Notes 18 : Optional Sampling Theorem

Math 733-734: Theory of Probability Lecturer: Sebastien Roch

References: [Wil91, Chapter 14], [Dur10, Section 5.7]. Recall:

DEF 18.1 (Uniform Integrability) *A collection* \mathcal{C} *of RVs on* $(\Omega, \mathcal{F}, \mathbb{P})$ *is uniformly integrable (UI) if:* $\forall \varepsilon > 0$, $\exists K > +\infty$ *s.t.*

$$
\mathbb{E}[|X|;|X|>K]<\varepsilon,\qquad\forall X\in\mathcal{C}.
$$

THM 18.2 (Necessary and Sufficient Condition for \mathcal{L}^1 Convergence) *Let* $\{X_n\} \in$ \mathcal{L}^1 and $X \in \mathcal{L}^1$. Then $X_n \to X$ in \mathcal{L}^1 if and only if the following two conditions *hold:*

- $X_n \to X$ *in probability*
- $\{X_n\}$ *is UI*

THM 18.3 (Convergence of UI MGs) *Let* {Mn} *be UI MG. Then*

$$
M_n \to M_\infty \in \mathcal{F}_\infty = \sigma\left(\cup_n \mathcal{F}_n\right),\,
$$

a.s. and in L 1 *. Moreover,*

$$
M_n = \mathbb{E}[M_\infty \,|\, \mathcal{F}_n], \qquad \forall n.
$$

THM 18.4 (Lévy's upward theorem) Let $Z \in \mathcal{L}^1$ and define $M_n = \mathbb{E}[Z | \mathcal{F}_n]$. *Then* {Mn} *is a UI MG and*

$$
M_n \to M_\infty = \mathbb{E}[Z \,|\, \mathcal{F}_\infty],
$$

a.s. and in \mathcal{L}^1 .

1 Optional Sampling Theorem

1.1 Review: Stopping times

Recall:

DEF 18.5 *A random variable* $T : \Omega \to \overline{\mathbb{Z}}_+ \equiv \{0, 1, \ldots, +\infty\}$ *is called a stop*ping time *if*

$$
\{T = n\} \in \mathcal{F}_n, \ \forall n \in \overline{\mathbb{Z}}_+.
$$

EX 18.6 *Let* $\{A_n\}$ *be an adapted process and* $B \in \mathcal{B}$ *. Then*

$$
T = \inf\{n \ge 0 : A_n \in B\},\
$$

is a stopping time.

LEM 18.7 (Stopping Time Lemma) *Let* $\{M_n\}$ *be a MG and T be a stopping time. Then the stopped process* $\{M_{T\wedge n}\}\$ is a MG and in particular

$$
\mathbb{E}[M_{T\wedge n}]=\mathbb{E}[M_0].
$$

THM 18.8 *Let* $\{M_n\}$ *be a MG and T be a stopping time. Then* $M_T \in \mathcal{L}^1$ *and*

$$
\mathbb{E}[M_T] = \mathbb{E}[M_0].
$$

if any of the following conditions holds:

- *1.* T *is bounded*
- *2.* {Mn} *is bounded and* T *is a.s. finite*
- *3.* $\mathbb{E}[T] < +\infty$ *and* $\{M_n\}$ *has bounded increments*
- *4.* {Mn} *is UI. (This one is new. The proof follows from the Optional Sampling Theorem below.)*

Proof: From the previous theorem, we have

$$
(*)\quad \mathbb{E}[M_{T\wedge n} - M_0] = 0.
$$

- 1. Take $n = N$ in $(*)$ where $T \leq N$ a.s.
- 2. Take *n* to $+\infty$ and use (DOM).

3. Note that

$$
|M_{T\wedge n} - M_0| = \left| \sum_{i \leq T\wedge n} (M_i - M_{i-1}) \right| \leq KT,
$$

where $|M_n - M_{n-1}| \leq K$ a.s. Use (DOM).

