Notes 18 : Optional Sampling Theorem

Math 733-734: Theory of Probability

Lecturer: Sebastien Roch

References: [Wil91, Chapter 14], [Dur10, Section 5.7]. Recall:

DEF 18.1 (Uniform Integrability) A collection C of RVs on $(\Omega, \mathcal{F}, \mathbb{P})$ is uniformly integrable (UI) if: $\forall \varepsilon > 0, \exists K > +\infty s.t.$

$$\mathbb{E}[|X|; |X| > K] < \varepsilon, \qquad \forall X \in \mathcal{C}.$$

THM 18.2 (Necessary and Sufficient Condition for \mathcal{L}^1 **Convergence)** Let $\{X_n\} \in \mathcal{L}^1$ and $X \in \mathcal{L}^1$. Then $X_n \to X$ in \mathcal{L}^1 if and only if the following two conditions hold:

- $X_n \to X$ in probability
- $\{X_n\}$ is UI

THM 18.3 (Convergence of UI MGs) Let $\{M_n\}$ be UI MG. Then

$$M_n \to M_\infty \in \mathcal{F}_\infty = \sigma \left(\cup_n \mathcal{F}_n \right),$$

a.s. and in \mathcal{L}^1 . Moreover,

$$M_n = \mathbb{E}[M_\infty \,|\, \mathcal{F}_n], \qquad \forall n.$$

THM 18.4 (Lévy's upward theorem) Let $Z \in \mathcal{L}^1$ and define $M_n = \mathbb{E}[Z | \mathcal{F}_n]$. Then $\{M_n\}$ is a UI MG and

$$M_n \to M_\infty = \mathbb{E}[Z \,|\, \mathcal{F}_\infty],$$

a.s. and in \mathcal{L}^1 .

1 Optional Sampling Theorem

1.1 Review: Stopping times

Recall:

DEF 18.5 A random variable $T : \Omega \to \overline{\mathbb{Z}}_+ \equiv \{0, 1, \dots, +\infty\}$ is called a stopping time *if*

$$\{T=n\}\in\mathcal{F}_n,\ \forall n\in\overline{\mathbb{Z}}_+,$$

EX 18.6 Let $\{A_n\}$ be an adapted process and $B \in \mathcal{B}$. Then

$$T = \inf\{n \ge 0 : A_n \in B\},\$$

is a stopping time.

LEM 18.7 (Stopping Time Lemma) Let $\{M_n\}$ be a MG and T be a stopping time. Then the stopped process $\{M_{T \wedge n}\}$ is a MG and in particular

$$\mathbb{E}[M_{T \wedge n}] = \mathbb{E}[M_0].$$

THM 18.8 Let $\{M_n\}$ be a MG and T be a stopping time. Then $M_T \in \mathcal{L}^1$ and

$$\mathbb{E}[M_T] = \mathbb{E}[M_0].$$

if any of the following conditions holds:

- 1. T is bounded
- 2. $\{M_n\}$ is bounded and T is a.s. finite
- 3. $\mathbb{E}[T] < +\infty$ and $\{M_n\}$ has bounded increments
- 4. $\{M_n\}$ is UI. (This one is new. The proof follows from the Optional Sampling Theorem below.)

Proof: From the previous theorem, we have

$$(*) \quad \mathbb{E}[M_{T \wedge n} - M_0] = 0.$$

- 1. Take n = N in (*) where $T \leq N$ a.s.
- 2. Take n to $+\infty$ and use (DOM).

3. Note that

$$|M_{T\wedge n} - M_0| = \left|\sum_{i \le T \land n} (M_i - M_{i-1})\right| \le KT,$$

where $|M_n - M_{n-1}| \leq K$ a.s. Use (DOM).

DEF 18.9 (\mathcal{F}_T) Let T be a stopping time. Denote by \mathcal{F}_T the set of all events F such that $\forall n \in \mathbb{Z}_+$

$$F \cap \{T = n\} \in \mathcal{F}_n.$$

1.2 More on the σ -field \mathcal{F}_T

The following two lemmas help clarify the definition of \mathcal{F}_T :

LEM 18.10 $\mathcal{F}_T = \mathcal{F}_n$ if $T \equiv n$, $\mathcal{F}_T = \mathcal{F}_\infty$ if $T \equiv \infty$ and $\mathcal{F}_T \subseteq \mathcal{F}_\infty$ for any T. **Proof:** In the first case, note $F \cap \{T = k\}$ is empty if $k \neq n$ and is F if k = n. So if $F \in \mathcal{F}_T$ then $F = F \cap \{T = n\} \in \mathcal{F}_n$ and if $F \in F_n$ then $F = F \cap \{T = n\} \in \mathcal{F}_n$. Moreover $\emptyset \in \mathcal{F}_n$ so we have proved both inclusions. This works also for $n = \infty$. For the third claim note

$$F = \cup_{k \in \overline{\mathbb{Z}}_+} F \cap \{T = n\} \in \mathcal{F}_{\infty}.$$

LEM 18.11 If $\{X_n\}$ is adapted and T is a stopping time then $X_T \in \mathcal{F}_T$ (where we assume that $X_{\infty} \in \mathcal{F}_{\infty}$, e.g., $X_{\infty} = \liminf_n X_n$).

