
Notes 17 : UI Martingales

Math 733-734: Theory of Probability Lecturer: Sebastien Roch

References: [Wil91, Chapter 13, 14], [Dur10, Section 5.5, 5.6].

1 Uniform Integrability

We give a characterization of L1 convergence (which has nothing to do per se with
MGs). First a simple example.

EX 17.1 (L1-boundedness is not sufficient) Let {Xn} be a sequence of indepen-
dent RVs. Let Xn be 0 with probability 1 − pn and fn > 0 with probability pn
with pn ∈ [0, 1]. Assume pn = 1/n2. Then

∑
n P[Xn 6= 0] < +∞ and, by BC1,

P[Xn 6= 0 i.o.] = 0 and Xn → X∞ ≡ 0 a.s. Assume further that fn = n2.
Then ‖Xn − X∞‖1 = E[Xn] = 1 for all n ≥ 1, so the sequence {Xn} does
not converge in L1. Observe in particular that {Xn} is bounded in L1, showing
that the latter condition is not sufficient for L1 convergence. On the other hand, if
fn = n, we then have ‖Xn −X∞‖1 = E[Xn] = 1/n→ 0 and convergence in L1
holds in that case. In other words, unlike almost sure convergence, convergence in
L1 is sensitive to the size of rare deviations. (For the record, here is an example
where one has convergence in L1 but not a.s. Take fn = 1 for all n above. Then
a.s. convergence to 0 occurs iff

∑
n pn < +∞ by BC1 and BC2. On the other

hand, convergence in L1, which is equivalent to convergence in probability in this
case, occurs exactly when pn → 0.)

It turns out that what we need is for the following property of integrable vari-
ables to hold uniformly over a collection of RVs.

LEM 17.2 Let Y ∈ L1. ∀ε > 0, ∃K > 0 s.t.

E[|Y |; |Y | > K] < ε.

Proof: Immediate by (MON) to E[|Y |; |Y | ≤ K].

DEF 17.3 (Uniform Integrability) A collection C of RVs on (Ω,F ,P) is uniformly
integrable (UI) if: ∀ε > 0, ∃K > +∞ s.t.

E[|X|; |X| > K] < ε, ∀X ∈ C.
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THM 17.4 (Necessary and Sufficient Condition for L1 Convergence) Let {Xn} ∈
L1 and X ∈ L1. Then Xn → X in L1 if and only if the following two conditions
hold:

• Xn → X in probability

• {Xn} is UI

Before giving the proof, we look at a few more examples.

EX 17.5 (UI implies L1-boundedness) Let C be UI and X ∈ C. Note that

E|X| ≤ E[|X|; |X| > K] + E[|X|; |X| ≤ K] ≤ ε+K < +∞,

and this bound is the same for any X ∈ C. So UI implies L1-boundedness. But
the opposite is not true by the construction in EX 17.1 (in that example, when
f(n) = n2, for any K we have E[|Xn|; |Xn| > K] = 1 for n large enough).

EX 17.6 (Lp-bounded RVs) But Lp-boundedness works—for p > 1. Let C be
Lp-bounded and X ∈ C. Then

E[|X|; |X| > K] ≤ E[K−(p−1)|X|1+(p−1); |X| > K|] ≤ K1−pAp → 0,

as K → +∞, where Ap = supX∈C ‖X‖
p
p < +∞ by assumption.

EX 17.7 (Dominated RVs) Assume ∃Y ∈ L1 s.t. |X| ≤ Y a.s., ∀X ∈ C. Then

E[|X|; |X| > K] ≤ E[Y ; |X| > K] ≤ E[Y ;Y > K],

and apply LEM 17.2 above to establish UI.

2 Proof of main theorem

Proof: We start with the if part. By the bounded convergence theorem (conver-
gence in probability version), convergence in probability implies convergence in
L1 for uniformly bounded variables.

LEM 17.8 (Bounded convergence theorem (convergence in probability version))
Let Xn ≤ K < +∞ ∀n and Xn →P X . Then

E|Xn −X| → 0.
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Proof: By
P[|X| ≥ K +m−1] ≤ P[|Xn −X| ≥ m−1],

it follows that P[|X| ≤ K] = 1. Fix ε > 0

E|Xn −X| = E[|Xn −X|; |Xn −X| > ε/2] + E[|Xn −X|; |Xn −X| ≤ ε/2]

≤ 2KP[|Xn −X| > ε/2] + ε/2 < ε,

for n large enough.
It is natural to truncate at K to apply the UI property and extend the claim above
to unbounded variables. Fix ε > 0. We want to show that for n large enough:

E|Xn −X| ≤ ε.

