Notes 13 : Conditioning

Math 733-734: Theory of Probability Lecturer: Sebastien Roch

References: [Wil91, Sections 0, 4.8, 9, 10], [Dur10, Section 5.1, 5.2], [KT75, Section 6.1].

1 Conditioning

1.1 Review of undergraduate conditional probability

1.1.1 Conditional probability

For two events A, B , the conditional probability of A given B is defined as

$$
\mathbb{P}[A \, | \, B] = \frac{\mathbb{P}[A \cap B]}{\mathbb{P}[B]}.
$$

We assume $\mathbb{P}[B] > 0$.

1.1.2 Conditional expectation

Let X and Z be RVs taking values x_1, \ldots, x_m and z_1, \ldots, z_n resp. The conditional expectation of X given $Z = z_j$ is given as

$$
y_j \equiv \mathbb{E}[X \mid Z = z_j] = \sum_i x_i \mathbb{P}[X = x_i \mid Z = z_j].
$$

We assume $\mathbb{P}[Z = z_j] > 0$.

As motivation for the general definition, we make the following observations:

• We can think of the conditional expectation as a RV $Y = \mathbb{E}[X | Z]$ defined as follows:

$$
Y(\omega) = y_j, \text{ on } G_j \equiv \{\omega : Z(\omega) = z_j\}.
$$

• Then Y is G-measurable where $G = \sigma(Z)$.

• On sets in G , the expectation of Y agrees with the expectation of X, that is,

$$
\mathbb{E}[Y; G_j] = y_j \mathbb{P}[G_j]
$$

=
$$
\sum_i x_i \mathbb{P}[X = x_i | Z = z_j] \mathbb{P}[Z = z_j]
$$

=
$$
\sum_i x_i \mathbb{P}[X = x_i, Z = z_j]
$$

=
$$
\mathbb{E}[X; G_j].
$$

This is also true for all $G \in \mathcal{G}$ by summation.

1.2 Conditional expectation: definition, existence, uniqueness

1.2.1 Definition

DEF&THM 13.1 Let $X \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ and $\mathcal{G} \subseteq \mathcal{F}$ a sub σ -field. Then there *exists a (a.s.) unique* $Y \in \mathcal{L}^1(\Omega, \mathcal{G}, \mathbb{P})$ (note the $\mathcal{G}\text{-}measurable$) s.t.

$$
\mathbb{E}[Y;G] = \mathbb{E}[X;G], \ \forall G \in \mathcal{G}.
$$

Such Y is called a version of $\mathbb{E}[X | \mathcal{G}]$ *. (E.g., see example above.)*

1.2.2 Proof of uniqueness

Let Y, Y' be two versions of $\mathbb{E}[X | G]$ such that w.l.o.g. $\mathbb{P}[Y > Y'] > 0$. By monotonicity, there is $n \geq 1$ with $G = \{Y > Y' + n^{-1}\} \in \mathcal{G}$ such that $\mathbb{P}[G] > 0$. Then, by definition,

$$
0 = \mathbb{E}[Y - Y'; G] > n^{-1} \mathbb{P}[G] > 0,
$$

which gives a contradiction.

1.2.3 Proof of existence

There are two main approaches:

- 1. First approach: Radon-Nikodym theorem. Read [Dur10, Section A.4].
- 2. Second approach: Hilbert space method. (Gives a more geometric perspective.)

We begin with a definition. Let $\langle U, V \rangle = \mathbb{E}[UV]$.

Lecture 13: Conditioning 3

DEF&THM 13.2 Let $X \in L^2(\Omega, \mathcal{F}, \mathbb{P})$ and $\mathcal{G} \subseteq \mathcal{F}$ a sub σ -field. Then there *exists a (a.s.)* unique $Y \in \mathcal{L}^2(\Omega, \mathcal{G}, \mathbb{P})$ *s.t.*

$$
\Delta \equiv ||X - Y||_2 = \inf{||X - W||_2 : W \in \mathcal{L}^2(\Omega, \mathcal{G}, \mathbb{P})},
$$

and, moreover,

$$
\langle Z, X - Y \rangle = 0, \ \forall Z \in \mathcal{L}^2(\Omega, \mathcal{G}, \mathbb{P}).
$$

Such *Y* is called an orthogonal projection of *X* on $\mathcal{L}^2(\Omega, \mathcal{G}, \mathbb{P})$.

