
Notes 13 : Conditioning

Math 733-734: Theory of Probability Lecturer: Sebastien Roch

References: [Wil91, Sections 0, 4.8, 9, 10], [Dur10, Section 5.1, 5.2], [KT75,
Section 6.1].

1 Conditioning

1.1 Review of undergraduate conditional probability

1.1.1 Conditional probability

For two events A,B, the conditional probability of A given B is defined as

P[A |B] =
P[A ∩B]

P[B]
.

We assume P[B] > 0.

1.1.2 Conditional expectation

LetX andZ be RVs taking values x1, . . . , xm and z1, . . . , zn resp. The conditional
expectation of X given Z = zj is given as

yj ≡ E[X |Z = zj ] =
∑
i

xiP[X = xi |Z = zj ].

We assume P[Z = zj ] > 0.
As motivation for the general definition, we make the following observations:

• We can think of the conditional expectation as a RV Y = E[X |Z] defined
as follows:

Y (ω) = yj , on Gj ≡ {ω : Z(ω) = zj}.

• Then Y is G-measurable where G = σ(Z).
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• On sets in G, the expectation of Y agrees with the expectation of X , that is,

E[Y ;Gj ] = yjP[Gj ]

=
∑
i

xiP[X = xi |Z = zj ]P[Z = zj ]

=
∑
i

xiP[X = xi, Z = zj ]

= E[X;Gj ].

This is also true for all G ∈ G by summation.

1.2 Conditional expectation: definition, existence, uniqueness

1.2.1 Definition

DEF&THM 13.1 Let X ∈ L1(Ω,F ,P) and G ⊆ F a sub σ-field. Then there
exists a (a.s.) unique Y ∈ L1(Ω,G,P) (note the G-measurability) s.t.

E[Y ;G] = E[X;G], ∀G ∈ G.

Such Y is called a version of E[X | G]. (E.g., see example above.)

1.2.2 Proof of uniqueness

Let Y, Y ′ be two versions of E[X |G] such that w.l.o.g. P[Y > Y ′] > 0. By
monotonicity, there is n ≥ 1 with G = {Y > Y ′ + n−1} ∈ G such that P[G] > 0.
Then, by definition,

0 = E[Y − Y ′;G] > n−1P[G] > 0,

which gives a contradiction.

1.2.3 Proof of existence

There are two main approaches:

1. First approach: Radon-Nikodym theorem. Read [Dur10, Section A.4].

2. Second approach: Hilbert space method. (Gives a more geometric perspec-
tive.)

We begin with a definition. Let 〈U, V 〉 = E[UV ].
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DEF&THM 13.2 Let X ∈ L2(Ω,F ,P) and G ⊆ F a sub σ-field. Then there
exists a (a.s.) unique Y ∈ L2(Ω,G,P) s.t.

∆ ≡ ‖X − Y ‖2 = inf{‖X −W‖2 : W ∈ L2(Ω,G,P)},

and, moreover,
〈Z,X − Y 〉 = 0, ∀Z ∈ L2(Ω,G,P).

Such Y is called an orthogonal projection of X on L2(Ω,G,P).

We give a proof for completeness.
Proof: Take (Yn) s.t. ‖X − Yn‖2 → ∆. Recalling that L2(Ω,G,P) as a Hilbert
space is complete, we seek to prove that (Yn) is Cauchy. Using the parallelogram
law

2‖U‖22 + 2‖V ‖22 = ‖U − V ‖22 + ‖U + V ‖22,

note that

‖X − Yr‖22 + ‖X − Ys‖22 = 2‖X − 1

2
(Yr + Ys)‖22 + 2‖1

2
(Yr − Ys)‖22.

The first term on the RHS is at least 2∆2 by definition of ∆, so taking limits
r, s→ +∞ we have what we need.

Let Y be the limit of (Yn) in L2(Ω,G,P). Note that

∆ ≤ ‖X − Y ‖2 ≤ ‖X − Yn‖2 + ‖Yn − Y ‖2 → ∆.

