Notes 17 : UI Martingales

Math 733-734: Theory of Probability Lecturer: Sebastien Roch

References: [Wil91, Chapter 13, 14], [Dur10, Section 5.5, 5.6].

1 Uniform Integrability

We give a characterization of \mathcal{L}^1 convergence (which has nothing to do per se with MGs). First a simple example.

EX 17.1 (\mathcal{L}^1 -boundedness is not sufficient) Let $\{X_n\}$ be a sequence of indepen*dent* RVs. Let X_n be 0 with probability $1 - p_n$ and $f_n > 0$ with probability p_n with $p_n \in [0,1]$. Assume $p_n = 1/n^2$. Then $\sum_n \mathbb{P}[X_n \neq 0] < +\infty$ and, by BC1, $\mathbb{P}[X_n \neq 0 \text{ i.o.}] = 0 \text{ and } X_n \to X_\infty \equiv 0 \text{ a.s.}$ Assume further that $f_n = n^2$. *Then* $||X_n - X_\infty||_1 = \mathbb{E}[X_n] = 1$ *for all* $n \geq 1$ *, so the sequence* $\{X_n\}$ *does* not converge in \mathcal{L}^1 . Observe in particular that $\{X_n\}$ is bounded in \mathcal{L}^1 , showing that the latter condition is not sufficient for \mathcal{L}^1 convergence. On the other hand, if $f_n = n$, we then have $||X_n - X_\infty||_1 = \mathbb{E}[X_n] = 1/n \to 0$ and convergence in \mathcal{L}^1 *holds in that case. In other words, unlike almost sure convergence, convergence in* \mathcal{L}^1 is sensitive to the size of rare deviations. (For the record, here is an example where one has convergence in \mathcal{L}^1 but not a.s. Take $f_n = 1$ for all n above. Then a.s. convergence to 0 *occurs iff* $\sum_n p_n < +\infty$ by BC1 and BC2. On the other hand, convergence in \mathcal{L}^1 , which is equivalent to convergence in probability in this *case, occurs exactly when* $p_n \to 0$ *.*)

It turns out that what we need is for the following property of integrable variables to hold uniformly over a collection of RVs.

LEM 17.2 *Let* $Y \in \mathcal{L}^1$. $\forall \varepsilon > 0$, $\exists K > 0$ *s.t.*

 $\mathbb{E}[|Y|;|Y| > K] < \varepsilon.$

Proof: Immediate by (MON) to $\mathbb{E}[|Y|; |Y| \leq K]$.

DEF 17.3 (Uniform Integrability) *A collection* C *of RVs on* (Ω, F, P)*is uniformly integrable (UI) if:* $\forall \varepsilon > 0$, $\exists K > +\infty$ *s.t.*

$$
\mathbb{E}[|X|;|X|>K] < \varepsilon, \qquad \forall X \in \mathcal{C}.
$$

THM 17.4 (Necessary and Sufficient Condition for \mathcal{L}^1 Convergence) *Let* $\{X_n\} \in$ \mathcal{L}^1 and $X \in \mathcal{L}^1$. Then $X_n \to X$ in \mathcal{L}^1 if and only if the following two conditions *hold:*

- $X_n \to X$ *in probability*
- $\{X_n\}$ *is UI*

Before giving the proof, we look at a few more examples.

EX 17.5 (UI implies \mathcal{L}^1 **-boundedness)** Let \mathcal{C} be UI and $X \in \mathcal{C}$. Note that

 $\mathbb{E}|X| \leq \mathbb{E}(|X|; |X| > K] + \mathbb{E}(|X|; |X| \leq K] \leq \varepsilon + K < +\infty,$

and this bound is the same for any $X \in \mathcal{C}$. So UI implies \mathcal{L}^1 -boundedness. But *the opposite is not true by the construction in EX 17.1 (in that example, when* $f(n) = n^2$, for any K we have $\mathbb{E}[|X_n|; |X_n| > K] = 1$ for n large enough).