We give a proof for completeness.

Proof: Take (Y_n) s.t. $||X - Y_n||_2 \to \Delta$. Recalling that $L^2(\Omega, \mathcal{G}, \mathbb{P})$ as a Hilbert space is complete, we seek to prove that (Y_n) is Cauchy. Using the parallelogram law

$$
2||U||_2^2 + 2||V||_2^2 = ||U - V||_2^2 + ||U + V||_2^2,
$$

note that

$$
||X - Y_r||_2^2 + ||X - Y_s||_2^2 = 2||X - \frac{1}{2}(Y_r + Y_s)||_2^2 + 2||\frac{1}{2}(Y_r - Y_s)||_2^2.
$$

The first term on the RHS is at least $2\Delta^2$ by definition of Δ , so taking limits $r, s \rightarrow +\infty$ we have what we need.

Let Y be the limit of (Y_n) in $L^2(\Omega, \mathcal{G}, \mathbb{P})$. Note that

$$
\Delta \le ||X - Y||_2 \le ||X - Y_n||_2 + ||Y_n - Y||_2 \to \Delta.
$$

Note that, as a result, for any $Z \in L^2(\Omega, \mathcal{G}, \mathbb{P})$ and $t \in \mathbb{R}$

$$
||X - Y - tZ||_2^2 \ge \Delta^2 = ||X - Y||_2^2,
$$

so that, expanding and rearranging, we have

$$
-2t\langle Z, X - Y \rangle + t^2 \|Z\|_2^2 \ge 0,
$$

which is only possible *for every* $t \in \mathbb{R}$ if the first term is 0.

Uniqueness follows from the parallelogram law and the definition of Δ .

We return to the proof of existence of the conditional expectation. We use the standard machinery. The previous theorem implies that conditional expectations exist for indicators and simple functions. Now take $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ and write $X = X^+ - X^-$, so we can assume $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})^+$ w.l.o.g. Using the staircase function

$$
X^{(r)} = \begin{cases} 0, & \text{if } X = 0\\ (i-1)2^{-r}, & \text{if } (i-1)2^{-r} < X \le i2^{-r} \le r\\ r, & \text{if } X > r, \end{cases}
$$

П

we have $0 \leq X^{(r)} \uparrow X$. Let $Y^{(r)} = \mathbb{E}[X^{(r)} | \mathcal{G}]$. Using an argument similar to the proof of uniqueness (see LEM 13.8 below), it follows that $U \ge 0$ implies $\mathbb{E}[U | \mathcal{G}] \geq 0$ for a simple function U. Using linearity (which is immediate from the definition), we then have $Y^{(r)} \uparrow Y \equiv \limsup Y^{(r)}$ which is measurable in \mathcal{G} . By (MON)

$$
\mathbb{E}[Y;G] = \mathbb{E}[X;G], \ \forall G \in \mathcal{G}.
$$

1.2.4 Examples

EX 13.3 If $X \in \mathcal{L}^1(\mathcal{G})$ then $\mathbb{E}[X \mid \mathcal{G}] = X$ a.s. trivially.

