Notes 12 : Random Walks

Math 733-734: Theory of Probability Lecturer: Sebastien Roch

References: [Dur10, Section 4.1, 4.2, 4.3].

1 Random walks

DEF 12.1 *A* stochastic process (SP) *is a collection* $\{X_t\}_{t\in\mathcal{T}}$ *of* (E, \mathcal{E}) *-valued random variables on a triple* (Ω, F, P)*, where* T *is an arbitrary* index set*. For a fixed* $\omega \in \Omega$, $\{X_t(\omega) : t \in \mathcal{T}\}\$ is called a sample path.

EX 12.2 *When* $\mathcal{T} = \mathbb{N}$ *or* $\mathcal{T} = \mathbb{Z}_+$ *we have a* discrete-time SP. *For instance*,

- X_1, X_2, \ldots *iid RVs*
- $\{S_n\}_{n\geq 1}$ where $S_n = \sum_{i\leq n} X_i$ with X_i as above

We let

$$
\mathcal{F}_n = \sigma(X_1, \ldots, X_n)
$$

(the information known up to time n*).*

DEF 12.3 *A* random walk (RW) *on* \mathbb{R}^d *is an SP of the form:*

$$
S_n = S_0 + \sum_{i \le n} X_i, \ n \ge 1
$$

where the X_i s are iid in \mathbb{R}^d , independent of S_0 . The case X_i uniform in $\{-1, +1\}$ *is called simple random walk (SRW).*

EX 12.4 *When* $d = 1$ *, recall that*

- *SLLN*: $n^{-1}S_n \to \mathbb{E}[X_1]$ when $\mathbb{E}|X_1| < +\infty$
- *CLT:*

$$
\frac{S_n - n \mathbb{E}[X_1]}{\sqrt{n \text{Var}[X_1]}} \Rightarrow N(0, 1),
$$

when $\mathbb{E}[X_1^2] < \infty$.

These are examples of limit theorems. Sample path properties, on the other hand, involve properties of the sequence $S_1(\omega), S_2(\omega), \ldots$. For instance, let $A \subset \mathbb{R}^d$

- $\mathbb{P}[S_n \in A \text{ for some } n \geq 1]$?
- $\mathbb{P}[S_n \in A \text{ i.o.}]$?
- $\mathbb{E}[T_A]$ *, where* $T_A = \inf\{n \geq 1 : S_n \in A\}$?

1.1 Stopping times

The examples above can be expressed in terms of stopping times:

DEF 12.5 *A random variable* $T : \Omega \to \overline{\mathbb{Z}}_+ \equiv \{0, 1, \ldots, +\infty\}$ *is called a* stopping time *if*

$$
\{T \leq n\} \in \mathcal{F}_n, \ \forall n \in \overline{\mathbb{Z}}_+,
$$

or, equivalently,

$$
\{T = n\} \in \mathcal{F}_n, \ \forall n \in \overline{\mathbb{Z}}_+.
$$

(To see the equivalence, note

$$
\{T = n\} = \{T \le n\} \setminus \{T \le n - 1\},\
$$

and

$$
\{T \le n\} = \cup_{i \le n} \{T = i\}.
$$

A stopping time is a time at which one decides to stop the process. Whether or not the process is stopped at time n depends only on the history up to time n .

EX 12.6 *Let* $\{S_n\}$ *be a RW and* $B \in \mathcal{B}$ *. Then*

$$
T = \inf\{n \ge 1 : S_n \in B\},\
$$

is a stopping time. This example is also called the hitting time *of* B*. (Replacing the* inf *with a* sup *(over a finite time interval say) would be a typical example of something that is not a stopping time.)*

1.2 Wald's First Identity

Throughout, for $X_1, X_2, \ldots \in \mathbb{R}$

$$
S_n = \sum_{i=1}^n X_i.
$$

Lecture 12: Random Walks 3

THM 12.7 Let $X_1, X_2, \ldots \in L^1$ be iid with $\mathbb{E}[X_1] = \mu$ and let $T \in L^1$ be a *stopping time. Then*

$$
\mathbb{E}[S_T] = \mathbb{E}[X_1]\mathbb{E}[T].
$$

Proof: Let

$$
U_T = \sum_{i=1}^T |X_i|.
$$

Observe

$$
\mathbb{E}[U_T] = \mathbb{E}\left[\sum_{n=1}^{\infty} \mathbb{1}_{\{T=n\}} \sum_{m=1}^{n} |X_m|\right]
$$

\n
$$
= \sum_{m=1}^{\infty} \sum_{n=m}^{\infty} \mathbb{E}[|X_m| \mathbb{1}_{\{T=n\}}]
$$

\n
$$
= \sum_{m=1}^{\infty} \mathbb{E}[|X_m| \mathbb{1}_{\{T \ge m\}}]
$$

\n
$$
= \sum_{m=1}^{\infty} \mathbb{E}[|X_m| \mathbb{1}_{\{T \le m-1\}^c}]
$$

\n
$$
= \sum_{m=1}^{\infty} \mathbb{E}|X_m| \mathbb{P}[T \ge m]
$$

\n
$$
= \mathbb{E}[X_1] \mathbb{E}[T] < \infty.
$$

where we used that $X_m \perp \{T \leq m-1\} \in \mathcal{F}_{m-1}$ on the second to last line. Note that we've proved the theorem for nonnegative X_i s. This calculation also justifies using Fubini for general RVs.