DEF 18.9 (\mathcal{F}_T) Let T be a stopping time. Denote by \mathcal{F}_T the set of all events F *such that* $\forall n \in \overline{\mathbb{Z}}_+$

$$
F \cap \{T = n\} \in \mathcal{F}_n.
$$

1.2 More on the σ -field \mathcal{F}_T

The following two lemmas help clarify the definition of \mathcal{F}_T :

LEM 18.10 $\mathcal{F}_T = \mathcal{F}_n$ *if* $T \equiv n$, $\mathcal{F}_T = \mathcal{F}_\infty$ *if* $T \equiv \infty$ *and* $\mathcal{F}_T \subseteq \mathcal{F}_\infty$ *for any* T *.* **Proof:** In the first case, note $F \cap \{T = k\}$ is empty if $k \neq n$ and is F if $k = n$. So if $F \in \mathcal{F}_T$ then $F = F \cap {T = n} \in \mathcal{F}_n$ and if $F \in F_n$ then $F = F \cap {T = n}$ $n\} \in \mathcal{F}_n$. Moreover $\emptyset \in \mathcal{F}_n$ so we have proved both inclusions. This works also for $n = \infty$. For the third claim note

$$
F=\cup_{k\in\overline{\mathbb{Z}}_+}F\cap\{T=n\}\in\mathcal{F}_{\infty}.
$$

LEM 18.11 *If* $\{X_n\}$ *is adapted and T is a stopping time then* $X_T \in \mathcal{F}_T$ *(where we assume that* $X_{\infty} \in \mathcal{F}_{\infty}$, *e.g.*, $X_{\infty} = \liminf_{n} X_n$ *).*

Proof: For $B \in \mathcal{B}$

$$
\{X_T \in B\} \cap \{T = n\} = \{X_n \in B\} \cap \{T = n\} \in \mathcal{F}_n.
$$

LEM 18.12 *If* S, T are stopping times, then $S \wedge T$ *is a stopping time and* $\mathcal{F}_{S \wedge T} \subseteq$ \mathcal{F}_T .

Proof: We first show that $S \wedge T$ is a stopping time. Note that

$$
\{S \wedge T = k\} = [\{S = k\} \cap \{T \ge k\}] \cup [\{S \ge k\} \cap \{T = k\}] \in \mathcal{F}_k,
$$

since all event above are in \mathcal{F}_k by the fact that S and T are themselves stopping times.

For the second claim, let $F \in \mathcal{F}_{S \wedge T}$. Note that

$$
F \cap \{T = n\} = \bigcup_{k \le n} [(F \cap \{S \land T = k\}) \cap \{T = n\}] \in \mathcal{F}_n.
$$

Indeed, the expression in parenthesis is in $\mathcal{F}_k \subseteq \mathcal{F}_n$ and $\{T = n\} \in \mathcal{F}_n$.

1.3 Optional Sampling Theorem (OST)

We show that the MG property extends to stopping times under UI MGs.

THM 18.13 (Optional Sampling Theorem) *If* $\{M_n\}$ *is a UI MG and S, T are stopping times with* $S \leq T$ *a.s. then* $\mathbb{E}|M_T| < +\infty$ *and*

$$
\mathbb{E}[M_T \,|\, \mathcal{F}_S] = M_S.
$$

Proof: Since $\{M_n\}$ is UI, $\exists M_{\infty} \in \mathcal{L}^1$ s.t. $M_n \to M_{\infty}$ a.s. and in \mathcal{L}^1 . We prove a more general claim:

LEM 18.14

$$
\mathbb{E}[M_{\infty} \,|\, \mathcal{F}_T] = M_T.
$$

Indeed, we then get the theorem by (TOWER) (and (JENSEN) for the integrability claim).

