Notes 15 : Branching processes

Math 733-734: Theory of Probability Lecturer: Sebastien Roch

References: [Wil91, Section 0], [Dur10, Section 5.3], [AN72, Section I.1-I.5].

1 Branching processes

1.1 Definitions

Recall:

DEF 15.1 *A* branching process *is an SP of the form:*

• Let $X(i, n)$, $i \geq 1$, $n \geq 1$, be an array of iid \mathbb{Z}_+ -valued RVs with finite mean $m = \mathbb{E}[X(1,1)] < +\infty$, and inductively,

$$
Z_n = \sum_{1 \le i \le Z_{n-1}} X(i, n)
$$

To avoid trivialities we assume $\mathbb{P}[X(1,1) = i] < 1$ *for all* $i \geq 0$ *.*

LEM 15.2 $M_n = m^{-n} Z_n$ *is a nonnegative MG.*

Proof: Use the following lemma (proved in homework):

LEM 15.3 *If* $Y_1 = Y_2$ *a.s. on* $B \in \mathcal{F}$ *then* $\mathbb{E}[Y_1 | \mathcal{F}] = \mathbb{E}[Y_2 | \mathcal{F}]$ *a.s. on* B *.*

Then, on $\{Z_{n-1} = k\},\$

$$
\mathbb{E}[Z_n | \mathcal{F}_{n-1}] = \mathbb{E}[\sum_{1 \le j \le k} X(j,n) | \mathcal{F}_{n-1}] = mk = mZ_{n-1}.
$$

This is true for all k .

COR 15.4
$$
M_n \to M_\infty < +\infty
$$
 a.s. and $\mathbb{E}[M_\infty] \leq 1$.

The martingale convergence theorem in itself tells us little about the limit. Here we derive a more detailed picture of the limiting behavior—starting with extinction.

П

1.2 Extinction

Let $p_i = \mathbb{P}[X(1, 1) = i]$ for all i and for $s \in [0, 1]$

$$
f(s) = p_0 + p_1 s + p_2 s^2 + \dots = \sum_{i \ge 0} p_i s^i.
$$

Similarly, $f_n(s) = \mathbb{E}[s^{Z_n}]$. One could hope to compute the generating function of the limit—but this is rarely possible. Instead, we derive some of its properties. In particular, note that

$$
\begin{array}{rcl}\n\pi & \equiv & \mathbb{P}[Z_n = 0 \text{ for some } n \ge 0] \\
& = & \lim_{n \to +\infty} \mathbb{P}[Z_n = 0] \\
& = & \lim_{n \to +\infty} f_n(0),\n\end{array}
$$

using the fact that 0 is an absorbing state and monotonicity. Moreover, by the Markov property, f_n as a natural recursive form:

$$
f_n(s) = \mathbb{E}[s^{Z_n}]
$$

= $\mathbb{E}[\mathbb{E}[s^{Z_n} | \mathcal{F}_{n-1}]]$
= $\mathbb{E}[f(s)^{Z_{n-1}}]$
= $f_{n-1}(f(s)) = \cdots = f^{(n)}(s).$

So we need to study iterates of f . We will prove:

THM 15.5 (Extinction) *The probability of extinction* π *is given by the smallest fixed point of* f *in* $[0, 1]$ *:*

- *1. If* $m \leq 1$ *then* $\pi = 1$ *.*
- *2. If* $m > 1$ *then* $\pi < 1$ *.*

We first summarize some properties of f . To avoid uninteresting cases, we assume $p_0 + p_1 < 1$.

LEM 15.6 *The function* f *on* [0, 1] *satisfies:*

- *1.* $f(0) = p_0$, $f(1) = 1$
- *2.* f *is indefinitely differentiable on* [0, 1)
- *3.* f *is strictly convex and increasing*

4.
$$
\lim_{s \uparrow 1} f'(s) = m < +\infty
$$

Proof: See Baby Rudin for the relevant power series facts. 1. is clear by definition. The function f is a power series with radius of convergence $R \geq 1$. This implies 2. In particular,

$$
f'(s) = \sum_{i \ge 1} i p_i s^{i-1} \ge 0,
$$

and

$$
f''(s) = \sum_{i \ge 2} i(i-1)p_i s^{i-2} > 0.
$$

because we must have $p_i > 0$ for some $i > 1$ by assumption. This proves 3. Since $m < +\infty$, $f'(1)$ is well defined and f' is continuous on [0, 1].