EX 17.6 (\mathcal{L}^p -bounded RVs) *But* \mathcal{L}^p -boundedness works—for $p > 1$. Let C be \mathcal{L}^p -bounded and $X \in \mathcal{C}$. Then

 $\mathbb{E}[|X|;|X|>K] \leq \mathbb{E}[K^{-(p-1)}|X|^{1+(p-1)};|X|>K]] \leq K^{1-p}A_p \to 0,$

 $as K \to +\infty$, where $A_p = \sup_{X \in \mathcal{C}} ||X||_p^p < +\infty$ by assumption.

EX 17.7 (Dominated RVs) Assume $\exists Y \in \mathcal{L}^1$ s.t. $|X|$ ≤ Y a.s., $\forall X \in \mathcal{C}$. Then

 $\mathbb{E}[|X|;|X|>K] \leq \mathbb{E}[Y;|X|>K] \leq \mathbb{E}[Y;Y>K],$

and apply LEM 17.2 above to establish UI.

2 Proof of main theorem

Proof: We start with the if part. By the bounded convergence theorem (convergence in probability version), convergence in probability implies convergence in \mathcal{L}^1 for uniformly bounded variables.

LEM 17.8 (Bounded convergence theorem (convergence in probability version)) *Let* $X_n \leq K < +\infty$ $\forall n$ *and* $X_n \rightarrow_P X$ *. Then*

$$
\mathbb{E}|X_n - X| \to 0.
$$

Proof: By

$$
\mathbb{P}[|X| \ge K + m^{-1}] \le \mathbb{P}[|X_n - X| \ge m^{-1}],
$$

it follows that $\mathbb{P}[|X| \leq K] = 1$. Fix $\varepsilon > 0$

$$
\mathbb{E}|X_n - X| = \mathbb{E}[|X_n - X|; |X_n - X| > \varepsilon/2] + \mathbb{E}[|X_n - X|; |X_n - X| \le \varepsilon/2]
$$

\n
$$
\le 2K\mathbb{P}[|X_n - X| > \varepsilon/2] + \varepsilon/2 < \varepsilon,
$$

for n large enough.

It is natural to truncate at K to apply the UI property and extend the claim above to unbounded variables. Fix $\varepsilon > 0$. We want to show that for *n* large enough:

$$
\mathbb{E}|X_n - X| \le \varepsilon.
$$

Let $\phi_K(x) = \text{sgn}(x)[|x| \wedge K]$. Then,

$$
\mathbb{E}|X_n - X| \leq \mathbb{E}|\phi_K(X_n) - \phi_K(X)| + \mathbb{E}|\phi_K(X_n) - X_n| + \mathbb{E}|\phi_K(X) - X|
$$

$$
\leq \mathbb{E}|\phi_K(X_n) - \phi_K(X)| + \mathbb{E}[|X_n|; |X_n| > K] + \mathbb{E}[|X|; |X| > K].
$$

For the first term, check by case analysis that

$$
|\phi_K(x) - \phi_K(y)| \le |x - y|,
$$

so that $\phi_K(X_n) \to_P \phi_K(X)$. For K large enough, the 2nd term above is $\leq \varepsilon/3$ by UI and the 3rd term is $\leq \varepsilon/3$ by LEM 17.2 above.

We move on to the proof of the only if part. Suppose $X_n \to X$ in \mathcal{L}^1 . We know that convergence in \mathcal{L}^1 implies convergence in probability by Markov's inequality. So the first claim follows. For the second claim, if $n \geq N$ large enough,

$$
\mathbb{E}|X_n - X| \le \varepsilon. \tag{1}
$$

We can choose K large enough so that

$$
\mathbb{E}[|X_n|;|X_n|>K]<\varepsilon,
$$

 $\forall n \lt N$ because $X_n \in \mathcal{L}^1, \forall n$, and N is finite. So we only need to worry about $n \geq N$. To use \mathcal{L}^1 convergence, it is natural to write

$$
\mathbb{E}[|X_n|;|X_n|>K]\leq \mathbb{E}[|X_n-X|;|X_n|>K]+\mathbb{E}[|X|;|X_n|>K].
$$