Proof:(of the lemma) We divide $M_{\infty} = M_{\infty}^+ - M_{\infty}^- \equiv X_{\infty} - Y_{\infty}$ into positive and negative parts and write

$$
M_n = \mathbb{E}[M_{\infty} | \mathcal{F}_n] = \mathbb{E}[X_{\infty} | \mathcal{F}_n] - \mathbb{E}[Y_{\infty} | \mathcal{F}_n] \equiv X_n - Y_n,
$$

by linearity. We show that $\mathbb{E}[X_\infty | \mathcal{F}_T] = X_T$. The same argument holds for $\{Y_n\}$, which then implies $\mathbb{E}[M_{\infty} | \mathcal{F}_T] = X_T - Y_T = M_T$, as claimed.

We have of course that $X_{\infty} \geq 0$, and hence $X_n = \mathbb{E}[X_{\infty} | \mathcal{F}_n] \geq 0 \ \forall n$. Let $F \in \mathcal{F}_T$. Then

$$
\mathbb{E}[X_{\infty}; F \cap \{T = \infty\}] = \mathbb{E}[X_T; F \cap \{T = \infty\}],
$$

since $X_n = \mathbb{E}[X_\infty | \mathcal{F}_n] \to X_\infty$ a.s. by Lévy's Upward Theorem. Therefore it suffices to show

$$
\mathbb{E}[X_{\infty}; F \cap \{T < +\infty\}] = \mathbb{E}[X_T; F \cap \{T < +\infty\}].
$$

In fact, by (MON), it suffices to show

$$
\sum_{i\geq 0} \mathbb{E}[X_{\infty}; F \cap \{T = i\}] = \sum_{i\geq 0} \mathbb{E}[X_T; F \cap \{T = i\}].
$$

But note that $F \cap \{T = i\} \in \mathcal{F}_i$ so that

$$
\mathbb{E}[X_T; F \cap \{T = i\}] = \mathbb{E}[X_i; F \cap \{T = i\}] = \mathbb{E}[X_{\infty}; F \cap \{T = i\}],
$$

since $X_i = \mathbb{E}[X_{\infty} | \mathcal{F}_i]$. That concludes the proof of the stronger claim. \blacksquare

 \blacksquare

2 Wald's identities

Often additional properties of T hold (typically $\mathbb{E}[T] < +\infty$), which can be taken advantage of by considering instead the MG $\{M_{T\wedge n}\}\$ in the OST above (noticing of course that $M_{T \wedge S} = M_S$ and $M_{T \wedge T} = M_T$ whenever $S \leq T$ a.s.). In that context, the following is useful.

LEM 18.15 *Suppose* $\{M_n\}$ *is a MG such that* $\mathbb{E}[|M_{n+1} - M_n| | \mathcal{F}_n] \leq B$ *a.s. for all* n. Suppose T *is a stopping time with* $\mathbb{E}[T] < +\infty$ *. Then the stoppped MG* $\{M_{T\wedge n}\}\$ is UI.

Proof: Assume WLOG that $M_0 = 0$, to simplify. Observe first that

$$
|M_{T\wedge n}| \leq \sum_{m=0}^{+\infty} |M_{m+1} - M_m| 1\!\!1_{\{T>m\}}, \qquad \forall n.
$$

Taking expectations on the RHS (which does not depend on n), we get

$$
\sum_{m=0}^{+\infty} \mathbb{E} \left[|M_{m+1} - M_m| \mathbb{1}_{\{T > m\}} \right] = \sum_{m=0}^{+\infty} \mathbb{E} \left[|M_{m+1} - M_m| \mathbb{1}_{\{T > m\}} \right]
$$

\n
$$
= \sum_{m=0}^{+\infty} \mathbb{E} \left[\mathbb{E} \left[|M_{m+1} - M_m| \mathbb{1}_{\{T > m\}} | \mathcal{F}_m \right] \right]
$$

\n
$$
= \sum_{m=0}^{+\infty} \mathbb{E} \left[\mathbb{E} \left[|M_{m+1} - M_m| \mathbb{1}_{\{T > m\}} \right] \mathbb{1}_{\{T > m\}} \right]
$$

\n
$$
\leq \sum_{m=0}^{+\infty} \mathbb{E} \left[B \mathbb{1}_{\{T > m\}} \right]
$$

\n
$$
\leq B \sum_{m=0}^{+\infty} \mathbb{P} \left[T > m \right]
$$

\n
$$
\leq B \mathbb{E}[T] < +\infty,
$$

where we used that $\{T > m\} \in \mathcal{F}_m$.

