Notes 14 : Martingales

Math 733-734: Theory of Probability Lecturer: Sebastien Roch

References: [Wil91, Section 10], [Dur10, Section 5.2], [KT75, Section 6.1].

1 Martingales

1.1 Definitions

DEF 14.1 *A* filtered space *is a tuple* $(\Omega, \mathcal{F}, \{\mathcal{F}_n\}, \mathbb{P})$ *where:*

- $(\Omega, \mathcal{F}, \mathbb{P})$ *is a probability space*
- $\{\mathcal{F}_n\}$ *is a* filtration, *i.e.*,

$$
\mathcal{F}_0\subseteq \mathcal{F}_1\subseteq \cdots \subseteq \mathcal{F}_{\infty}\equiv \sigma(\cup \mathcal{F}_n)\subseteq \mathcal{F}.
$$

where each \mathcal{F}_i is a σ -field.

EX 14.2 *Let* X_0, X_1, \ldots *be iid RVs. Then a filtration is given by*

$$
\mathcal{F}_n = \sigma(X_0, \dots, X_n), \ \forall n \geq 0.
$$

Fix $(\Omega, \mathcal{F}, \{ \mathcal{F}_n \}, \mathbb{P})$.

DEF 14.3 *A process* $\{W_n\}_{n\geq 0}$ *is* adapted *if* $W_n \in \mathcal{F}_n$ *for all n*.

(Intuitively, the value of W_n is known at time n.)

EX 14.4 *Continuing. Let* $\{S_n\}_{n\geq 0}$ *where* $S_n = \sum_{i\leq n} X_i$ *is adapted.*

Our main definition is the following.

DEF 14.5 *A process* $\{M_n\}_{n\geq 0}$ *is a* martingale *(MG) if*

- ${M_n}$ *is adapted*
- $\mathbb{E}|M_n| < +\infty$ for all n
- $\mathbb{E}[M_n \, | \, \mathcal{F}_{n-1}] = M_{n-1}$ *for all* $n \geq 1$

A superMG or subMG is similar but the last equality holds with \leq *or* \geq *respectively.* (Note that for a MG, by (TOWER), we have $\mathbb{E}[M_n | \mathcal{F}_m] = M_m$ for all $n > m$.

1.2 Examples

EX 14.6 (Sums of iid RVs with mean 0) *Let*

- X_0, X_1, \ldots *iid RVs integrable and centered with* $X_0 = 0$
- $\mathcal{F}_n = \sigma(X_0, \ldots, X_n)$
- $\bullet\,\, S_n = \sum_{i\leq n} X_i$

Then note that $\mathbb{E}|S_n| < \infty$ *by triangle inequality and*

$$
\mathbb{E}[S_n | \mathcal{F}_{n-1}] = \mathbb{E}[S_{n-1} + X_n | \mathcal{F}_{n-1}] \n= S_{n-1} + \mathbb{E}[X_n] = S_{n-1}.
$$

EX 14.7 (Variance of a sum) Same setup with $\sigma^2 \equiv \text{Var}[X_1] < \infty$. Define

$$
M_n = S_n^2 - n\sigma^2.
$$

Note that

$$
\mathbb{E}|M_n| \le \sum_{i \le n} \text{Var}[X_i] + n\sigma^2 \le 2n\sigma^2 < +\infty
$$

and

$$
\mathbb{E}[M_n | \mathcal{F}_{n-1}] = \mathbb{E}[(X_n + S_{n-1})^2 - n\sigma^2 | \mathcal{F}_{n-1}]
$$

\n
$$
= \mathbb{E}[X_n^2 + 2X_n S_{n-1} + S_{n-1}^2 - n\sigma^2 | \mathcal{F}_{n-1}]
$$

