
Notes 14 : Martingales

Math 733-734: Theory of Probability Lecturer: Sebastien Roch

References: [Wil91, Section 10], [Dur10, Section 5.2], [KT75, Section 6.1].

1 Martingales

1.1 Definitions

DEF 14.1 A filtered space is a tuple (Ω,F , {Fn},P) where:

• (Ω,F ,P) is a probability space

• {Fn} is a filtration, i.e.,

F0 ⊆ F1 ⊆ · · · ⊆ F∞ ≡ σ(∪Fn) ⊆ F .

where each Fi is a σ-field.

EX 14.2 Let X0, X1, . . . be iid RVs. Then a filtration is given by

Fn = σ(X0, . . . , Xn), ∀n ≥ 0.

Fix (Ω,F , {Fn},P).

DEF 14.3 A process {Wn}n≥0 is adapted if Wn ∈ Fn for all n.

(Intuitively, the value of Wn is known at time n.)

EX 14.4 Continuing. Let {Sn}n≥0 where Sn =
∑

i≤nXi is adapted.

Our main definition is the following.

DEF 14.5 A process {Mn}n≥0 is a martingale (MG) if

• {Mn} is adapted

• E|Mn| < +∞ for all n

• E[Mn | Fn−1] = Mn−1 for all n ≥ 1

A superMG or subMG is similar but the last equality holds with ≤ or ≥ respec-
tively. (Note that for a MG, by (TOWER), we have E[Mn | Fm] = Mm for all
n > m.
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1.2 Examples

EX 14.6 (Sums of iid RVs with mean 0) Let

• X0, X1, . . . iid RVs integrable and centered with X0 = 0

• Fn = σ(X0, . . . , Xn)

• Sn =
∑

i≤nXi

Then note that E|Sn| <∞ by triangle inequality and

E[Sn | Fn−1] = E[Sn−1 +Xn | Fn−1]
= Sn−1 + E[Xn] = Sn−1.

EX 14.7 (Variance of a sum) Same setup with σ2 ≡ Var[X1] <∞. Define

Mn = S2
n − nσ2.

Note that
E|Mn| ≤

∑
i≤n

Var[Xi] + nσ2 ≤ 2nσ2 < +∞

and

E[Mn | Fn−1] = E[(Xn + Sn−1)
2 − nσ2 | Fn−1]

= E[X2
n + 2XnSn−1 + S2

n−1 − nσ2 | Fn−1]
= σ2 + 0 + S2

n−1 − nσ2 = Mn−1.

EX 14.8 (Exponential moment of a sum; Wald’s MG) Same setup with φ(λ) =
E[exp(λX1)] < +∞ for some λ 6= 0. Define

Mn = φ(λ)−n exp(λSn).

Note that

E|Mn| ≤
φ(λ)n

φ(λ)n
= 1 < +∞

and

E[Mn | Fn−1] = φ(λ)−nE[exp(λ(Xn + Sn−1)) | Fn−1]
= φ(λ)−n exp(λSn−1)φ(λ) = Mn−1.
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EX 14.9 (Product of iid RVs with mean 1) Same setup with X0 = 1, Xi ≥ 0
and E[X1] = 1. Define

Mn =
∏
i≤n

Xi.

Note that
E|Mn| = 1

and

E[Mn | Fn−1] = Mn−1E[Xn | Fn−1] = Mn−1.

EX 14.10 (Accumulating data; Doob’s MG) Let X ∈ L1(F). Define

Mn = E[X | Fn].

Note that
E|Mn| ≤ E|X| < +∞,

and

E[Mn | Fn−1] = E[X | Fn−1] = Mn−1,

by (TOWER).

EX 14.11 (Eigenvalues of transition matrix) A Markov chain (MC) on a count-
able E is a process of the following form:

• {µi}i∈E , {p(i, j)}i,j∈E

• Y (i, n) ∼ p(i, ·) (indep.)

• Z0 ∼ µ and Zn = Y (Zn−1, n).

Suppose f : E → R is s.t.∑
j

p(i, j)f(j) = λf(i), ∀i,

with E|f(Zn)| < +∞ for all n. Define

Mn = λ−nf(Zn).

Note that
E|Mn| < +∞,
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and

E[Mn | Fn−1] = λ−nE[f(Zn) | Fn−1]
= λ−n

∑
j

p(Zn−1, j)f(j)

= λ−n · λ · f(Zn−1) = Mn−1.