EX 13.4 *If* $\mathcal{G} = \{\emptyset, \Omega\}$ *, then* $\mathbb{E}[X | \mathcal{G}] = \mathbb{E}[X]$ *.*

EX 13.5 *Let* $A, B \in \mathcal{F}$ *with* $0 < \mathbb{P}[B] < 1$ *. If* $\mathcal{G} = \{\emptyset, B, B^c, \Omega\}$ *and* $X = \mathbb{1}_A$ *, then*

$$
\mathbb{P}[A | \mathcal{G}] = \begin{cases} \frac{\mathbb{P}[A \cap B]}{\mathbb{P}[B]}, & \text{on } \omega \in B \\ \frac{\mathbb{P}[A \cap B^c]}{\mathbb{P}[B^c]}, & \text{on } \omega \in B^c \end{cases}
$$

Intuition about conditional expectation sometimes breaks down:

EX 13.6 *On* $(\Omega, \mathcal{F}, \mathbb{P}) = ((0, 1], \mathcal{B}(0, 1], \text{Leb})$ *, let* G *be the* σ -field of all countable *and co-countable subsets of* $(0, 1)$ *. Then* $\mathbb{P}[G] \in \{0, 1\}$ *for all* $G \in \mathcal{G}$ *and*

$$
\mathbb{E}[X;G] = \mathbb{E}[\mathbb{E}[X];G] = \mathbb{E}[X]\mathbb{P}[G],
$$

so that $\mathbb{E}[X | \mathcal{G}] = \mathbb{E}[X]$ *. Yet,* $\mathcal G$ *contains all singletons and we seemingly have full information, which would lead to the wrong guess* $\mathbb{E}[X | \mathcal{G}] = X$.

1.3 Conditional expectation: properties

We first show that conditional expectations behave similarly to ordinary expectations. Below all Xs are in $\mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ and G is a sub σ -field of \mathcal{F} .

1.3.1 Extending properties of ordinary expectations

LEM 13.7 (cLIN) $\mathbb{E}[a_1X_1 + a_2X_2 | \mathcal{G}] = a_1\mathbb{E}[X_1 | \mathcal{G}] + a_2\mathbb{E}[X_2 | \mathcal{G}]$ *a.s.*

Proof: Use linearity of expectation and the fact that a linear combination of RVs in $\mathcal G$ is also in $\mathcal G$.

LEM 13.8 (cPOS) *If* $X \geq 0$ *then* $\mathbb{E}[X | \mathcal{G}] \geq 0$ *a.s.*

Proof: Let $Y = \mathbb{E}[X | \mathcal{G}]$ and assume $\mathbb{P}[Y < 0] > 0$. There is $n \geq 1$ s.t. $\mathbb{P}[Y < 0]$ $-n^{-1}$ > 0. But that implies, for $G = \{ Y < -n^{-1} \},\$

$$
\mathbb{E}[X;G] = \mathbb{E}[Y;G] < -n^{-1}\mathbb{P}[G] < 0,
$$

a contradiction.

LEM 13.9 (cMON) *If* $0 \le X_n \uparrow X$ *then* $\mathbb{E}[X_n | \mathcal{G}] \uparrow \mathbb{E}[X | \mathcal{G}]$ *a.s.*

Proof: Let $Y_n = \mathbb{E}[X_n | \mathcal{G}]$. By (cLIN) and (cPOS), $0 \leq Y_n \uparrow$. Then letting $Y = \limsup Y_n$, by (MON),

$$
\mathbb{E}[X;G] = \mathbb{E}[Y;G],
$$

for all $G \in \mathcal{G}$.

LEM 13.10 (cFATOU) *If* $X_n \geq 0$ *then* $\mathbb{E}[\liminf X_n | \mathcal{G}] \leq \liminf \mathbb{E}[X_n | \mathcal{G}]$ *a.s.*

Proof: Note that, for $n \geq m$,

$$
X_n \ge Z_m \equiv \inf_{k \ge m} X_m \uparrow \in \mathcal{G},
$$

so that $\inf_{n>m} \mathbb{E}[X_n | \mathcal{G}] \geq \mathbb{E}[Z_m | \mathcal{G}]$. Applying (cMON)

$$
\mathbb{E}[\lim Z_m | \mathcal{G}] = \lim \mathbb{E}[Z_m | \mathcal{G}] \le \lim \inf_{n \ge m} \mathbb{E}[X_n | \mathcal{G}].
$$

LEM 13.11 (cDOM) If $X_n \leq V \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ and $X_n \to X$ a.s., then