\n
$$
= \sigma^2 + 0 + S_{n-1}^2 - n\sigma^2 = M_{n-1}.
$$

EX 14.8 (Exponential moment of a sum; Wald's MG) *Same setup with* $\phi(\lambda)$ = $\mathbb{E}[\exp(\lambda X_1)] < +\infty$ for some $\lambda \neq 0$. Define

$$
M_n = \phi(\lambda)^{-n} \exp(\lambda S_n).
$$

Note that

$$
\mathbb{E}|M_n| \le \frac{\phi(\lambda)^n}{\phi(\lambda)^n} = 1 < +\infty
$$

and

$$
\mathbb{E}[M_n | \mathcal{F}_{n-1}] = \phi(\lambda)^{-n} \mathbb{E}[\exp(\lambda(X_n + S_{n-1})) | \mathcal{F}_{n-1}]
$$

= $\phi(\lambda)^{-n} \exp(\lambda S_{n-1}) \phi(\lambda) = M_{n-1}.$

EX 14.9 (Product of iid RVs with mean 1) *Same setup with* $X_0 = 1$, $X_i \ge 0$ *and* $\mathbb{E}[X_1] = 1$ *. Define*

$$
M_n = \prod_{i \le n} X_i.
$$

Note that

$$
\mathbb{E}|M_n|=1
$$

and

$$
\mathbb{E}[M_n | \mathcal{F}_{n-1}] = M_{n-1} \mathbb{E}[X_n | \mathcal{F}_{n-1}] = M_{n-1}.
$$

EX 14.10 (Accumulating data; Doob's MG) Let $X \in \mathcal{L}^1(\mathcal{F})$. Define

$$
M_n = \mathbb{E}[X \,|\, \mathcal{F}_n].
$$

Note that

$$
\mathbb{E}|M_n| \le \mathbb{E}|X| < +\infty,
$$

and

$$
\mathbb{E}[M_n \,|\, \mathcal{F}_{n-1}] = \mathbb{E}[X \,|\, \mathcal{F}_{n-1}] = M_{n-1},
$$

by (TOWER).

EX 14.11 (Eigenvalues of transition matrix) *A Markov chain (MC) on a countable* E *is a process of the following form:*

- $\{\mu_i\}_{i \in E}$, $\{p(i,j)\}_{i,j \in E}$
- $Y(i, n) \sim p(i, \cdot)$ *(indep.)*
- $Z_0 \sim \mu$ and $Z_n = Y(Z_{n-1}, n)$.

Suppose $f : E \to \mathbb{R}$ *is s.t.*

$$
\sum_j p(i,j)f(j) = \lambda f(i), \ \forall i,
$$

with $\mathbb{E}|f(Z_n)| < +\infty$ *for all n. Define*

$$
M_n = \lambda^{-n} f(Z_n).
$$

Note that

$$
\mathbb{E}|M_n| < +\infty,
$$

and

$$
\mathbb{E}[M_n | \mathcal{F}_{n-1}] = \lambda^{-n} \mathbb{E}[f(Z_n) | \mathcal{F}_{n-1}]
$$

= $\lambda^{-n} \sum_j p(Z_{n-1}, j) f(j)$
= $\lambda^{-n} \cdot \lambda \cdot f(Z_{n-1}) = M_{n-1}.$

EX 14.12 (Branching Process) *A branching process is a process of the following form:*

- $X(i, n)$, $i \geq 1$ *and* $n \geq 1$, *iid with mean* m
- $Z_0 = 1$ and $Z_n = \sum_{i \leq Z_{n-1}} X(i, n)$

Note that for $f(j) = j$ *in the context of the previous example we have*

$$
\sum_{j} p(i,j)j = mi,
$$

so that $M_n = m^{-n} Z_n$ *is a MG.*

2 Connection to gambling

DEF 14.13 *A process* $\{C_n\}_{n\geq 1}$ *is* predictable *if* $C_n \in \mathcal{F}_{n-1}$ *for all* $n \geq 1$ *.*

EX 14.14 *Continuing Example 14.2.* $C_n = \mathbb{1}\{S_{n-1} \leq k\}$ *is predictable.*