The first term is $\leq \varepsilon$ by (1). The issue with the second term is that we cannot apply LEM 17.2 because the restriction event involves X_n rather than X. In fact, a stronger version of the lemma exists:

LEM 17.9 (Absolute continuity) *Let* $X \in \mathcal{L}^1$. $\forall \varepsilon > 0$, $\exists \delta > 0$, *s.t.* $\mathbb{P}[F] < \delta$ *implies*

$$
\mathbb{E}[|X|;F] < \varepsilon.
$$

Proof: Argue by contradiction. Suppose there is $\varepsilon > 0$ and F_n s.t. $\mathbb{P}[F_n] \leq 2^{-n}$ and

$$
\mathbb{E}[|X|; F_n] \ge \varepsilon,
$$

for all n . By BC1,

$$
\mathbb{P}[H] \equiv \mathbb{P}[F_n \text{ i.o.}] = 0,
$$

where H is implicitly defined in the equation. By reverse Fatou (applied to $|X|\mathbb{1}_H =$ $\limsup |X| \mathbb{1}_{F_n} \leq |X| \in \mathcal{L}^1$,

$$
\mathbb{E}[|X|;H] \ge \limsup_n \mathbb{E}[|X|;F_n] \ge \varepsilon,
$$

in contradiction to $\mathbb{P}[H] = 0$. To conclude note that

$$
\mathbb{P}[|X_n| > K] \le \frac{\mathbb{E}|X_n|}{K} \le \frac{\sup_{n \ge N} \mathbb{E}|X_n|}{K} \le \frac{\sup_{n \ge N} \mathbb{E}|X| + \mathbb{E}|X_n - X|}{K} < \delta,
$$

uniformly in n for K large enough. We are done.

Finally, we note that a uniform version of the condition in LEM 17.9 (together with \mathcal{L}^1 -boundedness) is equivalent to UI.

LEM 17.10 *A collection* C *of RVs on* $(\Omega, \mathcal{F}, \mathbb{P})$ *is UI if and only if:*

- 1. \mathcal{C} *is bounded in* \mathcal{L}^1
- 2. $\forall \varepsilon > 0$, $\exists \delta > 0$, *s.t.* $\mathbb{P}[F] < \delta$ *implies*

$$
\mathbb{E}[|X|; F] < \varepsilon, \qquad \forall X \in \mathcal{C}
$$

Proof: If C is UI, then it is bounded in \mathcal{L}^1 by EX 17.5. For any $\varepsilon' > 0$, $\varepsilon = \varepsilon'/2$, and $\mathbb{P}[F] < \delta',$

$$
\mathbb{E}[|X|; F] \le K \mathbb{P}[F] + \mathbb{E}[|X|; \{|X| > K\}] \le K\delta' + \varepsilon \le \varepsilon',
$$

by taking K large enough (by UI), and then δ' small enough.

On the other hand, if the two conditions above hold, take $F = \{ |X| > K \}$ and use Markov's inequality and boundedness in \mathcal{L}^1 to choose K large enough that $\mathbb{P}[F] < \delta$ and hence $\mathbb{E}[|X|; F] < \varepsilon$ for all $X \in \mathcal{C}$. \blacksquare

3 UI MGs

THM 17.11 (Convergence of UI MGs) *Let* {Mn} *be UI MG. Then*

$$
M_n \to M_\infty \in \mathcal{F}_\infty = \sigma \left(\cup_n \mathcal{F}_n \right),
$$

a.s. and in L 1 *. Moreover,*

$$
M_n = \mathbb{E}[M_\infty \,|\, \mathcal{F}_n], \qquad \forall n.
$$

Proof: UI implies \mathcal{L}^1 -boundedness so we have $M_n \to M_\infty$ a.s. By the necessary and sufficient condition, we also have \mathcal{L}^1 convergence.