Note that, as a result, for any Z ∈ L2(Ω,G,P) and t ∈ R

‖X − Y − tZ‖22 ≥ ∆2 = ‖X − Y ‖22,

so that, expanding and rearranging, we have

−2t〈Z,X − Y 〉+ t2‖Z‖22 ≥ 0,

which is only possible for every t ∈ R if the first term is 0.
Uniqueness follows from the parallelogram law and the definition of ∆.
We return to the proof of existence of the conditional expectation. We use the

standard machinery. The previous theorem implies that conditional expectations
exist for indicators and simple functions. Now take X ∈ L1(Ω,F ,P) and write
X = X+−X−, so we can assume X ∈ L1(Ω,F ,P)+ w.l.o.g. Using the staircase
function

X(r) =


0, if X = 0
(i− 1)2−r, if (i− 1)2−r < X ≤ i2−r ≤ r
r, if X > r,
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we have 0 ≤ X(r) ↑ X . Let Y (r) = E[X(r) | G]. Using an argument similar
to the proof of uniqueness (see LEM 13.8 below), it follows that U ≥ 0 implies
E[U | G] ≥ 0 for a simple function U . Using linearity (which is immediate from
the definition), we then have Y (r) ↑ Y ≡ lim supY (r) which is measurable in G.
By (MON)

E[Y ;G] = E[X;G], ∀G ∈ G.

1.2.4 Examples

EX 13.3 If X ∈ L1(G) then E[X | G] = X a.s. trivially.

EX 13.4 If G = {∅,Ω}, then E[X | G] = E[X].

EX 13.5 Let A,B ∈ F with 0 < P[B] < 1. If G = {∅, B,Bc,Ω} and X = 1A,
then

P[A | G] =

{ P[A∩B]
P[B] , on ω ∈ B

P[A∩Bc]
P[Bc] , on ω ∈ Bc

Intuition about conditional expectation sometimes breaks down:

EX 13.6 On (Ω,F ,P) = ((0, 1],B(0, 1],Leb), let G be the σ-field of all countable
and co-countable subsets of (0, 1). Then P[G] ∈ {0, 1} for all G ∈ G and

E[X;G] = E[E[X];G] = E[X]P[G],

so that E[X | G] = E[X]. Yet, G contains all singletons and we seemingly have full
information, which would lead to the wrong guess E[X | G] = X .

1.3 Conditional expectation: properties

We first show that conditional expectations behave similarly to ordinary expecta-
tions. Below all Xs are in L1(Ω,F ,P) and G is a sub σ-field of F .

1.3.1 Extending properties of ordinary expectations

LEM 13.7 (cLIN) E[a1X1 + a2X2 | G] = a1E[X1 | G] + a2E[X2 | G] a.s.

Proof: Use linearity of expectation and the fact that a linear combination of RVs
in G is also in G.

LEM 13.8 (cPOS) If X ≥ 0 then E[X | G] ≥ 0 a.s.
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Proof: Let Y = E[X | G] and assume P[Y < 0] > 0. There is n ≥ 1 s.t. P[Y <
−n−1] > 0. But that implies, for G = {Y < −n−1},

E[X;G] = E[Y ;G] < −n−1P[G] < 0,

a contradiction.

LEM 13.9 (cMON) If 0 ≤ Xn ↑ X then E[Xn | G] ↑ E[X | G] a.s.

Proof: Let Yn = E[Xn | G]. By (cLIN) and (cPOS), 0 ≤ Yn ↑. Then letting
Y = lim supYn, by (MON),

E[X;G] = E[Y ;G],

for all G ∈ G.

LEM 13.10 (cFATOU) If Xn ≥ 0 then E[lim inf Xn | G] ≤ lim inf E[Xn | G] a.s.

Proof: Note that, for n ≥ m,

Xn ≥ Zm ≡ inf
k≥m

Xm ↑∈ G,

so that infn≥m E[Xn | G] ≥ E[Zm | G]. Applying (cMON)

E[limZm | G] = limE[Zm | G] ≤ lim inf
n≥m

E[Xn | G].

LEM 13.11 (cDOM) If Xn ≤ V ∈ L1(Ω,F ,P) and Xn → X a.s., then

E[Xn | G]→ E[X | G]

Proof: Apply (cFATOU) to Wn = 2V − |Xn −X| ≥ 0

E[2V | G] = E[lim inf Wn] ≤ lim inf E[Wn | G] = E[2V | G]−lim inf E[|Xn−X| | G].

