Notes 5 : Quartet Theorem

MATH 833 - Fall 2012

Lecturer: Sebastien Roch

References: [SS03, Chapter 6]

1 Restricted subtrees

Here, an X-tree is also called a *semi-labelled tree*. If two X-trees $\mathcal{T}, \mathcal{T}'$ are isomorphic, we write $\mathcal{T} \cong \mathcal{T}'$.

DEF 5.1 (Restricted subtree) Let \mathcal{T} be an X-tree and $X' \subseteq X$. The restriction \mathcal{T} to X', denoted $\mathcal{T}|X'$, is the X'-tree such that

 $\Sigma(\mathcal{T}|X') = \{A \cap X' | B \cap X' : A | B \in \Sigma(\mathcal{T})\}.$

 $\mathcal{T}|X'$ is obtained from $\mathcal{T} = (T, \phi)$ by taking the minimal subtree of T including $\phi(X')$ and suppressing degree-two vertices not in $\phi(X')$.

DEF 5.2 (Displaying a semi-labelled tree) Let $X' \subseteq X$. An X-tree \mathcal{T} displays an X'-tree \mathcal{T}' if $\mathcal{T}' \leq \mathcal{T}|X'$. Similarly, \mathcal{T} displays a collection \mathcal{P} of semi-labelled tree if it display every tree in \mathcal{P} .

2 Quartet theorem

The following theorem indicates that X-trees are characterized by their restricted subtrees on sets of size at most 4.

THM 5.3 (Quartet theorem) Let $\mathcal{T}, \mathcal{T}'$ be X-trees. Then, $\mathcal{T} \cong \mathcal{T}'$ if and only if $\mathcal{T}|S \cong \mathcal{T}'|S$ for all $S \subseteq X$ with $|S| \leq 4$.

Proof: We prove a slightly more general statement:

 $\mathcal{T} \leq \mathcal{T}'$ if and only if $\mathcal{T}|S \leq \mathcal{T}'|S$ for all $S \subseteq X$ with $|S| \leq 4$.

Note that $\mathcal{T} \cong \mathcal{T}'$ if and only if $\mathcal{T} \leq \mathcal{T}'$ and $\mathcal{T}' \leq \mathcal{T}$.

One direction is trivial. We prove the other direction. Assume $\mathcal{T}|S \leq \mathcal{T}'|S$ for all $S \subseteq X$ with $|S| \leq 4$. Let $A|B \in \Sigma(\mathcal{T})$. We seek to prove that $A|B \in \Sigma(\mathcal{T}')$. First, note that for all $a, a' \in A$ and $b, b' \in B$, by definition of restriction we have

$$\{a, a'\} | \{b, b'\} \in \Sigma(\mathcal{T} | \{a, a', b, b'\}) \subseteq \Sigma(\mathcal{T}' | \{a, a', b, b'\}),$$

where the inclusion follows by assumption. We proceed by contradiction. Suppose A|B is not a split of \mathcal{T}' . There are two cases:

- There is a split A'|B' of \mathcal{T}' incompatible with A|B. Then there is $a \in A \cap A', a' \in A \cap B', b \in B \cap A', b' \in B \cap B'$. But then $\{a, b\}|\{a', b'\} \in \Sigma(\mathcal{T}'|\{a, a', b, b'\})$, contradicting the pairwise compatibility of the latter.
- A|B is compatible with every split in \mathcal{T}' . Recall the following lemma from the proof of the Splits-Equivalence theorem:

LEM 5.4 (Label Painting Lemma) Let $\mathcal{T}' = (T', \phi')$ be an X-tree with T' = (V', E'). Let $\sigma = A|B$ be an X-split such that $\sigma \notin \Sigma(\mathcal{T}')$ but σ is compatible with all splits in $\Sigma(\mathcal{T}')$. Colour red (respectively green) the vertices of \mathcal{T}' in $\phi(A)$ (respectively $\phi(B)$). Then, there is a unique vertex $w \in V'$ such that the connected components of $T' \setminus w'$ are monochromatic.

Let w be as in the statement of the lemma. There are three cases:

- 1. w has labels from A and B. Let $a \in \phi^{-1}(w) \cap A$ and $b \in \phi^{-1}(w) \cap B$. Then, $\{a\}|\{b\} \notin \Sigma(\mathcal{T}'|\{a,b\})$, a contradiction. (Take a = a' and b = b' above.)
- w has a label from A but not from B (and the symmetric case). Let a ∈ φ⁻¹(w)∩A. By the uniqueness of w, there must be b, b' ∈ φ(B) in two distinct components of T'\w. But then, {a}|{b,b'} ∉ Σ(T'|{a,b,b'}), a contradiction.
- w is unlabelled. Again by the uniqueness of w, there must be a, a' ∈ φ(A) (resp. b, b' ∈ φ(B)) in two distinct components of T'\w. But then, {a, a'}|{b, b'} ∉ Σ(T'|{a, a', b, b'}), a contradiction.