Now note that, for all $r \geq n$, we know that $\mathbb{E}[M_r | \mathcal{F}_n] = M_n$ or put differently, for all $F \in \mathcal{F}_n$,

$$
\mathbb{E}[M_r; F] = \mathbb{E}[M_n; F],
$$

by definition of the conditional expectation. We can take a limit by \mathcal{L}^1 -convergence. More precisely

$$
|\mathbb{E}[M_r;F]-\mathbb{E}[M_{\infty};F]|\leq \mathbb{E}[|M_r-M_{\infty}|;F]\leq \mathbb{E}|M_r-M_{\infty}|\rightarrow 0,
$$

as $r \to \infty$. So plugging above

$$
\mathbb{E}[M_{\infty};F] = \mathbb{E}[M_n;F],
$$

and $\mathbb{E}[M_{\infty} | \mathcal{F}_n] = M_n$.

4 Applications I

THM 17.11 says that any UI MG is a Doob's MG. Conversely:

THM 17.12 (Lévy's upward theorem) Let $Z \in \mathcal{L}^1$ and define $M_n = \mathbb{E}[Z | \mathcal{F}_n]$. *Then* ${M_n}$ *is a UI MG and*

$$
M_n \to M_\infty = \mathbb{E}[Z \,|\, \mathcal{F}_\infty],
$$

a.s. and in \mathcal{L}^1 .

Proof: $\{M_n\}$ is a MG by (TOWER). We first show it is UI:

LEM 17.13 Let $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ *. Then*

 $\{\mathbb{E}[X \mid \mathcal{G}] : \mathcal{G}$ *is a sub-σ-field of* $\mathcal{F}\},\$

is UI.

$$
\blacksquare
$$

Proof: We use the absolute continuity lemma again. Let $Y = \mathbb{E}[X | \mathcal{G}] \in \mathcal{G}$. Since $\{|Y| > K\} \in \mathcal{G},$

$$
\mathbb{E}[|Y|;|Y|>K] = \mathbb{E}[\mathbb{E}[X | \mathcal{G}]|;|Y|>K]
$$

\n
$$
\leq \mathbb{E}[\mathbb{E}[|X| | \mathcal{G}];|Y|>K]
$$

\n
$$
= \mathbb{E}[\mathbb{E}[|X|;|Y|>K|\mathcal{G}]]
$$

\n
$$
= \mathbb{E}[|X|;|Y|>K,|\mathcal{G}]]
$$

where we used Taking Out What is Known (backwards) on the third line and (TOWER) on the fourth line. By Markov and (JENSEN)

$$
\mathbb{P}[|Y| > K] \le \frac{\mathbb{E}|Y|}{K} \le \frac{\mathbb{E}|X|}{K} \le \delta,
$$

for K large enough (uniformly in \mathcal{G}). And we are done. In particular, we have convergence a.s. and in \mathcal{L}^1 to $M_\infty \in \mathcal{F}_\infty$.

Let $Y = \mathbb{E}[Z | \mathcal{F}_{\infty}] \in \mathcal{F}_{\infty}$. By dividing into negative and positive parts, we assume $Z \geq 0$. We want to show, for $F \in \mathcal{F}_{\infty}$,

$$
\mathbb{E}[Z;F] = \mathbb{E}[M_{\infty};F].
$$

By the Uniqueness of Extensions lemma, it suffices to prove the equality over all \mathcal{F}_n . If $F \in \mathcal{F}_n \subseteq \mathcal{F}_{\infty}$, then

$$
\mathbb{E}[Z;F] = \mathbb{E}[Y;F] = \mathbb{E}[M_n;F] = \mathbb{E}[M_{\infty};F].
$$

The first equality is by definition of Y ; the second equality comes from the fact that $\mathbb{E}[Y | \mathcal{F}_n] = \mathbb{E}[Z | \mathcal{F}_n] = M_n$ by (TOWER); the third equality is from our main theorem.