Let φK(x) = sgn(x)[|x| ∧K]. Then,

E|Xn −X| ≤ E|φK(Xn)− φK(X)|+ E|φK(Xn)−Xn|+ E|φK(X)−X|
≤ E|φK(Xn)− φK(X)|+ E[|Xn|; |Xn| > K] + E[|X|; |X| > K].

For the first term, check by case analysis that

|φK(x)− φK(y)| ≤ |x− y|,

so that φK(Xn) →P φK(X). For K large enough, the 2nd term above is ≤ ε/3
by UI and the 3rd term is ≤ ε/3 by LEM 17.2 above.

We move on to the proof of the only if part. SupposeXn → X in L1. We know
that convergence in L1 implies convergence in probability by Markov’s inequality.
So the first claim follows. For the second claim, if n ≥ N large enough,

E|Xn −X| ≤ ε. (1)

We can choose K large enough so that

E[|Xn|; |Xn| > K] < ε,

∀n < N because Xn ∈ L1,∀n, and N is finite. So we only need to worry about
n ≥ N . To use L1 convergence, it is natural to write

E[|Xn|; |Xn| > K] ≤ E[|Xn −X|; |Xn| > K] + E[|X|; |Xn| > K].

The first term is ≤ ε by (1). The issue with the second term is that we cannot
apply LEM 17.2 because the restriction event involves Xn rather than X . In fact,
a stronger version of the lemma exists:
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LEM 17.9 (Absolute continuity) Let X ∈ L1. ∀ε > 0, ∃δ > 0, s.t. P[F ] < δ
implies

E[|X|;F ] < ε.

Proof: Argue by contradiction. Suppose there is ε > 0 and Fn s.t. P[Fn] ≤ 2−n

and
E[|X|;Fn] ≥ ε,

for all n. By BC1,
P[H] ≡ P[Fn i.o.] = 0,

whereH is implicitly defined in the equation. By reverse Fatou (applied to |X|1H =
lim sup |X|1Fn ≤ |X| ∈ L1),

E[|X|;H] ≥ lim sup
n

E[|X|;Fn] ≥ ε,

in contradiction to P[H] = 0.
To conclude note that

P[|Xn| > K] ≤ E|Xn|
K

≤
supn≥N E|Xn|

K
≤

supn≥N E|X|+ E|Xn −X|
K

< δ,

uniformly in n for K large enough. We are done.

Finally, we note that a uniform version of the condition in LEM 17.9 (together
with L1-boundedness) is equivalent to UI.

LEM 17.10 A collection C of RVs on (Ω,F ,P) is UI if and only if:

1. C is bounded in L1

2. ∀ε > 0, ∃δ > 0, s.t. P[F ] < δ implies

E[|X|;F ] < ε, ∀X ∈ C

Proof: If C is UI, then it is bounded in L1 by EX 17.5. For any ε′ > 0, ε = ε′/2,
and P[F ] < δ′,

E[|X|;F ] ≤ KP[F ] + E[|X|; {|X| > K}] ≤ Kδ′ + ε ≤ ε′,

by taking K large enough (by UI), and then δ′ small enough.
On the other hand, if the two conditions above hold, take F = {|X| > K}

and use Markov’s inequality and boundedness in L1 to chooseK large enough that
P[F ] < δ and hence E[|X|;F ] < ε for all X ∈ C.
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3 UI MGs

THM 17.11 (Convergence of UI MGs) Let {Mn} be UI MG. Then

Mn →M∞ ∈ F∞ = σ (∪nFn) ,

a.s. and in L1. Moreover,

Mn = E[M∞ | Fn], ∀n.

Proof: UI implies L1-boundedness so we have Mn → M∞ a.s. By the necessary
and sufficient condition, we also have L1 convergence.

Now note that, for all r ≥ n, we know that E[Mr | Fn] = Mn or put differently,
for all F ∈ Fn,

E[Mr;F ] = E[Mn;F ],

by definition of the conditional expectation. We can take a limit byL1-convergence.
More precisely

|E[Mr;F ]− E[M∞;F ]| ≤ E[|Mr −M∞|;F ] ≤ E|Mr −M∞| → 0,

as r →∞. So plugging above

E[M∞;F ] = E[Mn;F ],

and E[M∞ | Fn] = Mn.

