
Notes 19 : Infinite-sites model

MATH 833 - Fall 2012 Lecturer: Sebastien Roch

References: [Dur08, Chapter 1.4].

1 Infinite-sites model
We consider a sequence-based model of evolution similar to the infinite-alleles
model. Imagine that each individual has an infinitely long DNA sequence. As
in the infinite-alleles model, mutations occur in each individual at rate θ/2. Any
time a mutation occurs, it creates a state change in a new position of the sequence.
One formulation is as follows:

DEF 19.1 (Infinite-sites model) For a partition Π on n samples, we let |Π| be
the number of sets in Π. Consider the following algorithm with n and θ as input:

• Set Π = {{1}, . . . , {n}}.

• Repeat until |Π| = 1:

– Setting k := |Π|, after an exponential time with parameter
(
k
2

)
+ k θ

2

(going backwards in time):

∗ With probability θ
θ+k−1 , generate a mutation at new position in a

uniformly random lineage.
∗ With probability k−1

θ+k−1 , merge two uniformly random lineages.

Each sample inherits a sequence mutated at the sites encountered along the way
to the root.

In fact, there are two cases: whether or not the ancestral sequence is assumed
known.
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2 Segregating sites
A natural way to estimate θ in this model is to consider the number of segregating
sites Sn in the sample, that is, the number of positions at which the sequences
differ. We let Ttot be the total length of the coalescent tree.

LEM 19.2 We have
E[Sn] = θhn,

where hn =
∑n−1

i=1
1
i
.

Proof: Conditioning on Ttot, Sn is Poisson with mean θ
2
Ttot

E[Sn] = E[E[Sn |Ttot]] = E
[
θ

2
Ttot

]
=
θ

2
E[Ttot].

To compute the expectation of Ttot, we divide the process into stages with j lin-
eages for j = n, . . . , 2 which last tj respectively where tj is exponential with
parameter

(
j
2

)
independently of the other stages. Then

E[Ttot] =
n∑
j=2

jE[tj] =
n∑
j=2

2

j − 1
= 2

n−1∑
i=1

1

i
.

LEM 19.3 We have
Var[Sn] = θhn + θ2gn,

where gn =
∑n−1

i=1
1
i2

.

Proof: Conditioning again on Ttot, Sn is Poisson with mean (and variance) θ
2
Ttot

Var[Sn] = E[Var[Sn |Ttot]] + Var[E[Sn |Ttot]]

= E
[
θ

2
Ttot

]
+ Var

[
θ

2
Ttot

]
=
θ

2
E[Ttot] +

θ2

4
Var[Ttot].

By the same reasoning as in the previous proof,

Var[Sn] =
n∑
j=2

j2Var[tj] =
n∑
j=2

4

(j − 1)2
= 4

n−1∑
i=1

1

i2
.

Therefore:
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THM 19.4 (Watterson’s estimator) The estimator

θW =
Sn
hn
,

is unbiased for θ. Its variance is

Var[θW ] = θ
1

hn
+ θ2

gn
h2n
,

which converges to 0.

3 Cramer-Rao Bound
To get a sense of how much better we can do when estimating θ, we consider
an hypothetical likelihood approach. We first recall the Cramer-Rao bound—for
simplicity we restrict ourselves to the discrete case with a single parameter.

THM 19.5 (Cramer-Rao bound) Let X be a random vector on a finite state
space S with law pθ. Assume that pθ is differentiable with respect to θ for all
x ∈ S. If φ(X) is an unbiased estimator of θ, then

Varθ[φ(X)] ≥ 1

IX(θ)
,

where

IX(θ) = Eθ

[(
∂

∂θ
log pθ(X)

)2
]

= −Eθ
[
∂2

∂θ2
log pθ(X)

]
,

is the Fisher information.

Proof: Differentiating in
1 =

∑
x∈S

pθ(x),

and
θ =

∑
x∈S

φ(x)pθ(x),

gives respectively

0 =
∑
x∈S

∂

∂θ
pθ(x) =

∑
x∈S

∂
∂θ
pθ(x)

pθ(x)
pθ(x) = Eθ

[
∂

∂θ
log pθ(x)

]
, (1)
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and

1 =
∑
x∈S

φ(x)
∂

∂θ
pθ(x) = Eθ

[
φ(X)

∂

∂θ
log pθ(X)

]
. (2)

Using (1) into (2) and applying Cauchy-Schwarz, we get

1 = Eθ
[
(φ(X)− Eθ[φ(X)])

∂

∂θ
log pθ(X)

]

≤
√
Eθ [(φ(X)− Eθ[φ(X)]2)]

√√√√Eθ

[(
∂

∂θ
log pθ(X)

)2
]
.

To see the second expression for the Fisher information, note that

∂

∂θ

(
pθ(x)

∂

∂θ
log pθ(x)

)
= pθ(x)

∂2

∂θ2
log pθ(x) +

∂

∂θ
pθ(x)

∂

∂θ
log pθ(x)

= pθ(x)
∂2

∂θ2
log pθ(x) + pθ(x)

(
∂

∂θ
log pθ(x)

)2

.

Summing over x and using (1) gives the result.
Imagine that we had access to the number of segregating sites sj generated

when the number of lineages was j. (In reality, we do not.) Clearly, by the de-
scription of the infinite-sites model above, sj is geometric (shifted) and the log-
likelihood of the data is

`n(θ) = log
n∏
j=2

(
θ

θ + j − 1

)sj ( j − 1

θ + j − 1

)

= log(n− 1)! + Sn log θ −
n∑
j=2

(sj + 1) log(θ + j − 1).

To compute the Fisher information note

− ∂2

∂θ2
`n(θ) =

Sn
θ2
−

n∑
j=2

sj + 1

(θ + j − 1)2
.

Note that sj + 1 is geometric with mean one over the success probability, that is,

Eθ[sj + 1] =
θ + j − 1

j − 1
,
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and Eθ[Sn] = θhn. Hence

IX(θ) = −Eθ
[
∂2

∂θ2
`n(θ)

]
=
hn
θ
−

n∑
j=2

1

(j − 1)(θ + j − 1)

=
1

θ

n−1∑
i=1

[
1

i
− θ

i(θ + i)

]

=
1

θ

n−1∑
i=1

1

θ + i
.

Note that
Var[θW ]

1/IX(θ)
→ 1,

as n → ∞ for fixed θ. In other words, in the large sample limit even if we were
given knowledge of the sj’s we couldn’t expect to obtain an unbiased estimator of
θ much better than θW . However, for fixed n as θ →∞,

Var[θW ]

1/IX(θ)
→ (n− 1)gn

h2n
,

which can mean that θW may have a much larger variance.
On the basis of this observation, it has been propsed that ML approaches may

offer better estimates. Using the Splits-Equivalence Theorem, we can get a rough
estimate of the coalescent tree as well as of the branches on which mutations have
occured (assume that we know the ancestral sequence—for instance by looking
at closely related species). However, determining the sj’s would require know-
ing exactly where on the branches these mutations have occured. A likelihood
approach can integrate over all these possibilities. In fact, as in the case of the
infinite-alleles model, recursions for the likelihood can be derived, although no
analytic solution is known. See [Tav04].

Further reading
The material in this section was taken from Section 1.4 of the excellent mono-
graph [Dur08].
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