As an application, we recover Wald's first identity. For $X_1, X_2, \ldots \in \mathbb{R}$, let $S_n = \sum_{i=1}^n X_i.$

THM 18.16 (Wald's first identity) *Let* $X_1, X_2, ... \in \mathcal{L}^1$ *be i.i.d. with* $\mu = \mathbb{E}[X_1]$ *and let* $T \in \mathcal{L}^1$ *be a stopping time. Then*

$$
\mathbb{E}[S_T] = \mu \mathbb{E}[T].
$$

Proof: Recall that $M_n = S_n - n\mu$ is a MG. By LEM 18.15 and the assumption $T \in \mathcal{L}^1$, the MG $\{M_{T \wedge n}\}\$ is UI. Indeed

$$
\mathbb{E}[|M_{n+1} - M_n| \, | \, \mathcal{F}_n] = \mathbb{E}[|X_{n+1} - \mu| \, | \, \mathcal{F}_n]
$$

$$
\leq \mu + \mathbb{E}|X_1| \equiv B < +\infty,
$$

by the triangle inequality and the Role of independence lemma. Apply THM 18.8 to $\{M_{T\wedge n}\}.$

We also recall Wald's second identity. We give a MG-based proof (but argue about convergence directly rather than using THM 18.8).

THM 18.17 (Wald's second identity) *Let* $X_1, X_2, ... \in \mathcal{L}^2$ *be i.i.d. with* $\mathbb{E}[X_1] =$ 0 and $\sigma^2 = \text{Var}[X_1]$ and let $T \in \mathcal{L}^1$ be a stopping time. Then

$$
\mathbb{E}[S_T^2] = \sigma^2 \mathbb{E}[T].
$$

Proof: Recall that $M_n = S_n^2 - n\sigma^2$ is a MG. Hence so is $M_{T \wedge n}$ and

$$
0 = \mathbb{E}[M_{T\wedge n}] = \mathbb{E}[S_{T\wedge n}^2 - (T\wedge n)\sigma^2] = \mathbb{E}[S_{T\wedge n}^2] - \sigma^2 \mathbb{E}[T\wedge n].
$$
 (1)

We have that $\mathbb{E}[T \wedge n] \uparrow \mathbb{E}[T]$ as $n \to +\infty$ by (MON).

To argue about the convergence of $\mathbb{E}[S_{T\wedge n}^2]$ we note that, by the assumption $\mathbb{E}[X_1] = 0$, it follows that $\{S_n\}$ is a MG and hence so is $\{S_{T \wedge n}\}\$. The latter is bounded in \mathcal{L}^2 since, by (1), we have

$$
\mathbb{E}[S_{T\wedge n}^2] = \sigma^2 \mathbb{E}[T\wedge n] \le \sigma^2 \mathbb{E}[T] < +\infty,
$$

for all *n*. Hence $S_{T\wedge n}$ converges a.s. and in \mathcal{L}^2 to S_T (since $T < +\infty$ a.s. by assumption). Convergence in \mathcal{L}^2 also implies convergence of the second moment. Indeed, by the triangle inequality,

$$
\|\|S_{T\wedge n}\|_2 - \|S_T\|_2| \le \|S_{T\wedge n} - S_T\|_2 \to 0.
$$

Hence,

$$
0 = \mathbb{E}[S_{T\wedge n}^2] - \sigma^2 \mathbb{E}[T\wedge n] \to \mathbb{E}[S_T^2] - \sigma^2 \mathbb{E}[T],
$$

which concludes the proof.

To establish $\mathbb{E}[T] < +\infty$, the following lemma can be used.

