Notes 15 : Branching processes

Math 733-734: Theory of Probability Lecturer: Sebastien Roch

References: [Wil91, Section 0], [Durl0, Section 5.3], [AN72, Section I.1-1.5].

1 Branching processes

1.1 Definitions

Recall:

DEF 15.1 A branching process is an SP of the form:

o Let X(i,n), i > 1,n > 1, be an array of iid Z-valued RVs with finite mean
m = E[X(1,1)] < 400, and inductively,

Zn= Y  Xl(in)

1<i<Zn1
To avoid trivialities we assume P[X (1,1) = i] < 1 forall i > 0.
LEM 15.2 M, = m~"Z, is a nonnegative MG.

Proof: Use the following lemma (proved in homework):
LEM 153 IfY1 = Ys a.s. on B € F then E[Y; | F] = E[Y2 | F] a.s. on B.
Then, on {Z,—1 = k},

E[Zn| Faal =E[ Y X(G,n)| Faal = mk =mZ, 1.

1<5<k
This is true for all k. [ |

COR 154 M, — My < +o0 a.s. and E[M] < 1.

The martingale convergence theorem in itself tells us little about the limit. Here we
derive a more detailed picture of the limiting behavior—starting with extinction.
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1.2 Extinction

Let p; = P[X(1,1) = i] for all ¢ and for s € [0, 1]

f(s)=po+pis+pas®+--- =) pis'.
>0

Similarly, f,,(s) = E[s?"]. One could hope to compute the generating function of
the limit—but this is rarely possible. Instead, we derive some of its properties. In
particular, note that

n = P[Z, =0 for somen > 0]
= lim P[Z, = 0]
n—+oo
= B /0,

using the fact that O is an absorbing state and monotonicity. Moreover, by the
Markov property, f, as a natural recursive form:

fals) = E[s7"]
= E[E[s” | Fn_1]]
= E[f(s)"]
= fa1(f(s)) === f"(s).

So we need to study iterates of f. We will prove:

THM 15.5 (Extinction) The probability of extinction 7 is given by the smallest
fixed point of f in [0, 1]:

1. Ifm < 1thenm = 1.
2. Ifm>1thenm < 1.

We first summarize some properties of f. To avoid uninteresting cases, we
assume py + p1 < 1.

LEM 15.6 The function f on [0, 1] satisfies:
1. f(0) =po, f(1) =1
2. f is indefinitely differentiable on [0,1)

3. f is strictly convex and increasing
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4. limgpq f'(s) =m < 400

Proof: See Baby Rudin for the relevant power series facts. 1. is clear by definition.
The function f is a power series with radius of convergence R > 1. This implies
2. In particular,

() =Y ipisit >0,

1>1

and

f(s) = _i(i — pis' = > 0.

i>2
because we must have p; > 0 for some ¢ > 1 by assumption. This proves 3. Since
m < +oo, f'(1) is well defined and f’ is continuous on [0, 1]. [ |

COR 15.7 (Fixed points) We have:
1. If m > 1 then f has a unique fixed point o € [0, 1)

2. If m < 1then f(t) > tfort € [0,1) (Let 7y = 1 in that case.)

Proof: Since f/(1) = m > 1, thereis 6 > 0s.t. f(1 —4d) < 1— 4. On the
other hand f(0) > 0 so by continuity of f there must be a fixed point in [0, 1 — 9).
Moreover, by strict convexity, if r is a fixed point then f(s) < s for s € (r, 1),
proving uniqueness.

The second part follows by strict convexity and monotonicity. |

COR 15.8 (Dynamics) We have:
1. Ift € [0, ), then f(™(t) 1 mg

2. Ift € (mo, 1) then f™(t) | mo

Proof: We only prove 1. The argument for 2. is similar. By monotonicity, for
t € [0,m), wehave t < f(t) < f(mp) = mp. Iterating

t < f(l)(t) <l < f(n)(t) < f(”)(ﬂ-o) = p.
So f(™(t) 1 L < mp. By continuity of f we can take the limit inside of
F) = Fre D)),

to get L = f(L). So by definition of my we must have L = 7. |
Theorem 15.5 follows.
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1.3 Discussion

The previous theorem “essentially” settles the subcritical and critical cases. For the
supercritical case, however, it remains to understand when My, = 0. When M, =
0 for instance, our convergence theorem provides less precise information. Note
that convergence of expectations would help exclude that case since that would
imply E[M.] = 1. But this requires some conditions. For instance, note that
whenm <1

1 =E[M,] » E[M] = 0.

In other words, the Martingale Convergence Theorem does not hold in L' under
the same conditions.

More generally, one could conjecture that M., = 0 exactly when we have
extinction. We will see conditions under which this is true next time.

2 Martingales in £>

2.1 Preliminaries
DEF 15.9 For1 < p < 400, we say that X € LP if
111, = E[XP[7 < +o.
By Jensen’s inequality, for 1 < p < r < +o0o0 we have | X ||, < [| X|, if X € L.

Proof: For n > 0, let
X, = (|X]|An)P.

