Notes 11 : Infinitely divisible and stable laws

Math 733-734: Theory of Probability Lecturer: Sebastien Roch

References: [Dur10, Section 3.7, 3.8], [Shi96, Section III.6].

1 Infinitely divisible distributions

Recall:

EX 11.1 (Normal distribution) *Let* $Z_1, Z_2 \sim N(0, 1)$ *independent then*

$$
\phi_{Z_1+Z_2}(t) = \phi_{Z_1}(t)\phi_{Z_2}(t) = e^{-t^2},
$$

and $Z_1 + Z_2 \sim N(0, 2)$ *.*

EX 11.2 (Poisson distribution) *Similarly, if* $Y_1, Y_2 ∼$ Poi $(λ)$ *independent then*

$$
\phi_{Y_1+Y_2}(t) = \phi_{Y_1}(t)\phi_{Y_2}(t) = \exp(2\lambda(e^{it}-1)),
$$

and $Y_1 + Y_2 \sim \text{Poi}(2)$ *.*

DEF 11.3 (Infinitely divisible distributions) *A DF* F *is*infinitely divisible *if there for all* $n \geq 1$ *, there is a DF* F_n *such that*

$$
Z =_d X_{n,1} + \cdots + X_{n,n},
$$

where $Z \sim F$ *and the* $X_{n,k}$ *'s are IID with* $X_{n,k} \sim F_n$ *for all* $1 \leq k \leq n$ *.*

THM 11.4 *A DF* F *can be a limit in distribution of IID triangular arrays*

$$
Z_n = X_{n_1} + \cdots + X_{n,n},
$$

if and only if F *is infinitely divisible.*

Proof: One direction is obvious. If F is infinitely divisible, then we can make $Z = d Z_n$ for all n with $Z \sim F$.

For the other direction, assume $Z_n \Rightarrow Z$. Write

$$
Z_{2n} = (X_{2n,1} + \cdots + X_{2n,n}) + (X_{2n,n+1} + \cdots + X_{2n,2n}) = Y_n + Y_n'.
$$

Clearly Y_n and Y'_n are independent and identically distributed. We claim further that they are tight. Indeed

$$
\mathbb{P}[Y_n > y]^2 = \mathbb{P}[Y_n > y] \mathbb{P}[Y'_n > y] \le P[Z_{2n} > 2y]
$$

and Z_n converges to a probability distribution by assumption. Now take a subsequence of (Y_n) so that $Y_{n_k} \Rightarrow Y$ (and hence $Y'_{n_k} \Rightarrow Y'$) then, using CFs,

$$
Y_{n_k} + Y'_{n_k} \Rightarrow Y + Y',
$$

where Y, Y' are independent. Since $Z_n \Rightarrow Z$ it follows that

$$
Z=_d Y+Y'.
$$

EX 11.5 (Normal distribution) *To test whether a DF* F *is infinitely divisible, it suffices to check that*

$$
(\phi_F(t))^{1/n}
$$
 is a CF, $\forall n$.

In the N(0, 1) *case,*

$$
(\phi_F(t))^{1/n} = e^{-t^2/(2n)},
$$

which is the CF of a $N(0, 1\sqrt{n})$.

EX 11.6 (Poisson distribution) *Similarly, in the* $F \sim \text{Poi}(\lambda)$ *case,*

$$
(\phi_F(t))^{1/n} = \exp(\lambda(e^{it} - 1)/n),
$$

is the CF of a $Poi(\lambda/n)$ *.*

EX 11.7 (Gamma distribution) Let F be a Gamma (α, β) distribution, that is, *with density*

$$
f(x) = \frac{x^{\alpha - 1}e^{-x/\beta}}{\Gamma(\alpha)\beta^{\alpha}}1_{x \ge 0},
$$

for $\alpha, \beta > 0$ *, and CF*

$$
\phi(t) = \frac{1}{(1 - i\beta t)^{\alpha}}.
$$

Hence

$$
(\phi(t))^{1/n}=\frac{1}{(1-i\beta t)^{\alpha/n}},
$$

which is the CF of a $Gamma(\alpha/n, \beta)$ *.*

 \blacksquare

It is possible to characterize all infinitely divisble distributions. We quote the following without proof. See Breiman's or Feller's books.