COR 15.7 (Fixed points) *We have:*

- *1. If* $m > 1$ *then f has a unique fixed point* $\pi_0 \in [0, 1)$
- *2. If* $m \le 1$ *then* $f(t) > t$ *for* $t \in [0, 1)$ *(Let* $\pi_0 = 1$ *in that case.)*

Proof: Since $f'(1) = m > 1$, there is $\delta > 0$ s.t. $f(1 - \delta) < 1 - \delta$. On the other hand $f(0) \ge 0$ so by continuity of f there must be a fixed point in [0, 1 – δ). Moreover, by strict convexity, if r is a fixed point then $f(s) < s$ for $s \in (r, 1)$, proving uniqueness.

The second part follows by strict convexity and monotonicity.

COR 15.8 (Dynamics) *We have:*

- *1. If* $t \in [0, \pi_0)$ *, then* $f^{(n)}(t) \uparrow \pi_0$
- 2. If $t \in (\pi_0, 1)$ then $f^{(n)}(t) \downarrow \pi_0$

Proof: We only prove 1. The argument for 2. is similar. By monotonicity, for $t \in [0, \pi_0)$, we have $t < f(t) < f(\pi_0) = \pi_0$. Iterating

$$
t < f^{(1)}(t) < \cdots < f^{(n)}(t) < f^{(n)}(\pi_0) = \pi_0.
$$

So $f^{(n)}(t) \uparrow L \leq \pi_0$. By continuity of f we can take the limit inside of

$$
f^{(n)}(t) = f(f^{(n-1)}(t)),
$$

to get $L = f(L)$. So by definition of π_0 we must have $L = \pi_0$.

Theorem 15.5 follows.

П

1.3 Discussion

The previous theorem "essentially" settles the subcritical and critical cases. For the supercritical case, however, it remains to understand when $M_{\infty} = 0$. When $M_{\infty} \equiv$ 0 for instance, our convergence theorem provides less precise information. Note that convergence of expectations would help exclude that case since that would imply $\mathbb{E}[M_{\infty}] = 1$. But this requires some conditions. For instance, note that when $m \leq 1$

$$
1 = \mathbb{E}[M_n] \to \mathbb{E}[M_\infty] = 0.
$$

In other words, the Martingale Convergence Theorem does not hold in L^1 under the same conditions.

More generally, one could conjecture that $M_{\infty} = 0$ exactly when we have extinction. We will see conditions under which this is true next time.

2 Martingales in \mathcal{L}^2

2.1 Preliminaries

DEF 15.9 For $1 \leq p < +\infty$, we say that $X \in \mathcal{L}^p$ if

$$
||X||_p = \mathbb{E}[|X^p|]^{1/p} < +\infty.
$$

By Jensen's inequality, for $1 \leq p \leq r < +\infty$ we have $||X||_p \leq ||X||_r$ if $X \in \mathcal{L}^r$.

Proof: For $n \geq 0$, let

$$
X_n = (|X| \wedge n)^p.
$$

Take $c(x) = x^{r/p}$ on $(0, +\infty)$ which is convex. Then

$$
(\mathbb{E}[X_n])^{r/p} \le \mathbb{E}[(X_n)^{r/p}] = \mathbb{E}[(|X| \wedge n)^r] \le \mathbb{E}[|X|^r].
$$

Take $n \to \infty$ and use (MON).