Take c(z) = 2"/P on (0, +00) which is convex. Then
(E[Xa)P < E[(Xa)"7] = E[(IX] An)"] < E[|X['].
Take n — oo and use (MON). [ |

DEF 15.10 We say that X,, converges to X in LP if || X;, — Xxl|lp — 0. By
the previous result, convergence on L" implies convergence in LP forr > p > 1.
(Moreover, by Chebyshev’s inequality, convergence in LP implies convergence in
probability.)

LEM 15.11 Assume X,, Xoo € L. Then
| Xn — Xooll1 — 0,

implies
E[X,] = E[X].
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Proof: Note that

|E[X,] — E[X]| < E|X,, — Xo| — 0.

DEF 15.12 We say that { X, },, is bounded in L? if

sup | Xp||p < 4o0.
n

2.2 [? convergence

THM 15.13 Let {M,,} be a MG with M,, € L2. Then {M,} is bounded in L? if
and only if

> E[(Mg — Mi_1)?] < +o0.

E>1
When this is the case, M, converges a.s. and in L>. (In particular, it converges in

Lh)
Proof:

LEM 15.14 (Orthogonality of increments) Let {M,,} be a MG with M,, € L2
Let s <t <wu<w. Then,

(M, — My, M, — M,) = 0.

Proof: Use M, = E[M, | F.], My — M, € F, and apply the £? characterization
of conditional expectations. |
That implies
E[Mz] = E[Mg]+ Y E[(M; — M;1)?),
1<i<n
proving the first claim.
By monotonicity of norms, M is bounded in £? implies {M,,} is bounded in

L' which, in turn, implies M converges a.s. Then using (FATOU) in

E[(Mppx — Mp)? )= > E[(M; — M;_1)?,
n+1<i<n+k
gives
E[(Moo — Mp)?] < Y E[(M; — M;—1)?).
n+1<q

The RHS goes to 0 which proves the second claim.
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3 Back to branching processes

THM 15.15 Let Z be a branching process with Zy = 1, m = E[X(1,1)] > 1
and 0* = Var[X(1,1)] < +oo. Then, M, = m~"Z, converges in L? and in
particular, E[M] = 1.

Proof: We bound E[M?2] by computing it explicitly by induction. From the or-
thogonality of increments

E[M;] = E[M;_y] + E[(Mn — My-1)?].

On{Z,1 =k}
E[(My, — Myp—1)?| Fuet] = m™>"E[(Zn — mZy-1)* | Fpi]
= m_QnE[(zk: X (i,n) —mk)*| Fpn_1]
=1
= m ko?
= m Z,_10°.
Hence

E[M2] = E[M2_,] +m " 1o2.

Since E[MZ] =1,

n+1 ‘

BIMZ = 1407y

i=2
which is uniformly bounded when m > 1. So M,, converges in L?. Finally by
(FATOU)

E[Me| < sup || My 1 < sup [[My2 < +o00

and
‘E[Mn] - E[MOOH < HMn - MOOHI < ||Mn - MOO||27

implies the convergence of expectations. ]
In a homework problem, we will show that under the assumptions of the previ-
ous theorem
{Mx =0} ={Z, =0, for some n},

and
PMy =0] =,

the probability of extinction.
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EX 15.16 (Geometric Offspring) Assume

O<p<l,g=1—p, pi=pg, ¥i>0 m="1
p

Then
f(s) = ] —psq7 T = min{g7 1}.
° If G is a 2 X 2 matrix, denote
G G
Gls) = 115 + 12
Go15 + Gaa

Then G(H(s)) = (GH)(s). By diagonalization,

(G ) e G ) (& 7)

(the columns of the first matrix on the RHS are the right eigenvectors) leading
to
pm™(1—s)+qgs—p
fa(s) = n( ) :
qgm™(1 —s)+qs—p
In particular, when m < 1 we have m = lim f,,(0) = 1. On the other hand,
if m > 1, we have by (DOM) for A > 0

Elexp(—AMx)] = lirrlnfn(exp(—)\/m”))

pPA+q—p
gA+q—p

(1—m)
A+ (1—m)
The first term corresponds to a point mass at O and the second term corre-
sponds to an exponential with mean 1/(1 — 7).

° By induction

= 7+ (1-m)

_n—(n—1)s
) = T s
so that )
P{Z > 0] =1~ ful0) = .
and
E[ef)\Zn/n ‘ Z, > 0} _ fn(e_A/n) - fn(o) 1

- )
which is the Laplace transform of an eponential mean 1. This is consistent
with E[Z,] = 1.



Lecture 15: Branching processes 8

References

[AN72] Krishna B. Athreya and Peter E. Ney. Branching processes. Springer-
Verlag, New York, 1972.

[Dur10] Rick Durrett. Probability: theory and examples. Cambridge Series in
Statistical and Probabilistic Mathematics. Cambridge University Press,
Cambridge, 2010.

[Wil91] David Williams. Probability with martingales. Cambridge Mathematical
Textbooks. Cambridge University Press, Cambridge, 1991.