 $\mathbb{E}[X_n | \mathcal{G}] \to \mathbb{E}[X | \mathcal{G}]$

Proof: Apply (cFATOU) to $W_n = 2V - |X_n - X| \ge 0$

$$
\mathbb{E}[2V | \mathcal{G}] = \mathbb{E}[\liminf W_n] \le \liminf \mathbb{E}[W_n | \mathcal{G}] = \mathbb{E}[2V | \mathcal{G}] - \liminf \mathbb{E}[|X_n - X| | \mathcal{G}].
$$

Use that, by definition, $|\mathbb{E}[X_n - X | \mathcal{G}]| \leq \mathbb{E}[|X_n - X | \mathcal{G}|]$.

LEM 13.12 (cJENSEN) *If f is convex and* $\mathbb{E}[|f(X)|] < +\infty$ *then*

$$
f(\mathbb{E}[X \mid \mathcal{G}]) \leq \mathbb{E}[f(X) \mid \mathcal{G}].
$$

Proof: Exercise!

 \blacksquare

 \blacksquare

П

П

1.3.2 More properties

The next two properties provide some insight into the interpretation of the conditional expectation.

LEM 13.13 (Taking out what is known) *If* $Z \in \mathcal{G}$ *is bounded then*

$$
\mathbb{E}[ZX \mid \mathcal{G}] = Z \mathbb{E}[X \mid \mathcal{G}].
$$

This is also true if $X, Z \geq 0$ *and* $\mathbb{E}[ZX] < +\infty$ *or* $X \in \mathcal{L}^p(\mathcal{F})$ *and* $Z \in \mathcal{L}^q(\mathcal{G})$ $with p^{-1} + q^{-1} = 1 and p > 1.$

Proof: By (LIN), we restrict ourselves to $X \geq 0$. Clear if $Z = \mathbb{1}_{G'}$ is an indicator with $G' \in \mathcal{G}$ since

$$
\mathbb{E}[\mathbb{1}_{G'}X;G]=\mathbb{E}[X;G\cap G']=\mathbb{E}[\mathbb{E}[X\,|\,\mathcal{G}];G\cap G']=\mathbb{E}[\mathbb{1}_{G'}\mathbb{E}[X\,|\,\mathcal{G}];G],
$$

for all $G \in \mathcal{G}$. Use the standard machinery to conclude.

LEM 13.14 (Role of independence) *If* X *is independent of* H *then* $\mathbb{E}[X | \mathcal{H}] =$ $\mathbb{E}[X]$ *. In fact, if* \mathcal{H} *is independent of* $\sigma(\sigma(X), \mathcal{G})$ *, then*

$$
\mathbb{E}[X \mid \sigma(\mathcal{G}, \mathcal{H})] = \mathbb{E}[X \mid \mathcal{G}].
$$

Proof: By taking positive and negative parts, we can assume that $X \geq 0$. Let $H \in \mathcal{H}$ and $G \in \mathcal{G}$. Since $Y = \mathbb{E}[X | \mathcal{G}] \in \mathcal{G}$, we have

$$
\mu_1(G \cap H) \equiv \mathbb{E}[X; G \cap H] = \mathbb{E}[X; G] \mathbb{P}[H] = \mathbb{E}[Y; G] \mathbb{P}[H] = \mathbb{E}[Y; G \cap H] \equiv \mu_2(G \cap H).
$$

We conclude with the following lemma.

LEM 13.15 (Uniqueness of extension) Let $\mathcal I$ be a π -system on a set S , that is, *a family of subsets stable under intersection. If* μ_1 , μ_2 *are finite measures on* $(S, \sigma(\mathcal{I}))$ *with* $\mu_1(\Omega) = \mu_2(\Omega)$ *that agree on* \mathcal{I} *, then* μ_1 *and* μ_2 *agree on* $\sigma(\mathcal{I})$ *.*

Indeed, note that the collection I of sets $G \cap H$ for $G \in \mathcal{G}, H \in \mathcal{H}$ form a π system generating $\sigma(\mathcal{G}, \mathcal{H})$. (Clearly, $\mathcal{I} \subseteq \sigma(\mathcal{G}, \mathcal{H})$ so $\sigma(\mathcal{I}) \subseteq \sigma(\mathcal{G}, \mathcal{H})$. Moreover $\mathcal{G}, \mathcal{H} \subseteq \mathcal{I} \subseteq \sigma(\mathcal{I})$ so $\sigma(\mathcal{G}, \mathcal{H}) \subseteq \sigma(\mathcal{I}).$ \blacksquare

1.3.3 Law of total probability

The following is often useful in computations.