EX 14.15 *Let* $\{X_n\}_{n\geq 0}$ *be an integrable adapted process and* $\{C_n\}_{n\geq 1}$ *, a bounded predictable process. Define*

$$
M_n = \sum_{i \le n} (X_i - \mathbb{E}[X_i \,|\, \mathcal{F}_{i-1}]) C_i.
$$

Then

$$
\mathbb{E}|M_n| \le \sum_{i \le n} 2\mathbb{E}|X_n|K < +\infty,
$$

where $|C_n|$ < *K for all* $n \geq 1$ *, and*

$$
\mathbb{E}[M_n - M_{n-1} | \mathcal{F}_{n-1}] = \mathbb{E}[(X_n - \mathbb{E}[X_n | \mathcal{F}_{n-1}])C_n | \mathcal{F}_{n-1}] \n= C_n(\mathbb{E}[X_n | \mathcal{F}_{n-1}] - \mathbb{E}[X_n | \mathcal{F}_{n-1}]) = 0.
$$

2.1 Fair games

Take the previous example with $\{X_n\}_{n\geq 0}$ a MG, that is,

$$
M_n = (C \bullet X)_n \equiv \sum_{i \le n} C_i (X_i - X_{i-1}),
$$

where $\{(C \bullet X)_n\}_{n \geq 0}$ is called the *martingale transform* and is a discrete analogue of stochastic integration. If you think of $X_n - X_{n-1}$ as your net winnings per unit stake at time n, then C_n is a gambling strategy and $(C \cdot X)$ is your total winnings up to time n in a *fair game*.

Arguing as in the previous example, we have the following theorem.

THM 14.16 (You can't beat the system) Let $\{C_n\}$ be a bounded predictable pro*cess and* $\{X_n\}$ *be a MG. Then* $\{(C \bullet X)_n\}$ *is also a MG. If, moreover,* $\{C_n\}$ *is nonnegative and* $\{X_n\}$ *is a superMG, then* $\{(C \bullet X)_n\}$ *is also a superMG.*

2.2 Stopping times

Recall:

DEF 14.17 *A random variable* $T : \Omega \to \overline{\mathbb{Z}}_+ \equiv \{0, 1, \ldots, +\infty\}$ *is called a* stopping time *if*

$$
\{T\leq n\}\in \mathcal{F}_n,~\forall n\in\overline{\mathbb{Z}}_+,
$$

or, equivalently,

$$
\{T = n\} \in \mathcal{F}_n, \ \forall n \in \overline{\mathbb{Z}}_+.
$$

(To see the equivalence, note

$$
\{T = n\} = \{T \le n\} \setminus \{T \le n - 1\},\
$$

and

$$
\{T \le n\} = \cup_{i \le n} \{T = i\}.
$$

In the gambling context, a stopping time is a time at which you decide to stop playing. That decision should only depend on the history up to time n .

EX 14.18 *Let* $\{A_n\}$ *be an adapted process and* $B \in \mathcal{B}$ *. Then*

$$
T = \inf\{n \ge 0 \,:\, A_n \in B\},\
$$

is a stopping time.

2.3 Stopped supermartingales are supermartingales

DEF 14.19 *Let* $\{X_n\}$ *be an adapted process and* T *be a stopping time. Then*

$$
X_n^T(\omega) \equiv X_{T(\omega)\wedge n}(\omega),
$$

is called $\{X_n\}$ stopped at T .

THM 14.20 *Let* $\{X_n\}$ *be a superMG and T be a stopping time. Then the stopped process* X^T *is a superMG and in particular*

$$
\mathbb{E}[X_{T\wedge n}] \le \mathbb{E}[X_0].
$$

The same result holds at equality if $\{X_n\}$ *is a MG.*

Proof: Let

$$
C_n^{(T)} = \mathbb{1}\{n \le T\}.
$$

Note that

$$
\{C_n^{(T)} = 0\} = \{T \le n - 1\} \in \mathcal{F}_{n-1},
$$

so that $C^{(T)}$ is predictable. It is also nonnegative and bounded. Note further that

$$
(C^{(T)} \bullet X)_n = X_{T \wedge n} - X_0 = X_n^T - X_0.
$$

Apply the previous theorem.

2.4 Optional stopping theorem

When can we say that $\mathbb{E}[X_T] \leq \mathbb{E}[X_0]$? As a counter-example, think of the simple random walk started at 0 with $T = \inf\{n \geq 0 : S_n = 1\}$, where $\mathbb{P}[T < +\infty] = 1$.