Proof: For $B \in \mathcal{B}$

$${X_T \in B} \cap {T = n} = {X_n \in B} \cap {T = n} \in \mathcal{F}_n.$$

LEM 18.12 If S, T are stopping times, then $S \wedge T$ is a stopping time and $\mathcal{F}_{S \wedge T} \subseteq \mathcal{F}_T$.

Proof: We first show that $S \wedge T$ is a stopping time. Note that

$$\{S \land T = k\} = [\{S = k\} \cap \{T \ge k\}] \cup [\{S \ge k\} \cap \{T = k\}] \in \mathcal{F}_k,$$

since all event above are in \mathcal{F}_k by the fact that S and T are themselves stopping times.

For the second claim, let $F \in \mathcal{F}_{S \wedge T}$. Note that

$$F \cap \{T = n\} = \bigcup_{k \le n} [(F \cap \{S \land T = k\}) \cap \{T = n\}] \in \mathcal{F}_n.$$

Indeed, the expression in parenthesis is in $\mathcal{F}_k \subseteq \mathcal{F}_n$ and $\{T = n\} \in \mathcal{F}_n$.

1.3 Optional Sampling Theorem (OST)

We show that the MG property extends to stopping times under UI MGs.

THM 18.13 (Optional Sampling Theorem) If $\{M_n\}$ is a UI MG and S, T are stopping times with $S \leq T$ a.s. then $\mathbb{E}|M_T| < +\infty$ and

$$\mathbb{E}[M_T \,|\, \mathcal{F}_S] = M_S.$$

Proof: Since $\{M_n\}$ is UI, $\exists M_{\infty} \in \mathcal{L}^1$ s.t. $M_n \to M_{\infty}$ a.s. and in \mathcal{L}^1 . We prove a more general claim:

LEM 18.14

$$\mathbb{E}[M_{\infty} \,|\, \mathcal{F}_T] = M_T.$$

Indeed, we then get the theorem by (TOWER) (and (JENSEN) for the integrability claim).

Proof:(of the lemma) We divide $M_{\infty} = M_{\infty}^+ - M_{\infty}^- \equiv X_{\infty} - Y_{\infty}$ into positive and negative parts and write

$$M_n = \mathbb{E}[M_{\infty} | \mathcal{F}_n] = \mathbb{E}[X_{\infty} | \mathcal{F}_n] - \mathbb{E}[Y_{\infty} | \mathcal{F}_n] \equiv X_n - Y_n,$$

by linearity. We show that $\mathbb{E}[X_{\infty} | \mathcal{F}_T] = X_T$. The same argument holds for $\{Y_n\}$, which then implies $\mathbb{E}[M_{\infty} | \mathcal{F}_T] = X_T - Y_T = M_T$, as claimed.

We have of course that $X_{\infty} \ge 0$, and hence $X_n = \mathbb{E}[X_{\infty} | \mathcal{F}_n] \ge 0 \ \forall n$. Let $F \in \mathcal{F}_T$. Then

$$\mathbb{E}[X_{\infty}; F \cap \{T = \infty\}] = \mathbb{E}[X_T; F \cap \{T = \infty\}],$$

since $X_n = \mathbb{E}[X_\infty | \mathcal{F}_n] \to X_\infty$ a.s. by Lévy's Upward Theorem. Therefore it suffices to show

$$\mathbb{E}[X_{\infty}; F \cap \{T < +\infty\}] = \mathbb{E}[X_T; F \cap \{T < +\infty\}].$$

In fact, by (MON), it suffices to show

$$\sum_{i\geq 0} \mathbb{E}[X_{\infty}; F \cap \{T=i\}] = \sum_{i\geq 0} \mathbb{E}[X_T; F \cap \{T=i\}].$$

But note that $F \cap \{T = i\} \in \mathcal{F}_i$ so that

$$\mathbb{E}[X_T; F \cap \{T=i\}] = \mathbb{E}[X_i; F \cap \{T=i\}] = \mathbb{E}[X_\infty; F \cap \{T=i\}],$$

since $X_i = \mathbb{E}[X_{\infty} | \mathcal{F}_i]$. That concludes the proof of the stronger claim.

