Notes 16 : Martingales in \mathcal{L}^p

Math 733-734: Theory of Probability Lecturer: Sebastien Roch

 \blacksquare

References: [Wil91, Section 12], [Dur10, Section 5.4].

1 Martingales in \mathcal{L}^2

1.1 Preliminaries

DEF 16.1 *For* $1 \leq p < +\infty$ *, we say that* $X \in \mathcal{L}^p$ *if*

$$
||X||_p = \mathbb{E}[|X^p|]^{1/p} < +\infty.
$$

By Jensen's inequality, for $1 \leq p \leq r < +\infty$ we have $||X||_p \leq ||X||_r$ if $X \in \mathcal{L}^r$.

Proof: For $n \geq 0$, let

$$
X_n = (|X| \wedge n)^p.
$$

Take $c(x) = x^{r/p}$ on $(0, +\infty)$ which is convex. Then

$$
(\mathbb{E}[X_n])^{r/p} \le \mathbb{E}[(X_n)^{r/p}] = \mathbb{E}[(|X| \wedge n)^r] \le \mathbb{E}[|X|^r].
$$

Take $n \to \infty$ and use (MON).

DEF 16.2 We say that X_n converges to X_∞ in \mathcal{L}^p if $||X_n - X_\infty||_p \to 0$. By the *previous result, convergence on* \mathcal{L}^r *implies convergence in* \mathcal{L}^p *for* $r \geq p \geq 1$ *. (Moreover, by Chebyshev's inequality, convergence in* L p *implies convergence in probability.)*

LEM 16.3 Assume $X_n, X_\infty \in \mathcal{L}^1$. Then

$$
||X_n - X_{\infty}||_1 \to 0,
$$

implies

$$
\mathbb{E}[X_n] \to \mathbb{E}[X_\infty].
$$

Lecture 16: Martingales in \mathcal{L}^p

Proof: Note that

$$
|\mathbb{E}[X_n] - \mathbb{E}[X_\infty]| \le \mathbb{E}|X_n - X_\infty| \to 0.
$$

DEF 16.4 We say that $\{X_n\}_n$ is bounded in \mathcal{L}^p if

$$
\sup_n \|X_n\|_p < +\infty.
$$

1.2 \mathcal{L}^2 convergence

THM 16.5 Let $\{M_n\}$ be a MG with $M_n \in \mathcal{L}^2$. Then $\{M_n\}$ is bounded in \mathcal{L}^2 if *and only if*

$$
\sum_{k\geq 1}\mathbb{E}[(M_k-M_{k-1})^2]<+\infty.
$$

When this is the case, M_n converges a.s. and in \mathcal{L}^2 . (In particular, it converges in \mathcal{L}^1 .)

Proof:

LEM 16.6 (Orthogonality of increments) *Let* $s \le t \le u \le v$ *. Then,*

$$
\langle M_t - M_s, M_v - M_u \rangle = 0.
$$

Proof: Use $M_u = \mathbb{E}[M_v | \mathcal{F}_u]$, $M_t - M_s \in \mathcal{F}_u$ and apply the L^2 characterization of conditional expectations.

That implies

$$
\mathbb{E}[M_n^2] = \mathbb{E}[M_0^2] + \sum_{1 \le i \le n} \mathbb{E}[(M_i - M_{i-1})^2],
$$

proving the first claim.

By monotonicity of norms, M is bounded in L^2 implies M bounded in L^1 which, in turn, implies M converges a.s. Then using (FATOU) in

$$
\mathbb{E}[(M_{n+k} - M_n)^2] = \sum_{n+1 \le i \le n+k} \mathbb{E}[(M_i - M_{i-1})^2],
$$

gives

$$
\mathbb{E}[(M_{\infty} - M_n)^2] \le \sum_{n+1 \le i} \mathbb{E}[(M_i - M_{i-1})^2].
$$

The RHS goes to 0 which proves the second claim.

 \blacksquare

2 \mathcal{L}^p convergence theorem

Recall:

LEM 16.7 (Markov's inequality) *Let* $Z \geq 0$ *be a RV. Then for* $c > 0$

$$
c\mathbb{P}[Z \ge c] \le \mathbb{E}[Z; Z \ge c] \le \mathbb{E}[Z].
$$

MGs provide a useful generalization.