4 Applications I

THM 17.11 says that any UI MG is a Doob’s MG. Conversely:

THM 17.12 (Lévy’s upward theorem) Let Z ∈ L1 and define Mn = E[Z | Fn].
Then {Mn} is a UI MG and

Mn →M∞ = E[Z | F∞],

a.s. and in L1.

Proof: {Mn} is a MG by (TOWER). We first show it is UI:

LEM 17.13 Let X ∈ L1(Ω,F ,P). Then

{E[X | G] : G is a sub-σ-field of F},

is UI.
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Proof: We use the absolute continuity lemma again. Let Y = E[X | G] ∈ G. Since
{|Y | > K} ∈ G,

E[|Y |; |Y | > K] = E[|E[X | G]|; |Y | > K]

≤ E[E[|X| | G]; |Y | > K]

= E[E[|X|; |Y | > K | G]]

= E[|X|; |Y | > K],

where we used Taking Out What is Known (backwards) on the third line and
(TOWER) on the fourth line. By Markov and (JENSEN)

P[|Y | > K] ≤ E|Y |
K
≤ E|X|

K
≤ δ,

for K large enough (uniformly in G). And we are done.
In particular, we have convergence a.s. and in L1 to M∞ ∈ F∞.

Let Y = E[Z | F∞] ∈ F∞. By dividing into negative and positive parts, we
assume Z ≥ 0. We want to show, for F ∈ F∞,

E[Z;F ] = E[M∞;F ].

By the Uniqueness of Extensions lemma, it suffices to prove the equality over all
Fn. If F ∈ Fn ⊆ F∞, then

E[Z;F ] = E[Y ;F ] = E[Mn;F ] = E[M∞;F ].

The first equality is by definition of Y ; the second equality comes from the fact that
E[Y | Fn] = E[Z | Fn] = Mn by (TOWER); the third equality is from our main
theorem.

A statistical application:

EX 17.14 (Posterior mean consistency) Let Θ be a RV with a finite mean. As-
sume we observe the sequence {Yn} with Yn = Θ + Zn, where {Zn} is iid with
with mean 0. If our goal is to recover Θ from {Yn}, a natural strategy is to employ
the Strong Law of Large Numbers, which implies

1

n

∑
i≤n

Yi = Θ +
1

n

∑
i≤n

Zi → Θ

almost surely, showing in particular that Θ ∈ F∞ if we let Fn = σ(Y1, . . . , Yn).
A more “Bayesian” approach to recover Θ is to consider instead the “posterior
mean”

Mn = E[Θ | Fn].
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By Lévy’s upward theorem,

Mn →M∞ = E[Θ | F∞],

a.s. and in L1. Because Θ ∈ F∞, by Taking Out What is Known we also have

Mn → Θ,

a.s. and in L1.

We use Lévy’s Downward Theorem to prove Lévy’s 0-1 Law.

THM 17.15 (Lévy’s 0-1 law) Let A ∈ F∞. Then

P[A | Fn]→ 1A.

Proof: Immediate since E[1A | F∞] = 1A by Taking Out What Is Known.
Recall that the tail σ-field of a sequence {Xn} is

T = ∩nTn ≡ ∩nσ(Xn+1, Xn+2, . . .).

COR 17.16 (Kolmogorov’s 0-1 law) Let X1, X2, . . . be iid RVs. If A ∈ T then
P[A] ∈ {0, 1}.

Proof: Since A ∈ Tn is independent of Fn,

P[A | Fn] = P[A],

∀n by the Role of Independence. By Lévy’s 0-1 law,

P[A] = 1A ∈ {0, 1}.

5 Applications II

Going “backwards in time:”

THM 17.17 (Lévy’s downward theorem) Let Z ∈ L1(Ω,F ,P) and {G−n}n≥0
a collection of σ-fields s.t.

G−∞ = ∩kG−k ⊆ · · · ⊆ G−n ⊆ · · · ⊆ G−1 ⊆ F .

Define
M−n = E[Z | G−n].

Then
M−n →M−∞ = E[Z | G−∞]

a.s. and in L1.
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Proof: We apply the same argument as in the Martingale Convergence Theorem.
Let α < β ∈ Q and

Λα,β = {ω : lim inf X−n < α < β < lim supX−n}.

Note that

Λ ≡ {ω : Xn does not converge in [−∞,+∞]}
= {ω : lim inf X−n < lim supX−n}
= ∪α<β∈QΛα,β.

