Notes 15 : Branching processes

Math 733-734: Theory of Probability

Lecturer: Sebastien Roch

References: [Wil91, Section 0], [Dur10, Section 5.3], [AN72, Section I.1-I.5].

1 Branching processes

1.1 Definitions

Recall:

DEF 15.1 A branching process is an SP of the form:

Let X(i, n), i ≥ 1, n ≥ 1, be an array of iid Z₊-valued RVs with finite mean
m = E[X(1, 1)] < +∞, and inductively,

$$Z_n = \sum_{1 \le i \le Z_{n-1}} X(i, n)$$

To avoid trivialities we assume $\mathbb{P}[X(1,1) = i] < 1$ for all $i \ge 0$.

LEM 15.2 $M_n = m^{-n}Z_n$ is a nonnegative MG.

Proof: Use the following lemma (proved in homework):

LEM 15.3 If $Y_1 = Y_2$ a.s. on $B \in \mathcal{F}$ then $\mathbb{E}[Y_1 | \mathcal{F}] = \mathbb{E}[Y_2 | \mathcal{F}]$ a.s. on B.

Then, on $\{Z_{n-1} = k\}$,

$$\mathbb{E}[Z_n \mid \mathcal{F}_{n-1}] = \mathbb{E}[\sum_{1 \le j \le k} X(j,n) \mid \mathcal{F}_{n-1}] = mk = mZ_{n-1}.$$

This is true for all k.

COR 15.4
$$M_n \to M_\infty < +\infty \text{ a.s. and } \mathbb{E}[M_\infty] \le 1.$$

The martingale convergence theorem in itself tells us little about the limit. Here we derive a more detailed picture of the limiting behavior—starting with extinction.

1.2 Extinction

Let $p_i = \mathbb{P}[X(1,1) = i]$ for all i and for $s \in [0,1]$

$$f(s) = p_0 + p_1 s + p_2 s^2 + \dots = \sum_{i \ge 0} p_i s^i.$$

Similarly, $f_n(s) = \mathbb{E}[s^{Z_n}]$. One could hope to compute the generating function of the limit—but this is rarely possible. Instead, we derive some of its properties. In particular, note that

$$\pi \equiv \mathbb{P}[Z_n = 0 \text{ for some } n \ge 0]$$

=
$$\lim_{n \to +\infty} \mathbb{P}[Z_n = 0]$$

=
$$\lim_{n \to +\infty} f_n(0),$$

using the fact that 0 is an absorbing state and monotonicity. Moreover, by the Markov property, f_n as a natural recursive form:

$$f_n(s) = \mathbb{E}[s^{Z_n}]$$

= $\mathbb{E}[\mathbb{E}[s^{Z_n} | \mathcal{F}_{n-1}]]$
= $\mathbb{E}[f(s)^{Z_{n-1}}]$
= $f_{n-1}(f(s)) = \cdots = f^{(n)}(s)$

So we need to study iterates of f. We will prove:

THM 15.5 (Extinction) *The probability of extinction* π *is given by the smallest fixed point of f in* [0, 1]*:*

- 1. If $m \leq 1$ then $\pi = 1$.
- 2. If m > 1 then $\pi < 1$.

We first summarize some properties of f. To avoid uninteresting cases, we assume $p_0 + p_1 < 1$.

LEM 15.6 The function f on [0, 1] satisfies:

- *1.* $f(0) = p_0, f(1) = 1$
- 2. f is indefinitely differentiable on [0, 1)
- 3. f is strictly convex and increasing

4.
$$\lim_{s\uparrow 1} f'(s) = m < +\infty$$

Proof: See Baby Rudin for the relevant power series facts. 1. is clear by definition. The function f is a power series with radius of convergence $R \ge 1$. This implies 2. In particular,

$$f'(s) = \sum_{i \ge 1} i p_i s^{i-1} \ge 0,$$

and

$$f''(s) = \sum_{i \ge 2} i(i-1)p_i s^{i-2} > 0.$$

because we must have $p_i > 0$ for some i > 1 by assumption. This proves 3. Since $m < +\infty$, f'(1) is well defined and f' is continuous on [0, 1].

COR 15.7 (Fixed points) We have:

- 1. If m > 1 then f has a unique fixed point $\pi_0 \in [0, 1)$
- 2. If $m \le 1$ then f(t) > t for $t \in [0, 1)$ (Let $\pi_0 = 1$ in that case.)

Proof: Since f'(1) = m > 1, there is $\delta > 0$ s.t. $f(1 - \delta) < 1 - \delta$. On the other hand $f(0) \ge 0$ so by continuity of f there must be a fixed point in $[0, 1 - \delta)$. Moreover, by strict convexity, if r is a fixed point then f(s) < s for $s \in (r, 1)$, proving uniqueness.

The second part follows by strict convexity and monotonicity.