THM 11.8 (Lévy-Khinchin Theorem) A DF F is infinitely divisible if and only if $\phi_F(t)$ is of the form $e^{\psi(t)}$ with

$$
\psi(t) = it\beta - \frac{t^2\sigma^2}{2} + \int_{-\infty}^{+\infty} \left(e^{itx} - 1 - \frac{itx}{1+x^2}\right)\mu(\mathrm{d}x),
$$

where $\beta\in\mathbb{R}$, $\sigma^2\geq 0$, and μ is a measure on $\mathbb R$ with $\mu(\{0\})=0$ and $\int\frac{x^2}{1+x^2}\mu(\mathrm{d} x)<$ +∞*. (The previous ratio is* ≤ 1 *so any finite measure will work.)*

EX 11.9 (Normal distribution) *Taking* $\beta = 0$, $\sigma^2 = 1$, and $\mu \equiv 0$ gives a N(0, 1)*.*

EX 11.10 (Poisson distribution) *Taking* $\sigma^2 = 0$, $\mu({1}) = \lambda$, and $\beta = \int \frac{x}{1+x^2} \mu(\mathrm{d}x)$ *gives a* $Poi(\lambda)$ *.*

EX 11.11 (Compound Poisson distribution) Let W be a RV with CF $\phi(t)$. A *compound Poisson RV with parameters* λ *and* ϕ *is*

$$
Z = \sum_{i=1}^{N} W_i,
$$

where the W_i *'s are IID with CF* ϕ *and* $N \sim \text{Poi}(\lambda)$ *. By direct calculation,*

$$
\phi_Z(t) = \sum_{n=0}^{\infty} \frac{e^{-\lambda} \lambda^n}{n!} \phi(t)^n = \exp(\lambda(\phi(t) - 1)).
$$

Z *is infinitely divisible for the same reason that the Poisson distribution is. Taking* $\sigma^2 = 0$, $\mu({1}) = \lambda \times PM$ of Z, and $\beta = \int \frac{x}{1+x^2} \mu(\mathrm{d}x)$ gives ϕ_Z . (The previous *integral exists for PMs because when* x *is large the ratio is essentially* $1/x$ *.*)

2 Stable laws

An important special case of infinitely divisible distributions arises when the triangular array takes the special form $X_k, \forall n, k, \forall n, k$, up to a normalization that depends on n. E.g., the simple form of the CLT.

DEF 11.12 *A DF* F *is* stable *if for all* n

$$
Z =_d \frac{\sum_{i=1}^n W_i - b_n}{a_n},
$$

where Z , $(W_i)_i$ ∼ *F and the* W_i *'s are independent and* $a_n > 0$, $b_n \in \mathbb{R}$ *are constants.*

Note that this applies to Gaussians but not to Poisson variables (which are integervalued).

THM 11.13 *Let* F *be a DF and* Z ∼ F*. A necessary and sufficient condition for the existence of constants* $a_n > 0$, b_n *such that*

$$
Z_n = \frac{S_n - b_n}{a_n} \Rightarrow Z,
$$

where $S_n = \sum_{i=1}^n X_i$ with X_i 's IID is that F is stable.

Proof: We prove the non-trivial direction. Assume

$$
Z_n = \frac{S_n - b_n}{a_n} \Rightarrow Z,
$$

as above. Letting

$$
S_n^{(1)} = \sum_{1 \le i \le n} X_i,
$$

and

$$
S_n^{(2)} = \sum_{n+1 \le i \le 2n} X_i.
$$

Then

$$
Z_{2n} = \frac{1}{a_n^{-1}a_{2n}} \left(\left\{ \frac{S_n^{(1)} - b_n}{a_n} \right\} + \left\{ \frac{S_n^{(2)} - b_n}{a_n} \right\} - \frac{2b_n - b_{2n}}{a_n} \right).
$$

The LHS and both terms in bracket converge weakly. One has to show that the constants converge.

LEM 11.14 (Convergence of types) *If* $W_n \Rightarrow W$ *and there are constants* $\alpha_n >$ 0 , β_n so that $W_n' = \alpha_n W_n + \beta_n \Rightarrow W'$ where W and W' are nondegenerate, then *there are constants* α *and* β *so that* $\alpha_n \to \alpha$ *and* $\beta_n \to \beta$ *.*

See [D] for proof. It requires an exercise done in homework. Finally there is also a characterization for stable laws.

 \blacksquare

THM 11.15 (Lévy-Khinchin Representation) A DF F is stable if and only if the $CF \phi_F(t)$ *is of the form* $e^{\psi(t)}$ *with*

$$
\psi(t) = it\beta - d|t|^{\alpha} (1 + i\kappa \operatorname{sgn}(t) G(t, \alpha)),
$$

where $0 < \alpha \leq 2$, $\beta \in \mathbb{R}$, $d \geq 0$, $|\kappa| \leq 1$, and

$$
G(t,\alpha) = \begin{cases} \tan\frac{1}{2}\pi\alpha & \text{if } \alpha \neq 1, \\ \frac{2}{\pi}\log|t| & \text{if } \alpha = 1. \end{cases}
$$

The parameter α *is called the index of the stable law.*

EX 11.16 *Taking* $\alpha = 2$ *gives a Gaussian.*

Note that a DF is symmetric if and only if

$$
\phi(t) = \mathbb{E}[e^{itX}] = \mathbb{E}[e^{-itX}] = \overline{\phi(t)},
$$

or, in other words, $\phi(t)$ is real.

