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Convergence

As for boundary value problems, we would like to ensure that our numerical method
will converge to the exact solution.

For a fixed time T > 0, we would like our numerical solution UN to approach u(T).
Define N = T /k. Then convergence means that

lim UV = u(T).
k—0, Nk=T

It is possible that a method may converge for one problem but not for another. For a
mathematical definition, we would like to ensure that a method converges for all
problems in a reasonably large class and for all reasonable starting values.
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Convergence

Let U"(k) be the numerical solution with step size k. For reasonable starting values,
we might require that U”(k) should approximate u(vk) forv =0,1,...,r — 1.

Since k — 0, a weaker condition that we could impose is

lim U”(k) = 1
lim U/(K) = 1)
forv=0,1,...,r — 1, where u(0) = 7 is our initial condition.
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Convergence

Definition. An r-step method is convergent if applying the method
to any ODE u/(t) = f(u(t),t) where f(u,t) is Lipschitz continuous
in u, and with any set of starting values satisfying Eq. (1), we obtain
convergence in the sense that

lim UM =u(T)
k—0, Nk=T

for any T > 0 where the ODE has a unique solution.
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Convergence for a test problem

Consider the linear ODE
u'(t) = Au(t) + g(t)

where u(tp) = 7. This has general solution

t
u(t) = M=)y 4 / Mt g(7)dr.

to
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Euler's method for the linear problem

Applying Euler's method to the test problem gives
U™ = U™ 4+ k(AU + g(tn)) = (1 + kAN U™ + kg(tn).

The local truncation error is

n_ (U(tn+1) — u(tn)

T K 2

Since
u(tne1) = (1 + kN u(t,) + kg(tn) + k7",

then defining global error as E" = U" — u(t,) gives

E™Y = (14 kA)E™ — k7"

) — (Au(ty) + g(tn)) = Eu"(tn) + O(k?).

6/20



Euler's method for the linear problem

Applying this recursively shows that

E" = (1+ k\)E™ — k71
= (14 kX) [(1+ KN)E" 2 — k7" 2] — k7"

and

EM=(1+k\E® — k> (14 k)™ L

m=1

Note that |1 4 kA| < ekl and hence
(1+ k)\)n—m < e(n—m)k|)\| < enk|)\\ < e|>\\T

where t, = nk < T.
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Euler's method for the linear problem
Then

IN

|E”]

e|)\|T (’EO| + k Z |7_m1>

m=1

IN

e <|Eo| + nk  max |7""_1|>
me{l,...,n}

Let N = T /k be the number of timesteps to reach T. Define

— n
Iloe = _max_I7"]

where we expect from our previous analysis that
k "
I7lloo 2 S [u"lloc = O()

where [|u"|| is the maximum of u” over [0, T].
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Euler's method for the linear problem

Then for t =nk < T,
E"| < eMT(EY + T|I7)l0)-

From the condition about starting values, ]E0] — 0 as k — 0. Indeed, if U° is chosen
to be u(tg), then E® = 0. Hence

E" < M T|7]lo = O(K)

as k — 0. Hence the method converges and is first order accurate.
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Euler's method for general problems

Suppose the same analysis is applied to v’ = f(u, t) where f(u, t) is Lipschitz
continuous with constant L. Then?

E”| < ' T T|7]loc = O(K).

The bound exponentially diverges, although in practice the numerical errors are much
smaller than this.

For general one-step methods, if the local truncation error is O(kP) then the global
error will also be O(kP). Hence the method converges as k — 0, which is referred to
as zero-stability.

1See the ODE workshop slides for more detail.
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Zero-stability for multistep methods

For multistep methods, the previous results do not apply directly. Consider the
following two-step example:

U™2 —3U" 20" = —kfF(UM).
The truncation error is
n_ U(tnt2) — 3u(tni1) + 2u(tn) — ku'(tn)

T k
_ %u”(tn) + O(K?).

so the method is consistent.
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Stability of a multistep scheme

Consider applying this method to v’ = 0 with u(0) = 0. The solution is given by
U2 —3umt 20" =0.

Two starting values are needed. If U° = U! =0, then U" = 0 for all n, and the
numerical results match the exact solution.

But suppose that Ul = ¢ # 0 due to some numerical error. Then we can show that
U"=¢(2"-1)

which blows up exponentially. Similar results would be seen when applying this to any
ODE, showing that the method is not stable.
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Linear difference equations

The previous numerical example involves a linear difference equation which can be
written generally as
.
[t —
Z ajU™ = 0.
j=0
Consider looking for a solution of the form U" = (" (where the n on the RHS is a

power). Then
r
> ™ =0
j=0

and hence

> =p(¢) =0,
=0

where p(() is the first characteristic polynomial introduced previously.
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Linear difference equations

In general p can be factorized as

p(¢) = ar(¢ = )¢ = C2) ... (C =)

where the roots (; may be complex. Since the difference equation is linear, any linear
combination of solutions will satisfy it.

Assuming the roots are all distinct, the general solution is
U=all+alG +...+ (.

Given initial data U°, UY,..., U1, the constants ¢j can be determined.
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Linear difference equations

For the example difference equation U"t2 — 30U 4 20" = 0, the characteristic
polynomial factorizes as

p(¢)=2-3C+=(¢-1)(¢~2)
so the roots are (; = 1 and (> = 2. The general solution is therefore
U" = ¢c1 + 2",
which matches is consistent with the solution presented previously.

In general, the presence of a root where |(j| > 1 will lead to an exponentially divergent
solution.
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Repeated roots

More generally, it is possible that some roots may be repeated. Suppose that the

distinct roots are (y,...,(; where | < r, and let m; be the multiplicity of (;. Hence

The general solution of the difference equation is
!
U =3 pi(n)¢f
j=1

where p; is a polynomial of degree m; — 1.

16 /20



Repeated roots example
Consider the linear multistep method
k(f(U™2) + F(U™)

Un+2 _ 2un+1 + Un — 5 )

The characteristic polynomial is
pC)=¢—20+1=(C~1)
and so (31 = 1 is a root with multiplicity 2. Therefore the general solution is
U" = p1(n)¢{
where p1(n) is a polynomial of degree 1, so
U" = c1 + on.

In general, a repeated root with |(j| = 1 is enough to create an algebraic divergence.
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The root condition

This leads to the follow theorem for determining zero-stability.

Theorem. An r-step linear multistep method is said to be zero-stable
if the roots (; of the characteristic polynomial p(¢) satisfy:

> || <1 forall j,
» If (; is a repeated root, then |(j| < 1.
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Examples

The program z_stabilty.py integrates three different multistep schemes:
> Stable:

24U™M3 — 24U™2 = k(9F(U"F3) 4+ 19F(U™2) — BF(U™) + F(U™))
» Exponentially unstable:

1103 4 27y™2 — 27U — 110"
= 3k(F(U™3) + 9F(U™?) + 9F(U™) + F(U"))

P Algebraically unstable:

Un+3 + Un+2 _ Un-‘rl —_yn = 2k(f(Un+2) + f(Un+1))

19/20


https://github.com/rycroft-group/math714/blob/main/f_ivp/z_stability.py

Convergence

A theorem due to Dahlquist shows that for linear multistep methods

(consistency) +  (zero-stability) <= (convergence)

This is an asymptotic statement about the case when k — 0. In practice, obtaining a
convergence may also depend on the size of the timestep k.

20/20