COR 15.8 (Dynamics) We have:

- 1. If $t \in [0, \pi_0)$, then $f^{(n)}(t) \uparrow \pi_0$
- 2. If $t \in (\pi_0, 1)$ then $f^{(n)}(t) \downarrow \pi_0$

Proof: We only prove 1. The argument for 2. is similar. By monotonicity, for $t \in [0, \pi_0)$, we have $t < f(t) < f(\pi_0) = \pi_0$. Iterating

$$t < f^{(1)}(t) < \dots < f^{(n)}(t) < f^{(n)}(\pi_0) = \pi_0.$$

So $f^{(n)}(t) \uparrow L \leq \pi_0$. By continuity of f we can take the limit inside of

$$f^{(n)}(t) = f(f^{(n-1)}(t)),$$

to get L = f(L). So by definition of π_0 we must have $L = \pi_0$.

Theorem 15.5 follows.

1.3 Discussion

The previous theorem "essentially" settles the subcritical and critical cases. For the supercritical case, however, it remains to understand when $M_{\infty} = 0$. When $M_{\infty} \equiv 0$ for instance, our convergence theorem provides less precise information. Note that convergence of expectations would help exclude that case since that would imply $\mathbb{E}[M_{\infty}] = 1$. But this requires some conditions. For instance, note that when $m \leq 1$

$$1 = \mathbb{E}[M_n] \not\rightarrow \mathbb{E}[M_\infty] = 0.$$

In other words, the Martingale Convergence Theorem does not hold in L^1 under the same conditions.

More generally, one could conjecture that $M_{\infty} = 0$ exactly when we have extinction. We will see conditions under which this is true next time.

2 Martingales in \mathcal{L}^2

2.1 Preliminaries

DEF 15.9 For $1 \le p < +\infty$, we say that $X \in \mathcal{L}^p$ if

$$||X||_p = \mathbb{E}[|X^p|]^{1/p} < +\infty.$$

By Jensen's inequality, for $1 \le p \le r < +\infty$ we have $\|X\|_p \le \|X\|_r$ if $X \in \mathcal{L}^r$.

Proof: For $n \ge 0$, let

$$X_n = (|X| \wedge n)^p.$$

Take $c(x) = x^{r/p}$ on $(0, +\infty)$ which is convex. Then

$$(\mathbb{E}[X_n])^{r/p} \le \mathbb{E}[(X_n)^{r/p}] = \mathbb{E}[(|X| \land n)^r] \le \mathbb{E}[|X|^r].$$

Take $n \to \infty$ and use (MON).

DEF 15.10 We say that X_n converges to X_∞ in \mathcal{L}^p if $||X_n - X_\infty||_p \to 0$. By the previous result, convergence on \mathcal{L}^r implies convergence in \mathcal{L}^p for $r \ge p \ge 1$. (Moreover, by Chebyshev's inequality, convergence in \mathcal{L}^p implies convergence in probability.)

LEM 15.11 Assume $X_n, X_\infty \in \mathcal{L}^1$. Then

$$||X_n - X_\infty||_1 \to 0,$$

implies

$$\mathbb{E}[X_n] \to \mathbb{E}[X_\infty]$$

Proof: Note that

$$|\mathbb{E}[X_n] - \mathbb{E}[X_\infty]| \le \mathbb{E}|X_n - X_\infty| \to 0.$$

DEF 15.12 We say that $\{X_n\}_n$ is bounded in \mathcal{L}^p if

$$\sup_{n} \|X_n\|_p < +\infty.$$

2.2 \mathcal{L}^2 convergence

THM 15.13 Let $\{M_n\}$ be a MG with $M_n \in \mathcal{L}^2$. Then $\{M_n\}$ is bounded in \mathcal{L}^2 if and only if

$$\sum_{k\geq 1} \mathbb{E}[(M_k - M_{k-1})^2] < +\infty.$$

When this is the case, M_n converges a.s. and in \mathcal{L}^2 . (In particular, it converges in \mathcal{L}^1 .)

Proof:

LEM 15.14 (Orthogonality of increments) Let $\{M_n\}$ be a MG with $M_n \in \mathcal{L}^2$. Let $s \leq t \leq u \leq v$. Then,

$$\langle M_t - M_s, M_v - M_u \rangle = 0.$$

Proof: Use $M_u = \mathbb{E}[M_v | \mathcal{F}_u]$, $M_t - M_s \in \mathcal{F}_u$ and apply the \mathcal{L}^2 characterization of conditional expectations.

That implies

$$\mathbb{E}[M_n^2] = \mathbb{E}[M_0^2] + \sum_{1 \le i \le n} \mathbb{E}[(M_i - M_{i-1})^2],$$

proving the first claim.

By monotonicity of norms, M is bounded in \mathcal{L}^2 implies $\{M_n\}$ is bounded in \mathcal{L}^1 which, in turn, implies M converges a.s. Then using (FATOU) in

$$\mathbb{E}[(M_{n+k} - M_n)^2] = \sum_{n+1 \le i \le n+k} \mathbb{E}[(M_i - M_{i-1})^2],$$

gives

$$\mathbb{E}[(M_{\infty} - M_n)^2] \le \sum_{n+1 \le i} \mathbb{E}[(M_i - M_{i-1})^2].$$

The RHS goes to 0 which proves the second claim.

