Notes 22 : Estimating the recombination rate

MATH 833 - Fall 2012 Lecturer: Sebastien Roch

References: [Dur08, Chapter 3.2].

Previous class

Recall that for a two-locus recombination process without mutation (the loci are
called a and b):

THM 22.1 (Tree-Length Covariance: Recursion) Let x = (i, j, k) be the ini-
tial state where i (respectively j, and k) is the number of lineages with only a
(respectively only b, and both a and b) material ancestral to the samples with
Ng =1+k ny=7+k andl =1+ j+ k. Let F(x) be the covariance of the tree
lengths T, and Ty, started at x. If X is the state after the first jump. Then
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where
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and p/2 is the recombination rate per lineage.

An application of this theorem to the 2-sample case gives:

THM 22.2 (Covariance: Two-Sample Case) We have
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(The factor of 4 comes from the difference between coalescence time and tree
length.)
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1 Mutation model

It is not entirely obvious to extend the infinite-sites model to the case with recom-
bination. Indeed, the linear order of the sites is now important. One way to deal
with this is to arrange m infinite-sites loci linearly with mutation rates i and re-
combination rate (— between any two consecutive loci. There is no zntra locus
recombination. We then take a limit m — +o0.

Our goal in this lecture is to estimate the recombination rate. To do so, we
must also estimate the mutation rate. We describe an approach based on pairwise
differences. Let
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where Af; is the number of differences between sequences i and j at locus a.
Recall that 0

E[A,] =mE [A] =m (—) =0.

m
(Recall also that (as proved in [Dur08])
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So 6, = A, provides an estimate of . To estimate p, we need a quantity involving
correlations between sites. A natural idea is to consider the sample variance of the
pairwise differences, that is,

Si= = D (A=A

We will prove the following:
THM 22.3 In the limit m — oo
2(n —2)
E[S2] = ——£ + 6?

where g is a function given in [Dur08].

Recall that 6, is not a consistent estimator of §. Hence, to estimate > we use a
corrected version 6. This will follow from:
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THM 22.4 In the limit m — oo,

Var[A,] = 93(7;—“1) +6*f(p,n),

where
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can be computed explicitly (see [Dur08]).
In particular, note that

n+1

E[62] = Var[f,] + (E[0,])? = ETr—

+0*(f(p,n) +1).

Hence, an unbiased estimator of 62 is

07 —[(n+1)/(3(n — 1))]6-

Y=(p) =
flp,n) +1
Putting all this together, an estimate of p is given by the solution of
$2—p 2(n — 2)

3n 1) + Y= (p)g(p, ).

2 Proofs

We prove the two previous theorems. We begin with the second one.
Proof:(Theorem 22.4) Expanding the variance of A,,, the first term gives the term
not depending on p
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as m — 0o, where we used (1). Rewriting the second term as

ZCOV ( ZA”, ZA = ZZZCOV ”,AZZ}

ab {i.g} {k 0 ()" o a7y (o)

we need to compute Cov [Af ;i AZA. By conditioning on the tree lengths 7", of

locus a between ¢ and j and TM, we get

0\ 2
Cov [A%,Azd = (%) Cov [ng,ﬂg’g] )

Let
p

-1’
be the total recombination rate between loci a and b. Then, using an argument
similar to the one we used to compute the variance of the homozygosity,

ZZCOV[ ”,Azg}

{i.g} {k,0}
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S \m 2) 22+4+13z+18
Summing over all values of h = |b — a| and noting that there are 2(m — h)
possibilities for each,

z=1b—dq
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Taking a limit m — oo and using a Riemann integral approximation gives the
result. To compute the integral, factor the denominator. ]
We can now prove the first theorem.
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Proof:(Theorem 22.3) This calculation is rather straightforward (up to a “mira-
cle”’; see [Dur08]). Rewrite

si= | o an| - at
(2) {i,j}
Using E[A; ;] = E[A,] = 6, we have
E[S?] = Var[A,] — Var[A,)]

-9 93(”n—+_11) +6%[f(p,2) = f(p.n)],

and we are done. ]

Further reading

The material in this section was taken from Chapter 3 of the excellent mono-
graph [Dur08].
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