EX 14.12 (Branching Process) A branching process is a process of the following
form:

• X(i, n), i ≥ 1 and n ≥ 1, iid with mean m

• Z0 = 1 and Zn =
∑

i≤Zn−1
X(i, n)

Note that for f(j) = j in the context of the previous example we have∑
j

p(i, j)j = mi,

so that Mn = m−nZn is a MG.

2 Connection to gambling

DEF 14.13 A process {Cn}n≥1 is predictable if Cn ∈ Fn−1 for all n ≥ 1.

EX 14.14 Continuing Example 14.2. Cn = 1{Sn−1 ≤ k} is predictable.

EX 14.15 Let {Xn}n≥0 be an integrable adapted process and {Cn}n≥1, a bounded
predictable process. Define

Mn =
∑
i≤n

(Xi − E[Xi | Fi−1])Ci.

Then
E|Mn| ≤

∑
i≤n

2E|Xn|K < +∞,

where |Cn| < K for all n ≥ 1, and

E[Mn −Mn−1 | Fn−1] = E[(Xn − E[Xn | Fn−1])Cn | Fn−1]
= Cn(E[Xn | Fn−1]− E[Xn | Fn−1]) = 0.



Lecture 14: Martingales 5

2.1 Fair games

Take the previous example with {Xn}n≥0 a MG, that is,

Mn = (C •X)n ≡
∑
i≤n

Ci(Xi −Xi−1),

where {(C •X)n}n≥0 is called the martingale transform and is a discrete analogue
of stochastic integration. If you think of Xn −Xn−1 as your net winnings per unit
stake at time n, then Cn is a gambling strategy and (C •X) is your total winnings
up to time n in a fair game.

Arguing as in the previous example, we have the following theorem.

THM 14.16 (You can’t beat the system) Let {Cn} be a bounded predictable pro-
cess and {Xn} be a MG. Then {(C • X)n} is also a MG. If, moreover, {Cn} is
nonnegative and {Xn} is a superMG, then {(C •X)n} is also a superMG.

2.2 Stopping times

Recall:

DEF 14.17 A random variable T : Ω → Z+ ≡ {0, 1, . . . ,+∞} is called a
stopping time if

{T ≤ n} ∈ Fn, ∀n ∈ Z+,

or, equivalently,
{T = n} ∈ Fn, ∀n ∈ Z+.

(To see the equivalence, note

{T = n} = {T ≤ n} \ {T ≤ n− 1},

and
{T ≤ n} = ∪i≤n{T = i}.)

In the gambling context, a stopping time is a time at which you decide to stop
playing. That decision should only depend on the history up to time n.

EX 14.18 Let {An} be an adapted process and B ∈ B. Then

T = inf{n ≥ 0 : An ∈ B},

is a stopping time.
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2.3 Stopped supermartingales are supermartingales

DEF 14.19 Let {Xn} be an adapted process and T be a stopping time. Then

XT
n (ω) ≡ XT (ω)∧n(ω),

is called {Xn} stopped at T .

THM 14.20 Let {Xn} be a superMG and T be a stopping time. Then the stopped
process XT is a superMG and in particular

E[XT∧n] ≤ E[X0].

The same result holds at equality if {Xn} is a MG.

Proof: Let
C(T )
n = 1{n ≤ T}.

Note that
{C(T )

n = 0} = {T ≤ n− 1} ∈ Fn−1,

so that C(T ) is predictable. It is also nonnegative and bounded. Note further that

(C(T ) •X)n = XT∧n −X0 = XT
n −X0.

Apply the previous theorem.

2.4 Optional stopping theorem

When can we say that E[XT ] ≤ E[X0]? As a counter-example, think of the simple
random walk started at 0 with T = inf{n ≥ 0 : Sn = 1}, where P[T < +∞] = 1.

THM 14.21 Let {Xn} be a superMG and T be a stopping time. Then XT is
integrable and

E[XT ] ≤ E[X0].

if one of the following holds:

1. T is bounded

2. X is bounded and T is a.s. finite

3. E[T ] < +∞ and X has bounded increments

4. X is nonnegative and T is a.s. finite.
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The first three hold with equality if X is a MG.

Proof: From the previous theorem, we have

(∗) E[XT∧n −X0] ≤ 0.

1. Take n = N in (∗) where T ≤ N a.s.

2. Take n to +∞ and use (DOM).

3. Note that
|XT∧n −X0| ≤ |

∑
i≤T∧n

(Xi −Xi−1)| ≤ KT,

where |Xn −Xn−1| ≤ K a.s. Use (DOM).