LEM 18.18 (Waiting for the inevitable) *Let* T *be a stopping time. Assume there is* $N \in \mathbb{Z}_+$ *and* $\varepsilon > 0$ *such that for every n*

$$
\mathbb{P}[T \le n + N \,|\, \mathcal{F}_n] > \varepsilon \quad a.s.
$$

then $\mathbb{E}[T] < +\infty$ *.*

Lecture 18: Optional Sampling Theorem 7

Proof: For any integer $m \geq 1$,

$$
\mathbb{P}[T > mN \, | \, T > (m-1)N] \le 1 - \varepsilon,
$$

by assumption. (Indeed, by definition of $Z = \mathbb{P}[T > n + N | \mathcal{F}_n] \leq 1 - \varepsilon$ with $n = (m-1)N$, we have for $F = \{T > (m-1)N\} \in \mathcal{F}_n$

$$
\mathbb{P}[T > m] = \mathbb{E}[\mathbb{1}\{T > n + N\}; F] = \mathbb{E}[Z; F] \le (1 - \varepsilon)\mathbb{P}[F],
$$

and apply the definition of the conditional probability.) By the multiplication rule (i.e., the undergraduate rule $\mathbb{P}[A_1 \cap \cdots \cap A_n] = \prod_{i=1}^n \mathbb{P}[A_i | A_1 \cap \cdots \cap A_{i-1}]$) and the monotonicity of the events $\{T > mN\}$, we have $\mathbb{P}[T > mN] \le (1 - \varepsilon)^m$. We conclude using $\mathbb{E}[T] = \sum_{k \geq 1} \mathbb{P}[T \geq k]$.

3 Application I: Simple RW

DEF 18.19 Simple RW on Z is the process $\{S_n\}_{n\geq 0}$ with $S_0 = 0$ and $S_n =$ $\sum_{k \leq n} X_k$ *where the* X_k *s are iid in* $\{-1, +1\}$ *s.t.* $\mathbb{P}[X_1 = 1] = 1/2$ *.*

THM 18.20 *Let* $\{S_n\}$ *as above. Let* $a < 0 < b$ *. Define* $T_x = \inf\{n \geq 0 : S_n = a\}$ x *}* and $T = T_a \wedge T_b$ *. Then we have*

\n- 1.
$$
T < +\infty \text{ a.s.}
$$
\n- 2. $\mathbb{P}[T_a < T_b] = \frac{b}{b-a}$
\n- 3. $\mathbb{E}[T] = -ab$
\n- 4. $T_a < +\infty \text{ a.s.} \text{ but } \mathbb{E}[T_a] = +\infty$
\n

Proof:

1) Apply the Waiting for the inevitable lemma with $N = b - a$ and $\varepsilon =$ $(1/2)^{b-a}$ (corresponding to moving right $b-a$ times in a row which takes you to b, no matter where you are within the $\{a, \ldots, b\}$ interval). That shows $\mathbb{E}[T] < +\infty$, from which the claim holds.

2) By Wald's first identity, $\mathbb{E}[S_T] = 0$ or

$$
a \mathbb{P}[S_T = a] + b \mathbb{P}[S_T = b] = 0,
$$

that is (taking $b \to \infty$ in the second expression)

$$
\mathbb{P}[T_a < T_b] = \frac{b}{b-a} \quad \text{and} \quad \mathbb{P}[T_a < +\infty] \ge \mathbb{P}[T_a < T_b] \to 1.
$$

3) Wald's second identity says that $\mathbb{E}[S_T^2] = \mathbb{E}[T]$ (by $\sigma^2 = 1$). Also

$$
\mathbb{E}[S_T^2] = \frac{b}{b-a}a^2 + \frac{-a}{b-a}b^2 = -ab,
$$

so that $\mathbb{E}[T] = -ab$.

4) Taking $b \to +\infty$ above shows that $\mathbb{E}[T_a] = +\infty$ by monotone convergence. (Note that this case shows that the \mathcal{L}^1 condition on the stopping time is necessary in Wald's second identity.)