Use that, by definition, |E[Xn −X | G]| ≤ E[|Xn −X| | G].

LEM 13.12 (cJENSEN) If f is convex and E[|f(X)|] < +∞ then

f(E[X | G]) ≤ E[f(X) | G].

Proof: Exercise!
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1.3.2 More properties

The next two properties provide some insight into the interpretation of the condi-
tional expectation.

LEM 13.13 (Taking out what is known) If Z ∈ G is bounded then

E[ZX | G] = ZE[X | G].

This is also true if X,Z ≥ 0 and E[ZX] < +∞ or X ∈ Lp(F) and Z ∈ Lq(G)
with p−1 + q−1 = 1 and p > 1.

Proof: By (LIN), we restrict ourselves to X ≥ 0. Clear if Z = 1G′ is an indicator
with G′ ∈ G since

E[1G′X;G] = E[X;G ∩G′] = E[E[X | G];G ∩G′] = E[1G′E[X | G];G],

for all G ∈ G. Use the standard machinery to conclude.

LEM 13.14 (Role of independence) If X is independent of H then E[X |H] =
E[X]. In fact, ifH is independent of σ(σ(X),G), then

E[X |σ(G,H)] = E[X | G].

Proof: By taking positive and negative parts, we can assume that X ≥ 0. Let
H ∈ H and G ∈ G. Since Y = E[X | G] ∈ G, we have

µ1(G∩H) ≡ E[X;G∩H] = E[X;G]P[H] = E[Y ;G]P[H] = E[Y ;G∩H] ≡ µ2(G∩H).

We conclude with the following lemma.

LEM 13.15 (Uniqueness of extension) Let I be a π-system on a set S, that is,
a family of subsets stable under intersection. If µ1, µ2 are finite measures on
(S, σ(I)) with µ1(Ω) = µ2(Ω) that agree on I, then µ1 and µ2 agree on σ(I).

Indeed, note that the collection I of sets G ∩ H for G ∈ G, H ∈ H form a π-
system generating σ(G,H). (Clearly, I ⊆ σ(G,H) so σ(I) ⊆ σ(G,H). Moreover
G,H ⊆ I ⊆ σ(I) so σ(G,H) ⊆ σ(I).)

1.3.3 Law of total probability

The following is often useful in computations.
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LEM 13.16 (Tower) We have E[E[X | G]] = E[X]. In fact, ifH ⊆ G is a σ-field

E[E[X | G] |H] = E[X |H].

(i.e., the smallest σ-field wins).

Proof: Let Y = E[X | G] and Z = E[X |H]. Then Z ∈ H and for H ∈ H ⊆ G

E[Z;H] = E[X;H] = E[Y ;H].

1.4 Regular conditional probability

The conditional probability of A ∈ F given G is

P[A | G] = E[1A | G].

For fixed A, P[A | G] is a RV. What about the opposite? For fixed ω ∈ Ω, is P[· | G]
a probability measure a.s.? The answer is, unfortunately, not always.

DEF 13.17 The map µ : Ω×F → [0, 1] is a regular conditional probability given
G if:

• For each A ∈ F , µ(·, A) is a version of P[A | G].

• For almost every ω ∈ Ω, µ(ω, ·) is a probability measure on F .

(They are known to exist on “nice” spaces. See [Dur10].)

EX 13.18 Let (X,Y ) have joint density fX,Y . For simplicity, assume fY (y) ≡∫
fX,Y (x, y)dx > 0 for all y. Define

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
.

Then,

µ(ω,B) ≡ P[X ∈ B |Y ](ω) ≡
∫
B
fX|Y (x|Y (ω))dx,

is a regular conditional distribution function. Indeed, for

G = {Y ∈ B′} ∈ G = σ(Y ),
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we have

E[1X∈B;G] =

∫
B

∫
B′
fX,Y (x, y)dxdy

=

∫
B

∫
B′
fY (y)fX|Y (x|y)dxdy

=

∫
B′
fY (y)

(∫
B
fX|Y (x|y)dx

)
dy

= E[P[X ∈ B |Y ];G],

by Fubini (where note that everything is non-negative).
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