2 Wald's identities

Often additional properties of T hold (typically $\mathbb{E}[T] < +\infty$), which can be taken advantage of by considering instead the MG $\{M_{T \wedge n}\}$ in the OST above (noticing of course that $M_{T \wedge S} = M_S$ and $M_{T \wedge T} = M_T$ whenever $S \leq T$ a.s.). In that context, the following is useful.

LEM 18.15 Suppose $\{M_n\}$ is a MG such that $\mathbb{E}[|M_{n+1} - M_n| | \mathcal{F}_n] \leq B$ a.s. for all n. Suppose T is a stopping time with $\mathbb{E}[T] < +\infty$. Then the stoppped MG $\{M_{T \wedge n}\}$ is UI.

Proof: Assume WLOG that $M_0 = 0$, to simplify. Observe first that

$$|M_{T \wedge n}| \le \sum_{m=0}^{+\infty} |M_{m+1} - M_m| \mathbb{1}_{\{T > m\}}, \quad \forall n.$$

Taking expectations on the RHS (which does not depend on n), we get

$$\sum_{m=0}^{+\infty} \mathbb{E} \left[|M_{m+1} - M_m| \, \mathbb{1}_{\{T > m\}} \right] = \sum_{m=0}^{+\infty} \mathbb{E} \left[|M_{m+1} - M_m| \, \mathbb{1}_{\{T > m\}} \right]$$
$$= \sum_{m=0}^{+\infty} \mathbb{E} \left[\mathbb{E} \left[|M_{m+1} - M_m| \, \mathbb{1}_{\{T > m\}} | \mathcal{F}_m \right] \right]$$
$$= \sum_{m=0}^{+\infty} \mathbb{E} \left[\mathbb{E} \left[|M_{m+1} - M_m| \, |\mathcal{F}_m] \, \mathbb{1}_{\{T > m\}} \right]$$
$$\leq \sum_{m=0}^{+\infty} \mathbb{E} \left[B \mathbb{1}_{\{T > m\}} \right]$$
$$\leq B \sum_{m=0}^{+\infty} \mathbb{P} \left[T > m \right]$$
$$\leq B \mathbb{E}[T] < +\infty,$$

where we used that $\{T > m\} \in \mathcal{F}_m$.

As an application, we recover Wald's first identity. For $X_1, X_2, \ldots \in \mathbb{R}$, let $S_n = \sum_{i=1}^n X_i$.

THM 18.16 (Wald's first identity) Let $X_1, X_2, \ldots \in \mathcal{L}^1$ be i.i.d. with $\mu = \mathbb{E}[X_1]$ and let $T \in \mathcal{L}^1$ be a stopping time. Then

$$\mathbb{E}[S_T] = \mu \mathbb{E}[T].$$

Proof: Recall that $M_n = S_n - n\mu$ is a MG. By LEM 18.15 and the assumption $T \in \mathcal{L}^1$, the MG $\{M_{T \wedge n}\}$ is UI. Indeed

$$\mathbb{E}\left[|M_{n+1} - M_n| \,|\, \mathcal{F}_n\right] = \mathbb{E}\left[|X_{n+1} - \mu| \,|\, \mathcal{F}_n\right]$$

$$\leq \mu + \mathbb{E}|X_1| \equiv B < +\infty,$$

by the triangle inequality and the Role of independence lemma. Apply THM 18.8 to $\{M_{T \wedge n}\}$.

We also recall Wald's second identity. We give a MG-based proof (but argue about convergence directly rather than using THM 18.8).

THM 18.17 (Wald's second identity) Let $X_1, X_2, \ldots \in \mathcal{L}^2$ be i.i.d. with $\mathbb{E}[X_1] = 0$ and $\sigma^2 = \operatorname{Var}[X_1]$ and let $T \in \mathcal{L}^1$ be a stopping time. Then

$$\mathbb{E}[S_T^2] = \sigma^2 \mathbb{E}[T]$$

Proof: Recall that $M_n = S_n^2 - n\sigma^2$ is a MG. Hence so is $M_{T \wedge n}$ and

$$0 = \mathbb{E}[M_{T \wedge n}] = \mathbb{E}[S_{T \wedge n}^2 - (T \wedge n)\sigma^2] = \mathbb{E}[S_{T \wedge n}^2] - \sigma^2 \mathbb{E}[T \wedge n].$$
(1)

We have that $\mathbb{E}[T \wedge n] \uparrow \mathbb{E}[T]$ as $n \to +\infty$ by (MON).