THM 14.21 *Let* $\{X_n\}$ *be a superMG and T be a stopping time. Then* X_T *is integrable and*

$$
\mathbb{E}[X_T] \le \mathbb{E}[X_0].
$$

if one of the following holds:

- *1.* T *is bounded*
- *2.* X *is bounded and* T *is a.s. finite*
- 3. $\mathbb{E}[T] < +\infty$ and X has bounded increments
- *4.* X *is nonnegative and* T *is a.s. finite.*

 \blacksquare

The first three hold with equality if X *is a MG.*

Proof: From the previous theorem, we have

$$
(*)\quad \mathbb{E}[X_{T\wedge n} - X_0] \leq 0.
$$

- 1. Take $n = N$ in $(*)$ where $T \leq N$ a.s.
- 2. Take *n* to $+\infty$ and use (DOM).
- 3. Note that

$$
|X_{T\wedge n} - X_0| \le |\sum_{i \le T\wedge n} (X_i - X_{i-1})| \le KT,
$$

where $|X_n - X_{n-1}| \leq K$ a.s. Use (DOM).

4. Use (FATOU).

3 Martingale convergence theorem

DEF 14.22 We say that $\{X_n\}_n$ is bounded in \mathcal{L}^1 if

$$
\sup_n \mathbb{E}|X_n| < +\infty.
$$

THM 14.23 (Martingale convergence theorem) *Let* X *be a superMG bounded in* \mathcal{L}^1 . Then X_n converges and is finite a.s. Moreover, let $X_\infty = \liminf_n X_n$ then $X_{\infty} \in \mathcal{F}_{\infty}$ and $\mathbb{E}|X_{\infty}| < +\infty$.

To prove this key theorem, we use the connection to gambling.

3.1 A natural gambling strategy

Recall that

$$
(C \bullet X)_n = \sum_{i \le n} C_n (X_n - X_{n-1}),
$$

where C_n is predictable and X_n is a superMG, can be interpreted as your net winnings in a game. A natural strategy is to choose $\alpha < \beta$ and apply the following

• REPEAT

– Wait until X_n gets below α

- Play a unit stake until X_n gets above β and stop playing
- $\bullet~$ UNTIL TIME N

More formally, let

$$
C_1 = \mathbb{1}\{X_0 < \alpha\},
$$

and

$$
C_n = \mathbb{1}\{C_{n-1} = 1\} \mathbb{1}\{X_{n-1} \le \beta\} + \mathbb{1}\{C_{n-1} = 0\} \mathbb{1}\{X_{n-1} < \alpha\}.
$$

Then $\{C_n\}$ is predictable.

3.2 Upcrossings

Define the following stopping times. Let $T_0 = -1$,

$$
T_{2k-1} = \inf\{n > T_{2k-2} : X_n < \alpha\},\
$$

and

$$
T_{2k} = \inf\{n > T_{2k-1} : X_n > \beta\}.
$$

The *number of upcrossings of* $[\alpha, \beta]$ *by time N* is

$$
U_N[\alpha,\beta] = \sup\{k \,:\, T_{2k} \le N\}.
$$

LEM 14.24 (Doob's Upcrossing Lemma) *Let* $\{X_n\}$ *be a superMG. Then*

$$
(\beta - \alpha) \mathbb{E} U_N[\alpha, \beta] \le \mathbb{E} [(X_N - \alpha)^{-}].
$$

Proof: Let $Y_n = (C \cdot X)_n$. Then $\{Y_n\}$ is a superMG and satisfies

$$
Y_N \geq (\beta - \alpha)U_N[\alpha, \beta] - (X_N - \alpha)^{-},
$$

since $(X_N - \alpha)^{-1}$ overestimates the loss during the last interval of play. The result follows from $\mathbb{E}[Y_N] \leq 0$. \blacksquare

COR 14.25 Let $\{X_n\}$ be a superMG bounded in \mathcal{L}^1 . Then

$$
U_N[\alpha, \beta] \uparrow U_{\infty}[\alpha, \beta],
$$

$$
(\beta - \alpha) \mathbb{E} U_{\infty}[\alpha, \beta] \le |\alpha| + \sup_{n} \mathbb{E}|X_n| < +\infty,
$$

so that

$$
\mathbb{P}[U_{\infty}[\alpha,\beta]=\infty]=0.
$$

Proof: Use (MON).