4. Use (FATOU).

3 Martingale convergence theorem

DEF 14.22 We say that {Xn}n is bounded in L1 if

sup
n

E|Xn| < +∞.

THM 14.23 (Martingale convergence theorem) Let X be a superMG bounded
in L1. Then Xn converges and is finite a.s. Moreover, let X∞ = lim infnXn then
X∞ ∈ F∞ and E|X∞| < +∞.

To prove this key theorem, we use the connection to gambling.

3.1 A natural gambling strategy

Recall that
(C •X)n =

∑
i≤n

Cn(Xn −Xn−1),

where Cn is predictable and Xn is a superMG, can be interpreted as your net win-
nings in a game. A natural strategy is to choose α < β and apply the following

• REPEAT

– Wait until Xn gets below α
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– Play a unit stake until Xn gets above β and stop playing

• UNTIL TIME N

More formally, let
C1 = 1{X0 < α},

and

Cn = 1{Cn−1 = 1}1{Xn−1 ≤ β}+ 1{Cn−1 = 0}1{Xn−1 < α}.

Then {Cn} is predictable.

3.2 Upcrossings

Define the following stopping times. Let T0 = −1,

T2k−1 = inf{n > T2k−2 : Xn < α},

and
T2k = inf{n > T2k−1 : Xn > β}.

The number of upcrossings of [α, β] by time N is

UN [α, β] = sup{k : T2k ≤ N}.

LEM 14.24 (Doob’s Upcrossing Lemma) Let {Xn} be a superMG. Then

(β − α)EUN [α, β] ≤ E[(XN − α)−].

Proof: Let Yn = (C •X)n. Then {Yn} is a superMG and satisfies

YN ≥ (β − α)UN [α, β]− (XN − α)−,

since (XN − α)− overestimates the loss during the last interval of play. The result
follows from E[YN ] ≤ 0.

COR 14.25 Let {Xn} be a superMG bounded in L1. Then

UN [α, β] ↑ U∞[α, β],

(β − α)EU∞[α, β] ≤ |α|+ sup
n

E|Xn| < +∞,

so that
P[U∞[α, β] =∞] = 0.

Proof: Use (MON).
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3.3 Convergence theorem

We are ready to prove the main theorem.
Proof:(of THM 14.23) Let α < β ∈ Q and

Λα,β = {ω : lim inf Xn < α < β < lim supXn}.

Note that

Λ ≡ {ω : Xn does not converge in [−∞,+∞]}
= {ω : lim inf Xn < lim supXn}
= ∪α<β∈QΛα,β.

Since
Λα,β ⊆ {U∞[α, β] =∞},

we have P[Λα,β] = 0. By countability, P[Λ] = 0. Use (FATOU) on |Xn| to
conclude.

A very useful corollary:

COR 14.26 If {Xn} is a nonnegative superMG then Xn converges a.s.

Proof: {Xn} is bounded in L1 since

E|Xn| = E[Xn] ≤ E[X0], ∀n.

EX 14.27 (Polya’s Urn) An urn contains 1 red ball and 1 green ball. At each
time, we pick one ball and put it back with an extra ball of the same color. Let
Rn (resp. Gn) be the number of red balls (resp. green balls) after the nth draw.
Let Fn = σ(R0, G0, R1, G1, . . . , Rn, Gn). Define Mn to be the fraction of green
balls. Then

E[Mn | Fn−1] =
Rn−1

Gn−1 +Rn−1

Gn−1
Gn−1 +Rn−1 + 1

+
Gn−1

Gn−1 +Rn−1

Gn−1 + 1

Gn−1 +Rn−1 + 1

=
Gn−1

Gn−1 +Rn−1
= Mn−1.

Since Mn ≥ 0 and is a MG, we have Mn →M∞ a.s. See [Dur10, Section 4.3] for
distribution of the limit and a generalization, or decipher,

P[Gn = m+ 1] =

(
n

m

)
m!(n−m)!

(n+ 1)!
=

1

n+ 1
,
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so that

P[Mn ≤ x] =
bx(n+ 2)− 1c

n+ 1
→ x,

(by a sandwich argument).

EX 14.28 (Convergence in L1?) We give an example that shows that the condi-
tions of the Martingale Convergence Theorem do not guarantee convergence of
expectations. Let {Sn} be SRW started at 1 and

T = inf{n > 0 : Sn = 0}.

Then {ST∧n} is a nonnegative MG. It can only converge to 0. (Any other integer
value would not be possible because convergence would have to have occurred at
a finite time and the next time step would have to be different.) But E[X0] = 1 6= 0.
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