To argue about the convergence of $\mathbb{E}[S^2_{T \wedge n}]$ we note that, by the assumption $\mathbb{E}[X_1] = 0$, it follows that $\{S_n\}$ is a MG and hence so is $\{S_{T \wedge n}\}$. The latter is bounded in \mathcal{L}^2 since, by (1), we have

$$\mathbb{E}[S^2_{T \wedge n}] = \sigma^2 \mathbb{E}[T \wedge n] \le \sigma^2 \mathbb{E}[T] < +\infty,$$

for all *n*. Hence $S_{T \wedge n}$ converges a.s. and in \mathcal{L}^2 to S_T (since $T < +\infty$ a.s. by assumption). Convergence in \mathcal{L}^2 also implies convergence of the second moment. Indeed, by the triangle inequality,

$$|||S_{T \wedge n}||_2 - ||S_T||_2| \le ||S_{T \wedge n} - S_T||_2 \to 0.$$

Hence,

$$0 = \mathbb{E}[S_{T \wedge n}^2] - \sigma^2 \mathbb{E}[T \wedge n] \to \mathbb{E}[S_T^2] - \sigma^2 \mathbb{E}[T],$$

which concludes the proof.

To establish $\mathbb{E}[T] < +\infty$, the following lemma can be used.

LEM 18.18 (Waiting for the inevitable) Let T be a stopping time. Assume there is $N \in \mathbb{Z}_+$ and $\varepsilon > 0$ such that for every n

$$\mathbb{P}[T \le n + N \,|\, \mathcal{F}_n] > \varepsilon \quad a.s.$$

then $\mathbb{E}[T] < +\infty$.

Lecture 18: Optional Sampling Theorem

Proof: For any integer $m \ge 1$,

$$\mathbb{P}[T > mN \mid T > (m-1)N] \le 1 - \varepsilon,$$

by assumption. (Indeed, by definition of $Z = \mathbb{P}[T > n + N | \mathcal{F}_n] \le 1 - \varepsilon$ with n = (m-1)N, we have for $F = \{T > (m-1)N\} \in \mathcal{F}_n$

$$\mathbb{P}[T > mN] = \mathbb{E}[\mathbb{1}\{T > n + N\}; F] = \mathbb{E}[Z; F] \le (1 - \varepsilon)\mathbb{P}[F],$$

and apply the definition of the conditional probability.) By the multiplication rule (i.e., the undergraduate rule $\mathbb{P}[A_1 \cap \cdots \cap A_n] = \prod_{i=1}^n \mathbb{P}[A_i \mid A_1 \cap \cdots \cap A_{i-1}]$) and the monotonicity of the events $\{T > mN\}$, we have $\mathbb{P}[T > mN] \leq (1 - \varepsilon)^m$. We conclude using $\mathbb{E}[T] = \sum_{k>1} \mathbb{P}[T \geq k]$.

3 Application I: Simple RW

DEF 18.19 Simple RW on \mathbb{Z} is the process $\{S_n\}_{n\geq 0}$ with $S_0 = 0$ and $S_n = \sum_{k\leq n} X_k$ where the X_k s are iid in $\{-1, +1\}$ s.t. $\mathbb{P}[X_1 = 1] = 1/2$.

THM 18.20 Let $\{S_n\}$ as above. Let a < 0 < b. Define $T_x = \inf\{n \ge 0 : S_n = x\}$ and $T = T_a \wedge T_b$. Then we have

1.

$$T < +\infty \ a.s.$$
2.

$$\mathbb{P}[T_a < T_b] = \frac{b}{b-a}$$
3.

$$\mathbb{E}[T] = -ab$$
4.

$$T_a < +\infty a.s.$$
 but $\mathbb{E}[T_a] = +\infty$

Proof:

Apply the Waiting for the inevitable lemma with N = b − a and ε = (1/2)^{b−a} (corresponding to moving right b − a times in a row which takes you to b, no matter where you are within the {a,...,b} interval). That shows E[T] < +∞, from which the claim holds.

2) By Wald's first identity, $\mathbb{E}[S_T] = 0$ or

$$a \mathbb{P}[S_T = a] + b \mathbb{P}[S_T = b] = 0,$$

that is (taking $b \to \infty$ in the second expression)

$$\mathbb{P}[T_a < T_b] = \frac{b}{b-a}$$
 and $\mathbb{P}[T_a < +\infty] \ge \mathbb{P}[T_a < T_b] \to 1.$

3) Wald's second identity says that $\mathbb{E}[S_T^2] = \mathbb{E}[T]$ (by $\sigma^2 = 1$). Also

$$\mathbb{E}[S_T^2] = \frac{b}{b-a}a^2 + \frac{-a}{b-a}b^2 = -ab,$$

so that $\mathbb{E}[T] = -ab$.