4 Application II: Biased RW

DEF 18.21 Biased simple RW on \mathbb{Z} *with parameter* $1/2 < p < 1$ *is the process* ${S_n}_{n\geq 0}$ *with* $S_0 = 0$ *and* $S_n = \sum_{k\leq n} X_k$ *where the* X_k *s are iid in* ${-1, +1}$ *s.t.* $\mathbb{P}[X_1 = 1] = p$. Let $q = 1 - p$. Let $\phi(x) = (q/p)^x$ and $\psi_n(x) = x - (p - q)n$.

THM 18.22 *Let* $\{S_n\}$ *as above. Let* $a < 0 < b$ *. Define* $T_x = \inf\{n \geq 0 : S_n = a\}$ x *}* and $T = T_a \wedge T_b$ *. Then we have*

1.

$$
T<+\infty a.s.
$$

2.

$$
\mathbb{P}[T_a < T_b] = \frac{\phi(0) - \phi(b)}{\phi(a) - \phi(b)}
$$

3.

$$
\mathbb{P}[T_a < +\infty] = 1/\phi(a) < 1 \text{ and } \mathbb{P}[T_b = +\infty] = 0
$$

4.

$$
\mathbb{E}[T_b] = \frac{b}{2p-1}
$$

 \blacksquare

Proof: There are two MGs here:

$$
\mathbb{E}[\phi(S_n) | \mathcal{F}_{n-1}] = p(q/p)^{S_{n-1}+1} + q(q/p)^{S_{n-1}-1} = \phi(S_{n-1}),
$$

(noting that $|\phi(S_n)| \le (p/q)^n$ a.s.) and

$$
\mathbb{E}[\psi_n(S_n) | \mathcal{F}_{n-1}] = p[S_{n-1} + 1 - (p-q)(n)] + q[S_{n-1} - 1 - (p-q)(n)] = \psi_{n-1}(S_{n-1}),
$$

(noting that $|\psi_n(S_n)| \le (1+p)n$ a.s.)

- 1) Follows by the same argument as in the unbiased case.
- 2) Now note that $\{\phi(S_{T\wedge n})\}$ is a bounded MG and, therefore, by THM 18.8, we get

$$
\phi(0) = \mathbb{E}[\phi(S_T)] = \mathbb{P}[T_a < T_b]\phi(a) + \mathbb{P}[T_a > T_b]\phi(b),
$$

or
$$
\mathbb{P}[T_a < T_b] = \frac{\phi(b) - \phi(0)}{\phi(b) - \phi(a)}
$$
 (where we used 1)).

- 3) By 2), taking $b \to +\infty$, by monotonicity $\mathbb{P}[T_a < +\infty] = \frac{1}{\phi(a)} < 1$ so $T_a = +\infty$ with positive probability. Similarly take $a \to -\infty$.
- 4) By LEM 18.7 applied to $\{\Psi_n(S_n)\}\,$,

$$
0 = \mathbb{E}[S_{T_b \wedge n} - (p-q)(T_b \wedge n)].
$$

(We cannot use Wald's first identity directly because it is not immediately clear whether T_b is integrable.) By (MON) and the fact that $T_b < +\infty$ a.s. from 3), $\mathbb{E}[T_b \wedge n] \uparrow \mathbb{E}[T_b]$. Finally, $-\inf_n S_n \geq 0$ a.s. and for $x \geq 0$,

$$
\mathbb{P}[-\inf_{n} S_n \ge x] = \mathbb{P}[T_{-x} < +\infty] = \left(\frac{q}{p}\right)^x,
$$

so that $\mathbb{E}[-\inf_n S_n] = \sum_{x \geq 1} \mathbb{P}[-\inf_t S_t \geq x] < +\infty$. Hence, we can use (DOM) with $|S_{T_b \wedge n}| \le \max\{b, -\inf_n S_n\}$ to deduce that

$$
\mathbb{E}[T_b] = \frac{\mathbb{E}[S_{T_b}]}{p-q} = \frac{b}{2p-1}.
$$

 \blacksquare

References

- [Dur10] Rick Durrett. *Probability: theory and examples*. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2010.
- [Wil91] David Williams. *Probability with martingales*. Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge, 1991.