THM 12.8 *Let* $X_1, X_2, ... \in L^2$ *be iid with* $\mathbb{E}[X_1] = 0$ *and* $\text{Var}[X_1] = \sigma^2$ *and* $let T \in L^1$ be a stopping time. Then

$$
\mathbb{E}[S_T^2] = \sigma^2 \mathbb{E}[T].
$$

1.3 Application: Simple Random Walk

Let $\mathbb{P}[X_1 = 1] = \mathbb{P}[X_1 = -1] = 1/2$ and $T = \inf\{n \geq 1 : S_n \notin (a, b)\}\)$, where $a < 0 < b$. Let $S_0 = 0$. We first argue that $\mathbb{E} T < \infty$ a.s. Since $(b - a)$ steps to the right necessarily take us out of (a, b) ,

$$
\mathbb{P}[T > n(b-a)] \le (1 - 2^{-(b-a)})^n,
$$

by independence of the $(b - a)$ -long stretches, so that

$$
\mathbb{E}[T] = \sum_{k \ge 0} \mathbb{P}[T > k] \le \sum_{n} (b - a)(1 - 2^{-(b - a)})^n < +\infty,
$$

by monotonicity. In particular $T < +\infty$ a.s.

By Wald's First Identity,

$$
a\mathbb{P}[S_T = a] + b\mathbb{P}[S_T = b] = 0,
$$

that is

$$
\mathbb{P}[S_T = a] = \frac{b}{b-a} \qquad \mathbb{P}[S_T = b] = \frac{-a}{b-a}.
$$

In other words, letting $T_a = \inf\{n \geq 1 : S_n = a\}$

$$
\mathbb{P}[T_a < T_b] = \frac{b}{b-a}.
$$

By monotonicity, letting $b \to \infty$

$$
\mathbb{P}[T_a < \infty] \ge \mathbb{P}[T_a < T_b] \to 1.
$$

Note that this is true for every T_x . In particular, we come back to where we started almost surely. This property is called *recurrence*. We will study recurrence more closely below.

Wald's Second Identity tells us that

$$
\mathbb{E}[S_T^2] = \sigma^2 \mathbb{E}[T],
$$

where $\sigma^2 = 1$ and

$$
\mathbb{E}[S_T^2] = \frac{b}{b-a}a^2 + \frac{-a}{b-a}b^2 = -ab,
$$

so that $ET = -ab$.

2 Recurrence of SRW

We study the recurrence of SRW on \mathbb{Z}^d . Recal Stirling's formula:

$$
n! \sim n^n e^{-n} \sqrt{2\pi n}.
$$

2.1 Strong Markov property

We will need an important property of stopping times.

DEF 12.9 *For a stopping time T, the* σ -field \mathcal{F}_T *(the information known up to time* T*) is*

$$
\mathcal{F}_T = \{ A : A \cap \{ T = n \} \in \mathcal{F}_n, \ \forall n \}.
$$

THM 12.10 (Strong Markov property) *Let* X_1, X_2, \ldots *be IID,* $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$ *and T be a stopping with* $\mathbb{P}[T < \infty] > 0$ *. On* $\{T < \infty\}$ *,* $\{X_{T+n}\}_{n\geq 1}$ *is independent of* F_T *and has the same distribution as the original sequence.*

Proof: By the Uniqueness lemma, it suffices to prove

$$
\mathbb{P}[A, T < \infty, X_{T+j} \in B_j, \ 1 \le j \le k] = \mathbb{P}[A, T < \infty] \prod_{j=1}^k \mathbb{P}[X_j \in B_j].
$$

for all $A \in \mathcal{F}_T$, $B_1, \ldots, B_k \in \mathcal{B}$. Then sum up over the value of N and use the definition of \mathcal{F}_T . Indeed

$$
\mathbb{P}[A, T = n, X_{T+j} \in B_j, 1 \le j \le k] = \mathbb{P}[A, T = n, X_{n+j} \in B_j, 1 \le j \le k]
$$

= $\mathbb{P}[A, T = n] \prod_{j=1}^{k} \mathbb{P}[X_j \in B_j].$

П

2.2 SRW on Z

Let $S_0 = 0$ and $T_0 = \inf\{n > 0 : S_m = 0\}$. We give a second proof of:

THM 12.11 (SRW on Z) *SRW on* Z *is recurrent.*

Proof: First note the periodicity. So we look at S_{2n} . Then

$$
\mathbb{P}[S_{2n} = 0] = {2n \choose n} 2^{-2n}
$$

$$
\sim 2^{-2n} \frac{(2n)^{2n}}{(n^n)^2} \frac{\sqrt{2n}}{\sqrt{2\pi n}}
$$

$$
\sim \frac{1}{\sqrt{\pi n}}.
$$

So

$$
\sum_m \mathbb{P}[S_m = 0] = \infty.
$$

Denote

$$
T_0^{(n)} = \inf\{m > T_0^{(n-1)} : S_m = 0\}.
$$

By the strong Markov property $\mathbb{P}[T_0^{(n)} < \infty] = \mathbb{P}[T_0 < \infty]^n.$ Note that

$$
\sum_{m} \mathbb{P}[S_m = 0] = \mathbb{E}\left[\sum_{m} \mathbb{1}_{\{S_m = 0\}}\right]
$$

$$
= \mathbb{E}\left[\sum_{n} \mathbb{1}_{\{T_0^{(n)} < \infty\}}\right]
$$

$$
= \sum_{n} \mathbb{P}[T_0^{(n)} < \infty]
$$

$$
= \sum_{n} \mathbb{P}[T_0 < \infty]^n
$$

$$
= \frac{1}{1 - \mathbb{P}[T_0 < \infty]}.
$$

So $\mathbb{P}[T_0 < \infty] = 1$.

2.3 SRW on \mathbb{Z}^2

Now X_1 is in \mathbb{Z}^2 and $\mathbb{P}[X_1 = (1,0)] = \cdots = \mathbb{P}[X_1 = (0,-1)] = 1/4$.

THM 12.12 (SRW on \mathbb{Z}^2) *SRW on* \mathbb{Z}^2 is recurrent.

Proof: Let $R_n = (S_n^{(1)}, S_n^{(2)})$ where $S_n^{(i)}$ are independent SRW on \mathbb{Z} . By rotating the plane by 45 degrees, one sees that the probability to be back at $(0, 0)$ in SRW on \mathbb{Z}^2 is the same as that for two independent SRW on $\mathbb Z$ to be back at 0 simultaneously. Therefore,

$$
\mathbb{P}[S_{2n} = (0,0)] = \mathbb{P}[S_{2n}^{(1)} = 0]^2 \sim \frac{1}{\pi n},
$$

whose sum diverges.

2.4 SRW on \mathbb{Z}^3

Now X_1 is in \mathbb{Z}^3 and $\mathbb{P}[X_1 = (1, 0, 0)] = \cdots = \mathbb{P}[X_1 = (0, 0, -1)] = 1/6.$

THM 12.13 (SRW on \mathbb{Z}^3) *SRW on* \mathbb{Z}^3 *is transient (that is, not recurrent).*

Proof: Note, since the number of steps in opposite directions has to be equal,

$$
\mathbb{P}[S_{2n} = 0] = 6^{-2n} \sum_{j,k} \frac{(2n)!}{(j!k!(n-k-j)!)^2}
$$

= $2^{-2n} {2n \choose n} \sum_{j,k} \left(3^{-n} \frac{n!}{j!k!(n-k-j)!}\right)^2$
 $\leq 2^{-2n} {2n \choose n} \max_{j,k} 3^{-n} \frac{n!}{j!k!(n-k-j)!},$

where we used that $\sum_{j,k} a_{j,k}^2 \le \max_{j,k} a_{j,k} \equiv a^*$ if $\sum_{j,k} a_{j,k} = 1$ and $a_{j,k} \ge 0$. Note that if $j < n/3$ and $k > n/3$ then

$$
\frac{(j+1)!(k-1)!}{j!k!} = \frac{j+1}{k} \le 1.
$$

That implies that the term in the max is maximized when $j, k, (n - k - j)$ are roughly $n/3$. Using Stirling

$$
\frac{n!}{j!k!(n-k-j)!} \sim \frac{n^n}{j^jk^k(n-k-j)^{n-k-j}} \sqrt{\frac{n}{jk(n-k-j)}} \frac{1}{2\pi} \sim Cn^{-1}3^n,
$$

if j, k are close to n/3. Hence $\mathbb{P}[S_{2n} = 0] \sim Cn^{-3/2}$ which is summable and $\mathbb{P}[T_0 < \infty] < 1$. Note that it implies that S_n visits 0 only finitely many times with probability 1 as the expectation of the number of visits to 0 is $\sum_m \mathbb{P}[S_m = 0]$ (which is then finite). \blacksquare

COR 12.14 *SRW on* \mathbb{Z}^d *with* $d > 3$ *is transient.*

Proof: Let $R_n = (S_n^1, S_n^2, S_n^3)$. Let

$$
U_m = \inf\{n > U_{m-1} : R_n \neq R_{U_{m-1}}\}.
$$

Then R_{U_n} is a three-dimensional SRW. It visits $(0,0,0)$ only finitely many times a.s. and the walk is transient. Indeed $\mathbb{P}[T_0 < +\infty] = 1$ would imply $\mathbb{P}[T_0^{(n)} <$ $+\infty$] = 1 for all *n*, which in turn would imply that $\mathbb{P}[S_n = 0 \text{ i.o.}] = 1$.

3 Arcsine laws

Reference: Section 4.3 in [D].

References

- [Dur10] Rick Durrett. *Probability: theory and examples*. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2010.
- [KT75] Samuel Karlin and Howard M. Taylor. *A first course in stochastic processes*. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975.
- [Wil91] David Williams. *Probability with martingales*. Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge, 1991.