 4) Taking b → +∞ above shows that E[T_a] = +∞ by monotone convergence. (Note that this case shows that the L¹ condition on the stopping time is necessary in Wald's second identity.)

4 Application II: Biased RW

DEF 18.21 Biased simple RW on \mathbb{Z} with parameter $1/2 is the process <math>\{S_n\}_{n\geq 0}$ with $S_0 = 0$ and $S_n = \sum_{k\leq n} X_k$ where the X_k s are iid in $\{-1, +1\}$ s.t. $\mathbb{P}[X_1 = 1] = p$. Let q = 1 - p. Let $\phi(x) = (q/p)^x$ and $\psi_n(x) = x - (p - q)n$.

THM 18.22 Let $\{S_n\}$ as above. Let a < 0 < b. Define $T_x = \inf\{n \ge 0 : S_n = x\}$ and $T = T_a \wedge T_b$. Then we have

1.

$$T < +\infty$$
 a.s.

2.

$$\mathbb{P}[T_a < T_b] = \frac{\phi(0) - \phi(b)}{\phi(a) - \phi(b)}$$

3.

$$\mathbb{P}[T_a < +\infty] = 1/\phi(a) < 1 \text{ and } \mathbb{P}[T_b = +\infty] = 0$$

4.

$$\mathbb{E}[T_b] = \frac{b}{2p-1}$$

Proof: There are two MGs here:

$$\mathbb{E}[\phi(S_n) \,|\, \mathcal{F}_{n-1}] = p(q/p)^{S_{n-1}+1} + q(q/p)^{S_{n-1}-1} = \phi(S_{n-1}),$$

(noting that $|\phi(S_n)| \leq (p/q)^n$ a.s.) and

$$\mathbb{E}[\psi_n(S_n) \mid \mathcal{F}_{n-1}] = p[S_{n-1} + 1 - (p-q)(n)] + q[S_{n-1} - 1 - (p-q)(n)] = \psi_{n-1}(S_{n-1}),$$

(noting that $|\psi_n(S_n)| \leq (1+p)n$ a.s.)

- 1) Follows by the same argument as in the unbiased case.
- 2) Now note that $\{\phi(S_{T \wedge n})\}$ is a bounded MG and, therefore, by THM 18.8, we get

$$\phi(0) = \mathbb{E}[\phi(S_T)] = \mathbb{P}[T_a < T_b]\phi(a) + \mathbb{P}[T_a > T_b]\phi(b),$$

or $\mathbb{P}[T_a < T_b] = \frac{\phi(b) - \phi(0)}{\phi(b) - \phi(a)}$ (where we used 1)).

- 3) By 2), taking $b \to +\infty$, by monotonicity $\mathbb{P}[T_a < +\infty] = \frac{1}{\phi(a)} < 1$ so $T_a = +\infty$ with positive probability. Similarly take $a \to -\infty$.
- 4) By LEM 18.7 applied to $\{\Psi_n(S_n)\},\$

$$0 = \mathbb{E}[S_{T_b \wedge n} - (p-q)(T_b \wedge n)].$$

(We cannot use Wald's first identity directly because it is not immediately clear whether T_b is integrable.) By (MON) and the fact that $T_b < +\infty$ a.s. from 3), $\mathbb{E}[T_b \wedge n] \uparrow \mathbb{E}[T_b]$. Finally, $-\inf_n S_n \ge 0$ a.s. and for $x \ge 0$,

$$\mathbb{P}[-\inf_n S_n \ge x] = \mathbb{P}[T_{-x} < +\infty] = \left(\frac{q}{p}\right)^x,$$

so that $\mathbb{E}[-\inf_n S_n] = \sum_{x \ge 1} \mathbb{P}[-\inf_t S_t \ge x] < +\infty$. Hence, we can use (DOM) with $|S_{T_b \land n}| \le \max\{b, -\inf_n S_n\}$ to deduce that

$$\mathbb{E}[T_b] = \frac{\mathbb{E}[S_{T_b}]}{p-q} = \frac{b}{2p-1}.$$

References

- [Dur10] Rick Durrett. *Probability: theory and examples*. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2010.
- [Wil91] David Williams. *Probability with martingales*. Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge, 1991.