DEF 15.10 We say that X_n converges to X_∞ in \mathcal{L}^p if $||X_n - X_\infty||_p \to 0$. By *the previous result, convergence on* \mathcal{L}^r *implies convergence in* \mathcal{L}^p for $r \geq p \geq 1$ *. (Moreover, by Chebyshev's inequality, convergence in* L p *implies convergence in probability.)*

LEM 15.11 Assume $X_n, X_\infty \in \mathcal{L}^1$. Then

$$
||X_n - X_{\infty}||_1 \to 0,
$$

implies

$$
\mathbb{E}[X_n] \to \mathbb{E}[X_\infty].
$$

Lecture 15: Branching processes 5

Proof: Note that

$$
|\mathbb{E}[X_n] - \mathbb{E}[X_\infty]| \le \mathbb{E}|X_n - X_\infty| \to 0.
$$

DEF 15.12 We say that $\{X_n\}_n$ is bounded in \mathcal{L}^p if

$$
\sup_n \|X_n\|_p < +\infty.
$$

2.2 \mathcal{L}^2 convergence

THM 15.13 Let $\{M_n\}$ be a MG with $M_n \in \mathcal{L}^2$. Then $\{M_n\}$ is bounded in \mathcal{L}^2 if *and only if*

$$
\sum_{k\geq 1} \mathbb{E}[(M_k - M_{k-1})^2] < +\infty.
$$

When this is the case, M_n converges a.s. and in \mathcal{L}^2 . (In particular, it converges in \mathcal{L}^1 .)

Proof:

LEM 15.14 (Orthogonality of increments) Let $\{M_n\}$ be a MG with $M_n \in \mathcal{L}^2$. *Let* $s \le t \le u \le v$ *. Then,*

$$
\langle M_t - M_s, M_v - M_u \rangle = 0.
$$

Proof: Use $M_u = \mathbb{E}[M_v | \mathcal{F}_u]$, $M_t - M_s \in \mathcal{F}_u$ and apply the \mathcal{L}^2 characterization of conditional expectations.

That implies

$$
\mathbb{E}[M_n^2] = \mathbb{E}[M_0^2] + \sum_{1 \le i \le n} \mathbb{E}[(M_i - M_{i-1})^2],
$$

proving the first claim.

By monotonicity of norms, M is bounded in \mathcal{L}^2 implies $\{M_n\}$ is bounded in \mathcal{L}^1 which, in turn, implies M converges a.s. Then using (FATOU) in

$$
\mathbb{E}[(M_{n+k} - M_n)^2] = \sum_{n+1 \le i \le n+k} \mathbb{E}[(M_i - M_{i-1})^2],
$$

gives

$$
\mathbb{E}[(M_{\infty} - M_n)^2] \le \sum_{n+1 \le i} \mathbb{E}[(M_i - M_{i-1})^2].
$$

The RHS goes to 0 which proves the second claim.

 \blacksquare

3 Back to branching processes

THM 15.15 Let Z be a branching process with $Z_0 = 1$, $m = \mathbb{E}[X(1,1)] > 1$ and $\sigma^2 = \text{Var}[X(1,1)] < +\infty$. Then, $M_n = m^{-n}Z_n$ converges in L^2 , and in *particular,* $\mathbb{E}[M_{\infty}] = 1$.

Proof: We bound $\mathbb{E}[M_n^2]$ by computing it explicitly by induction. From the orthogonality of increments

$$
\mathbb{E}[M_n^2] = \mathbb{E}[M_{n-1}^2] + \mathbb{E}[(M_n - M_{n-1})^2].
$$

On $\{Z_{n-1} = k\}$

$$
\mathbb{E}[(M_n - M_{n-1})^2 | \mathcal{F}_{n-1}] = m^{-2n} \mathbb{E}[(Z_n - mZ_{n-1})^2 | \mathcal{F}_{n-1}]
$$

