
Notes 15 : Branching processes

Math 733-734: Theory of Probability Lecturer: Sebastien Roch

References: [Wil91, Section 0], [Dur10, Section 5.3], [AN72, Section I.1-I.5].

1 Branching processes

1.1 Definitions

Recall:

DEF 15.1 A branching process is an SP of the form:

• LetX(i, n), i ≥ 1, n ≥ 1, be an array of iid Z+-valued RVs with finite mean
m = E[X(1, 1)] < +∞, and inductively,

Zn =
∑

1≤i≤Zn−1

X(i, n)

To avoid trivialities we assume P[X(1, 1) = i] < 1 for all i ≥ 0.

LEM 15.2 Mn = m−nZn is a nonnegative MG.

Proof: Use the following lemma (proved in homework):

LEM 15.3 If Y1 = Y2 a.s. on B ∈ F then E[Y1 | F ] = E[Y2 | F ] a.s. on B.

Then, on {Zn−1 = k},

E[Zn | Fn−1] = E[
∑

1≤j≤k
X(j, n) | Fn−1] = mk = mZn−1.

This is true for all k.

COR 15.4 Mn →M∞ < +∞ a.s. and E[M∞] ≤ 1.

The martingale convergence theorem in itself tells us little about the limit. Here we
derive a more detailed picture of the limiting behavior—starting with extinction.
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1.2 Extinction

Let pi = P[X(1, 1) = i] for all i and for s ∈ [0, 1]

f(s) = p0 + p1s+ p2s
2 + · · · =

∑
i≥0

pis
i.

Similarly, fn(s) = E[sZn ]. One could hope to compute the generating function of
the limit—but this is rarely possible. Instead, we derive some of its properties. In
particular, note that

π ≡ P[Zn = 0 for some n ≥ 0]

= lim
n→+∞

P[Zn = 0]

= lim
n→+∞

fn(0),

using the fact that 0 is an absorbing state and monotonicity. Moreover, by the
Markov property, fn as a natural recursive form:

fn(s) = E[sZn ]

= E[E[sZn | Fn−1]]
= E[f(s)Zn−1 ]

= fn−1(f(s)) = · · · = f (n)(s).

So we need to study iterates of f . We will prove:

THM 15.5 (Extinction) The probability of extinction π is given by the smallest
fixed point of f in [0, 1]:

1. If m ≤ 1 then π = 1.

2. If m > 1 then π < 1.

We first summarize some properties of f . To avoid uninteresting cases, we
assume p0 + p1 < 1.

LEM 15.6 The function f on [0, 1] satisfies:

1. f(0) = p0, f(1) = 1

2. f is indefinitely differentiable on [0, 1)

3. f is strictly convex and increasing
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4. lims↑1 f
′(s) = m < +∞

Proof: See Baby Rudin for the relevant power series facts. 1. is clear by definition.
The function f is a power series with radius of convergence R ≥ 1. This implies
2. In particular,

f ′(s) =
∑
i≥1

ipis
i−1 ≥ 0,

and
f ′′(s) =

∑
i≥2

i(i− 1)pis
i−2 > 0.

because we must have pi > 0 for some i > 1 by assumption. This proves 3. Since
m < +∞, f ′(1) is well defined and f ′ is continuous on [0, 1].

COR 15.7 (Fixed points) We have:

1. If m > 1 then f has a unique fixed point π0 ∈ [0, 1)

2. If m ≤ 1 then f(t) > t for t ∈ [0, 1) (Let π0 = 1 in that case.)

Proof: Since f ′(1) = m > 1, there is δ > 0 s.t. f(1 − δ) < 1 − δ. On the
other hand f(0) ≥ 0 so by continuity of f there must be a fixed point in [0, 1− δ).
Moreover, by strict convexity, if r is a fixed point then f(s) < s for s ∈ (r, 1),
proving uniqueness.

The second part follows by strict convexity and monotonicity.

COR 15.8 (Dynamics) We have:

1. If t ∈ [0, π0), then f (n)(t) ↑ π0

2. If t ∈ (π0, 1) then f (n)(t) ↓ π0

Proof: We only prove 1. The argument for 2. is similar. By monotonicity, for
t ∈ [0, π0), we have t < f(t) < f(π0) = π0. Iterating

t < f (1)(t) < · · · < f (n)(t) < f (n)(π0) = π0.

So f (n)(t) ↑ L ≤ π0. By continuity of f we can take the limit inside of

f (n)(t) = f(f (n−1)(t)),

to get L = f(L). So by definition of π0 we must have L = π0.
Theorem 15.5 follows.
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1.3 Discussion

The previous theorem “essentially” settles the subcritical and critical cases. For the
supercritical case, however, it remains to understand whenM∞ = 0. WhenM∞ ≡
0 for instance, our convergence theorem provides less precise information. Note
that convergence of expectations would help exclude that case since that would
imply E[M∞] = 1. But this requires some conditions. For instance, note that
when m ≤ 1

1 = E[Mn] 9 E[M∞] = 0.

In other words, the Martingale Convergence Theorem does not hold in L1 under
the same conditions.

More generally, one could conjecture that M∞ = 0 exactly when we have
extinction. We will see conditions under which this is true next time.

2 Martingales in L2

2.1 Preliminaries

DEF 15.9 For 1 ≤ p < +∞, we say that X ∈ Lp if

‖X‖p = E[|Xp|]1/p < +∞.

By Jensen’s inequality, for 1 ≤ p ≤ r < +∞ we have ‖X‖p ≤ ‖X‖r if X ∈ Lr.