A statistical application:

EX 17.14 (Posterior mean consistency) *Let* Θ *be a RV with a finite mean. Assume we observe the sequence* ${Y_n}$ *with* $Y_n = \Theta + Z_n$ *, where* ${Z_n}$ *is iid with with mean* 0*. If our goal is to recover* Θ *from* {Yn}*, a natural strategy is to employ the Strong Law of Large Numbers, which implies*

$$
\frac{1}{n}\sum_{i\leq n}Y_i = \Theta + \frac{1}{n}\sum_{i\leq n}Z_i \to \Theta
$$

almost surely, showing in particular that $\Theta \in \mathcal{F}_{\infty}$ *if we let* $\mathcal{F}_n = \sigma(Y_1, \ldots, Y_n)$ *. A more "Bayesian" approach to recover* Θ *is to consider instead the "posterior mean"*

$$
M_n = \mathbb{E}[\Theta \,|\, \mathcal{F}_n].
$$

 \blacksquare

Lecture 17: UI Martingales 7

By Levy's upward theorem, ´

$$
M_n \to M_\infty = \mathbb{E}[\Theta \,|\, \mathcal{F}_\infty],
$$

a.s. and in \mathcal{L}^1 . Because $\Theta \in \mathcal{F}_{\infty}$, by Taking Out What is Known we also have

$$
M_n\to\Theta,
$$

a.s. and in \mathcal{L}^1 .

We use Lévy's Downward Theorem to prove Lévy's 0-1 Law.

THM 17.15 (Lévy's 0-1 law) *Let* $A \in \mathcal{F}_{\infty}$ *. Then*

 $\mathbb{P}[A \mid \mathcal{F}_n] \to \mathbb{1}_A.$

Proof: Immediate since $\mathbb{E}[\mathbb{1}_A | \mathcal{F}_{\infty}] = \mathbb{1}_A$ by Taking Out What Is Known. Recall that the tail σ -field of a sequence $\{X_n\}$ is

$$
\mathcal{T} = \cap_n \mathcal{T}_n \equiv \cap_n \sigma(X_{n+1}, X_{n+2}, \ldots).
$$

COR 17.16 (Kolmogorov's 0-1 law) *Let* X_1, X_2, \ldots *be iid RVs. If* $A \in \mathcal{T}$ *then* $\mathbb{P}[A] \in \{0, 1\}.$

Proof: Since $A \in \mathcal{T}_n$ is independent of \mathcal{F}_n ,

$$
\mathbb{P}[A \,|\, \mathcal{F}_n] = \mathbb{P}[A],
$$

 $\forall n$ by the Role of Independence. By Lévy's 0-1 law,

$$
\mathbb{P}[A] = \mathbb{1}_A \in \{0, 1\}.
$$

П

 \blacksquare

5 Applications II

Going "backwards in time:"

THM 17.17 (Lévy's downward theorem) Let $Z \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ and $\{\mathcal{G}_{-n}\}_{n \geq 0}$ *a collection of* σ*-fields s.t.*

$$
\mathcal{G}_{-\infty} = \cap_k \mathcal{G}_{-k} \subseteq \cdots \subseteq \mathcal{G}_{-n} \subseteq \cdots \subseteq \mathcal{G}_{-1} \subseteq \mathcal{F}.
$$

Define

$$
M_{-n} = \mathbb{E}[Z | \mathcal{G}_{-n}].
$$

Then

$$
M_{-n}\to M_{-\infty}=\mathbb{E}[Z\,|\,\mathcal{G}_{-\infty}]
$$

a.s. and in \mathcal{L}^1 .