LEM 16.8 (Doob's submartingale inequality) *Let* $\{Z_n\}$ *be a nonnegative subMG. Then for* $c > 0$

$$
c\mathbb{P}[\sup_{1\leq k\leq n} Z_k \geq c] \leq \mathbb{E}[Z_n; \sup_{1\leq k\leq n} Z_k \geq c] \leq \mathbb{E}[Z_n].
$$

Proof: Divide $F = \{\sup_{1 \le k \le n} Z_k \ge c\}$ according to the first time Z crosses c:

$$
F=F_0\cup\cdots\cup F_n,
$$

where

$$
F_k = \{Z_0 < c\} \cap \dots \cap \{Z_{k-1} < c\} \cap \{Z_k \ge c\}.
$$

Since $F_k \in \mathcal{F}_k$ and $\mathbb{E}[Z_n | \mathcal{F}_k] \geq Z_k$,

$$
c\mathbb{P}[F_k] \leq \mathbb{E}[Z_k; F_k] \leq \mathbb{E}[Z_n; F_k].
$$

Sum over k.

EX 16.9 (Kolmogorov's inequality) *Let* X_1, \ldots *be independent RVs with* $\mathbb{E}[X_k] =$ 0 and $\text{Var}[X_k]<+\infty$. Define $S_n=\sum_{k\leq n}X_k$. Then for $c>0$

$$
\mathbb{P}[\max_{k \le n} |S_k| \ge c] \le c^{-2} \text{Var}[S_n].
$$

THM 16.10 (Doob's \mathcal{L}^p inequality) Let $p > 1$ and $p^{-1} + q^{-1} = 1$. Let $\{Z_n\}$ be *a nonnegative subMG bounded in* L p *. Define*

$$
Z^* = \sup_{k \ge 0} Z_k.
$$

Then

$$
||Z^*||_p \le q \sup_k ||Z_k||_p = q \uparrow \lim_k ||Z_k||_p.
$$

and $Z^* \in L^p$.

 \blacksquare

Proof: The last equality follows from (JENSEN). Let $Z_n^* = \sup_{k \le n} Z_k$. By (MON) it suffices to prove:

LEM 16.11

$$
\mathbb{E}[(Z_n^*)^p] \le q^p \mathbb{E}[Z_n^p].
$$

Proof: Recall the formula: for $Y \ge 0$ and $p > 0$

$$
\mathbb{E}[Y^p] = \int_0^\infty py^{p-1} \mathbb{P}[Y \ge y] dy.
$$

Then for $K > 0$ (note that $\{Z_n^* \wedge K \ge c\}$ is either $\{Z_n^* \ge c\}$ or empty (depending on whether K is smaller or bigger than c) so Doob's inequality still applies)

$$
\mathbb{E}[(Z_n^* \wedge K)^p] = \int_0^\infty pc^{p-1} \mathbb{P}[Z_n^* \wedge K \ge c] dc
$$

\n
$$
\leq \int_0^\infty pc^{p-2} \mathbb{E}[Z_n; Z_n^* \wedge K \ge c] dc
$$

\n
$$
= \mathbb{E}\left[Z_n\left(\frac{p}{p-1}\right) \int_0^\infty (p-1)c^{p-2} \mathbb{1}[Z_n^* \wedge K \ge c] dc\right]
$$

\n
$$
= \mathbb{E}[qZ_n(Z_n^* \wedge K)^{p-1}]
$$

\n
$$
\leq q\mathbb{E}[Z_n^{p}]^{1/p} \mathbb{E}[(Z_n^* \wedge K)^p]^{1/q},
$$

where we used that $(p - 1)q = p$. Rearranging and using (MON) gives the result. \blacksquare

THM 16.12 (\mathcal{L}^p convergence) Let $\{M_n\}$ be a MG bounded in \mathcal{L}^p for $p > 1$. Then $M_n \to M_\infty$ a.s. and in \mathcal{L}^p .

Proof: Note that $|M_n|$ is a subMG bounded in \mathcal{L}^p . In particular, it is bounded in \mathcal{L}^1 and $M_n \to M_\infty$ a.s. by the martingale convergence theorem. From the previous theorem,

$$
|M_n - M_\infty|^p \le (2 \sup_k |M_k|)^p \in \mathcal{L}^1,
$$

and by (DOM)

$$
\mathbb{E}|M_n - M_\infty|^p \to 0.
$$

П

References

- [Dur10] Rick Durrett. *Probability: theory and examples*. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2010.
- [Wil91] David Williams. *Probability with martingales*. Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge, 1991.