3 Back to branching processes

THM 15.15 Let Z be a branching process with $Z_0 = 1$, $m = \mathbb{E}[X(1,1)] > 1$ and $\sigma^2 = \operatorname{Var}[X(1,1)] < +\infty$. Then, $M_n = m^{-n}Z_n$ converges in L^2 , and in particular, $\mathbb{E}[M_{\infty}] = 1$.

Proof: We bound $\mathbb{E}[M_n^2]$ by computing it explicitly by induction. From the orthogonality of increments

$$\mathbb{E}[M_n^2] = \mathbb{E}[M_{n-1}^2] + \mathbb{E}[(M_n - M_{n-1})^2].$$

On $\{Z_{n-1} = k\}$

$$\mathbb{E}[(M_n - M_{n-1})^2 | \mathcal{F}_{n-1}] = m^{-2n} \mathbb{E}[(Z_n - mZ_{n-1})^2 | \mathcal{F}_{n-1}]$$

= $m^{-2n} \mathbb{E}[(\sum_{i=1}^k X(i,n) - mk)^2 | \mathcal{F}_{n-1}]$
= $m^{-2n} k \sigma^2$
= $m^{-2n} Z_{n-1} \sigma^2$.

Hence

$$\mathbb{E}[M_n^2] = \mathbb{E}[M_{n-1}^2] + m^{-n-1}\sigma^2.$$

Since $\mathbb{E}[M_0^2] = 1$,

$$\mathbb{E}[M_n^2] = 1 + \sigma^2 \sum_{i=2}^{n+1} m^{-i},$$

which is uniformly bounded when m > 1. So M_n converges in L^2 . Finally by (FATOU)

$$\mathbb{E}|M_{\infty}| \le \sup \|M_n\|_1 \le \sup \|M_n\|_2 < +\infty$$

and

$$|\mathbb{E}[M_n] - \mathbb{E}[M_\infty]| \le ||M_n - M_\infty||_1 \le ||M_n - M_\infty||_2,$$

implies the convergence of expectations.

In a homework problem, we will show that under the assumptions of the previous theorem

$$\{M_{\infty} = 0\} = \{Z_n = 0, \text{ for some } n\},\$$

and

$$\mathbb{P}[M_{\infty}=0]=\pi,$$

the probability of extinction.

EX 15.16 (Geometric Offspring) Assume

$$0$$

Then

$$f(s)=\frac{p}{1-sq},\;\pi=\min\{\frac{p}{q},1\}.$$

• Case $m \neq 1$. If G is a 2 × 2 matrix, denote

$$G(s) = \frac{G_{11}s + G_{12}}{G_{21}s + G_{22}}$$

Then G(H(s)) = (GH)(s). By diagonalization,

$$\begin{pmatrix} 0 & p \\ -q & 1 \end{pmatrix}^n = (q-p)^{-1} \begin{pmatrix} 1 & p \\ 1 & q \end{pmatrix} \begin{pmatrix} p^n & 0 \\ 0 & q^n \end{pmatrix} \begin{pmatrix} q & -p \\ -1 & 1 \end{pmatrix}$$

(the columns of the first matrix on the RHS are the right eigenvectors) leading to

$$f_n(s) = \frac{pm^n(1-s) + qs - p}{qm^n(1-s) + qs - p}$$

In particular, when m < 1 we have $\pi = \lim f_n(0) = 1$. On the other hand, if m > 1, we have by (DOM) for $\lambda \ge 0$

$$\mathbb{E}[\exp(-\lambda M_{\infty})] = \lim_{n} f_{n}(\exp(-\lambda/m^{n}))$$
$$= \frac{p\lambda + q - p}{q\lambda + q - p}$$
$$= \pi + (1 - \pi)\frac{(1 - \pi)}{\lambda + (1 - \pi)}$$

The first term corresponds to a point mass at 0 and the second term corresponds to an exponential with mean $1/(1 - \pi)$.

• Case m = 1. By induction

$$f_n(s) = \frac{n - (n - 1)s}{n + 1 - ns},$$

so that

$$\mathbb{P}[Z_n > 0] = 1 - f_n(0) = \frac{1}{n+1},$$

and

$$\mathbb{E}[e^{-\lambda Z_n/n} \mid Z_n > 0] = \frac{f_n(e^{-\lambda/n}) - f_n(0)}{1 - f_n(0)} \to \frac{1}{1 + \lambda},$$

which is the Laplace transform of an eponential mean 1. This is consistent with $\mathbb{E}[Z_n] = 1$.

References

- [AN72] Krishna B. Athreya and Peter E. Ney. *Branching processes*. Springer-Verlag, New York, 1972.
- [Dur10] Rick Durrett. *Probability: theory and examples*. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2010.
- [Wil91] David Williams. *Probability with martingales*. Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge, 1991.