Proof: We apply the same argument as in the Martingale Convergence Theorem. Let $\alpha < \beta \in \mathbb{Q}$ and

$$
\Lambda_{\alpha,\beta} = \{ \omega : \liminf X_{-n} < \alpha < \beta < \limsup X_{-n} \}.
$$

Note that

$$
\Lambda \equiv \{ \omega : X_n \text{ does not converge in } [-\infty, +\infty] \}
$$

= $\{ \omega : \liminf X_{-n} < \limsup X_{-n} \}$
= $\cup_{\alpha < \beta \in \mathbb{Q}} \Lambda_{\alpha, \beta}.$

Let $U_N[\alpha, \beta]$ be the *number of upcrossings of* $[\alpha, \beta]$ *between time* $-N$ *and* -1 *.* Then by the Upcrossing Lemma applied to the MG M_{-N}, \ldots, M_{-1}

$$
(\beta - \alpha) \mathbb{E} U_N[\alpha, \beta] \le |\alpha| + \mathbb{E}|M_{-1}| \le |\alpha| + \mathbb{E}|Z|.
$$

By (MON)

$$
U_N[\alpha,\beta] \uparrow U_{\infty}[\alpha,\beta],
$$

and

$$
(\beta - \alpha) \mathbb{E} U_{\infty}[\alpha, \beta] \le |\alpha| + \mathbb{E}|Z| < +\infty,
$$

so that

$$
\mathbb{P}[U_{\infty}[\alpha,\beta]=\infty]=0.
$$

Since

$$
\Lambda_{\alpha,\beta} \subseteq \{U_{\infty}[\alpha,\beta] = \infty\},\
$$

we have $\mathbb{P}[\Lambda_{\alpha,\beta}] = 0$. By countability, $\mathbb{P}[\Lambda] = 0$. Therefore we have convergence a.s.

By LEM 17.13, $\{M_{-n}\}\$ is UI and hence we have \mathcal{L}^1 convergence as well. Finally, for all $G \in \mathcal{G}_{-\infty} \subseteq \mathcal{G}_{-n}$,

$$
\mathbb{E}[Z;G] = \mathbb{E}[M_{-n};G].
$$

Take the limit $n \to +\infty$ and use \mathcal{L}^1 convergence.

5.1 Law of large numbers

An application:

THM 17.18 (Strong Law; Martingale Proof) Let X_1, X_2, \ldots be iid RVs with $\mathbb{E}|X_1|$ < $+∞.$ Let $S_n = \sum_{i \leq n} X_n$. Then

$$
n^{-1}S_n \to \mathbb{E}[X_1],
$$

a.s. and in \mathcal{L}^1 .

 \blacksquare

Lecture 17: UI Martingales 9

Proof: Let

$$
\mathcal{G}_{-n} = \sigma(S_n, S_{n+1}, S_{n+2}, \ldots) = \sigma(S_n, X_{n+1}, X_{n+2}, \ldots).
$$

The key observation is that $\mathbb{E}[X_1 | \mathcal{G}_{-n}] = n^{-1}S_n$. Indeed note that, for $1 \leq i \leq n$,

$$
\mathbb{E}[X_1 | \mathcal{G}_{-n}] = \mathbb{E}[X_1 | S_n] = \mathbb{E}[X_i | S_n] = \mathbb{E}[n^{-1}S_n | S_n] = n^{-1}S_n,
$$

by symmetry and linearity of expectation. By Lévy's Downward Theorem

$$
n^{-1}S_n \to \mathbb{E}[X_1 \,|\, \mathcal{G}_{-\infty}],
$$

a.s. and in \mathcal{L}^1 . But the limit must be trivial by Kolmogorov's 0-1 law and we must have $\mathbb{E}[X_1 | \mathcal{G}_{-\infty}] = \mathbb{E}[X_1].$ \blacksquare

5.2 Hewitt-Savage*

DEF 17.19 *Let* X_1, X_2, \ldots *be iid RVs. Let* \mathcal{E}_n *be the* σ -field generated by events *invariant under permutations of the* X_i *s that leave* X_{n+1}, X_{n+2}, \ldots *unchanged. The* exchangeable σ -field *is* $\mathcal{E} = \bigcap_{m} \mathcal{E}_m$.