 \blacksquare

Lecture 13: Conditioning 7

LEM 13.16 (Tower) *We have* $\mathbb{E}[\mathbb{E}[X \mid \mathcal{G}]]=\mathbb{E}[X]$ *. In fact, if* $\mathcal{H} \subseteq \mathcal{G}$ *is a* σ -field

 $\mathbb{E}[\mathbb{E}[X \mid \mathcal{G}] \mid \mathcal{H}] = \mathbb{E}[X \mid \mathcal{H}].$

(i.e., the smallest σ*-field wins).*

Proof: Let $Y = \mathbb{E}[X | \mathcal{G}]$ and $Z = \mathbb{E}[X | \mathcal{H}]$. Then $Z \in \mathcal{H}$ and for $H \in \mathcal{H} \subseteq \mathcal{G}$ $\mathbb{E}[Z;H] = \mathbb{E}[X;H] = \mathbb{E}[Y;H].$

1.4 Regular conditional probability

The conditional probability of $A \in \mathcal{F}$ given \mathcal{G} is

$$
\mathbb{P}[A | \mathcal{G}] = \mathbb{E}[\mathbb{1}_A | \mathcal{G}].
$$

For fixed A, $\mathbb{P}[A | \mathcal{G}]$ is a RV. What about the opposite? For fixed $\omega \in \Omega$, is $\mathbb{P}[\cdot | \mathcal{G}]$ a probability measure a.s.? The answer is, unfortunately, not always.

DEF 13.17 *The map* $\mu : \Omega \times \mathcal{F} \rightarrow [0, 1]$ *is a* regular conditional probability *given* G *if:*

- For each $A \in \mathcal{F}$, $\mu(\cdot, A)$ *is a version of* $\mathbb{P}[A | \mathcal{G}]$ *.*
- *For almost every* $\omega \in \Omega$, $\mu(\omega, \cdot)$ *is a probability measure on* \mathcal{F} *.*

(They are known to exist on "nice" spaces. See [Dur10].)

EX 13.18 *Let* (X, Y) *have joint density* $f_{X,Y}$ *. For simplicity, assume* $f_Y(y) \equiv$ $\int f_{X,Y}(x,y)dx > 0$ for all y. Define

$$
f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}.
$$

Then,

$$
\mu(\omega, B) \equiv \mathbb{P}[X \in B \mid Y](\omega) \equiv \int_B f_{X|Y}(x|Y(\omega))dx,
$$

is a regular conditional distribution function. Indeed, for

$$
G = \{ Y \in B' \} \in \mathcal{G} = \sigma(Y),
$$

we have

$$
\mathbb{E}[\mathbb{1}_{X \in B}; G] = \int_{B} \int_{B'} f_{X,Y}(x, y) dx dy
$$

\n
$$
= \int_{B} \int_{B'} f_{Y}(y) f_{X|Y}(x|y) dx dy
$$

\n
$$
= \int_{B'} f_{Y}(y) \left(\int_{B} f_{X|Y}(x|y) dx \right) dy
$$

\n
$$
= \mathbb{E}[\mathbb{P}[X \in B | Y]; G],
$$

by Fubini (where note that everything is non-negative).

References

- [Dur10] Rick Durrett. *Probability: theory and examples*. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2010.
- [KT75] Samuel Karlin and Howard M. Taylor. *A first course in stochastic processes*. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975.
- [Wil91] David Williams. *Probability with martingales*. Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge, 1991.