methods

For multistep methods, the previous results do not apply directly. Consider the
following two-step example:

Un+2 − 3Un+1 + 2Un = −kf (Un).

The truncation error is

τn =
u(tn+2)− 3u(tn+1) + 2u(tn)− ku′(tn)

k

=
5k

2
u′′(tn) + O(k2).

so the method is consistent.
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Stability of a multistep scheme

Consider applying this method to u′ = 0 with u(0) = 0. The solution is given by

Un+2 − 3Un+1 + 2Un = 0.

Two starting values are needed. If U0 = U1 = 0, then Un = 0 for all n, and the
numerical results match the exact solution.

But suppose that U1 = ϵ ̸= 0 due to some numerical error. Then we can show that

Un = ϵ(2n − 1)

which blows up exponentially. Similar results would be seen when applying this to any
ODE, showing that the method is not stable.
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Linear difference equations

The previous numerical example involves a linear difference equation which can be
written generally as

r∑
j=0

αjU
n+j = 0.

Consider looking for a solution of the form Un = ζn (where the n on the RHS is a
power). Then

r∑
j=0

αjζ
n+j = 0

and hence
r∑

j=0

αjζ
j = ρ(ζ) = 0,

where ρ(ζ) is the first characteristic polynomial introduced previously.
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Linear difference equations

In general ρ can be factorized as

ρ(ζ) = αr (ζ − ζ1)(ζ − ζ2) . . . (ζ − ζr )

where the roots ζj may be complex. Since the difference equation is linear, any linear
combination of solutions will satisfy it.

Assuming the roots are all distinct, the general solution is

Un = c1ζ
n
1 + c2ζ

n
2 + . . .+ crζ

n
r .

Given initial data U0,U1, . . . ,U r−1, the constants cj can be determined.
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Linear difference equations

For the example difference equation Un+2 − 3Un+1 + 2Un = 0, the characteristic
polynomial factorizes as

ρ(ζ) = 2− 3ζ + ζ2 = (ζ − 1)(ζ − 2),

so the roots are ζ1 = 1 and ζ2 = 2. The general solution is therefore

Un = c1 + c22
n,

which matches is consistent with the solution presented previously.

In general, the presence of a root where |ζj | > 1 will lead to an exponentially divergent
solution.
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Repeated roots

More generally, it is possible that some roots may be repeated. Suppose that the
distinct roots are ζ1, . . . , ζl where l ≤ r , and let mj be the multiplicity of ζj . Hence

l∑
j=1

mj = r

The general solution of the difference equation is

Un =
l∑

j=1

pj(n)ζ
n
j

where pj is a polynomial of degree mj − 1.
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Repeated roots example
Consider the linear multistep method

Un+2 − 2Un+1 + Un =
k(f (Un+2) + f (Un))

2
.

The characteristic polynomial is

ρ(ζ) = ζ2 − 2ζ + 1 = (ζ − 1)2

and so ζ1 = 1 is a root with multiplicity 2. Therefore the general solution is

Un = p1(n)ζ
n
1

where p1(n) is a polynomial of degree 1, so

Un = c1 + c2n.

In general, a repeated root with |ζj | = 1 is enough to create an algebraic divergence.
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The root condition

This leads to the follow theorem for determining zero-stability.

Theorem. An r -step linear multistep method is said to be zero-stable
if the roots ζj of the characteristic polynomial ρ(ζ) satisfy:

▶ |ζj | ≤ 1 for all j ,

▶ If ζj is a repeated root, then |ζj | < 1.
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Examples

The program z stabilty.py integrates three different multistep schemes:

▶ Stable:

24Un+3 − 24Un+2 = k(9f (Un+3) + 19f (Un+2)− 5f (Un+1) + f (Un))

▶ Exponentially unstable:

11Un+3 + 27Un+2 − 27Un+1 − 11Un

= 3k(f (Un+3) + 9f (Un+2) + 9f (Un+1) + f (Un))

▶ Algebraically unstable:

Un+3 + Un+2 − Un+1 − Un = 2k(f (Un+2) + f (Un+1))
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https://github.com/rycroft-group/math714/blob/main/f_ivp/z_stability.py


Convergence

A theorem due to Dahlquist shows that for linear multistep methods

(consistency) + (zero-stability) ⇐⇒ (convergence)

This is an asymptotic statement about the case when k → 0. In practice, obtaining a
convergence may also depend on the size of the timestep k.
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