3 Strong Quartet Evidence

We now restrict our attention to phylogenetic trees. Let Σ^0 be the set of trivial splits on X (i.e., where one side of the partition is a singleton).

DEF 5.5 (Quartet trees) A quartet tree q = ab|cd is a binary phylogenetic tree on four distinct labels $\{a, b, c, d\}$ where $\{a, b\}|\{c, d\}$ is the corresponding nontrivial split. For a collection Q of quartet trees, let

$$\Sigma(\mathcal{Q}) = \{A|B : q = aa'|bb' \in \mathcal{Q}, \forall a \neq a' \in A, b \neq b' \in B\}.$$

For an X-split $\sigma = A|B$, let

$$\mathcal{Q}_{\sigma} = \{aa' | bb' : a \neq a' \in A, b \neq b' \in B\}$$

THM 5.6 Let Q be a collection of quartet trees on X such that for all S with |S| = 4 at most one quartet tree of Q has label set S. Then there is a phylogenetic tree T on X such that $\Sigma(Q) \cup \Sigma^0 = \Sigma(T)$.

Proof: It suffices to show that $\Sigma(Q)$ is pairwise compatible. We proceed by contradiction. Assume $A_1|B_1, A_2|B_2 \in \Sigma(Q)$ are incompatible. Then there is $a \in A_1 \cap A_2, b \in A_1 \cap B_2, c \in B_1|A_2$ and $d \in B_1 \cap B_2$. But then $ab|cd \in Q$ and $ac|bd \in Q$, a contradiction.

There is an efficient algorithm for computing $\Sigma(Q) \cup \Sigma^0$ given a collection Q satisfying the assumptions of the previous theorem. W.l.o.g. assume X = [n]. For $i \in [n]$, let

$$\mathcal{Q}_{[i]} = \{ab | cd \in \mathcal{Q} : a, b, c, d \in [i]\},\$$

and $\Sigma_{[i]} = \Sigma(\mathcal{Q}_{[i]}) \cup \Sigma_{[i]}^{0}$ where $\Sigma_{[i]}^{0}$ is the set of trivial splits on [i]. The algorithm constructs the tree by adding labels in X one by one. It is based on the following observation:

LEM 5.7 For all nontrivial $\sigma = A|B \in \Sigma_{[i]}$, there is $\sigma' = A'|B' \in \Sigma_{[i-1]}$ such that either $\sigma = A' \cup \{i\}|B'$ or $\sigma = A'|B' \cup \{i\}$.

Proof: W.l.o.g., assume $i \in A$. If $|A - \{i\}| = 1$, σ' is trivial and we are done. Otherwise, by assumption for all distinct $i \neq a, a' \in A$ and $b, b' \in B$, we have $aa'|bb' \in Q_{[i]}$ and hence $\in Q_{[i-1]}$.

Let $Q_i = Q_{[i]} \setminus Q_{[i-1]}$. The algorithm to build $\Sigma_{[n]}$ proceeds as follows:

• *Initialization*. $\Sigma_{[4]}$ is the union of $\Sigma_{[4]}^0$ and the split corresponding to the unique quartet tree in $Q_{[4]}$ if any.

- *Main loop.* For i = 5 to n:
 - Set $\Sigma_{[i]} = \Sigma_{[i]}^0$.
 - For each $\sigma' = A'|B' \in \Sigma_{[i-1]}$, add $\sigma = A' \cup \{i\}|B'$ to $\Sigma_{[i]}$ if $\mathcal{Q}_{\sigma} \setminus \mathcal{Q}_{\sigma'} \subseteq \mathcal{Q}_i$ and similarly for $\sigma = A'|B' \cup \{i\}$.

Further reading

The definitions and results discussed here were taken from Chapter 6 of [SS03]. Much more on the subject can be found in that excellent monograph. See also [SS03] for the relevant bibliographic references.

References

[SS03] Charles Semple and Mike Steel. *Phylogenetics*, volume 24 of *Oxford Lecture Series in Mathematics and its Applications*. Oxford University Press, Oxford, 2003.