 \blacksquare

3.3 Convergence theorem

We are ready to prove the main theorem. **Proof:**(of THM 14.23) Let $\alpha < \beta \in \mathbb{Q}$ and

$$
\Lambda_{\alpha,\beta} = \{ \omega : \liminf X_n < \alpha < \beta < \limsup X_n \}.
$$

Note that

$$
\Lambda \equiv \{ \omega : X_n \text{ does not converge in } [-\infty, +\infty] \}
$$

= $\{ \omega : \liminf X_n < \limsup X_n \}$
= $\cup_{\alpha < \beta \in \mathbb{Q}} \Lambda_{\alpha,\beta}.$

Since

$$
\Lambda_{\alpha,\beta}\subseteq \{U_{\infty}[\alpha,\beta]=\infty\},\
$$

we have $\mathbb{P}[\Lambda_{\alpha,\beta}] = 0$. By countability, $\mathbb{P}[\Lambda] = 0$. Use (FATOU) on $|X_n|$ to conclude. \blacksquare

A very useful corollary:

COR 14.26 *If* $\{X_n\}$ *is a nonnegative superMG then* X_n *converges a.s.*

Proof: $\{X_n\}$ is bounded in \mathcal{L}^1 since

$$
\mathbb{E}|X_n| = \mathbb{E}[X_n] \le \mathbb{E}[X_0], \ \forall n.
$$

EX 14.27 (Polya's Urn) *An urn contains* 1 *red ball and* 1 *green ball. At each time, we pick one ball and put it back with an extra ball of the same color. Let* R_n (resp. G_n) be the number of red balls (resp. green balls) after the nth draw. Let $\mathcal{F}_n = \sigma(R_0, G_0, R_1, G_1, \ldots, R_n, G_n)$ *. Define* M_n *to be the fraction of green balls. Then*

$$
\mathbb{E}[M_n | \mathcal{F}_{n-1}] = \frac{R_{n-1}}{G_{n-1} + R_{n-1}} \frac{G_{n-1}}{G_{n-1} + R_{n-1} + 1} + \frac{G_{n-1}}{G_{n-1} + R_{n-1}} \frac{G_{n-1}}{G_{n-1} + R_{n-1}} \frac{G_{n-1}}{G_{n-1} + R_{n-1} + 1}
$$

$$
= \frac{G_{n-1}}{G_{n-1} + R_{n-1}} = M_{n-1}.
$$

Since $M_n \geq 0$ *and is a MG, we have* $M_n \to M_\infty$ *a.s. See [Dur10, Section 4.3] for distribution of the limit and a generalization, or decipher,*

$$
\mathbb{P}[G_n = m+1] = {n \choose m} \frac{m!(n-m)!}{(n+1)!} = \frac{1}{n+1},
$$

П

so that

$$
\mathbb{P}[M_n \le x] = \frac{\lfloor x(n+2) - 1 \rfloor}{n+1} \to x,
$$

(by a sandwich argument).

EX 14.28 (Convergence in L^1 ?) We give an example that shows that the condi*tions of the Martingale Convergence Theorem do not guarantee convergence of expectations. Let* {Sn} *be SRW started at* 1 *and*

$$
T = \inf\{n > 0 : S_n = 0\}.
$$

Then ${S_{T\wedge n}}$ *is a nonnegative MG. It can only converge to* 0*. (Any other integer value would not be possible because convergence would have to have occurred at a finite time and the next time step would have to be different.) But* $\mathbb{E}[X_0] = 1 \neq 0$.

References

- [Dur10] Rick Durrett. *Probability: theory and examples*. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2010.
- [KT75] Samuel Karlin and Howard M. Taylor. *A first course in stochastic processes*. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975.
- [Wil91] David Williams. *Probability with martingales*. Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge, 1991.