$$
= m^{-2n} \mathbb{E}[(\sum_{i=1}^k X(i,n) - mk)^2 | \mathcal{F}_{n-1}]
$$

$$
= m^{-2n} k \sigma^2
$$

$$
= m^{-2n} Z_{n-1} \sigma^2.
$$

Hence

$$
\mathbb{E}[M_n^2] = \mathbb{E}[M_{n-1}^2] + m^{-n-1}\sigma^2.
$$

Since $\mathbb{E}[M_0^2] = 1$,

$$
\mathbb{E}[M_n^2] = 1 + \sigma^2 \sum_{i=2}^{n+1} m^{-i},
$$

which is uniformly bounded when $m > 1$. So M_n converges in L^2 . Finally by (FATOU)

$$
\mathbb{E}|M_{\infty}| \leq \sup \|M_n\|_1 \leq \sup \|M_n\|_2 < +\infty
$$

and

$$
|\mathbb{E}[M_n]-\mathbb{E}[M_\infty]|\leq \|M_n-M_\infty\|_1\leq \|M_n-M_\infty\|_2,
$$

implies the convergence of expectations.

In a homework problem, we will show that under the assumptions of the previous theorem

$$
\{M_{\infty} = 0\} = \{Z_n = 0, \text{ for some } n\},\
$$

and

$$
\mathbb{P}[M_{\infty} = 0] = \pi,
$$

the probability of extinction.

EX 15.16 (Geometric Offspring) *Assume*

$$
0 < p < 1, \ q = 1 - p, \ p_i = pq^i, \ \forall i \ge 0, \ m = \frac{q}{p}.
$$

Then

$$
f(s) = \frac{p}{1 - sq}, \ \pi = \min\{\frac{p}{q}, 1\}.
$$

• $\boxed{\text{Case } m \neq 1.}$ *If* G is a 2 × 2 *matrix, denote*

$$
G(s) = \frac{G_{11}s + G_{12}}{G_{21}s + G_{22}}
$$

.

.

Then $G(H(s)) = (GH)(s)$ *. By diagonalization,*

$$
\begin{pmatrix} 0 & p \ -q & 1 \end{pmatrix}^n = (q-p)^{-1} \begin{pmatrix} 1 & p \ 1 & q \end{pmatrix} \begin{pmatrix} p^n & 0 \ 0 & q^n \end{pmatrix} \begin{pmatrix} q & -p \ -1 & 1 \end{pmatrix}
$$

(the columns of the first matrix on the RHS are the right eigenvectors) leading to

$$
f_n(s) = \frac{pm^n(1-s) + qs - p}{qm^n(1-s) + qs - p}.
$$

In particular, when $m < 1$ *we have* $\pi = \lim f_n(0) = 1$ *. On the other hand, if* $m > 1$ *, we have by (DOM) for* $\lambda \geq 0$

$$
\mathbb{E}[\exp(-\lambda M_{\infty})] = \lim_{n} f_n(\exp(-\lambda/m^n))
$$

$$
= \frac{p\lambda + q - p}{q\lambda + q - p}
$$

$$
= \pi + (1 - \pi) \frac{(1 - \pi)}{\lambda + (1 - \pi)}
$$

The first term corresponds to a point mass at 0 *and the second term corresponds to an exponential with mean* $1/(1 - \pi)$ *.*

• $\boxed{\text{Case } m = 1.}$ By induction

$$
f_n(s) = \frac{n - (n-1)s}{n+1 - ns},
$$

so that

$$
\mathbb{P}[Z_n > 0] = 1 - f_n(0) = \frac{1}{n+1},
$$

and

$$
\mathbb{E}[e^{-\lambda Z_n/n} \, | \, Z_n > 0] = \frac{f_n(e^{-\lambda/n}) - f_n(0)}{1 - f_n(0)} \to \frac{1}{1 + \lambda},
$$

which is the Laplace transform of an eponential mean 1*. This is consistent with* $\mathbb{E}[Z_n] = 1$ *.*

References

- [AN72] Krishna B. Athreya and Peter E. Ney. *Branching processes*. Springer-Verlag, New York, 1972.
- [Dur10] Rick Durrett. *Probability: theory and examples*. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2010.
- [Wil91] David Williams. *Probability with martingales*. Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge, 1991.