THM 17.20 (Hewitt-Savage 0-1 law) *Let* X_1, X_2, \ldots *be iid RVs. If* $A \in \mathcal{E}$ *then* $\mathbb{P}[A] \in \{0, 1\}.$

Proof: The idea of the proof is to show that A is independent of itself. Indeed, we then have

$$
0 = \mathbb{P}[A] - \mathbb{P}[A \cap A] = \mathbb{P}[A] - \mathbb{P}[A]\mathbb{P}[A] = \mathbb{P}[A](1 - \mathbb{P}[A]).
$$

Since $A \in \mathcal{E}$ and $A \in \mathcal{F}_{\infty}$, it suffices to show that \mathcal{E} is independent of \mathcal{F}_n for every *n* (by an application of the π - λ theorem).

WTS: for every bounded ϕ , $B \in \mathcal{E}$,

$$
\mathbb{E}[\phi(X_1,\ldots,X_k);B]=\mathbb{E}[\phi(X_1,\ldots,X_k)]\mathbb{E}[B]=\mathbb{E}[\mathbb{E}[\phi(X_1,\ldots,X_k)];B],
$$

or equivalently

$$
Y = \mathbb{E}[\phi(X_1,\ldots,X_k) \,|\, \mathcal{E}] = \mathbb{E}[\phi(X_1,\ldots,X_k)].
$$

It suffices to show that Y is independent of \mathcal{F}_k . Indeed, by the \mathcal{L}^2 characterization of conditional expectation and independence,

$$
0 = \mathbb{E}[(\phi(X_1,\ldots,X_k) - Y)Y] = \mathbb{E}[\phi(X_1,\ldots,X_k)]\mathbb{E}[Y] - \mathbb{E}[Y^2] = -\text{Var}[Y],
$$

and Y is constant.

1. Since ϕ is bounded, it is integrable and Lévy's Downward Theorem implies

$$
\mathbb{E}[\phi(X_1,\ldots,X_k) \,|\, \mathcal{E}_n] \to \mathbb{E}[\phi(X_1,\ldots,X_k) \,|\, \mathcal{E}].
$$

2. We make ϕ "exchangeable" by averaging over all configurations and taking a limit as $n \to +\infty$. Define

$$
A_n(\phi) = \frac{1}{(n)_k} \sum_{1 \leq i_1 \neq \dots \neq i_k \leq n} \phi(X_{i_1}, \dots, X_{i_k}),
$$

where $(n)_k = n(n-1)\cdots(n-k+1)$. Note by symmetry

$$
A_n(\phi) = \mathbb{E}[A_n(\phi) | \mathcal{E}_n] = \mathbb{E}[\phi(X_1,\ldots,X_k) | \mathcal{E}_n] \to \mathbb{E}[\phi(X_1,\ldots,X_k) | \mathcal{E}].
$$

3. The reason we did this is that now the first k X s have little influence on this quantity and therefore the limit is independent of them. However, note that

$$
\frac{1}{(n)_k} \sum_{1 \in \mathbf{i}} \phi(X_{i_1}, \dots, X_{i_k}) \le \frac{k(n-1)_{k-1}}{(n)_k} \sup \phi = \frac{k}{n} \sup \phi \to 0,
$$

so that the limit of $A_n(\phi)$ is independent of X_1 and

$$
\mathbb{E}[\phi(X_1,\ldots,X_k) \,|\, \mathcal{E}] \in \sigma(X_2,\ldots),
$$

and by induction

$$
Y = \mathbb{E}[\phi(X_1,\ldots,X_k) | \mathcal{E}] \in \sigma(X_{k+1},\ldots).
$$

References

- [Dur10] Rick Durrett. *Probability: theory and examples*. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2010.
- [Wil91] David Williams. *Probability with martingales*. Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge, 1991.

 \blacksquare