THM 11.17 (Lévy-Khinchin representation: Symmetric case) *A DF F is symmetric and stable if and only if its CF is of the form* $e^{-d|t|^{\alpha}}$ *where* $0 < \alpha \leq 2$ and $d \geq 0$ *. The parameter* α *is called the index of the stable law.*

 $\alpha = 2$ is the Gaussian case. $\alpha = 1$ is the Cauchy case.

2.1 Domain of attraction

DEF 11.18 (Domain of attraction) *A DF* F *is in the* domain of attraction *of a DF* G *if there are constants* $a_n > 0$ *and* b_n *such that*

$$
\frac{S_n - b_n}{a_n} \Rightarrow Z,
$$

where Z ∼ G *and*

$$
S_n = \sum_{k \le n} X_k,
$$

with $X_k \sim F$ *and independent.*

DEF 11.19 (Slowly varying function) *A function* L *is* slowly varying *if for all* $t > 0$ $L(t)$

$$
\lim_{x \to +\infty} \frac{L(tx)}{L(x)} = 1.
$$

EX 11.20 If $L(t) = \log t$ then

$$
\frac{L(tx)}{L(x)} = \frac{\log t + \log x}{\log x} \to 1.
$$

On the other hand, if $L(t) = t^{\varepsilon}$ *with* $\varepsilon > 0$ *then*

$$
\frac{L(tx)}{L(x)} = \frac{t^{\varepsilon}x^{\varepsilon}}{x^{\varepsilon}} \to t^{\varepsilon}.
$$

THM 11.21 *Suppose* $(X_n)_n$ *are IID with a distribution that satisfies*

- *1.* $\lim_{x\to\infty}$ $\mathbb{P}[X_1 > x]/\mathbb{P}[|X_1| > x] = \theta \in [0,1]$
- 2. $\mathbb{P}[|X_1| > x] = x^{-\alpha} L(x)$,

where $0 < \alpha < 2$ *and L is slowly varying. Let* $S_n = \sum_{k \leq n} X_k$,

$$
a_n = \inf\{x \, : \, \mathbb{P}[\,|X_1| > x] \le n^{-1}\}
$$

(Note that a_n *is roughly of order* $n^{1/\alpha}$ *.) and*

$$
b_n = n \mathbb{E}[X_1 \mathbb{1}_{|X_1| \le a_n}].
$$

Then

$$
\frac{S_n - b_n}{a_n} \Rightarrow Z,
$$

where Z *has an* α*-stable distribution.*

This condition is also necessary. Note also that this extends in some sense the CLT to some infinite variance cases when $\alpha = 2$. See the infinite variance example in Section 3.4 on [D].

EX 11.22 (Cauchy distribution) *Let* $(X_n)_n$ *be IID with a density symmetric about* 0 *and continuous and positive at* 0*. Then*

$$
\frac{1}{n}\left(\frac{1}{X_1}+\cdots+\frac{1}{X_n}\right) \Rightarrow a Cauchy distribution.
$$

Clearly $\theta = 1/2$ *. Moreover*

$$
\mathbb{P}[1/X_1 > x] = \mathbb{P}[0 < X_1 < x^{-1}] = \int_0^{x^{-1}} f(y) dy \sim f(0)/x,
$$

and similarly for $\mathbb{P}[1/X_1 < -x]$ *. So* $\alpha = 1$ *. Clearly* $b_n = 0$ *by symmetry. Finally* $a_n \sim 2f(0)n$.

EX 11.23 (Centering constants) *Suppose* $(X_n)_n$ *are IID with for* $|x| > 1$

$$
\mathbb{P}[X_1 > x] = \theta x^{-\alpha}, \quad \mathbb{P}[X_1 < -x] = (1 - \theta)x^{-\alpha},
$$

where $0 < \alpha < 2$. In this case $a_n = n^{1/\alpha}$ and

$$
b_n = n \int_1^{n^{1/\alpha}} (2\theta - 1)\alpha x^{-\alpha} dx \sim \begin{cases} cn & \alpha > 1 \\ cn \log n & \alpha = 1 \\ cn^{1/\alpha} & \alpha < 1. \end{cases}
$$

References

- [Dur10] Rick Durrett. *Probability: theory and examples*. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2010.
- [Shi96] A. N. Shiryaev. *Probability*, volume 95 of *Graduate Texts in Mathematics*. Springer-Verlag, New York, 1996.