Proof: For n ≥ 0, let
Xn = (|X| ∧ n)p.

Take c(x) = xr/p on (0,+∞) which is convex. Then

(E[Xn])
r/p ≤ E[(Xn)

r/p] = E[(|X| ∧ n)r] ≤ E[|X|r].

Take n→∞ and use (MON).

DEF 15.10 We say that Xn converges to X∞ in Lp if ‖Xn − X∞‖p → 0. By
the previous result, convergence on Lr implies convergence in Lp for r ≥ p ≥ 1.
(Moreover, by Chebyshev’s inequality, convergence in Lp implies convergence in
probability.)

LEM 15.11 Assume Xn, X∞ ∈ L1. Then

‖Xn −X∞‖1 → 0,

implies
E[Xn]→ E[X∞].
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Proof: Note that

|E[Xn]− E[X∞]| ≤ E|Xn −X∞| → 0.

DEF 15.12 We say that {Xn}n is bounded in Lp if

sup
n
‖Xn‖p < +∞.

2.2 L2 convergence

THM 15.13 Let {Mn} be a MG with Mn ∈ L2. Then {Mn} is bounded in L2 if
and only if ∑

k≥1
E[(Mk −Mk−1)

2] < +∞.

When this is the case, Mn converges a.s. and in L2. (In particular, it converges in
L1.)

Proof:

LEM 15.14 (Orthogonality of increments) Let {Mn} be a MG with Mn ∈ L2.
Let s ≤ t ≤ u ≤ v. Then,

〈Mt −Ms,Mv −Mu〉 = 0.

Proof: Use Mu = E[Mv | Fu], Mt −Ms ∈ Fu and apply the L2 characterization
of conditional expectations.
That implies

E[M2
n] = E[M2

0 ] +
∑

1≤i≤n
E[(Mi −Mi−1)

2],

proving the first claim.
By monotonicity of norms, M is bounded in L2 implies {Mn} is bounded in

L1 which, in turn, implies M converges a.s. Then using (FATOU) in

E[(Mn+k −Mn)
2] =

∑
n+1≤i≤n+k

E[(Mi −Mi−1)
2],

gives
E[(M∞ −Mn)

2] ≤
∑
n+1≤i

E[(Mi −Mi−1)
2].

The RHS goes to 0 which proves the second claim.
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3 Back to branching processes

THM 15.15 Let Z be a branching process with Z0 = 1, m = E[X(1, 1)] > 1
and σ2 = Var[X(1, 1)] < +∞. Then, Mn = m−nZn converges in L2, and in
particular, E[M∞] = 1.

Proof: We bound E[M2
n] by computing it explicitly by induction. From the or-

thogonality of increments

E[M2
n] = E[M2

n−1] + E[(Mn −Mn−1)
2].

On {Zn−1 = k}

E[(Mn −Mn−1)
2 | Fn−1] = m−2nE[(Zn −mZn−1)2 | Fn−1]

= m−2nE[(
k∑
i=1

X(i, n)−mk)2 | Fn−1]

= m−2nkσ2

= m−2nZn−1σ
2.

Hence
E[M2

n] = E[M2
n−1] +m−n−1σ2.

Since E[M2
0 ] = 1,

E[M2
n] = 1 + σ2

n+1∑
i=2

m−i,

which is uniformly bounded when m > 1. So Mn converges in L2. Finally by
(FATOU)

E|M∞| ≤ sup ‖Mn‖1 ≤ sup ‖Mn‖2 < +∞

and
|E[Mn]− E[M∞]| ≤ ‖Mn −M∞‖1 ≤ ‖Mn −M∞‖2,

implies the convergence of expectations.
In a homework problem, we will show that under the assumptions of the previ-

ous theorem
{M∞ = 0} = {Zn = 0, for some n},

and
P[M∞ = 0] = π,

the probability of extinction.
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EX 15.16 (Geometric Offspring) Assume

0 < p < 1, q = 1− p, pi = pqi, ∀i ≥ 0, m =
q

p
.

Then
f(s) =

p

1− sq
, π = min{p

q
, 1}.

• Case m 6= 1. If G is a 2× 2 matrix, denote

G(s) =
G11s+G12

G21s+G22
.

Then G(H(s)) = (GH)(s). By diagonalization,(
0 p
−q 1

)n
= (q − p)−1

(
1 p
1 q

)(
pn 0
0 qn

)(
q −p
−1 1

)
(the columns of the first matrix on the RHS are the right eigenvectors) leading
to

fn(s) =
pmn(1− s) + qs− p
qmn(1− s) + qs− p

.

In particular, when m < 1 we have π = lim fn(0) = 1. On the other hand,
if m > 1, we have by (DOM) for λ ≥ 0

E[exp(−λM∞)] = lim
n
fn(exp(−λ/mn))

=
pλ+ q − p
qλ+ q − p

= π + (1− π) (1− π)
λ+ (1− π)

.

The first term corresponds to a point mass at 0 and the second term corre-
sponds to an exponential with mean 1/(1− π).

• Case m = 1. By induction

fn(s) =
n− (n− 1)s

n+ 1− ns
,

so that
P[Zn > 0] = 1− fn(0) =

1

n+ 1
,

and

E[e−λZn/n |Zn > 0] =
fn(e

−λ/n)− fn(0)
1− fn(0)

→ 1

1 + λ
,

which is the Laplace transform of an eponential mean 1. This is consistent
with E[Zn] = 1.
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