Let UN [α, β] be the number of upcrossings of [α, β] between time −N and −1.
Then by the Upcrossing Lemma applied to the MG M−N , . . . ,M−1

(β − α)EUN [α, β] ≤ |α|+ E|M−1| ≤ |α|+ E|Z|.

By (MON)
UN [α, β] ↑ U∞[α, β],

and
(β − α)EU∞[α, β] ≤ |α|+ E|Z| < +∞,

so that
P[U∞[α, β] =∞] = 0.

Since
Λα,β ⊆ {U∞[α, β] =∞},

we have P[Λα,β] = 0. By countability, P[Λ] = 0. Therefore we have convergence
a.s.

By LEM 17.13, {M−n} is UI and hence we have L1 convergence as well.
Finally, for all G ∈ G−∞ ⊆ G−n,

E[Z;G] = E[M−n;G].

Take the limit n→ +∞ and use L1 convergence.

5.1 Law of large numbers

An application:

THM 17.18 (Strong Law; Martingale Proof) LetX1, X2, . . . be iid RVs with E|X1| <
+∞. Let Sn =

∑
i≤nXn. Then

n−1Sn → E[X1],

a.s. and in L1.



Lecture 17: UI Martingales 9

Proof: Let

G−n = σ(Sn, Sn+1, Sn+2, . . .) = σ(Sn, Xn+1, Xn+2, . . .).

The key observation is that E[X1 | G−n] = n−1Sn. Indeed note that, for 1 ≤ i ≤ n,

E[X1 | G−n] = E[X1 |Sn] = E[Xi |Sn] = E[n−1Sn |Sn] = n−1Sn,

by symmetry and linearity of expectation. By Lévy’s Downward Theorem

n−1Sn → E[X1 | G−∞],

a.s. and in L1. But the limit must be trivial by Kolmogorov’s 0-1 law and we must
have E[X1 | G−∞] = E[X1].

5.2 Hewitt-Savage*

DEF 17.19 Let X1, X2, . . . be iid RVs. Let En be the σ-field generated by events
invariant under permutations of the Xis that leave Xn+1, Xn+2, . . . unchanged.
The exchangeable σ-field is E = ∩mEm.

THM 17.20 (Hewitt-Savage 0-1 law) Let X1, X2, . . . be iid RVs. If A ∈ E then
P[A] ∈ {0, 1}.

Proof: The idea of the proof is to show that A is independent of itself. Indeed, we
then have

0 = P[A]− P[A ∩A] = P[A]− P[A]P[A] = P[A](1− P[A]).

SinceA ∈ E andA ∈ F∞, it suffices to show that E is independent of Fn for every
n (by an application of the π-λ theorem).

WTS: for every bounded φ, B ∈ E ,

E[φ(X1, . . . , Xk);B] = E[φ(X1, . . . , Xk)]E[B] = E[E[φ(X1, . . . , Xk)];B],

or equivalently

Y = E[φ(X1, . . . , Xk) | E ] = E[φ(X1, . . . , Xk)].

It suffices to show that Y is independent of Fk. Indeed, by the L2 characterization
of conditional expectation and independence,

0 = E[(φ(X1, . . . , Xk)− Y )Y ] = E[φ(X1, . . . , Xk)]E[Y ]− E[Y 2] = −Var[Y ],

and Y is constant.
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1. Since φ is bounded, it is integrable and Lévy’s Downward Theorem implies

E[φ(X1, . . . , Xk) | En]→ E[φ(X1, . . . , Xk) | E ].

2. We make φ “exchangeable” by averaging over all configurations and taking
a limit as n→ +∞. Define

An(φ) =
1

(n)k

∑
1≤i1 6=···6=ik≤n

φ(Xi1 , . . . , Xik),

where (n)k = n(n− 1) · · · (n− k + 1). Note by symmetry

An(φ) = E[An(φ) | En] = E[φ(X1, . . . , Xk) | En]→ E[φ(X1, . . . , Xk) | E ].

3. The reason we did this is that now the first k Xs have little influence on this
quantity and therefore the limit is independent of them. However, note that

1

(n)k

∑
1∈i

φ(Xi1 , . . . , Xik) ≤ k(n− 1)k−1
(n)k

supφ =
k

n
supφ→ 0,

so that the limit of An(φ) is independent of X1 and

E[φ(X1, . . . , Xk) | E ] ∈ σ(X2, . . .),

and by induction

Y = E[φ(X1, . . . , Xk) | E ] ∈ σ(Xk+1, . . .).
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